
Mechanized Operational

Semantics

J Strother Moore
Department of Computer Sciences

University of Texas at Austin

Marktoberdorf Summer School 2008

(Lecture 4: Boyer-Moore Fast String Searching)

1

The Problem

One of the classic problems in computing is string

searching : find the first occurrence of one character

string (“the pattern”) in another (“the text”).

Generally, the text is very large (e.g., gigabytes) but

the patterns are relatively small.

2

Examples

Find the word “comedy” in this NY Times article:

Fred Armisen’s office at “Saturday Night Live” is

deceptively small, barely big enough to fit a desk, a

couch, and an iPod. The glorified closet, the subject of a

running joke on the comedy show, now in its 31st season,

can simultaneously house a wisecracking . . .

3

AAAAAAAAAAAAACAAAGACAGGGGCAACAAAGTGAGACCCTAAAAAAAAAAAAACCCCA

AAACGGAGAACTTGGAATCCTGTGTCCAAAAAAAAAAGCAGGAAGAGAGCGTGTAGAAAC

TGAAGCTGAAGTGGAAAAAAAAAAGTCGCCAGCACCTACTGTGGAGACCAGAAAGGAAAA

AAAAAATTGGCAGTCTCGTAGCATACCAAAACTAGGCTTGAAAAAAAAAACACACAAAAA

AACACAGGCTACCCAGTATTTTATCGTCCAAAAAAAAAGAGGGAAGAAGGACATTTATAT

TTGCCTTCTGCCAAAAAAAAAAGTACCTCCCGCCTAGAAGAGAGTTTAGAAATCACCAAA

AAAAAATAGAGAGTCCCAAAATGTTCGGAATACTCAGAAAAAAAAATCTTAGTCAGTGCT

CACTCAGAGGGACCGGGTATTTAAAAAAAACCTAGACCAGATGCAGCAGGTACAAATTAA

TCAATCCCAAAAAAAAGACCTTCTACCCTTCCAAAAAATGATAGTTGTCTGCAATCCAAA

AAAAAGACTCTCCGGAAGGTGGACATGCAGAACCTACCAAAAAAAAAGAGAAGAAAGAAT

TGCCGGGCAAAAAGTTCCACGTAAAAAAAAAAGGAAATGGGAATGGAGTGTTGTTCTCCT

TCCTACCTAGTTTTGAAAAAAAAGGATGGATGTGGGTCACCTGCTCACGTTCTCCAAAAA

AAAGTGGGTGCTCTCTCACAATATTCTTAGAGGTGGCAAAAAAAATAAAGTTGATGGAAA

CAGTACTGTGTGGGCCAAACAAAAAAAAAATGGCACCACCTTTTCATTGGCTGAAAAAAA

AATTCAACTGAAAAACACAAGTCATACCTTCCTGTTTTATTTGCAAAAAAAATTTTTCAA

ACCCCACGGCAACAAACGACAGTATCAAAAAAACAACTTCATTTGACATTCTGCTATATT

AATGCTCTATGTGGAAAAAAAAACCATCAAGTTGTGCCTTTTTTCAAAGAAATCCATGCA

AAAAAAAGACCCATGAAATAATTTTCTGGATCATCCATACAGAACCAAAAAAAAGAGGTG

4

5

Variants of the problem allow wildcards in the

pattern and/or the text. Exact matching is when no

wildcards are allowed.

We describe the fastest sequential algorithm for

solving the exact string searching problem. The

algorithm is called the Boyer-Moore fast string

searching algorithm.

6

Example

Find the word “comedy” in this NY Times article:

Fred Armisen’s office at “Saturday Night Live” is

deceptively small, barely big enough to fit a desk, a

couch, and an iPod. The glorified closet, the subject of a

running joke on the comedy show, now in its 31st season,

can simultaneously house a wisecracking . . .

7

O M E D Y

J O K E O T H E C O M E D YN

C

8

O M E D Y

J O K E O T H E C O M E D YN

C

9

J

O M E D Y

NO K E O T H E C O M E D Y

J
C

10

J

O M E D Y

NO K E O T H E C O M E D Y

C

11

O
O M E D Y

NO K E O T H E C O M E D YJ

C

12

J

O M E D Y

NO K E O T H E C O M E D Y

C

13

K
O M E D Y

NO K E O T H E C O M E D YJ

C

14

J

O M E D Y

NO K E O T H E C O M E D Y

C

15

J

O M E D Y

NO K E O T H E C O M E D Y

C

16

J

O M E D Y

NO K E O T H E C O M E D Y

C

17

J

O M E D Y

C O M E D Y

C O M E D Y

NO K E O T H E

C

18

O M E D Y

J O K E O T H E C O M E D YN

C

19

O M E D Y

J O K E O T H E C O M E D YN

C

20

O
O M E D Y

NJ O K E O T H E C O M E D Y

C

21

O
O M E D Y

NJ O K E O T H E C O M E D Y

C

22

Y

O M E D Y

NJ O K E O T H E C O M E D

C

23

H
O M E D Y

NJ O K E O T H E C O M E D Y

C

24

H
O M E D Y

NJ O K E O T H E C O M E D Y

C

25

Y

O M E D Y

NJ O K E O T H E C O M E D

C

26

E
O M E D Y

NJ O K E O T H E C O M E D Y

C

27

E
O M E D Y

NJ O K E O T H E C O M E D Y

C

28

Y

O M E D Y

NJ O K E O T H E C O M E D

C

29

Y

O M E D Y
C O M E D Y

NJ O K E O T H E C O M E D

C

Key Property: The longer the pattern, the faster

the search!

30

Pre-Computing the Skip Distance

pat: 543210

COMEDY

txt: xxxxxOxxxxxxxxxxx...

↑

A 6 F 6 K 6 P 6 U 6

B 6 G 6 L 6 Q 6 V 6

C 5 H 6 M 3 R 6 W 6

D 1 I 6 N 6 S 6 X 6

E 2 J 6 O 4 T 6 Y 0

Z 6

This is a 1-dimensional array, skip[c], as big as

the alphabet.

31

O M E D Y

J O K E O T H E C O M E D YN

C

skip[c]:

A 6 F 6 K 6 P 6 U 6

B 6 G 6 L 6 Q 6 V 6

C 5 H 6 M 3 R 6 W 6

D 1 I 6 N 6 S 6 X 6

E 2 J 6 O 4 T 6 Y 0

Z 6

32

O M E D Y

J O K E O T H E C O M E D YN

C

skip[c]:

A 6 F 6 K 6 P 6 U 6

B 6 G 6 L 6 Q 6 V 6

C 5 H 6 M 3 R 6 W 6

D 1 I 6 N 6 S 6 X 6

E 2 J 6 O 4 T 6 Y 0

Z 6

33

O
O M E D Y

NJ O K E O T H E C O M E D Y

C

skip[c]:

A 6 F 6 K 6 P 6 U 6

B 6 G 6 L 6 Q 6 V 6

C 5 H 6 M 3 R 6 W 6

D 1 I 6 N 6 S 6 X 6

E 2 J 6 O 4 T 6 Y 0

Z 6

34

O
O M E D Y

NJ O K E O T H E C O M E D Y

C

skip[c]:

A 6 F 6 K 6 P 6 U 6

B 6 G 6 L 6 Q 6 V 6

C 5 H 6 M 3 R 6 W 6

D 1 I 6 N 6 S 6 X 6

E 2 J 6 O 4 T 6 Y 0

Z 6

35

Y

O M E D Y

NJ O K E O T H E C O M E D

C

skip[c]:

A 6 F 6 K 6 P 6 U 6

B 6 G 6 L 6 Q 6 V 6

C 5 H 6 M 3 R 6 W 6

D 1 I 6 N 6 S 6 X 6

E 2 J 6 O 4 T 6 Y 0

Z 6

36

H
O M E D Y

NJ O K E O T H E C O M E D Y

C

skip[c]:

A 6 F 6 K 6 P 6 U 6

B 6 G 6 L 6 Q 6 V 6

C 5 H 6 M 3 R 6 W 6

D 1 I 6 N 6 S 6 X 6

E 2 J 6 O 4 T 6 Y 0

Z 6

37

H
O M E D Y

NJ O K E O T H E C O M E D Y

C

skip[c]:

A 6 F 6 K 6 P 6 U 6

B 6 G 6 L 6 Q 6 V 6

C 5 H 6 M 3 R 6 W 6

D 1 I 6 N 6 S 6 X 6

E 2 J 6 O 4 T 6 Y 0

Z 6

38

Y

O M E D Y

NJ O K E O T H E C O M E D

C

skip[c]:

A 6 F 6 K 6 P 6 U 6

B 6 G 6 L 6 Q 6 V 6

C 5 H 6 M 3 R 6 W 6

D 1 I 6 N 6 S 6 X 6

E 2 J 6 O 4 T 6 Y 0

Z 6

39

E
O M E D Y

NJ O K E O T H E C O M E D Y

C

skip[c]:

A 6 F 6 K 6 P 6 U 6

B 6 G 6 L 6 Q 6 V 6

C 5 H 6 M 3 R 6 W 6

D 1 I 6 N 6 S 6 X 6

E 2 J 6 O 4 T 6 Y 0

Z 6

40

E
O M E D Y

NJ O K E O T H E C O M E D Y

C

skip[c]:

A 6 F 6 K 6 P 6 U 6

B 6 G 6 L 6 Q 6 V 6

C 5 H 6 M 3 R 6 W 6

D 1 I 6 N 6 S 6 X 6

E 2 J 6 O 4 T 6 Y 0

Z 6

41

Y

O M E D Y

NJ O K E O T H E C O M E D

C

skip[c]:

A 6 F 6 K 6 P 6 U 6

B 6 G 6 L 6 Q 6 V 6

C 5 H 6 M 3 R 6 W 6

D 1 I 6 N 6 S 6 X 6

E 2 J 6 O 4 T 6 Y 0

Z 6

42

Y

O M E D Y
C O M E D Y

NJ O K E O T H E C O M E D

C

skip[c]:

A 6 F 6 K 6 P 6 U 6

B 6 G 6 L 6 Q 6 V 6

C 5 H 6 M 3 R 6 W 6

D 1 I 6 N 6 S 6 X 6

E 2 J 6 O 4 T 6 Y 0

Z 6

43

But Wait! There’s More!

pat: NONPARTIPULAR

txt: -----------------------

|

44

But Wait! There’s More!

pat: NONPARTIPULAR

txt: ------------R----------

|

45

But Wait! There’s More!

pat: NONPARTIPULAR

txt: -----------A-----------

|

46

But Wait! There’s More!

pat: NONPARTIPULAR

txt: ----------P------------

|

47

But Wait! There’s More!

pat: NONPARTIPULAR

txt: ----------P------------

|

Slide 2 to match the discovered character.

48

But Wait! There’s More!

pat: NONPARTIPULAR

txt: ----------P??----------

|

49

But Wait! There’s More!

pat: NONPARTIPULAR

txt: ----------PAR----------

|

50

But Wait! There’s More!

pat: NONPARTIPULAR

txt: -----------------------

|

51

But Wait! There’s More!

pat: NONPARTIPULAR

txt: ------------R----------

|

52

But Wait! There’s More!

pat: NONPARTIPULAR

txt: -----------AR----------

|

53

But Wait! There’s More!

pat: NONPARTIPULAR

txt: ----------PAR----------

|

54

But Wait! There’s More!

pat: NONPARTIPULAR

txt: ----------PAR----------

|

55

But Wait! There’s More!

pat: NONPARTIPULAR

txt: ----------PAR----------

|

Slide 7 to match the discovered substring!

56

j |pat|

| |

pat: NONPARTIPULAR

txt: ----------PAR----------

|

i

dt: txt[i] pat[j + 1] ... pat[|pat|]

P A R

57

dt: txt[i] pat[j + 1] ... pat[|pat|]

dt can be computed given txt[i] and index j in pat!

There are only |α| × |pat| combinations, where |α|

is the alphabet size.

58

The Skip Distance – Delta

Given pat, the skip can be pre-computed for every

combination of character read, c, and pattern index,

j, by finding how far we must slide to find the last

occurrence of dt in pat.

59

pat: NONPARTIPULAR

txt: ----------PAR----------

|

60

pat: NONPARTIPULAR

txt: ----------PAR----------

|

61

pat: BC-ABC-BBC-CBC

txt: -----------BBC----------

|

62

pat: BC-ABC-BBC-CBC

txt: -----------BBC----------

|

63

pat: BC-ABC-BBC-CBC

txt: -----------ABC----------

|

64

pat: BC-ABC-BBC-CBC

txt: -----------ABC----------

|

65

pat: BC-ABC-BBC-CBC

txt: -----------DBC----------

|

66

pat: BC-ABC-BBC-CBC

txt: -----------DBC----------

|

67

pat: EE-ABC-BBC-CBC

txt: -----------DBC----------

|

68

pat: EE-ABC-BBC-CBC

txt: -----------DBC----------

|

69

The Delta Array

delta[c,j] is an array of size |α| × |pat| that gives

the skip distance when a mismatch occurs after

comparing c from txt to pat[j].

70

The Algorithm

fast(pat, txt)

If pat = ""

then

If txt = ""

then return Not-Found;

else return 0; end;

end;

71

preprocess pat to produce delta;

j := |pat| − 1;

i := j;

72

while (0 ≤ j ∧ i < |txt|)

do

If pat[j] = txt[i]

then

i := i− 1;

j := j − 1;

else

i := i+ delta[txt[i], j];

j := |pat| − 1;

end;

73

If (j < 0)

then return i+ 1;

else return Not-Found; end;

end;

74

Performance

How does the algorithm perform?

This depends on the size of the alphabet. We only

have data on English text right now.

In our test:

txt: English text of length 177,985.

pat: 100 randomly chosen patterns of length 5 –

30, chosen from another English text and filtered so

they do not occur in the search text.

75

The naive string searching algorithm would look at

all 177,985 characters of the search text. In fact, it

would look at some characters more than once.

76

77

78

Goal

Prove the correctness of an M1 program for the

Boyer-Moore fast string searching algorithm.

We will not code the preprocessing in M1.

We will write code for the Boyer-Moore algorithm

that assumes that the contents of a certain local

contains a 2-dimensional delta array.

We will initialize the array variable with ACL2 code,

not M1 code.

79

We will proceed as previously advised:

• Step 1: prove that the code implements the

algorithm

• Step 2: prove that the algorithm implements the

spec

We’ll do Step 2 first. It’s always the hardest.

80

Caveat

In this talk I will ignore hypotheses and distracting

arithmetic details.

The ACL2 proof scripts provide the complete

details.

81

The Obviously Correct Algorithm

(defun matchp (pat j txt i)

(cond ((not (natp j)) nil)

((>= j (length pat)) t)

((>= i (length txt)) nil)

((equal (char pat j)

(char txt i))

(matchp pat (+ 1 j)

txt (+ 1 i)))

(t nil)))

82

The Obviously Correct Algorithm

(defun matchp (pat j txt i)

(cond

((>= j (length pat)) t)

((>= i (length txt)) nil)

((equal (char pat j)

(char txt i))

(matchp pat (+ 1 j)

txt (+ 1 i)))

(t nil)))

83

(defun correct-loop (pat txt i)

(cond ((>= i (length txt)) nil)

((matchp pat 0 txt i) i)

(t (correct-loop pat txt (+ 1 i)))))

(defun correct (pat txt)

(correct-loop pat txt 0))

84

The Fast Algorithm

(defun fast-loop (pat j txt i)

(cond

((< j 0) (+ 1 i))

((<= (length txt) i) nil)

((equal (char pat j) (char txt i))

(fast-loop pat (- j 1) txt (- i 1)))

(t (fast-loop pat

(- (length pat) 1)

txt

(+ i (delta (char txt i)

j pat)))))

85

(defun fast-loop (pat j txt i)

(declare

(xargs :measure (measure pat j txt i)

:well-founded-relation l<))

(cond . . .

((equal (char pat j) (char txt i))

(fast-loop pat (- j 1) txt (- i 1)))

(t (fast-loop pat

(- (length pat) 1)

txt

(+ i (delta (char txt i)

j pat))))))

86

Note Above:

In this formalization of the algorithm, we do not

pre-compute delta but instead compute the skip

distance as a function of the char from txt, the

index j in pat, and pat.

The M1 code will use a 2-dimensional array

initialized by an ACL2 function.

We will prove the ACL2 preprocessing correct.

But at the algorithmic level, we needn’t think about

arrays.

87

(defun fast (pat txt)

(if (equal pat "")

(if (equal txt "")

nil

0)

(fast-loop pat

(- (length pat) 1)

txt

(- (length pat) 1))))

88

“Pre-Processing”

(defun delta (v j pat)

(let* ((pat~ (coerce pat ’list))

(dt (cons v (nthcdr (+ j 1) pat~))))

(+ (- (len pat~) 1)

(- (find-pmatchp dt pat~ (- j 1))))))

(defun find-pmatchp (dt pat~ j)

(cond ((pmatchp dt pat~ j) j)

(t (find-pmatchp dt pat~ (- j 1)))))

89

pat: BC-ABC-BBC-CBC

dt: BBC

pmatchp: BBC

pat: BC-ABC-BBC-CBC

dt: ABC

pmatchp: ABC

pat: BC-ABC-BBC-CBC

dt: GBC
pmatchp: GBC

90

Goal

(defthm fast-is-correct

(implies (and (stringp pat)

(stringp txt))

(equal (fast pat txt)

(correct pat txt))))

91

Observation 1 – List Counterparts

Every string processing function has a list

processing counterpart.

(char str i) = (nth i (coerce str ’list))

92

Observation 1 – List Counterparts

Let pat~ be (coerce pat ’list).

(equal (correct-loop pat txt i)

(correct-loop~ pat~ txt~ i))

93

Observation 1 – List Counterparts

(defun delta (v j pat)

(let* ((pat~ (coerce pat ’list))

(dt~ (cons v (nthcdr (+ j 1) pat~))))

(+ (- (len pat~) 1)

(- (find-pmatchp dt~ pat~ (- j 1))))))

94

Observation 2 – Matching is Equality
(defun matchp (pat j txt i)

(cond ((>= j (length pat)) t)

((>= i (length txt)) nil)

((equal (char pat j) (char txt i))

(matchp pat (+ 1 j) txt (+ 1 i)))

(t nil)))

j

pat: abcUVW

txt: xxxxxUVWxxxxx

i

95

Observation 2 – Matching is Equality

(equal (matchp pat j txt i)

(equal (firstn (len (nthcdr j pat~))

(nthcdr i txt~))

(nthcdr j pat~)))

j

pat: abcUVW

txt: xxxxxUVWxxxxx

i

96

Observation 3 – Destructor Elimination

(append (firstn n x) (nthcdr n x)) = x

So to prove:

ψ(x, (firstn n x), (nthcdr n x))

it is sufficient to prove

ψ((append a b), a, b)

97

Goal

(defthm fast-is-correct

(implies (and (stringp pat)

(stringp txt))

(equal (fast pat txt)

(correct pat txt))))

98

The Crux

(implies

(equal (firstn (len (nthcdr (+ 1 j) pat~))

(nthcdr (+ 1 i) txt~))

(nthcdr (+ 1 j) pat~))

(equal

(correct-loop~ pat~ txt~

(+ i (- (find-pmatchp

(cons (car (nthcdr i txt~))

(nthcdr j (cdr pat~)))

pat~ (+ -1 j)))))

(correct-loop~ pat~ txt~ (+ i (- j)))))

99

Decomposition

The crux is to prove that correct-loop can skip

ahead in big steps (like fast does).

But we can decompose this into two parts.

100

Decomposition

(a) correct-loop can skip ahead if there are no

matches in the region skipped

(b) there are no matches in the region skipped by

find-pmatchp

101

Summary of Step 2

A total of 9 definitions and lemmas are proved to

establish

(defthm fast-is-correct

(implies (and (stringp pat)

(stringp txt))

(equal (fast pat txt)

(correct pat txt))))

102

Step 1

(defconst *m1-boyer-moore-program*

; Allocation of locals

; pat 0

; j 1

; txt 2

; i 3

; pmax 4 = (length pat)

; tmax 5 = (length txt)

; array 6 = (preprocess pat)

; c 7 = temp - last char read from txt

’(

(load 0) ; 0 (load pat)

(push "") ; 1 (push "")

103

(ifane 5) ; 2 (ifane loop)

(load 2) ; 3 (load txt)

(push "") ; 4 (push "")

(ifane 40) ; 5 (ifane win)

(goto 43) ; 6 (goto lose)

; loop:

(load 1) ; 7 (load j)

(iflt 37) ; 8 (iflt win))

(load 5) ; 9 (load tmax)

(load 3) ; 10 (load i)

(sub) ; 11 (sub)

(ifle 37) ; 12 (ifle lose)

(load 0) ; 13 (load pat)

(load 1) ; 14 (load j)

(aload) ; 15 (aload)

(load 2) ; 16 (load txt)

(load 3) ; 17 (load i)

(aload) ; 18 (aload)

(store 7) ; 19 (store v)

104

(load 7) ; 20 (load v)

(sub) ; 21 (sub)

(ifne 10) ; 22 (ifne skip)

(load 1) ; 23 (load j)

(push 1) ; 24 (push 1)

(sub) ; 25 (sub)

(store 1) ; 26 (store j)

(load 3) ; 27 (load i)

(push 1) ; 28 (push 1)

(sub) ; 29 (sub)

(store 3) ; 30 (store i)

(goto -24) ; 31 (goto loop)

; skip:

(load 3) ; 32 (load i)

(load 6) ; 33 (load array)

(load 7) ; 34 (load v)

(aload) ; 35 (aload)

(load 1) ; 36 (load j)

(aload) ; 37 (aload)

105

(add) ; 38 (add)

(store 3) ; 39 (store i)

(load 4) ; 40 (load pmax)

(push 1) ; 41 (push 1)

(sub) ; 42 (sub)

(store 1) ; 43 (store j)

(goto -37) ; 44 (goto loop)

; win:

(load 3) ; 45 (load i)

(push 1) ; 46 (push 1)

(add) ; 47 (add)

(return) ; 48 (return)

; lose:

(push nil) ; 49 (push nil)

(return)) ; 50 (return))

)

106

The Schedule

How do we define the schedule for such a

complicated piece of code?

107

The Schedule

(defun m1-boyer-moore-loop-sched (pat j txt i)

(cond

((< j 0) (repeat 0 6))

((<= (length txt) i) (repeat 0 8))

((equal (char-code (char pat j))

(char-code (char txt i)))

(append (repeat 0 25)

(m1-boyer-moore-loop-sched pat (- j 1)

txt (- i 1))))

(t (append (repeat 0 29)

(m1-boyer-moore-loop-sched

pat (- (length pat) 1)

txt (+ i (delta (char txt i) j pat)))))))

108

The Schedule

(defun m1-boyer-moore-loop-sched (pat j txt i)

(cond

((< j 0) (repeat 0 6))

((<= (length txt) i) (repeat 0 8))

((equal (char-code (char pat j))

(char-code (char txt i)))

(append (repeat 0 25)

(m1-boyer-moore-loop-sched pat (- j 1)

txt (- i 1))))

(t (append (repeat 0 29)

(m1-boyer-moore-loop-sched

pat (- (length pat) 1)

txt (+ i (delta (char txt i) j pat)))))))

109

(defun m1-boyer-moore-sched (pat txt)

(if (equal pat "")

(if (equal txt "")

(repeat 0 9)

(repeat 0 10))

(append (repeat 0 3)

(m1-boyer-moore-loop-sched

pat (- (length pat) 1)

txt (- (length pat) 1)))))

110

The Schedule

Defining the schedule is trivial if you have verified

the algorithm.

They have identical recursive structure and

justification.

111

(defthm m1-boyer-moore-is-fast

(implies

(and (stringp pat) (stringp txt))

(equal (top (stack

(run (m1-boyer-moore-sched pat txt)

(make-state 0

(list pat (- (length pat) 1)

txt (- (length pat) 1)

(length pat) (length txt)

(preprocess pat)

0)

nil *m1-boyer-moore-program*))))

(fast pat txt))))

112

(defthm m1-boyer-moore-halts

(implies

(and (stringp pat) (stringp txt))

(haltedp

(run (m1-boyer-moore-sched pat txt)

(make-state 0

(list pat (- (length pat) 1)

txt (- (length pat) 1)

(length pat) (length txt)

(preprocess pat)

0)

nil *m1-boyer-moore-program*)))))

113

Main Theorem

Given

(defthm fast-is-correct

(implies (and (stringp pat)

(stringp txt))

(equal (fast pat txt)

(correct pat txt))))

and

114

(defthm m1-boyer-moore-is-fast

(implies

(and (stringp pat) (stringp txt))

(equal (top (stack

(run (m1-boyer-moore-sched pat txt)

(make-state 0

(list pat (- (length pat) 1)

txt (- (length pat) 1)

(length pat) (length txt)

(preprocess pat)

0)

nil *m1-boyer-moore-program*))))

(fast pat txt))))

it is trivial to show:

115

(defthm m1-boyer-moore-is-correct

(implies

(and (stringp pat) (stringp txt))

(equal (top (stack

(run (m1-boyer-moore-sched pat txt)

(make-state 0

(list pat (- (length pat) 1)

txt (- (length pat) 1)

(length pat) (length txt)

(preprocess pat)

0)

nil *m1-boyer-moore-program*))))

(correct pat txt))))

116

Demo 1

117

Conclusion

Mechanized operational (interpretive) semantics

• are entirely within a logical framework and so

permit logical analysis of programs by traditional

formal proofs, without introduction of

meta-logical transformers (VCGs)

• are generally executable

• are easily related to implementations

• allow derivation of language properties

118

• may allow derivation of intensional properties

(e.g., how many steps a program takes to

terminate)

• allow verification of system hierarchies (multiple

layers of abstraction can be formalized and

related within the proof system)

119

Thank You

120

