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The Problem

One of the classic problems in computing is string

searching : find the first occurrence of one character

string (“the pattern”) in another (“the text”).

Generally, the text is very large (e.g., gigabytes) but

the patterns are relatively small.
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Examples

Find the word “comedy” in this NY Times article:

Fred Armisen’s office at “Saturday Night Live” is

deceptively small, barely big enough to fit a desk, a

couch, and an iPod. The glorified closet, the subject of a

running joke on the comedy show, now in its 31st season,

can simultaneously house a wisecracking . . .
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AAAAAAAAAAAAACAAAGACAGGGGCAACAAAGTGAGACCCTAAAAAAAAAAAAACCCCA

AAACGGAGAACTTGGAATCCTGTGTCCAAAAAAAAAAGCAGGAAGAGAGCGTGTAGAAAC

TGAAGCTGAAGTGGAAAAAAAAAAGTCGCCAGCACCTACTGTGGAGACCAGAAAGGAAAA

AAAAAATTGGCAGTCTCGTAGCATACCAAAACTAGGCTTGAAAAAAAAAACACACAAAAA

AACACAGGCTACCCAGTATTTTATCGTCCAAAAAAAAAGAGGGAAGAAGGACATTTATAT

TTGCCTTCTGCCAAAAAAAAAAGTACCTCCCGCCTAGAAGAGAGTTTAGAAATCACCAAA

AAAAAATAGAGAGTCCCAAAATGTTCGGAATACTCAGAAAAAAAAATCTTAGTCAGTGCT

CACTCAGAGGGACCGGGTATTTAAAAAAAACCTAGACCAGATGCAGCAGGTACAAATTAA

TCAATCCCAAAAAAAAGACCTTCTACCCTTCCAAAAAATGATAGTTGTCTGCAATCCAAA

AAAAAGACTCTCCGGAAGGTGGACATGCAGAACCTACCAAAAAAAAAGAGAAGAAAGAAT

TGCCGGGCAAAAAGTTCCACGTAAAAAAAAAAGGAAATGGGAATGGAGTGTTGTTCTCCT

TCCTACCTAGTTTTGAAAAAAAAGGATGGATGTGGGTCACCTGCTCACGTTCTCCAAAAA

AAAGTGGGTGCTCTCTCACAATATTCTTAGAGGTGGCAAAAAAAATAAAGTTGATGGAAA

CAGTACTGTGTGGGCCAAACAAAAAAAAAATGGCACCACCTTTTCATTGGCTGAAAAAAA

AATTCAACTGAAAAACACAAGTCATACCTTCCTGTTTTATTTGCAAAAAAAATTTTTCAA

ACCCCACGGCAACAAACGACAGTATCAAAAAAACAACTTCATTTGACATTCTGCTATATT

AATGCTCTATGTGGAAAAAAAAACCATCAAGTTGTGCCTTTTTTCAAAGAAATCCATGCA

AAAAAAAGACCCATGAAATAATTTTCTGGATCATCCATACAGAACCAAAAAAAAGAGGTG
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Variants of the problem allow wildcards in the

pattern and/or the text. Exact matching is when no

wildcards are allowed.

We describe the fastest sequential algorithm for

solving the exact string searching problem. The

algorithm is called the Boyer-Moore fast string

searching algorithm.
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Example

Find the word “comedy” in this NY Times article:

Fred Armisen’s office at “Saturday Night Live” is

deceptively small, barely big enough to fit a desk, a

couch, and an iPod. The glorified closet, the subject of a

running joke on the comedy show, now in its 31st season,

can simultaneously house a wisecracking . . .
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Key Property: The longer the pattern, the faster

the search!
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Pre-Computing the Skip Distance

pat: 543210

COMEDY

txt: xxxxxOxxxxxxxxxxx...

↑

A 6 F 6 K 6 P 6 U 6

B 6 G 6 L 6 Q 6 V 6

C 5 H 6 M 3 R 6 W 6

D 1 I 6 N 6 S 6 X 6

E 2 J 6 O 4 T 6 Y 0

Z 6

This is a 1-dimensional array, skip[c], as big as

the alphabet.
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But Wait! There’s More!

pat: NONPARTIPULAR

txt: -----------------------

|
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But Wait! There’s More!

pat: NONPARTIPULAR

txt: ------------R----------

|
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But Wait! There’s More!

pat: NONPARTIPULAR

txt: -----------A-----------

|
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But Wait! There’s More!

pat: NONPARTIPULAR

txt: ----------P------------

|
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But Wait! There’s More!

pat: NONPARTIPULAR

txt: ----------P------------

|

Slide 2 to match the discovered character.
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But Wait! There’s More!

pat: NONPARTIPULAR

txt: ----------P??----------

|
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But Wait! There’s More!

pat: NONPARTIPULAR

txt: ----------PAR----------

|
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But Wait! There’s More!

pat: NONPARTIPULAR

txt: -----------------------

|
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But Wait! There’s More!
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But Wait! There’s More!
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But Wait! There’s More!

pat: NONPARTIPULAR

txt: ----------PAR----------
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But Wait! There’s More!

pat: NONPARTIPULAR

txt: ----------PAR----------

|
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But Wait! There’s More!

pat: NONPARTIPULAR

txt: ----------PAR----------

|

Slide 7 to match the discovered substring!
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j |pat|

| |

pat: NONPARTIPULAR

txt: ----------PAR----------

|

i

dt: txt[i] pat[j + 1] ... pat[|pat|]

P A R
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dt: txt[i] pat[j + 1] ... pat[|pat|]

dt can be computed given txt[i] and index j in pat!

There are only |α| × |pat| combinations, where |α|

is the alphabet size.
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The Skip Distance – Delta

Given pat, the skip can be pre-computed for every

combination of character read, c, and pattern index,

j, by finding how far we must slide to find the last

occurrence of dt in pat.
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pat: NONPARTIPULAR

txt: ----------PAR----------

|
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txt: ----------PAR----------

|
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pat: BC-ABC-BBC-CBC

txt: -----------BBC----------

|
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pat: BC-ABC-BBC-CBC
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pat: EE-ABC-BBC-CBC

txt: -----------DBC----------

|

68



pat: EE-ABC-BBC-CBC

txt: -----------DBC----------

|
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The Delta Array

delta[c,j] is an array of size |α| × |pat| that gives

the skip distance when a mismatch occurs after

comparing c from txt to pat[j].
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The Algorithm

fast(pat, txt)

If pat = ""

then

If txt = ""

then return Not-Found;

else return 0; end;

end;
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preprocess pat to produce delta;

j := |pat| − 1;

i := j;
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while (0 ≤ j ∧ i < |txt|)

do

If pat[j] = txt[i]

then

i := i− 1;

j := j − 1;

else

i := i+ delta[txt[i], j];

j := |pat| − 1;

end;
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If (j < 0)

then return i+ 1;

else return Not-Found; end;

end;
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Performance

How does the algorithm perform?

This depends on the size of the alphabet. We only

have data on English text right now.

In our test:

txt: English text of length 177,985.

pat: 100 randomly chosen patterns of length 5 –

30, chosen from another English text and filtered so

they do not occur in the search text.
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The naive string searching algorithm would look at

all 177,985 characters of the search text. In fact, it

would look at some characters more than once.
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Goal

Prove the correctness of an M1 program for the

Boyer-Moore fast string searching algorithm.

We will not code the preprocessing in M1.

We will write code for the Boyer-Moore algorithm

that assumes that the contents of a certain local

contains a 2-dimensional delta array.

We will initialize the array variable with ACL2 code,

not M1 code.

79



We will proceed as previously advised:

• Step 1: prove that the code implements the

algorithm

• Step 2: prove that the algorithm implements the

spec

We’ll do Step 2 first. It’s always the hardest.
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Caveat

In this talk I will ignore hypotheses and distracting

arithmetic details.

The ACL2 proof scripts provide the complete

details.

81



The Obviously Correct Algorithm

(defun matchp (pat j txt i)

(cond ((not (natp j)) nil)

((>= j (length pat)) t)

((>= i (length txt)) nil)

((equal (char pat j)

(char txt i))

(matchp pat (+ 1 j)

txt (+ 1 i)))

(t nil)))
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The Obviously Correct Algorithm

(defun matchp (pat j txt i)

(cond

((>= j (length pat)) t)

((>= i (length txt)) nil)

((equal (char pat j)

(char txt i))

(matchp pat (+ 1 j)

txt (+ 1 i)))

(t nil)))
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(defun correct-loop (pat txt i)

(cond ((>= i (length txt)) nil)

((matchp pat 0 txt i) i)

(t (correct-loop pat txt (+ 1 i)))))

(defun correct (pat txt)

(correct-loop pat txt 0))
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The Fast Algorithm

(defun fast-loop (pat j txt i)

(cond

((< j 0) (+ 1 i))

((<= (length txt) i) nil)

((equal (char pat j) (char txt i))

(fast-loop pat (- j 1) txt (- i 1)))

(t (fast-loop pat

(- (length pat) 1)

txt

(+ i (delta (char txt i)

j pat)))))
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(defun fast-loop (pat j txt i)

(declare

(xargs :measure (measure pat j txt i)

:well-founded-relation l<))

(cond . . .

((equal (char pat j) (char txt i))

(fast-loop pat (- j 1) txt (- i 1)))

(t (fast-loop pat

(- (length pat) 1)

txt

(+ i (delta (char txt i)

j pat))))))
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Note Above:

In this formalization of the algorithm, we do not

pre-compute delta but instead compute the skip

distance as a function of the char from txt, the

index j in pat, and pat.

The M1 code will use a 2-dimensional array

initialized by an ACL2 function.

We will prove the ACL2 preprocessing correct.

But at the algorithmic level, we needn’t think about

arrays.
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(defun fast (pat txt)

(if (equal pat "")

(if (equal txt "")

nil

0)

(fast-loop pat

(- (length pat) 1)

txt

(- (length pat) 1))))
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“Pre-Processing”

(defun delta (v j pat)

(let* ((pat~ (coerce pat ’list))

(dt (cons v (nthcdr (+ j 1) pat~))))

(+ (- (len pat~) 1)

(- (find-pmatchp dt pat~ (- j 1))))))

(defun find-pmatchp (dt pat~ j)

(cond ((pmatchp dt pat~ j) j)

(t (find-pmatchp dt pat~ (- j 1)))))
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pat: BC-ABC-BBC-CBC

dt: BBC

pmatchp: BBC

pat: BC-ABC-BBC-CBC

dt: ABC

pmatchp: ABC

pat: BC-ABC-BBC-CBC

dt: GBC
pmatchp: GBC
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Goal

(defthm fast-is-correct

(implies (and (stringp pat)

(stringp txt))

(equal (fast pat txt)

(correct pat txt))))
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Observation 1 – List Counterparts

Every string processing function has a list

processing counterpart.

(char str i) = (nth i (coerce str ’list))
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Observation 1 – List Counterparts

Let pat~ be (coerce pat ’list).

(equal (correct-loop pat txt i)

(correct-loop~ pat~ txt~ i))
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Observation 1 – List Counterparts

(defun delta (v j pat)

(let* ((pat~ (coerce pat ’list))

(dt~ (cons v (nthcdr (+ j 1) pat~))))

(+ (- (len pat~) 1)

(- (find-pmatchp dt~ pat~ (- j 1))))))
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Observation 2 – Matching is Equality
(defun matchp (pat j txt i)

(cond ((>= j (length pat)) t)

((>= i (length txt)) nil)

((equal (char pat j) (char txt i))

(matchp pat (+ 1 j) txt (+ 1 i)))

(t nil)))

j

pat: abcUVW

txt: xxxxxUVWxxxxx

i
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Observation 2 – Matching is Equality

(equal (matchp pat j txt i)

(equal (firstn (len (nthcdr j pat~))

(nthcdr i txt~))

(nthcdr j pat~)))

j

pat: abcUVW

txt: xxxxxUVWxxxxx

i
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Observation 3 – Destructor Elimination

(append (firstn n x) (nthcdr n x)) = x

So to prove:

ψ(x, (firstn n x), (nthcdr n x))

it is sufficient to prove

ψ((append a b), a, b)
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Goal

(defthm fast-is-correct

(implies (and (stringp pat)

(stringp txt))

(equal (fast pat txt)

(correct pat txt))))
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The Crux

(implies

(equal (firstn (len (nthcdr (+ 1 j) pat~))

(nthcdr (+ 1 i) txt~))

(nthcdr (+ 1 j) pat~))

(equal

(correct-loop~ pat~ txt~

(+ i (- (find-pmatchp

(cons (car (nthcdr i txt~))

(nthcdr j (cdr pat~)))

pat~ (+ -1 j)))))

(correct-loop~ pat~ txt~ (+ i (- j)))))
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Decomposition

The crux is to prove that correct-loop can skip

ahead in big steps (like fast does).

But we can decompose this into two parts.
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Decomposition

(a) correct-loop can skip ahead if there are no

matches in the region skipped

(b) there are no matches in the region skipped by

find-pmatchp
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Summary of Step 2

A total of 9 definitions and lemmas are proved to

establish

(defthm fast-is-correct

(implies (and (stringp pat)

(stringp txt))

(equal (fast pat txt)

(correct pat txt))))
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Step 1

(defconst *m1-boyer-moore-program*

; Allocation of locals

; pat 0

; j 1

; txt 2

; i 3

; pmax 4 = (length pat)

; tmax 5 = (length txt)

; array 6 = (preprocess pat)

; c 7 = temp - last char read from txt

’(

(load 0) ; 0 (load pat)

(push "") ; 1 (push "")
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(ifane 5) ; 2 (ifane loop)

(load 2) ; 3 (load txt)

(push "") ; 4 (push "")

(ifane 40) ; 5 (ifane win)

(goto 43) ; 6 (goto lose)

; loop:

(load 1) ; 7 (load j)

(iflt 37) ; 8 (iflt win))

(load 5) ; 9 (load tmax)

(load 3) ; 10 (load i)

(sub) ; 11 (sub)

(ifle 37) ; 12 (ifle lose)

(load 0) ; 13 (load pat)

(load 1) ; 14 (load j)

(aload) ; 15 (aload)

(load 2) ; 16 (load txt)

(load 3) ; 17 (load i)

(aload) ; 18 (aload)

(store 7) ; 19 (store v)
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(load 7) ; 20 (load v)

(sub) ; 21 (sub)

(ifne 10) ; 22 (ifne skip)

(load 1) ; 23 (load j)

(push 1) ; 24 (push 1)

(sub) ; 25 (sub)

(store 1) ; 26 (store j)

(load 3) ; 27 (load i)

(push 1) ; 28 (push 1)

(sub) ; 29 (sub)

(store 3) ; 30 (store i)

(goto -24) ; 31 (goto loop)

; skip:

(load 3) ; 32 (load i)

(load 6) ; 33 (load array)

(load 7) ; 34 (load v)

(aload) ; 35 (aload)

(load 1) ; 36 (load j)

(aload) ; 37 (aload)
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(add) ; 38 (add)

(store 3) ; 39 (store i)

(load 4) ; 40 (load pmax)

(push 1) ; 41 (push 1)

(sub) ; 42 (sub)

(store 1) ; 43 (store j)

(goto -37) ; 44 (goto loop)

; win:

(load 3) ; 45 (load i)

(push 1) ; 46 (push 1)

(add) ; 47 (add)

(return) ; 48 (return)

; lose:

(push nil) ; 49 (push nil)

(return) ) ; 50 (return))

)
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The Schedule

How do we define the schedule for such a

complicated piece of code?
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The Schedule

(defun m1-boyer-moore-loop-sched (pat j txt i)

(cond

((< j 0) (repeat 0 6))

((<= (length txt) i) (repeat 0 8))

((equal (char-code (char pat j))

(char-code (char txt i)))

(append (repeat 0 25)

(m1-boyer-moore-loop-sched pat (- j 1)

txt (- i 1))))

(t (append (repeat 0 29)

(m1-boyer-moore-loop-sched

pat (- (length pat) 1)

txt (+ i (delta (char txt i) j pat)))))))
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The Schedule

(defun m1-boyer-moore-loop-sched (pat j txt i)

(cond

((< j 0) (repeat 0 6))

((<= (length txt) i) (repeat 0 8))

((equal (char-code (char pat j))

(char-code (char txt i)))

(append (repeat 0 25)

(m1-boyer-moore-loop-sched pat (- j 1)

txt (- i 1))))

(t (append (repeat 0 29)

(m1-boyer-moore-loop-sched

pat (- (length pat) 1)

txt (+ i (delta (char txt i) j pat)))))))
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(defun m1-boyer-moore-sched (pat txt)

(if (equal pat "")

(if (equal txt "")

(repeat 0 9)

(repeat 0 10))

(append (repeat 0 3)

(m1-boyer-moore-loop-sched

pat (- (length pat) 1)

txt (- (length pat) 1)))))
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The Schedule

Defining the schedule is trivial if you have verified

the algorithm.

They have identical recursive structure and

justification.
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(defthm m1-boyer-moore-is-fast

(implies

(and (stringp pat) (stringp txt))

(equal (top (stack

(run (m1-boyer-moore-sched pat txt)

(make-state 0

(list pat (- (length pat) 1)

txt (- (length pat) 1)

(length pat) (length txt)

(preprocess pat)

0)

nil *m1-boyer-moore-program*))))

(fast pat txt))))
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(defthm m1-boyer-moore-halts

(implies

(and (stringp pat) (stringp txt))

(haltedp

(run (m1-boyer-moore-sched pat txt)

(make-state 0

(list pat (- (length pat) 1)

txt (- (length pat) 1)

(length pat) (length txt)

(preprocess pat)

0)

nil *m1-boyer-moore-program*)))))
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Main Theorem

Given

(defthm fast-is-correct

(implies (and (stringp pat)

(stringp txt))

(equal (fast pat txt)

(correct pat txt))))

and
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(defthm m1-boyer-moore-is-fast

(implies

(and (stringp pat) (stringp txt))

(equal (top (stack

(run (m1-boyer-moore-sched pat txt)

(make-state 0

(list pat (- (length pat) 1)

txt (- (length pat) 1)

(length pat) (length txt)

(preprocess pat)

0)

nil *m1-boyer-moore-program*))))

(fast pat txt))))

it is trivial to show:
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(defthm m1-boyer-moore-is-correct

(implies

(and (stringp pat) (stringp txt))

(equal (top (stack

(run (m1-boyer-moore-sched pat txt)

(make-state 0

(list pat (- (length pat) 1)

txt (- (length pat) 1)

(length pat) (length txt)

(preprocess pat)

0)

nil *m1-boyer-moore-program*))))

(correct pat txt))))
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Demo 1
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Conclusion

Mechanized operational (interpretive) semantics

• are entirely within a logical framework and so

permit logical analysis of programs by traditional

formal proofs, without introduction of

meta-logical transformers (VCGs)

• are generally executable

• are easily related to implementations

• allow derivation of language properties
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• may allow derivation of intensional properties

(e.g., how many steps a program takes to

terminate)

• allow verification of system hierarchies (multiple

layers of abstraction can be formalized and

related within the proof system)
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Thank You
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