
sp500 Example
Another approach to segmentation is given by Koh, Kim, and Boyd’s L1-Trend filter (refs here and here).
The approach is to, given a sequence y of length N , use a global optimizer solve for a n-vector x minimizing:

(1/2)||x− y||22 + λ||Dx||1

where D is the second-order difference matrix that calculates xk−1 − 2xk + xk+1 for all k. Or in other words
find x minimizing:

(1/2)||x− y||22 + λ

N−1∑
k=2
|xk−1 − 2xk + xk+1|

They call the above Hodric-Prescott Filtering. It is very important to note that this sort of filtering is not
appropriate for forecasting time-series (or ex ante work), as it is moving data from the future into the estimate
in 2 ways:

• xk+1 is directly in the penalty term for xk (moving fit quality information known at time k+1 to time
k).

• It is using a global optimization to find all x simultaneously, meaning choices of later xs can affect
earlier choices.

However, this sort of can be used to look at ex post (after the fact) changes in behavior.

Richard Bellman wrote about a related smoothing filter in Dynamic Programming, Princeton 1958, Ch 1,
section 7, minimizing:

N∑
k=1

gk(xk − rk) +
N∑

k=2
hk(xk − xk−1)

(here we are solving for x, given r and the gk() and hk() are sequences of arbitrary penalty functions.

Koh, Kim, and Boyd supplied implementations of the method in both Matlab and C, and Hadley Wickham
provided a wrapper to make the C code available to R users. Dirk Eddelbuettel worked on an Rcpp adaption
of the methodology.

The idea is: one can take series data (such as historic S&P 500 prices) and, by picking a smoothing λ produce
a graph such as the following:

RcppDynProg uses a different, but related methodology. The user can specify any per-interval penalty, meaning
fit quality does not have to be per-point additive. The default metric is the quality of a linear fit on the
segment (discussed here). Then by specifying a bound on the number of segments or a per-segment penalty
(to discourage many small segments) a piecewise linear approximation is built up using a global dynamic
program optimizer. Again: the non-local nature of the segment quality scores (the default score depends on
all points in the segment, not just previous points) plus the global optimization mean the segmentation is
only available after all the data are known (so not suitable for forecasting a time series forward).

That being said the results look like the following.
library("RcppDynProg")
library("ggplot2")

Data from: https://github.com/eddelbuettel/l1tf/blob/master/data-raw/sp500.csv
sp500 <- read.csv("sp500.csv")

1

http://web.stanford.edu/~boyd/l1_tf/
http://web.stanford.edu/~boyd/papers/l1_trend_filter.html
http://web.stanford.edu/~boyd/l1_tf/
https://www.r-project.org
https://github.com/eddelbuettel/rcppl1tf
https://github.com/eddelbuettel/rcppl1tf
https://github.com/WinVector/RcppDynProg
https://winvector.github.io/RcppDynProg/articles/RcppDynProg.html

Figure 1:

sp500$date <- as.Date(sp500$date)

sp500$x <- as.numeric(sp500$date)
sp500$permuted <- sp500$raw[sample.int(nrow(sp500), nrow(sp500), replace = FALSE)]

soln <- solve_for_partition(sp500$x, sp500$raw, penalty = 250000)
sp500$estimate <- approx(soln$x, soln$pred,

xout = sp500$x,
method = "linear", rule = 2)$y

sp500$group <- as.character(
findInterval(sp500$x, soln[soln$what=="left", "x"]))

ggplot(data = sp500, aes(x = date)) +
geom_line(aes(y=raw), color = "lightgray") +
geom_line(aes(y=estimate, color = group)) +
ggtitle("segment approximation of historic data",

subtitle = "per-segment penalty = 250000") +
theme(legend.position = "none") +
scale_color_brewer(palette = "Dark2")

2

800

1000

1200

1400

2000 2002 2004 2006

date

ra
w

per−segment penalty = 250000

segment approximation of historic data

Notice in our definition of piecewise we do not insist the pieces touch. A smoother that enforces that can be
found here (demonstrated here as PiecewiseV).

Or, instead of specifying a penalty, the user can specify a bound on the number of segments allowed.
soln <- solve_for_partition(sp500$x, sp500$raw, max_k = 5, penalty = 0)
sp500$estimate <- approx(soln$x, soln$pred,

xout = sp500$x,
method = "linear", rule = 2)$y

sp500$group <- as.character(
findInterval(sp500$x, soln[soln$what=="left", "x"]))

ggplot(data = sp500, aes(x = date)) +
geom_line(aes(y=raw), color = "lightgray") +
geom_line(aes(y=estimate, color = group)) +
ggtitle("5 segment approximation of historic data") +
theme(legend.position = "none") +
scale_color_brewer(palette = "Dark2")

3

https://github.com/WinVector/vtreat/blob/master/R/segmented_variable.R
https://github.com/WinVector/RcppDynProg/blob/master/extras/SegmentationL.md

800

1000

1200

1400

2000 2002 2004 2006

date

ra
w

5 segment approximation of historic data

Or instead of specifying the penalty we can attempt to solve for a plausible value using a permutation test.
look for a penalty that prefers 1 segment on permuted data
lb <- 0
ub <- 100
while(TRUE) {

soln <- solve_for_partition(sp500$x, sp500$permuted, penalty = ub, max_k = 3)
if(nrow(soln)==2) {

break
}
lb <- ub
ub <- 10*ub

}
while(TRUE) {

penalty <- ceiling((lb+ub)/2)
if(penalty>=ub) {

break
}
soln <- solve_for_partition(sp500$x, sp500$permuted, penalty = penalty, max_k = 3)
if(nrow(soln)==2) {

ub <- penalty
} else {

lb <- penalty
}

}

4

print(penalty)

[1] 1775956

soln <- solve_for_partition(sp500$x, sp500$raw, penalty = penalty)
sp500$estimate <- approx(soln$x, soln$pred,

xout = sp500$x,
method = "linear", rule = 2)$y

sp500$group <- as.character(
findInterval(sp500$x, soln[soln$what=="left", "x"]))

ggplot(data = sp500, aes(x = date)) +
geom_line(aes(y=raw), color = "lightgray") +
geom_line(aes(y=estimate, color = group)) +
ggtitle("segment approximation of historic data",

subtitle = paste("per-segment penalty =", penalty)) +
theme(legend.position = "none") +
scale_color_brewer(palette = "Dark2")

800

1000

1200

1400

2000 2002 2004 2006

date

ra
w

per−segment penalty = 1775956

segment approximation of historic data

5

