How to Build Csound on Windows

5.15.1

Michael Gogins

michael.gogins@gmail.com

26 December 2011

Introduction

This document should be updated in GIT head in reasonable detail with each release of the Windows installers for Csound, in order to provide up to date instructions for building Csound on Windows. Please record the last date each package was updated and, if relevant, its current version number. Do this, of course, only if your build succeeds and the package version is more recent than the one previously recorded in this document.

Hyperlinks to repositories are provided to speed downloading and installing third-party dependencies.

Csound on Windows is built using MinGW/MSys from http://

 HYPERLINK "http://www.mingw.org/"
www.mingw.org. Code is built for release, with full optimizations including intrinsics and vectorization. These optimizations may or may not support debugging. If not, a separate debug build must be made in order to debug. However, the only differences between the debug build and the release build must be the presence or absence of optimizations and the generation or not of debugging information. Code generation for all builds must be for release versions of all runtime libraries and all third party libraries. This code generation standard also applies, of course, to actually building the third party libraries.

All third party libraries will be updated from the most recent version that seems to be used by a majority of their users – whatever that is (trunk, most recent tag, stable release, whatever). If pre-built binaries are available, use them. Otherwise, build third party libraries with the same version of the compiler that is used to build Csound itself.

If the library does not come with a functional build system for MinGW/MSys, create an SConstruct file for it. However, at times some libraries have had to be built with Microsoft Visual C++, of which fortunately there is a free Express Edition.

The conceit of this build system is that Csound is built in a standard Linux environment (which is simulated using MSys), using the standard GNU compiler (which is MinGW). To assist us in this delusion, the Linux root directory is simulated by C:/utah, which contains a more or less standard Linux filesystem (at least, it does when in the MSys shell).

Third party libraries that we build or install pre-built therefore are located in /c/utah/opt.

Some third party libraries that we build and install therefore are located in /c/msys/1.0/local, which translates to /usr/local.

Note that currently, with MinGW, not only all components of Csound and CsoundAC, but also all third-party libraries that Csound links with dynamically – including FLTK, PortAudio, QuteCsound, and FluidSynth – must be built with code generated for propagating exceptions across image boundaries. These options are -fexceptions -mthreads -shared-libgcc.

Build Steps

 I. (Done) Update the documentation tools.

 A. (Done) Update the docbook toolchain:

 i. (Done) Install the current Windows build of xsltproc from http://www.zlatkovic.com/libxml.en.html. This may involve also installing libraries upon which xsltproc depends. All binaries can go into the MSys local tree (translates to /usr/local).

 ii. (Done, not moving to 5.0 at this time) Install the current http://www.oasis-open.org/docbook/xml/4.5/docbook-xml-4.5.zip Docbook XML DTDs. Copy this tree to one directory above the manual directory.

 iii. (Done) Install the current Docbook XSL stylesheets from http://sourceforge.net/project/downloading.php?group_id=21935&filename=docbook-xsl-1.76.1.zip Fill in the rewritePrefix attributes to make the catalog.xml file be something like:

<?xml version="1.0" encoding="utf-8"?>
<catalog xmlns="urn:oasis:names:tc:entity:xmlns:xml:catalog">
 <!-- XML Catalog file for DocBook XSL Stylesheets v1.76.1 -->
 <rewriteURI uriStartString="http://docbook.sourceforge.net/release/xsl/current/" rewritePrefix="file:///C:/utah/opt/docbook-xsl-1.76.1/"/>
 <rewriteSystem systemIdStartString="http://docbook.sourceforge.net/release/xsl/current/" rewritePrefix="file:///C:/utah/opt/docbook-xsl-1.76.1/"/>
 <rewriteURI uriStartString="http://docbook.sourceforge.net/release/xsl/1.76.1/" rewritePrefix="file:///C:/utah/opt/docbook-xsl-1.76.1/"/>
 <rewriteSystem systemIdStartString="http://docbook.sourceforge.net/release/xsl/1.76.1/" rewritePrefix="file:///C:/utah/opt/docbook-xsl-1.76.1/"/>
 <rewriteURI uriStartString="http://www.oasis-open.org/docbook/xml/4.2/" rewritePrefix="file:///C:/utah/opt/docbook-xml-4.5/"/>
 <rewriteSystem systemIdStartString="http://www.oasis-open.org/docbook/xml/4.2/" rewritePrefix="file:///C:/utah/opt/docbook-xml-4.5/"/>
</catalog>

 B. (Done) Update the LaTeX toolchain.

 i. (Done) Update LaTeX to MikTex version 2.9 from http://miktex.org.

 ii. (Done) Update TeXniCenter to version 1 Stable RC1 from http://www.texniccenter.org.

 C. (Done) Update the Doxygen toolchain.

 i. (Done) Update Doxygen to the current version (1.7.5.1) from http://www.stack.nl/~dimitri/doxyge

 HYPERLINK "http://www.stack.nl/~dimitri/doxygen"
n.

 ii. (Done) Update ATT Graphviz to version 2.28.0 from http://www.graphviz.org.

 II. (Done) Update the build tools.

 A. (Done) Update Python.

 i. (No Change) Install the most recent standard version (currently 2.7.1) that works with all the other stuff we need for Csound (see other Python packages below) from http://www.python.org.

 ii. (Done) Update SCons from http://www.scons.org to the most recent standard version (currently 2.1.0).

 iii. (No Change) Update NumPy (currently version 1.5.1) and SciPy (currently version 0.9.0b1) from http://www.scipy.org.

 iv. (No Change) Update VPython from http://vpython.org/index.html to the most recent version (currently Visual 5.41).

 v. (Done) Update wxPython from http://www.wxpython.org to the most recent version (currently 2.9.2.4).

 B. (Done) Getting an up to date GNU Compiler Collection software development toolchain going for Windows is entirely possible and results in a compiler that is more or less competitive with Microsoft's best.

 i. (2012-02-06) Install MinGW from SourceForge (current version 4.6.2) using the mingw-get program from SourceForge at http://sourceforge.net/projects/mingw/files/Automated%20MinGW%20Installer/mingw-get-inst/mingw-get-inst-20110802/mingw-get-inst-20110802.exe/download.

 ii. (2012-02-06) Install the Qt SDK (version 1.2) for desktop applications from http://qt.nokia.com/downloads/sdk-windows-cpp at c:/utah/opt/Qt.

 iii. (Done) Install PythonQt sources (current version 2.0.1) from http://pythonqt.sourceforge.net, and build them using QtCreator.

 iv. (Done) For pkg-config and some other things, update the GTK+ development package for MinGW using the all-in-one bundle at http://ftp.gnome.org/pub/gnome/binaries/win32/gtk+/2.20/gtk+-bundle_2.20.0-20100406_win32.zip. Put it in /usr/local within the MSys shell.

 C. (No Change) Install Visual C++ 2010 Express Edition from Microsoft at http://www.microsoft.com/express/Downloads/#2010-Visual-CPP.

 D. (Done) Update SWIG from http://

 HYPERLINK "http://www.swig.org/"
www.swig.org to the most recent standard version (currently 2.0.4).

 E. (Done) Update the Java Development Kit from http://java.sun.com/javase/downloads/index.jsp to the most recent standard version (currently Java SE 7).

 F. (Done) Update the CMake cross-platform build configurator and makefile generator (current version 2.8.5) from http://www.cmake.org/cmake/resources/software.html.

 III. (Done) Update third-party libraries.

 A. Source Libraries

 i. (No Change) Install the VST SDK 2.4 from http://www.steinberg.net/en/company/3rd_party_developer.html.

 ii. (Done) Install Pure Data sources using Git from git://pure-data.git.sourceforge.net/gitroot/pure-data/pure-data.

 iii. (Done) Update boost from http://

 HYPERLINK "http://www.boost.org/"
www.boost.org to the most recent stable version (currently 1.47.0).

 iv. (No Change) Update the Gmm++ linear algebra library from http://home.gna.org/getfem/download.html to the most recent stable version (currently 4.1.1), and build it by running the configure script and make.

 v. (Done) Update the Synthesis Toolkit in C++ (STK).

 a) (Done) Update from http://ccrma.stanford.edu/software/stk to the most recent version (currently 4.4.3).

 b) (Done) Copy all contents of the STK directory into the Csound Opcodes/stk directory.

 c) (Done, I didn't see any this time.) Apply any patches from the web site and mailing list.

 B. Binary Libraries to Install

 i. (Done) Update libsndfile from http://www.mega-nerd.com/libsndfile to the most recent version that works, which may be pre-release or release; currently it is 1.0.25. Do not build from sources.

 ii. (No Change) Update the Microsoft DirectX SDK (current version June 2010) by simply installing it from http://www.microsoft.com/downloads/details.aspx?displaylang=en&FamilyID=3021d52b-514e-41d3-ad02-438a3ba730ba.

 iii. (Done) Install Tcl (current version 8.5.10.1) from http://www.activestate.com/activetcl/downloads.

 iv. (Not currently used.) Install the Cabbage QuickTest directory and files from http://code.google.com/p/cabbage in C:\utah\opt\cabbage.

 C. Libraries to Build

 i. Visual C++

 a) None at this time.

 ii. MinGW

 a) (Done) Update FluidSynth from http://sourceforge.net/apps/trac/fluidsynth to the head version (currently 1.1.4 or 1.1.3, not clear). Run cmake-gui to generate Msys makefiles, copy dsound.h from the STK into the FluidSynth sr/drivers directory, then make.

 b) (Done) Update FLTK from http://

 HYPERLINK "http://www.fltk.org/"
www.fltk.org (currently version 1.3.0) and build it with MinGW using ./configure --enable-threads --enable-gl --enable-shared --enable-localjpeg --enable-localzlib --enable-localpng CPPFLAGS=-I/c/utah/msys/1.0/local/include LDFLAGS="-L/c/utah/msys/1.0/local/lib -L/c/utah/msys/1.0/local/bin" CFLAGS="-fexceptions -mthreads -shared-libgcc" CXXFLAGS="-fexceptions -mthreads -shared-libgcc”, then make and make install.

 c) (No Change) Update liblo tag 0.26 from the tarball at http://liblo.sourceforge.net (not SVN!), and build with this SConstruct:

S C O N S T R U C T F O R L I B L O . D L L

Michael Gogins

Using hints from: http://clam.iua.upf.edu/wikis/clam/index.php/Devel/Windows_MinGW_cross_compile#liblo

environment = Environment(tools = ['mingw'])

sources = '''

src/address.c

src/blob.c

src/bundle.c

src/message.c

src/method.c

src/pattern_match.c

src/send.c

src/server.c

src/server_thread.c

src/timetag.c

'''

cppath = '''

.

D:/utah/opt/liblo

D:/utah/opt/liblo/lo

D:/utah/opt/pthreads/Pre-built.2/include

'''

libpath = '''

D:/utah/mingw/lib

D:/utah/opt/pthreads/Pre-built.2/lib

'''

environment.Append(CFLAGS = Split('-O2 -g -DHAVE_CONFIG_H -D_WIN32_WINNT=0x0501 -fexceptions -mthreads -shared-libgcc'))

environment.Append(CPPPATH = Split(cppath))

environment.Append(LIBPATH = Split(libpath))

environment.Append(LIBS = Split('pthread kernel32 gdi32 wsock32 ws2_32 ole32 uuid winmm pthread kernel32 gdi32 wsock32 ws2_32 ole32 uuid winmm'))

environment.Append(LINKFLAGS = Split('-Wl,--enable-stdcall-fixup -Wl,-export-dynamic -fexceptions -mthreads -shared-libgcc'))

liblo = environment.SharedLibrary('lo', Split(sources))

 d) (2012-02-06) Update the PortAudio library (http://portmedia.sourceforge.net) from SVN and build it. Try the trunk version first, if that doesn't work use the most recent tag. To build with the kernel streaming driver, edit the host apis file near line 674 to replace

#ifndef _WAVEFORMATEXTENSIBLE_
#define _WAVEFORMATEXTENSIBLE_

with

#define _WAVEFORMATEXTENSIBLE_
#ifndef _WAVEFORMATEXTENSIBLE_
#define _WAVEFORMATEXTENSIBLE_

Build with the following SConstruct, which contains many kludgey ways of dealing with almost incompatible header files, versions of DirectX SDKs, etc. (you have been warned),

'''

MinGW SConstruct for PortAudio

Michael Gogins

'''

print __doc__

print

import os

import string

import sys

import traceback

commonEnvironment = Environment(ENV = os.environ, tools = ['mingw', 'swig', 'javac', 'jar'])

commonEnvironment.Append(CFLAGS = Split('-O2 -g -fexceptions -mthreads -shared-libgcc -masm=intel'))

commonEnvironment.Append(CPPPATHS = Split('. include'))

commonEnvironment.Append(LINKFLAGS = Split('-mno-cygwin -Wl,--enable-auto-import -Wl,--enable-runtime-pseudo-reloc'))

commonEnvironment.Append(CPPFLAGS = Split('''

-DWIN32

-D_WIN32

-DWINDOWS

-DPA_USE_WMME

-DPA_USE_DS

-DPA_USE_ASIO

-DPA_USE_WASAPI

-DPA_USE_WDMKS

-DKSAUDIO_SPEAKER_DIRECTOUT=0

-DMETHOD_NEITHER=3

-DFILE_ANY_ACCESS=0

-DTIME_KILL_SYNCHRONOUS=0x0100

-DDSSPEAKER_7POINT1=0x00000007

-UWAVEFORMATEXTENSIBLE

-UPWAVEFORMATEXTENSIBLE

'''))

commonEnvironment.Append(CPPPATH = Split('''

.

src/common

src/hostapi

src/os

src/os/win

include

C:/utah/opt/portaudio/src/hostapi/asio/ASIOSDK/host

C:/utah/opt/portaudio/src/hostapi/asio/ASIOSDK/host/pc

C:/utah/opt/portaudio/src/hostapi/asio/ASIOSDK/common

src/hostapi/wasapi/mingw-include

C:/utah/opt/stk-4.4.3/src/include

C:/utah/opt/directx-sdk-2010-06/Include

'''))

commonEnvironment.Append(LIBS=Split('''

setupapi

kernel32

user32

gdi32

winspool

comdlg32

advapi32

shell32

ole32

oleaut32

uuid

odbc32

odbccp32

winmm

strmiids

setupapi

'''))

portAudioSources = Split('''

src/common/pa_allocation.c

src/common/pa_converters.c

src/common/pa_cpuload.c

src/common/pa_debugprint.c

src/common/pa_dither.c

src/common/pa_front.c

src/common/pa_process.c

src/common/pa_ringbuffer.c

src/common/pa_stream.c

src/common/pa_trace.c

src/hostapi/dsound/pa_win_ds.c

src/hostapi/dsound/pa_win_ds_dynlink.c

src/hostapi/skeleton/pa_hostapi_skeleton.c

src/hostapi/wasapi/pa_win_wasapi.c

src/hostapi/wdmks/pa_win_wdmks.c

src/hostapi/wmme/pa_win_wmme.c

src/os/win/pa_win_hostapis.c

src/os/win/pa_win_util.c

src/os/win/pa_win_waveformat.c

src/os/win/pa_win_coinitialize.c

src/hostapi/asio/ASIOSDK/common/asio.cpp

src/hostapi/asio/ASIOSDK/common/combase.cpp

src/hostapi/asio/ASIOSDK/common/debugmessage.cpp

src/hostapi/asio/ASIOSDK/common/register.cpp

src/hostapi/asio/ASIOSDK/host/ASIOConvertSamples.cpp

src/hostapi/asio/ASIOSDK/host/asiodrivers.cpp

src/hostapi/asio/ASIOSDK/host/pc/asiolist.cpp

src/hostapi/asio/iasiothiscallresolver.cpp

src/hostapi/asio/pa_asio.cpp

src/hostapi/wasapi/pa_win_wasapi.c

''')

portAudio = commonEnvironment.Library('portaudio', portAudioSources)

libs = string.split('''

portaudio

stdc++

setupapi

advapi32

comctl32

comdlg32

glu32

kernel32

msvcrt

odbc32

odbccp32

ole32

oleaut32

shell32

user32

uuid

winmm

winspool

ws2_32

wsock32

portaudio

setupapi

advapi32

comctl32

comdlg32

glu32

kernel32

odbc32

odbccp32

ole32

oleaut32

shell32

user32

uuid

winmm

winspool

ws2_32

''')

programEnvironment = commonEnvironment.Clone()

programEnvironment.Append(LIBS=libs)

pa_devs = programEnvironment.Program('pa_devs', 'examples/pa_devs.c', LIBPATH='.')

 e) (No Change) Update the PortMidi library (http://portmedia.sourceforge.net) from SVN and build it with Cmake. Run the test program to ensure that the build works.

 f) (2012-02-04) Update LuaJIT from http://luajit.org to the head version (currently 2.0.0 beta 8) and build it using the command:

make clean ; make ; make install

 g) (Done) Update the MusicXML library.

· (No Change) Update using Subversion from https://libmusicxml.svn.sourceforge.net/svnroot/libmusicxml.

· (No Change) Build the library (only) for release using the CodeBlocks project.

 IV. (2012-02-06) Build Csound for double-precision samples (the only configuration for Windows at this time).

 A. (2012-02-06) Update head-mingw-env.py to reflect the locations of third-party header files and libraries.

 B. (2012-02-06) Update Csound from GIT at git://csound.git.sourceforge.net/gitroot/csound/csound5.

 C. (2012-02-06) Update The Canonical Csound Reference Manual from GIT at git://csound.git.sourceforge.net/gitroot/csound/manual. Build the html-dist target with a command such as mingw32-make XSL_BASE_PATH=C:/utah/opt/docbook-xsl-1.76.1 clean html-dist.

 D. (2012-02-06) Run ./cleanup.sh to make everything really clean.

 E. (2012-02-06) Build Csound using head-mingw-env.sh.

 F. (2012-02-06) Build again as above, to ensure csnd.jar is built properly.

 G. (2012-02-06) Change to examples/java and execute make to build example jars.

 H. (2012-02-06) Build the release version of qutecsound-d.exe from http://qutecsound.sourceforge.net/ using QtCreator as follows. Copy all includes and sources from the Synthesis Toolkit in C++ to an stk directory in the qutecsound directory. In QtCreator, load qcs.pro, then in Projects mode, in the Build Settings tab, in the Build Steps group, in the Additional arguments field, paste something like the following options, then in the Build menu, execute Clean All, Run qmake, and Rebuild All.

CONFIG+=build64 CONFIG+=pythonqt CONFIG+=rtmidi CONFIG+=release CONFIG-=debug CSOUND_SOURCE_TREE=D:/utah/home/mkg/csound/csound5 LIBSNDFILE_INCLUDE_DIR=C:/utah/opt/Mega-Nerd/libsndfile/include LIBSNDFILE_LIBRARY_DIR=C:/utah/opt/Mega-Nerd/libsndfile PYTHON_INCLUDE_DIR=C:/utah/opt/Python27/include PYTHONQT_TREE_DIR=C:\utah\opt\PythonQt2.0.1 RTMIDI_DIR=stk

 I. (2012-02-06) Build the manual using a command line such as mingw32-make html-dist XSL_BASE_PATH=C:/utah/opt/docbook-xsl-1.76.1.

 J. (2012-02-06) Build the API reference by executing doxygen.

 K. (2012-02-06) Execute ./strip.sh to strip debugging information out of the binaries.

 L. (2012-02-06) Build the installer using NSIS from http://nsis.sourceforge.net/Main_Page with the NONFREE (VST) stuff.

 M. (Not done) Uninstall Csound, and install it again using the installer. Use the Microsoft Dependency Walker and profile QuteCsound running various examples to verify that all DLLs required have been installed, or are already part of Windows.

 N. (2012-02-06) Build the installer without the NONFREE stuff.

 O. (Done) Perform functional tests below.

 V. (2012-02-06) Update this document to reflect any changes in procedure or dependencies.

 VI. (Done by jpff) Label Csound in GIT for the Windows release.

 VII. (Done) Upload the installer to SourceForge and update the release package.

 VIII. (Not Done) Upload the NONFREE installer to http://www.michael-gogins.com/.

Functional Tests

In general, it works better to do all of these tests in the development environment, in case they require fixes. After all the tests pass there, build the installer, install Csound, and redo the most demanding tests in the runtime environment.

 I. (Done) Ensure csound trapped.csd -otrapped.wav works.

 II. (Done) Ensure csound trapped.csd -odac works.

 III. (Done) Ensure QuteCsound renders trapped.csd to soundfile, and can be stopped and restarted.

 IV. (Done) Ensure QuteCsound renders trapped.csd to audio, and can be stopped and restarted.

 V. (Done) Ensure FLTK widgets work.

 VI. (Done) Ensure Python works with python koch.py, which uses SoundFonts in FluidSynth opcodes, drone.py, and python Lindenmayer.py, which uses CsoundAC.

 VII. (Done) Ensure Lua works with luajit lua_example.lua.

 VIII. Ensure Java works with java -jar CsoundEditor.jar (Doesn't work) and java -jar CSDEditor.jar (Works).

 IX. (Done) Ensure the Python opcodes work with some of the files in Opcodes/py/examples. Not all of these work and some appear to be obsolete, but I regenerated them and I think the ones that should work and that are not obsolete or incorrect do work.

 X. (Done) Ensure OSC works using example files.

 XI. (2012-02-06) Make sure installers link to the frames version of the manual and include the quick reference.

 XII. (Done) Ensure CsoundVST plugin works with CsoundVST.csd in VSTHost from http://www.hermannseib.com/english/vsthost.htm.

Issues

· The Jacko opcodes appear in the I section of the index of the Csound Reference Manual.

