
Sparse DNN Results with the MATLAB
interface to SuiteSparse:GraphBLAS

Tim Davis

Sept 2, 2019 (updated Feb 21, 2020)

The tables below report the results for the 12 sparse deep neural network
problems. Problems 1-3 use 1024 neurons, 4-6 use 4,096 neurons, 7-9 use
16K neurons, and the last use 64K neurons. Each group of three uses 120,
480, and 1920 layers, respectively.

1 The MATLAB code

The MATLAB code (with GraphBLAS) is very simple, even simpler than the
MATLAB reference implentation. All MATLAB variables are GraphBLAS
GrB objects. In this case, they represent sparse matrices with the GrB_FP32

floating point type, stored in CSR format (by row).

function Y = dnn_gb (W, bias, Y0)

Y = Y0 ;

for i=1:length(W)

Y = GrB.select (’>0’, GrB.mxm (’+.+’, Y * W {i}, bias {i})) ;

M = Y > 32 ;

if (nnz (M) > 0)

Y (M) = 32 ;

end

end

For comparison, here is the MATLAB reference implmentation at
http://graphchallenge.org. It is about 60x to 70x slower than the two methods
using GraphBLAS. Applying the bias is more complex than the GraphBLAS
code:

1



function Y = dnn_matlab (W, bias, Y0)

Y = Y0 ;

for i=1:length(W)

% Propagate through layer.

Z = Y * W {i} ;

% Apply bias to non-zero entries.

Y = Z + (double(logical(Z)) .* bias {i}) ;

% Threshold negative values.

Y (Y < 0) = 0 ;

% Threshold maximum values.

Y (Y > 32) = 32 ;

end

The code to convert from MATLAB sparse matrices to GraphBLAS GrB

objects is shown below. This time is not included since the problem could
have been read in as GraphBLAS matrices to begin with. In any case, the
conversion time is trivial. Problem 12 is converted from MATLAB to Graph-
BLAS in 30.4 seconds, or about 1% of the time to solve the DNN with 40
threads. Problem 1 is converted in 0.3 seconds.

function [W, bias, Y0] = dnn_mat2gb (W, bias, Y0)

n = size (Y0, 2) ;

Y0 = GrB (Y0, ’single’) ;

for i=1:length(W)

W {i} = GrB (W {i}, ’single’) ;

bias {i} = GrB.build (1:n, 1:n, bias {i}, n, n, ’+’, ’single’) ;

end

2



2 The C code

The C version in LAGraph, minus error checking and with a few other
trivial simplifications, is shown below. Is straight-forward but more com-
plex than either the pure MATLAB version (dnn_matlab.m) or the MAT-
LAB+GraphBLAS version (dnn_gb.m).

#include "LAGraph.h"

void ymax32 (float *z, const float *x)

{

(*z) = fminf ((*x), (float) 32.0) ;

}

GrB_Info LAGraph_dnn // returns GrB_SUCCESS if successful

(

GrB_Matrix *Yhandle,// Y, created on output

GrB_Matrix *W, // W [0..nlayers-1], each nneurons-by-nneurons

GrB_Matrix *Bias, // Bias [0..nlayers-1], diagonal nneurons-by-nneurons

int nlayers, // # of layers

GrB_Matrix Y0 // input features: nfeatures-by-nneurons

)

{

GrB_Matrix Y = NULL, M = NULL ;

GrB_Index nfeatures, nneurons ;

GrB_Matrix_nrows (&nfeatures, Y0) ;

GrB_Matrix_ncols (&nneurons, Y0) ;

GrB_Matrix_new (&Y, type, nfeatures, nneurons) ;

GrB_Matrix_new (&M, GrB_BOOL, nfeatures, nneurons) ;

GrB_UnaryOp Ymax32 ;

GrB_UnaryOp_new (&Ymax32, ymax32, GrB_FP32, GrB_FP32) ;

for (int layer = 0 ; layer < nlayers ; layer++)

{

// Y = Y * W [layer], using the conventional PLUS_TIMES semiring

GrB_mxm (Y, NULL, NULL, GxB__PLUS_TIMES_FP32,

((layer == 0) ? Y0 : Y), W [layer], NULL) ;

// Y = Y * Bias [layer], using the PLUS_PLUS semiring.

GrB_mxm (Y, NULL, NULL, GxB__PLUS_PLUS_FP32, Y, Bias [layer], NULL) ;

// delete entries from Y: keep only those entries greater than zero

GxB_select (Y, NULL, NULL, GxB_GT_ZERO, Y, NULL, NULL) ;

// threshold maximum values: Y (Y > 32) = 32

GrB_apply (Y, NULL, NULL, Ymax32, Y, NULL) ;

}

GrB_free (&M) ;

(*Yhandle) = Y ;

return (GrB_SUCCESS) ;

}

3



3 Run time results

Run time in seconds on an Intel Xeon E5-2698v4 @ 2.2GHz, with 20 hardware
cores and 256GB of RAM, using the GCC 5.4.0 compiler, and Ubuntu 16.04.
The fastest time in bold, for one and 40 threads. Lower is better. MATLAB
R2018a was used for both v3.1.0 and v3.2.0.

3.1 GraphBLAS v3.1.0, August 2019

one thread 40 threads
Prob MATLAB LAGraph M/L MATLAB LAGraph M/L

1 24 24.2 0.97 3 2.4 1.17
2 68 68.2 0.99 9 4.5 2.07
3 242 243.3 1.00 34 16.4 2.09

4 98 108.1 0.90 10 9.3 1.07
5 293 330.1 0.89 31 30.7 1.00
6 1076 1222.5 0.88 117 117.6 0.99

7 766 741.4 1.03 58 51.0 1.15
8 2684 2552.1 1.05 201 175.0 1.15
9 10381 9783.1 1.06 783 690.1 1.13

10 3777 4536.3 0.83 254 245.3 1.04
11 13817 16447.9 0.84 971 926.4 1.05
12 54701 65492.3 0.84 3829 3743.3 1.02

3.2 GraphBLAS v3.2.0, Feb 2020

one thread 40 threads
Prob MATLAB LAGraph M/L MATLAB LAGraph M/L

1 25.1 . 1.4 .
2 85.6 . 4.8 .
3 328.7 . 18.3 .

4 102.0 . 6.2 .
5 356.6 . 21.7 .
6 1395.9 . 84.1 .

7 722.0 . 35.0 .
8 2653.2 . 131.5 .
9 10407.3 . 504.7 .

10 4001.3 . 229.4 .
11 15124.5 . 918.9 .
12 59774.9 . 3570.3 .

4



4 Rate results

The rate is equal to the number of edges in the DNN, times the number of
features (60,000 for all cases), divided by the run time. Rate is reported in
terms of billions of edges/sec. Best rate shown in bold; higher is better.

4.1 GraphBLAS v3.1.0, August 2019

one thread 40 threads
Prob MATLAB LAGraph M/L MATLAB LAGraph M/L

1 10.0 9.7 1.03 85.8 100.4 0.85
2 14.0 13.8 1.01 101.3 209.2 0.48
3 15.6 15.5 1.00 110.1 230.2 0.48

4 9.7 8.7 1.11 94.6 101.1 0.93
5 12.9 11.4 1.13 123.3 122.9 1.00
6 14.0 12.4 1.14 129.1 128.4 1.01

7 4.9 5.1 0.97 64.6 74.0 0.87
8 5.6 5.9 0.95 75.2 86.3 0.87
9 5.8 6.2 0.94 77.2 87.5 0.88

10 4.0 3.3 1.20 59.4 61.5 0.96
11 4.4 3.7 1.19 62.2 65.2 0.95
12 4.4 3.7 1.20 63.1 64.5 0.98

4.2 GraphBLAS v3.2.0, Feb 2020

one thread 40 threads
Prob MATLAB LAGraph M/L MATLAB LAGraph M/L

1 . 9.4 . . 164.9 .
2 . 11.0 . . 198.5 .
3 . 11.5 . . 205.8 .

4 . 9.2 . . 152.8 .
5 . 10.6 . . 174.1 .
6 . 10.8 . . 179.6 .

7 . 5.2 . . 107.9 .
8 . 5.7 . . 114.8 .
9 . 5.8 . . 119.7 .

10 . 3.8 . . 65.8 .
11 . 4.0 . . 65.7 .
12 . 4.0 . . 67.7 .

5



5 Comparison

5.1 v3.1.0, August 2019

When using 40 threads, the performance of the two methods (MATLAB+LAGraph,
vs pure C in LAGraph) is almost identical, except for problems 2 and 3, where
LAGraph is about twice as fast as the MATLAB dnn_gb.m. The two codes
differ in how the max threshold of 32 is implemented. The MATLAB in-
terface doesn’t allow for user-defined operators, so a mask M is used for the
dnn_gb function. This actually seems to be faster in many cases when using
a single thread, as compared to the method used in LAGraph_dnn. The latter
uses a user-defined operator, ymax32 and GrB_apply. With 40 threads, the
GrB_apply is faster.

It appears that very little is lost, if any, in the MATLAB interface. To be
certain of this, the LAGraph_dnn.c function would need to be modified to use
the masked assignment method used in dnn_gb.m. However, each function
was written using the most natural approach available, and since the MAT-
LAB interface does not allow for user-defined operators, it was most natural
to write the max32 threshold as masked assigment. In that sense, this is a fair
comparison between MATLAB+GraphBLAS and LAGRAPH+GraphBLAS.

5.2 v3.2.0, Feb 2020

The new method in v3.2.0 is more parallelizable than the method in v3.1.0.
However, for the smaller problems, v3.1.0 is faster when using a single thread.
When using 40 threads, v3.2.0 (in LAGraph) is almost always significantly
faster than the method in v3.1.0 (except for problems 2 and 3).

The sequential performance in v3.1.0 is likely higher because that version
of GraphBLAS kept a set of global workspaces that it reused for each matrix
multiplication (the Sauna). Those have been removed in v3.2.0. For the
next release of GraphBLAS, I will explore how to improve the sequential
performance of the Sauna-free method in v3.2.x, to see if I can match the
performance of the Sauna-based method in v3.1.0.

Using a single thread on the largest problem takes about 18 hours, and
thus results were still in progress at the time v3.2.0 was released. This doc-
ument will be updated after the formal release of v3.2.0 when the runs com-
plete. See the master branch at https://github.com/DrTimothyAldenDavis/
GraphBLAS for the updated document.

6


