
Derby Developer's Guide
Version 10.9

Derby Document build:
May 31, 2012, 12:23:17 PM (PDT)

Version 10.9 Derby Developer's Guide

i

Contents
Copyright..5

License... 6

About this guide..10
Purpose of this guide..10
Audience... 10
How this guide is organized...10

After installing... 12
The installation directory.. 12

Batch files and shell scripts.. 12
Derby and JVMs...12
Derby libraries and classpath.. 13
UNIX-specific issues..13

Configuring file descriptors..13
Scripts.. 13

Upgrades.. 14
Preparing to upgrade.. 14
Upgrading a database... 14
Soft upgrade limitations..15

JDBC applications and Derby basics... 16
Application development overview..16
Derby embedded basics... 16

Derby JDBC driver.. 16
Derby JDBC database connection URL..17
Derby system...18
A Derby database... 22
Connecting to databases...25
Working with the database connection URL attributes....................................... 28

Using in-memory databases...32
Working with Derby properties.. 33

Properties overview... 33
Setting Derby properties..35
Properties case study..37

Deploying Derby applications..40
Deployment issues.. 40

Embedded deployment application overview.. 40
Deploying Derby in an embedded environment..41

Creating Derby databases for read-only use..42
Creating and preparing the database for read-only use..................................... 42
Deploying the database on the read-only media.. 42
Transferring read-only databases to archive (jar or zip) files.............................. 42
Accessing a read-only database in a zip/jar file..43
Accessing databases within a jar file using the classpath.................................. 44
Databases on read-only media and DatabaseMetaData.................................... 44

Loading classes from a database..44
Class loading overview..44
Dynamic changes to jar files or to the database jar classpath............................46

Derby server-side programming..48
Programming database-side JDBC routines...48

Version 10.9 Derby Developer's Guide

ii

Database-side JDBC routines and nested connections......................................48
Database-side JDBC routines using non-nested connections............................ 49
Database-side JDBC routines and SQLExceptions.. 49
User-defined SQLExceptions.. 50

Programming trigger actions..50
Trigger action overview... 50
Performing referential actions... 51
Accessing before and after rows...51
Examples of trigger actions...51
Triggers and exceptions.. 51

Programming Derby-style table functions.. 52
Overview of Derby-style table functions..52
Example Derby-style table function...54
Writing restricted table functions... 55
Optimizer support for Derby-style table functions... 57

Programming user-defined types...60

Controlling Derby application behavior..64
The JDBC connection and transaction model..64

Connections... 64
Transactions.. 65

Result set and cursor mechanisms...68
Simple non-updatable result sets..68
Updatable result sets...69
Result sets and auto-commit...73
Scrollable result sets... 73
Holdable result sets...74

Locking, concurrency, and isolation... 75
Isolation levels and concurrency... 76
Configuring isolation levels..78
Lock granularity... 79
Types and scope of locks in Derby systems.. 79
Deadlocks.. 83

Working with multiple connections to a single database....................................87
Deployment options and threading and connection modes................................ 87
Multi-user database access...88
Multiple connections from a single application..88

Working with multiple threads sharing a single connection...............................89
Pitfalls of sharing a connection among threads.. 89
Multi-thread programming tips...89
Example of threads sharing a statement.. 90

Working with database threads in an embedded environment...........................90
Working with Derby SQLExceptions in an application..91

Information provided in SQL Exceptions...91

Using Derby as a Java EE resource manager... 93
Classes that pertain to resource managers..93
Getting a DataSource.. 94
Shutting down or creating a database.. 94

Derby and security..96
Configuring security for your environment.. 97

Configuring security in a client/server environment.. 98
Configuring security in an embedded environment...98

Working with user authentication..99
Using NATIVE authentication..100
Enabling user authentication... 102

Version 10.9 Derby Developer's Guide

iii

Defining users..103
External directory service.. 103
BUILTIN Derby users.. 107
List of user authentication properties.. 108
Programming applications for Derby user authentication..................................110

Users and authorization identifiers..110
Authorization identifiers, user authentication, and user authorization............... 111
Database owner ... 111
User names and schemas.. 112
Exceptions when using authorization identifiers..112

User authorizations..112
Setting the SQL standard authorization mode.. 113
Setting the default connection access mode.. 120
Setting access for individual users..121

Encrypting databases on disk..122
Requirements for Derby encryption.. 122
Working with encryption.. 123

Signed jar files... 128
Notes on the Derby security features..128
User authentication and authorization examples...128

NATIVE authentication and SQL authorization example...................................129
Setting LDAP user authentication properties in a client/server environment..... 139

Running Derby under a security manager..140
Granting permissions to Derby..140
Examples of Java security policy files for embedded Derby............................. 142

Developing tools and using Derby with an IDE...144
Offering connection choices to the user.. 144

The DriverPropertyInfo Array.. 144
Using Derby with IDEs.. 145

IDEs and multiple JVMs..145

SQL tips... 147
Retrieving the database connection URL... 147
Supplying a parameter only once..147
Defining an identity column... 147
Using third-party tools.. 147
Tricks of the VALUES clause... 148

Multiple rows..148
Mapping column values to return values.. 148
Creating empty queries... 148

Localizing Derby..149
SQL parser support for Unicode..149
Character-based collation in Derby... 149
Other components with locale support...151
Messages libraries...152

Derby and standards.. 153
XML data types and operators... 154

Trademarks.. 156

Derby Developer's Guide

4

Apache Software FoundationDerby Developer's GuideApache Derby

Derby Developer's Guide

5

Copyright

Copyright 2004-2012 The Apache Software Foundation

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this
file except in compliance with the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0.

Related information

License

http://www.apache.org/licenses/LICENSE-2.0

Derby Developer's Guide

6

License

The Apache License, Version 2.0

 Apache License
 Version 2.0, January 2004
 http://www.apache.org/licenses/

 TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

 1. Definitions.

 "License" shall mean the terms and conditions for use,
 reproduction, and distribution as defined by Sections 1 through
 9 of this document.

 "Licensor" shall mean the copyright owner or entity authorized
 by the copyright owner that is granting the License.

 "Legal Entity" shall mean the union of the acting entity and all
 other entities that control, are controlled by, or are under
 common control with that entity. For the purposes of this
 definition, "control" means (i) the power, direct or indirect,
 to cause the direction or management of such entity, whether by
 contract or otherwise, or (ii) ownership of fifty percent (50%)
 or more of the outstanding shares, or (iii) beneficial ownership
 of such entity.

 "You" (or "Your") shall mean an individual or Legal Entity
 exercising permissions granted by this License.

 "Source" form shall mean the preferred form for making
 modifications, including but not limited to software source code,
 documentation source, and configuration files.

 "Object" form shall mean any form resulting from mechanical
 transformation or translation of a Source form, including but
 not limited to compiled object code, generated documentation,
 and conversions to other media types.

 "Work" shall mean the work of authorship, whether in Source or
 Object form, made available under the License, as indicated by a
 copyright notice that is included in or attached to the work
 (an example is provided in the Appendix below).

 "Derivative Works" shall mean any work, whether in Source or
 Object form, that is based on (or derived from) the Work and
 for which the editorial revisions, annotations, elaborations,
 or other modifications represent, as a whole, an original work
 of authorship. For the purposes of this License, Derivative
 Works shall not include works that remain separable from, or
 merely link (or bind by name) to the interfaces of, the Work
 and Derivative Works thereof.

 "Contribution" shall mean any work of authorship, including
 the original version of the Work and any modifications or
 additions to that Work or Derivative Works thereof, that is
 intentionally submitted to Licensor for inclusion in the Work
 by the copyright owner or by an individual or Legal Entity
 authorized to submit on behalf of the copyright owner. For the
 purposes of this definition,
 "submitted" means any form of electronic, verbal, or written
 communication sent to the Licensor or its representatives,
 including but not limited to communication on electronic mailing
 lists, source code control systems, and issue tracking systems

Derby Developer's Guide

7

 that are managed by, or on behalf of, the Licensor for the
 purpose of discussing and improving the Work, but excluding
 communication that is conspicuously marked or otherwise
 designated in writing by the copyright owner as "Not a
 Contribution."

 "Contributor" shall mean Licensor and any individual or Legal
 Entity on behalf of whom a Contribution has been received by
 Licensor and subsequently incorporated within the Work.

 2. Grant of Copyright License. Subject to the terms and conditions
 of this License, each Contributor hereby grants to You a
 perpetual, worldwide, non-exclusive, no-charge, royalty-free,
 irrevocable copyright license to reproduce, prepare Derivative
 Works of, publicly display, publicly perform, sublicense, and
 distribute the Work and such Derivative Works in Source or
 Object form.

 3. Grant of Patent License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 (except as stated in this section) patent license to make, have
 made, use, offer to sell, sell, import, and otherwise transfer
 the Work, where such license applies only to those patent claims
 licensable by such Contributor that are necessarily infringed by
 their Contribution(s) alone or by combination of their
 Contribution(s) with the Work to which such Contribution(s) was
 submitted. If You institute patent litigation against any entity
 (including a cross-claim or counterclaim in a lawsuit) alleging
 that the Work or a Contribution incorporated within the Work
 constitutes direct or contributory patent infringement, then any
 patent licenses granted to You under this License for that Work
 shall terminate as of the date such litigation is filed.

 4. Redistribution. You may reproduce and distribute copies of the
 Work or Derivative Works thereof in any medium, with or without
 modifications, and in Source or Object form, provided that You
 meet the following conditions:

 (a) You must give any other recipients of the Work or
 Derivative Works a copy of this License; and

 (b) You must cause any modified files to carry prominent notices
 stating that You changed the files; and

 (c) You must retain, in the Source form of any Derivative Works
 that You distribute, all copyright, patent, trademark, and
 attribution notices from the Source form of the Work,
 excluding those notices that do not pertain to any part of
 the Derivative Works; and

 (d) If the Work includes a "NOTICE" text file as part of its
 distribution, then any Derivative Works that You distribute
 must include a readable copy of the attribution notices
 contained within such NOTICE file, excluding those notices
 that do not pertain to any part of the Derivative Works, in
 at least one of the following places: within a NOTICE text
 file distributed as part of the Derivative Works; within the
 Source form or documentation, if provided along with the
 Derivative Works; or, within a display generated by the
 Derivative Works, if and wherever such third-party notices
 normally appear. The contents of the NOTICE file are for
 informational purposes only and do not modify the License.
 You may add Your own attribution notices within Derivative
 Works that You distribute, alongside or as an addendum to
 the NOTICE text from the Work, provided that such additional
 attribution notices cannot be construed as modifying the
 License.

 You may add Your own copyright statement to Your modifications

Derby Developer's Guide

8

 and may provide additional or different license terms and
 conditions for use, reproduction, or distribution of Your
 modifications, or for any such Derivative Works as a whole,
 provided Your use, reproduction, and distribution of the Work
 otherwise complies with the conditions stated in this License.

 5. Submission of Contributions. Unless You explicitly state
 otherwise, any Contribution intentionally submitted for
 inclusion in the Work by You to the Licensor shall be under the
 terms and conditions of this License, without any additional
 terms or conditions. Notwithstanding the above, nothing herein
 shall supersede or modify the terms of any separate license
 agreement you may have executed with Licensor regarding such
 Contributions.

 6. Trademarks. This License does not grant permission to use the
 trade names, trademarks, service marks, or product names of the
 Licensor, except as required for reasonable and customary use
 in describing the origin of the Work and reproducing the content
 of the NOTICE file.

 7. Disclaimer of Warranty. Unless required by applicable law or
 agreed to in writing, Licensor provides the Work (and each
 Contributor provides its Contributions) on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
 implied, including, without limitation, any warranties or
 conditions of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or
 FITNESS FOR A PARTICULAR PURPOSE. You are solely responsible for
 determining the appropriateness of using or redistributing the
 Work and assume any risks associated with Your exercise of
 permissions under this License.

 8. Limitation of Liability. In no event and under no legal theory,
 whether in tort (including negligence), contract, or otherwise,
 unless required by applicable law (such as deliberate and
 grossly negligent acts) or agreed to in writing, shall any
 Contributor be liable to You for damages, including any direct,
 indirect, special, incidental, or consequential damages of any
 character arising as a result of this License or out of the use
 or inability to use the Work (including but not limited to
 damages for loss of goodwill, work stoppage, computer failure or
 malfunction, or any and all other commercial damages or losses),
 even if such Contributor has been advised of the possibility of
 such damages.

 9. Accepting Warranty or Additional Liability. While redistributing
 the Work or Derivative Works thereof, You may choose to offer,
 and charge a fee for, acceptance of support, warranty, indemnity,
 or other liability obligations and/or rights consistent with this
 License. However, in accepting such obligations, You may act only
 on Your own behalf and on Your sole responsibility, not on behalf
 of any other Contributor, and only if You agree to indemnify,
 defend, and hold each Contributor harmless for any liability
 incurred by, or claims asserted against, such Contributor by
 reason of your accepting any such warranty or additional
 liability.

 END OF TERMS AND CONDITIONS

 APPENDIX: How to apply the Apache License to your work.

 To apply the Apache License to your work, attach the following
 boilerplate notice, with the fields enclosed by brackets "[]"
 replaced with your own identifying information. (Don't include
 the brackets!) The text should be enclosed in the appropriate
 comment syntax for the file format. We also recommend that a
 file or class name and description of purpose be included on the
 same "printed page" as the copyright notice for easier
 identification within third-party archives.

Derby Developer's Guide

9

 Copyright [yyyy] [name of copyright owner]

 Licensed under the Apache License, Version 2.0 (the "License");
 you may not use this file except in compliance with the License.
 You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

 Unless required by applicable law or agreed to in writing, software
 distributed under the License is distributed on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
 implied. See the License for the specific language governing
 permissions and limitations under the License.

Derby Developer's Guide

10

About this guide

For general information about the Derby documentation, such as a complete list of books,
conventions, and further reading, see Getting Started with Derby.

For more information about Derby, visit the Derby website at http://db.apache.org/derby.
The website provides pointers to the Derby Wiki and other resources, such as the
derby-users mailing list, where you can ask questions about issues not covered in the
documentation.

Purpose of this guide
This guide explains how to use the core Derby technology and is for developers building
Derby applications.

It describes basic Derby concepts, such as how you create and access Derby databases
through JDBC routines and how you can deploy Derby applications.

When an application embeds Derby, application users take on the role of database
administrator and must maintain the integrity of the database. See "Part Two: Derby
Administration Guide" in the Derby Server and Administration Guide for information on
administrative tasks such as backing up and restoring databases. In particular, see the
topic "Maintaining database integrity" for information on preventing database corruption.
You will need to make this information available to users of your application.

Audience
This guide is intended for software developers who already know some SQL and Java.

Derby users who are not familiar with the SQL standard or the Java programming
language will benefit from consulting books on those subjects.

How this guide is organized
This document includes the following sections.

• After installing

Explains the installation layout.
• Upgrades

Explains how to upgrade a database created with a previous version of Derby.
• JDBC applications and Derby basics

Basic details for using Derby, including loading the JDBC driver, specifying a
database URL, starting Derby, and working with Derby properties.

• Deploying Derby applications

An overview of different deployment scenarios, and tips for getting the details right
when deploying applications.

• Derby server-side programming

Describes how to program database-side JDBC routines, triggers, and table
functions.

• Controlling Derby application behavior

JDBC, cursors, locking and isolation levels, and multiple connections.
• Using Derby as a Java EE resource manager

http://db.apache.org/derby/

Derby Developer's Guide

11

Information for programmers developing back-end components in a J2EE system.
• Derby and security

Describes how to use the security features of Derby.
• Developing tools and using Derby with an IDE

Tips for tool designers.
• SQL tips

Insiders' tricks of the trade for using SQL.
• Localizing Derby

An overview of database localization.
• Derby and standards

Describes those parts of Derby that are non-standard or not typical for a database
system.

Derby Developer's Guide

12

After installing

This section provides reference information about the installation directory, JVMs,
classpath, upgrades, and platform-specific issues.

Review the index.html file at the top level of the Derby distribution for pointers to
reference and tutorial information about Derby. See the Release Notes for information on
platform support, changes that may affect your existing applications, defect information,
and recent documentation updates. See Getting Started with Derby for basic product
descriptions, information on getting started, and directions for setting the path and the
classpath.

The installation directory
You may install the Derby software in a directory of your choice.

See the index.html file for pointers to information on Derby.

The distribution includes setup scripts that use an environment variable called
DERBY_HOME. The variable's value is set to the Derby base directory.

C:>echo %DERBY_HOME%
C:\DERBY_HOME

If you want to set your own environment, Getting Started with Derby instructs you on
setting its value to the directory in which you installed the Derby software.

The distribution for Derby contains all the files you need, including the documentation set,
some example applications, and a sample database.

Details about the installation:

• index.html in the top-level directory is the top page for the on-line documentation.
• RELEASE-NOTES.html, in the top-level Derby base directory, contains important

last-minute information. Read it first.
• /bin contains utilities and scripts for running Derby.
• /demo contains some sample applications, useful scripts, and prebuilt databases.

• /databases includes prebuilt sample databases.
• /programs includes sample applications.

• /docs contains the on-line documentation (including this document).
• /javadoc contains the documented APIs for the public classes and interfaces.

Typically, you use the JDBC interface to interact with Derby; however, you can use
some of these additional classes in certain situations.

• /lib contains the Derby libraries.

Batch files and shell scripts

The /bin directory contains scripts for running some of the Derby tools and utilities. To
customize your environment, put the directory first in your path.

These scripts serve as examples to help you get started with these tools and utilities on
any platform. However, they may require modification in order to run properly on certain
platforms.

Derby and JVMs

Derby Developer's Guide

13

Derby is a database engine written completely in Java; it will run in any JVM, version 1.4
or higher.

Derby libraries and classpath
Derby libraries are located in the /lib subdirectory of the Derby base directory. You must
set the classpath on your development machine to include the appropriate libraries.

Getting Started with Derby explains how to set the classpath in a development
environment.

UNIX-specific issues
This section discusses Derby issues specifically related to UNIX platforms.

Configuring file descriptors

Derby databases create one file per table or index. Some operating systems limit the
number of files an application can open at one time.

If the default is a low number, such as 64, you might run into unexpected IOExceptions
(wrapped in SQLExceptions). If your operating system lets you configure the number of
file descriptors, set this number to a higher value.

Scripts

Your installation contains executable script files that simplify invoking the Derby tools.
On UNIX systems, these files might need to have their default protections set to include
execute privilege.

A typical way to do this is with the command chmod +x *.ksh.

Consult the documentation for your operating system for system-specific details.

Derby Developer's Guide

14

Upgrades

To connect to a database created with a previous version of Derby, you must first
upgrade that database.

Upgrading involves writing changes to the system tables, so it is not possible for
databases on read-only media. The upgrade process:

• marks the database as upgraded to the current release (Version 10.9).
• allows use of new features.

See the release notes for more information on upgrading your databases to this version
of Derby.

Preparing to upgrade
Upgrading your database occurs the first time the new Derby software connects to the
old database.

Before you connect to the database using the new software:

1. Back up your database to a safe location using Derby online/offline backup
procedures.

For more information on backup, see the Derby Server and Administration Guide.
2. Update your CLASSPATH with the latest jar files.
3. Make sure that there are no older versions of the Derby jar files in your

CLASSPATH. You can determine if you have multiple versions of Derby in your
CLASSPATH by using the sysinfo tool.

To use the sysinfo tool, execute the following command:

java org.apache.derby.tools.sysinfo

The sysinfo tool uses information found in the Derby jar files to determine the
version of any Derby jar in your CLASSPATH. Be sure that you have only one
version of the Derby jar files specified in your CLASSPATH.

Upgrading a database
To upgrade a database, you must explicitly request an upgrade the first time you connect
to the database with the new version of Derby.

Ensure that you complete the prerequisite steps before you upgrade:
• Back up your database before you upgrade.
• Ensure that only the new Derby jar files are in your CLASSPATH.

When you upgrade the database, you can perform a full upgrade or soft upgrade:
• A full upgrade is a complete upgrade of the Derby database. When you perform a

full upgrade, you cannot connect to the database with an older version of Derby and
you cannot revert back to the previous version.

• A soft upgrade allows you to run a newer version of Derby against an existing
database without having to fully upgrade the database. This means that you
can continue to run an older version of Derby against the database. However, if
you perform a soft upgrade, certain features will not be available to you until you
perform a full upgrade.

1. To upgrade the database, select the type of upgrade that you want to perform. The
following table shows the upgrade types.

Derby Developer's Guide

15

Table 1. Upgrade types

Type of Upgrade Action

Full upgrade Connect to the database using the upgrade=true
database connection URL attribute. For example:

jdbc:derby:sample;upgrade=true

Soft upgrade Connect to the database. For example:

connect 'jdbc:derby:sample'

In this example, sample is a database from a previous
version of Derby.

Soft upgrade limitations
Soft upgrade allows you to run a newer version of Derby against an existing database
without having to fully upgrade the database. This means that you can continue to run an
older version of Derby against the database.

If you perform a soft upgrade, you will not be able to perform certain functions that are
not available in older versions of Derby. Specifically, new features that affect the structure
of a database are not available with a soft upgrade. For a list of the new features in a
release, see the Release Notes for that release.

To perform a soft upgrade on a database created using an earlier version of Derby,
simply connect to the database, as shown in the following example:

connect 'jdbc:derby:sample'

Derby Developer's Guide

16

JDBC applications and Derby basics

This section describes the core Derby functionality. In addition, it details the most basic
Derby deployment, Derby embedded in a Java application.

Application development overview
Derby application developers use the Java Database Connectivity (JDBC) API, the
application programming interface that makes it possible to access relational databases
from Java programs.

The JDBC API is part of the Java Platform, Standard Edition and is not specific to Derby.
It consists of the java.sql and javax.sql packages, which is a set of classes and interfaces
that make it possible to access databases (from a number of different vendors, not just
Derby) from a Java application.

To develop Derby applications successfully, you will need to learn the JDBC API. This
section does not teach you how to program with the JDBC API.

This section covers the details of application programming that are specific to Derby
applications. For example, all JDBC applications typically start their DBMS's JDBC driver
and use a connection URL to connect to a database. This chapter gives you the details
of how to start Derby's JDBC driver and how to work with Derby's connection URL to
accomplish various tasks. It also covers essential Derby concepts such as the Derby
system.

You will find reference information about the particulars of Derby's implementation of the
JDBC API in the Derby Reference Manual.

Derby application developers will need to learn SQL. SQL is the standard query language
used with relational databases and is not tied to a particular programming language. No
matter how a particular RDBMS has been implemented, the user can design databases
and insert, modify, and retrieve data using the standard SQL statements and well-defined
data types. SQL-92 is the version of SQL standardized by ANSI and ISO in 1992; Derby
supports entry-level SQL-92 as well as some higher-level features. Entry-level SQL-92 is
a subset of full SQL-92 specified by ANSI and ISO that is supported by nearly all major
DBMSs today. This chapter does not teach you SQL. You will find reference information
about the particulars of Derby's implementation of SQL in the Derby Reference Manual.

Derby implements the JDBC API so as to allow Derby to serve as a resource manager in
a Java EE compliant system.

When an application embeds Derby, application users take on the role of database
administrator and must maintain the integrity of the database. See "Part Two: Derby
Administration Guide" in the Derby Server and Administration Guide for information on
administrative tasks such as backing up and restoring databases. In particular, see the
topic "Maintaining database integrity" for information on preventing database corruption.
You will need to make this information available to your users.

Derby embedded basics
This section explains how to use and configure Derby in an embedded environment.

Included in the installation is a sample application program, /demo/programs/simple,
which illustrates how to run Derby embedded in the calling program.

Derby Developer's Guide

17

Derby JDBC driver

Derby consists of both the database engine and an embedded JDBC driver. Applications
use JDBC to interact with a database. Applications running on JDK 5 or earlier must load
the driver in order to work with the database.

In an embedded environment, loading the driver also starts Derby.

The Derby driver class name for the embedded environment is
org.apache.derby.jdbc.EmbeddedDriver.

In a Java application, you typically load the driver with the static Class.forName method
or with the jdbc.drivers system property. For example:

Class.forName("org.apache.derby.jdbc.EmbeddedDriver");

java -Djdbc.drivers=org.apache.derby.jdbc.EmbeddedDriver applicationClass

For detailed information about loading the Derby JDBC driver, see "java.sql.Driver
interface" in the Derby Reference Manual.

If your application runs on JDK 6 or higher, you do not need to explicitly load the
EmbeddedDriver. In that environment, the driver loads automatically.

If your application shuts down Derby or calls the DriverManager.deregisterDriver method,
and you then want to reload the driver, call the Class.forName().newInstance() method.

Derby JDBC database connection URL

A Java application using the JDBC API establishes a connection to a database by
obtaining a Connection object.

The standard way to obtain a Connection object is to call the method
DriverManager.getConnection, which takes a String containing a connection URL
(uniform resource locator). A JDBC connection URL provides a way of identifying a
database. It also allows you to perform a number of high-level tasks, such as creating a
database or shutting down the system.

An application in an embedded environment uses a different connection URL from that
used by applications using the Derby Network Server in a client/server environment. See
the Derby Server and Administration Guide for more information on the Network Server.

However, all versions of the connection URL (which you can use for tasks besides
connecting to a database) have common features:

• you can specify the name of the database you want to connect to
• you can specify a number of attributes and values that allow you to accomplish

tasks. For more information about what you can specify with the Derby connection
URL, see Database connection examples.

The connection URL syntax is as follows:

jdbc:derby:[subsubprotocol:][databaseName][;attribute=value]*

Subsubprotocol, which is not typically specified, determines how Derby looks for a
database: in a directory, in memory, in a class path, or in a jar file. Subsubprotocol is one
of the following:

• directory: The default, which need not be specified explicitly. The database is in the
file system, and the path is either relative to the system directory or absolute.

Derby Developer's Guide

18

• memory: Databases exist only in main memory and are not written to disk. An
in-memory database may be useful when there is no need to persist the database --
for example, in some testing situations.

• classpath: Databases are treated as read-only databases, relative to the classpath
directory. See Accessing databases from the classpath for details.

• jar: Databases are treated as read-only databases. DatabaseNames might require
a leading slash, because you specify them "relative" to the jar file. See Accessing
databases from a jar or zip file for details.

jar requires an additional element immediately before the database name:

(pathToArchive)

pathToArchive is the path to the jar or zip file that holds the database.

For detailed reference about connection URL attributes and values, see "Setting
attributes for the database connection URL" in the Derby Reference Manual.

The following example shows the use of the connection URL:

Connection conn = DriverManager.getConnection("jdbc:derby:sample");

Derby system

A Derby database exists within a system.

A Derby system is a single instance of the Derby database engine and the environment
in which it runs. It consists of a system directory, zero or more databases, and a
system-wide configuration. The system directory contains any persistent system-wide
configuration parameters, or properties, specific to that system in a properties file called
derby.properties. This file is not automatically created; you must create it yourself.

The Derby system is not persistent; you must specify the location of the system directory
at every startup.

However, the Derby system and the system directory is an essential part of a running
database or databases. Understanding the Derby system is essential to successful
development and deployment of Derby applications. As the following figure shows, Derby
databases live in a system, which includes system-wide properties, an error log, and one
or more databases.

Figure 1. Derby system

Derby Developer's Guide

19

The system directory can also contain an error log file called derby.log (see The error
log).

Each database within that system is contained in a subdirectory, which has the same
name as the database (see A Derby database).

In addition, if you connect to a database outside the current system, it automatically
becomes part of the current system.

When you use the embedded driver, Derby database files and log files normally
have whatever default permissions you specify for your file system. If you are
running with Java SE 7 or later, however, you can enhance security by restricting
file access to the user who creates the database. To do this, set the system property
derby.storage.useDefaultFilePermissions to false. See the Derby Reference Manual for
details.

Note: In-memory databases do not appear in the system directory.

One Derby instance for each Java Virtual Machine (JVM)

You could potentially have two instances of a Derby system running on the same
machine at the same time. Each instance must run in a different Java Virtual Machine
(JVM).

If you use the embedded driver, two separate instances of Derby cannot access the
same database. If a Derby instance attempts to access a running database, an error
message appears, and a stack trace appears in the derby.log file. If you want more than
one Derby instance to be able to access the same database, you can use the Network
Server.

If a Derby instance uses the in-memory database capability for its database connection,
the database exists only within the JVM of that Derby instance. Another Derby instance
could refer to the same database name, but it would not be referring to the same actual
database, and no error would result.

Derby Developer's Guide

20

Booting databases

The default configuration for Derby is to boot (or start) a database when an application
first makes a connection to it. When Derby boots a database, it checks to see if recovery
needs to be run on the database, so in some unusual cases booting can take some time.

You can also configure your system to automatically boot all databases in the system
when it starts up; see "derby.system.bootAll" in the Derby Reference Manual. Because
of the time needed to boot a database, the number of databases in the system directory
affects startup performance if you use that configuration.

Once a database has been booted within a Derby system, it remains active until the
Derby system has been shut down or until you shut down the database individually.

When Derby boots a database, a message is added to the log file. The message includes
the Derby version that the database was booted with, along with information about the
Java version, the user's working directory, and the location of the Derby system directory,
if the user specified it using the derby.system.home property. If derby.system.home was
not specified, its value is reported as null, as in the following example:

Wed Mar 02 17:06:58 EST 2011:
 Booting Derby version The Apache Software Foundation - Apache Derby
- 10.8.0.0 - (1076370): instance a816c00e-012e-789c-116d-000000bbdd88
on database directory C:\sampledb with class loader
sun.misc.Launcher$AppClassLoader@11b86e7
Loaded from file:C:\db-derby-10.7.1.0-bin\lib\derby.jar
java.vendor=Sun Microsystems Inc.
java.runtime.version=1.6.0_24-b07
user.dir=C:\
derby.system.home=null
Database Class Loader started - derby.database.classpath=''

The number of databases running in a Derby system is limited only by the amount of
memory available in the JVM.

Shutting down the system

In an embedded environment, when an application shuts down, it should first shut down
Derby.

If the application that started the embedded Derby quits but leaves the Java Virtual
Machine (JVM) running, Derby continues to run and is available for database
connections.

In an embedded system, the application shuts down the Derby system by issuing the
following JDBC call:

DriverManager.getConnection("jdbc:derby:;shutdown=true");

Shutdown commands always raise SQLExceptions.

When a Derby system shuts down, a message goes to the log file:

--
Wed Mar 02 17:08:36 EST 2011: Shutting down Derby engine
--
Wed Mar 02 17:08:36 EST 2011:
Shutting down instance a816c00e-012e-789c-116d-000000bbdd88 on
database directory C:\sampledb with class loader
sun.misc.Launcher$AppClassLoader@11b86e7
--

Typically, an application using an embedded Derby engine shuts down Derby just before
shutting itself down. However, an application can shut down Derby and later restart it in
the same JVM session. To restart Derby successfully, the application needs to reload
org.apache.derby.jdbc.EmbeddedDriver as follows:

Derby Developer's Guide

21

Class.forName(org.apache.derby.jdbc.EmbeddedDriver).newInstance();

Loading the embedded driver starts Derby.

The JDBC specification does not recommend calling newInstance(), but adding a
newInstance() call guarantees that Derby will be booted on any JVM.

Note: If your application will need to restart Derby, you can add the attribute
deregister=false to the connection URL to avoid having to reload the embedded driver:

DriverManager.getConnection("jdbc:derby:;shutdown=true;deregister=false");

It is also possible to shut down a single database instead of the entire Derby system. See
Shutting down Derby or an individual database. You can reboot a database in the same
Derby session after shutting it down.

Defining the system directory

You define the system directory when Derby starts up by specifying a Java system
property called derby.system.home.

If you do not specify the system directory when starting up Derby, the current directory
becomes the system directory.

Derby uses the derby.system.home property to determine which directory is its system
directory - and thus what databases are in its system, where to create new databases,
and what configuration parameters to use. See the Derby Reference Manual for more
information on this property.

If you specify a system directory at startup that does not exist, Derby creates this new
directory - and thus a new system with no databases-automatically.

The error log

Once you create or connect to a database within a system, Derby begins outputting
information and error messages to the error log. Typically, Derby writes this information
to a file called derby.log in the system directory.

Alternatively, you can have Derby send messages to a stream, using the
derby.stream.error.method or derby.stream.error.field property, or to a different file,
using the derby.stream.error.file property. If you use any of these properties, the property
setting will appear in the log.

By default, Derby overwrites derby.log when you start the system. You can configure
Derby to append to the log with the derby.infolog.append property.

For information on setting all of these properties, see the Derby Reference Manual.

derby.properties

The text file derby.properties contains the definition of properties, or configuration
parameters that are valid for the entire system.

The derby.properties file is not automatically created. If you want to set Derby properties
with this file, you need to create the file yourself. The derby.properties file should be in
the format created by the java.util.Properties.save method. For more information about
properties and the derby.properties file, see Working with Derby properties and the Derby
Reference Manual.

Double-booting system behavior

Derby prevents two instances of itself from booting the same database by using a file
called db.lck inside the database directory.

If a second instance of Derby attempts to boot an already running database, the following
error messages appear:

Derby Developer's Guide

22

ERROR XJ040: Failed to start database 'firstdb', see the next exception
for details.
ERROR XSDB6: Another instance of Derby may have already booted the
database /home/myself/DERBYTUTOR/firstdb.

In addition, a stack trace appears in the derby.log file. For help diagnosing a double boot
problem, use the derby.stream.error.logBootTrace property to obtain information about
both successful and unsuccessful boot attempts. The property is described in the Derby
Reference Manual.

If you need to access a single database from more than one Java Virtual Machine
(JVM), you will need to put a server solution in place. You can allow applications from
multiple JVMs that need to access that database to connect to the server. The Derby
Network Server is provided as a server solution. For basic information on starting and
using the Network Server, see Getting Started with Derby. See the Derby Server and
Administration Guide for more information on the Network Server.

Recommended practices

When developing Derby applications, create a single directory to hold your database or
databases.

Give this directory a unique name, to help you remember that:
• All databases exist within a system.
• System-wide properties affect the entire system, and persistent system-wide

properties live in the system directory.
• You can boot all the databases in the system, and the boot-up times of all

databases affect the performance of the system.
• You can preboot databases only if they are within the system. (Databases do not

necessarily have to live inside the system directory, but keeping your databases
there is the recommended practice.)

• Once you connect to a database, it is part of the current system and thus inherits all
system-wide properties.

• Only one instance of Derby can run in a JVM at a single time.
• The error log is located inside the system directory.

A Derby database

A Derby database contains dictionary objects such as tables, columns, indexes, and jar
files. A Derby database can also store its own configuration information.

The database directory

A Derby database is stored in files that live in a directory of the same name as the
database. Database directories typically live in system directories.

Note: An in-memory database does not use the file system, but the size limits listed in
the table later in this topic still apply. For some limits, the maximum value is determined
by the available main memory instead of the available disk space and file system
limitations.

A database directory contains the following, as shown in the following figure.

• log directory

Contains files that make up the database transaction log, used internally for data
recovery (not the same thing as the error log).

• seg0 directory

Contains one file for each user table, system table, and index (known as
conglomerates).

Derby Developer's Guide

23

• service.properties file

A text file with internal configuration information.
• tmp directory

(might not exist.) A temporary directory used by Derby for large sorts and deferred
updates and deletes. Sorts are used by a variety of SQL statements. For databases
on read-only media, you might need to set a property to change the location of this
directory. See "Creating Derby Databases for Read-Only Use".

• jar directory

(might not exist.) A directory in which jar files are stored when you use database
class loading.

Read-only database directories can be archived (and compressed, if desired) into jar or
zip files. For more information, see Accessing a read-only database in a zip/jar file.

The following figure shows the files and directories in the Derby database directories that
are used by the Derby software.

Figure 2. An example of a Derby database directory and file structure

Derby imposes relatively few limitations on the number and size of databases and
database objects. The following table shows some size limitations of Derby databases
and database objects.

Table 2. Size limits for Derby database objects

Type of Object Limit

Tables in each database java.lang.Long.MAX_VALUE

Some operating systems impose a limit to the
number of files allowed in a single directory.

Indexes in each table 32,767 or storage

Columns in each table 1,012

Number of columns on an index
key

16

Rows in each table No limit.

Size of table No limit. Some operating systems impose a limit on
the size of a single file.

Derby Developer's Guide

24

Type of Object Limit

Size of row No limit. Rows can span pages. Rows cannot span
tables so some operating systems impose a limit on
the size of a single file, which results in limiting the
size of a table and size of a row in that table.

For a complete list of restrictions on Derby databases and database objects, see the
Derby Reference Manual.

Creating, dropping, and backing up databases

You create new databases and access existing ones by specifying attributes to the Derby
connection URL.

If you use an in-memory database, you can use a connection URL attribute to drop it. For
a file system database, however, there is no drop attribute. To drop a database on the file
system, delete the database directory with operating system commands. The database
must not be booted when you remove a database. You can get a list of booted databases
with getPropertyInfo.

To back up a database, you can use the online backup utility. For information on this
utility, see the Derby Server and Administration Guide.

You can also use roll-forward recovery to recover a damaged database. Derby
accomplishes roll-forward recovery by using a full backup copy of the database, archived
logs, and active logs from the most recent time before a failure. For more information on
roll-forward recovery see the Derby Server and Administration Guide.

Single database shutdown

An application can shut down a single database within a Derby system and leave the rest
of the system running.

Storage and recovery

A Derby database (unless it is an in-memory database) provides persistent storage and
recovery. Derby ensures that all committed transactions are durable, even if the system
fails, through the use of a database transaction log.

Whereas inserts, updates, and deletes may be cached before being written to disk, log
entries tracking all those changes are never cached but always forced to disk when a
transaction commits. If the system or operating system fails unexpectedly, when Derby
next starts up it can use the log to perform recovery, recovering the "lost" transactions
from the log and rolling back uncommitted transactions. Recovery ensures that all
committed transactions at the time the system failed are applied to the database, and all
transactions that were active are rolled back. Thus the databases are left in a consistent,
valid state.

In normal operation, Derby keeps the log small through periodic checkpoints.
Checkpointing marks the portions of the log that are no longer useful, writes changed
pages to disk, then truncates the log.

Derby checkpoints the log file as it fills. It also checkpoints the log when a shutdown
command is issued. Shutting down the JVM in which Derby is running without issuing the
proper shutdown command is equivalent to a system failure from Derby's point of view.

Booting a database means that Derby checks to see if recovery needs to be run on a
database. Recovery can be costly, so using the proper shutdown command improves
connection or startup performance.

Derby Developer's Guide

25

Log on separate device

You can put a database's log on a separate device when you create it.

For more information, see the Derby Server and Administration Guide.

Database pages

Derby tables and indexes, known as conglomerates, consist of two or more pages.

A page is a unit of storage whose size is configurable on a system-wide, database-wide,
or conglomerate-specific basis. By default, a conglomerate grows one page at a time
until eight pages of user data (or nine pages of total disk use, which includes one page
of internal information) have been allocated. (You can configure this behavior; see
"derby.storage.initialPages" in the Derby Reference Manual.) After that, it grows eight
pages at a time.

The size of a row or column is not limited by the page size. Rows or columns that are
longer than the table's page size are automatically wrapped to overflow pages.

Database-wide properties

You can set many Derby properties as database-level properties. When set in this way,
they are stored in the database and "travel" with the database unless overridden by a
system property.

For more information, see Scope of properties and Setting database-wide properties.

Derby database limitations

Derby databases have a few limitations.

Indexes

Indexes are not supported for columns defined on CLOB, BLOB, LONG VARCHAR, and
XML data types.

If the length of the key columns in an index is larger than half the page size of the index,
creating an index on those key columns for the table fails. For existing indexes, an insert
of new rows for which the key columns are larger than half of the index page size causes
the insert to fail.

Avoid creating indexes on long columns. Create indexes on small columns that provide
a quick look-up to larger, unwieldy data in the row. You might not see performance
improvements if you index long columns. For information about indexes, see Tuning
Derby.

System shutdowns

The system shuts down if the database log cannot allocate more disk space.

A "LogFull" error or some sort of IOException occurs in the derby.log file when
the system runs out of space. If the system has no more disk space to append to the
derby.log file, you might not see the error messages.

Connecting to databases

You connect to a database using a form of the Derby connection URL as an argument to
the DriverManager.getConnection call.

You specify a path to the database within this connection URL.

Derby Developer's Guide

26

Connecting to databases within the system

The standard way to access databases in the file system is by specifying the path
to the database, either absolute or relative to the system directory. In a client/server
environment, this path is always on the server machine.

By default, you can connect to databases within the current system directory (see
Defining the system directory). To connect to databases within the current system, just
specify the database name on the connection URL. For example, if your system directory
contains a database called myDB, you can connect to that database with the following
connection URL:

jdbc:derby:myDB

The full call within a Java program would be:

Connection conn =DriverManager.getConnection("jdbc:derby:myDB");

Connecting to databases outside the system directory

You can also connect to databases in other directories (including subdirectories of the
system directory) by specifying a relative or absolute path name to identify the database.
The way you specify an absolute path is defined by the host operating system.

Using the connection URL as described here, you can connect to databases in more than
one directory at a time.

Two examples:

jdbc:derby:../otherDirectory/myDB

jdbc:derby:c:/otherDirectory/myDB

Note: Once connected, such a database becomes a part of the Derby system, even
though it is not in the system directory. This means that it takes on the system-wide
properties of the system and no other instance of Derby should access that database. It
is recommended that you connect to databases only in the system directory.
Conventions for specifying the database path

When you access databases from the file system (instead of from the classpath or a jar
file), any path that is not absolute is interpreted as relative to the system directory.

The path must do one of the following:

• refer to a previously created Derby database
• specify the create=true attribute

The path separator in the connection URL is / (forward slash), as in the standard file://
URL protocol.

You can specify only databases that are local to the machine on which the JVM
is running. NFS file systems on UNIX and remote shared files on Windows
(//machine/directory) are not guaranteed to work. Using derby.system.home and forward
slashes is recommended practice for platform independent applications.

If two different database name values, relative or absolute, refer to the same actual
directory, they are considered equivalent. This means that connections to a database
through its absolute path and its relative path are connections to the same database.
Within Derby, the name of the database is defined by the canonical path of its directory
from java.io.File.getCanonicalPath.

Derby automatically creates any intermediate directory that does not already exist when
creating a new database. If it cannot create the intermediate directory, the database
creation fails.

Derby Developer's Guide

27

Special database access

You can also access databases from the classpath or from a jar file (in the classpath or
not) as read-only databases.

You can create in-memory databases for use in testing and development and for
processing temporary or reproducible data. See Using in-memory databases for details.

Accessing databases from the classpath:

In most cases, you access databases from the file system. However, it is also possible to
access databases from the classpath. The databases can be archived into a jar or zip file
or left as is.

All such databases are read-only.

To access an unarchived database from the classpath, use the classpath
subsubprotocol.

For example, for a database called sample in C:\derby\demo\databases, you can put the
C:\derby\demo\databases directory in the classpath and access sample like this:

jdbc:derby:classpath:sample

If only C:\derby were in the classpath, you could access sample (read-only) like this:

jdbc:derby:classpath:demo/databases/sample

Accessing databases from a jar or zip file:

It is possible to access databases from a jar file. The jar file does not have to be on the
classpath.

Note: All such databases are read-only.

For example, suppose you have archived the database jarDB1 into a file called jar1.jar.
This archive is in the classpath before you start up Derby. You can access jarDB1 with
the following connection URL

jdbc:derby:classpath:jarDB1

To access a database in a jar file that is not on the classpath, use the jar subprotocol.

For example, suppose you have archived the database jarDB2 into a file called jar2.jar.
This archive is not in the classpath. You can access jarDB2 by specifying the path to the
jar file along with the jar subsubprotocol, like this:

jdbc:derby:jar:(c:/derby/lib/jar2.jar)jarDB2

For complete instructions and examples of accessing databases in jar files, see
Accessing a read-only database in a zip/jar file.

Database connection examples

The examples in this section use the syntax of the connection URL for use in an
embedded environment.

This information also applies to the client connection URL in a client/server environment.
For reference information about client connection URLs, see "java.sql.Connection
interface" in the Derby Reference Manual.

• jdbc:derby:db1

Derby Developer's Guide

28

Open a connection to the database db1. db1 is a directory located in the system
directory.

• jdbc:derby:london/sales

Open a connection to the database london/sales. london is a subdirectory of the
system directory, and sales is a subdirectory of the directory london.

• jdbc:derby:/reference/phrases/french

Open a connection to the database /reference/phrases/french.

On a UNIX system, this would be the path of the directory. On a Windows system,
the path would be C:\reference\phrases\french if the current drive were C.

• jdbc:derby:a:/demo/sample

Open a connection to the database stored in the directory \demo\sample on drive A
(usually the floppy drive) on a Windows system.

• jdbc:derby:c:/databases/salesdb jdbc:derby:salesdb

These two connection URLs connect to the same database, salesdb, on a Windows
platform if the system directory of the Derby system is C:\databases.

• jdbc:derby:support/bugsdb;create=true

Create the database support/bugsdb in the system directory, automatically creating
the intermediate directory support if it does not exist.

• jdbc:derby:sample;shutdown=true

Shut down the sample database. (Authentication is not enabled, so no user
credentials are required.)

• jdbc:derby:memory:myDB

Access the in-memory database named myDB. The syntax for a client connection
URL is different; see Using in-memory databases for details.

• jdbc:derby:classpath:myDB

Access myDB (which is directly in a directory in the classpath) as a read-only
database.

• jdbc:derby:jar:(C:/dbs.jar)products/boiledfood

Access the read-only database boiledfood in the products directory from the jar file
C:/dbs.jar.

• jdbc:derby:directory:myDB

Access myDB, which is in the system directory.

Working with the database connection URL attributes

You specify attributes on the Derby connection URL.

The examples in this section use the syntax of the connection URL for use in an
embedded environment. You can also specify these same attributes and values on the
client connection URL if you are using Derby as a database server. For more information,
see the Derby Server and Administration Guide.

You can also set these attributes by passing a Properties object along with a connection
URL to DriverManager.getConnection when obtaining a connection; see
Specifying attributes in a properties object. If you specify any attributes both on the
connection URL and in a Properties object, the attributes on the connection URL override
the attributes in the Properties object.

All attributes are optional.

For complete information about the attributes, see "Setting attributes for the database
connection URL" in the Derby Reference Manual.

Derby Developer's Guide

29

For detailed information about the connection URL syntax, see Derby JDBC database
connection URL.

Using the databaseName attribute

You can use a databaseName attribute on a database connection URL to specify the
name of the database to which you want to connect.

jdbc:derby:;databaseName=databaseName

You can access read-only databases in jar or zip files by specifying jar as the
subsubprotocol, like this:

jdbc:derby:jar:(pathToArchive)databasePathWithinArchive

Or, if the jar or zip file has been included in the classpath, like this:

jdbc:derby:classpath:databasePathWithinArchive

Shutting down Derby or an individual database

Applications in an embedded environment shut down the Derby system by specifying
the shutdown=true attribute in the connection URL. To shut down the system, you do not
specify a database name, and you do not ordinarily specify any other attribute.

jdbc:derby:;shutdown=true

A successful shutdown always results in an SQLException to indicate that Derby has
shut down and that there is no other exception.

If you have enabled user authentication at the system level, you will need to specify
credentials (that is, username and password) in order to shut down a Derby system, and
the supplied username and password must also be defined at the system level.

> Important: Derby's BUILTIN authentication mechanism is suitable only for
development and testing purposes, and it will no longer be documented in future
releases. It is strongly recommended that production systems rely on NATIVE
authentication, an external directory service such as LDAP, or a user-defined class for
authentication. It is also strongly recommended that production systems protect network
connections with SSL/TLS.

You can also shut down an individual database if you specify the databaseName.
You can shut down the database of the current connection if you specify the default
connection instead of a database name(within an SQL statement).

// shutting down a database from your application
DriverManager.getConnection(
 "jdbc:derby:sample;shutdown=true");

If user authentication and SQL authorization are both enabled, only the database owner
can shut down the database.

// shutting down an authenticated database as database owner
DriverManager.getConnection(

 "jdbc:derby:securesample;user=joeowner;password=secret;shutdown=true");

Attention: It is good practice to close existing connections before shutting down the
system or database. Connections created before the shutdown will not be usable after
shutdown is performed. Attempting to access connections after shutdown may cause
errors including instances of NullPointerException or protocol violations.

Derby Developer's Guide

30

Creating and accessing a database

You create a database by supplying a new database name in the connection URL and
specifying create=true.

Derby creates a new database inside a new subdirectory in the system directory. This
system directory has the same name as the new database. If you specify a partial path, it
is relative to the system directory. You can also specify an absolute path.

jdbc:derby:databaseName;create=true

For more details about create=true, see "create=true" in the Derby Reference Manual.

Providing a user name and password

When user authentication is enabled, an application must provide a user
name and password. One way to do this is to use the user=userName and
password=userPassword connection URL attributes.

jdbc:derby:sample;user=jill;password=toFetchAPail

Creating a database with territory-based collation

By default, Derby uses Unicode codepoint collation. However, you can specify
territory-based collation when you create the database.

You can use the collation and territory attributes to specify territory-based
collation. This type of collation applies only to user-defined tables. The system tables use
the Unicode codepoint collation.

Restriction: The collation attribute can be specified only when you create a
database. You cannot specify this attribute on an existing database or when you upgrade
a database.

To create a database with territory-based collation:

1. Specify the language and country codes for the territory attribute, and the
TERRITORY_BASED value for the collation attribute when you create the
database.

For example:

jdbc:derby:MexicanDB;create=true;territory=es_MX;collation=TERRITORY_BASED

Creating a case-insensitive database

The collation value TERRITORY_BASED uses the default collation strength for the
locale, usually TERTIARY, which will consider character case significant in searches
and comparisons. To make the database use case-insensitive searches, specify an
explicit strength with the collation attribute. The strength name is appended to
TERRITORY_BASED with a colon to separate them.

For example:

jdbc:derby:SwedishDB;create=true;territory=sv_SE;collation=TERRITORY_BASED:PRIMARY

With strength PRIMARY, the characters 'A' and 'a' will be considered equal, as well
as 'à' ('a' with a grave accent). (This behavior is commonly the default with many
other databases.) To make searches respect differences in accent, use strength
SECONDARY.

The exact interpretation of the strength part of the attribute depends upon the locale.

For more information, see Character-based collation in Derby and the documentation of
the collation attribute in the Derby Reference Manual.

Derby Developer's Guide

31

Encrypting a database when you create it

If your environment is configured properly, you can create your database as an encrypted
database (one in which the database is encrypted on disk). To do this, you use the
dataEncryption=true attribute to turn on encryption and the bootPassword=key
attribute or the encryptionKey attribute to specify a key for the encryption.

You can also specify an encryption provider and encryption algorithm other
than the defaults with the encryptionProvider=providerName and
encryptionAlgorithm=algorithm attributes.

jdbc:derby:encryptedDB;create=true;dataEncryption=true;
bootPassword=DBpassword

Creating an encrypted database with an external key

You can create a database and encrypt the database with an external key.

To create an encrypted database using an external key:

1. Use the encryptionKey attribute in the connection URL.

For example to create the database and encrypt the database encDB using an
external key, specify this URL:

jdbc:derby:encDB;create=true;dataEncryption=true;encryptionAlgorithm=DES/
CBC/NoPadding;encryptionKey=6162636465666768

Attention: If you lose the encryption key you will not be able to boot the database.
Booting an encrypted database

You must specify several attributes in the URL when you boot an encrypted database.
You must specify these attributes the first time that you connect to the database within a
JVM session, or after you shut the database down within the same JVM session.

To boot an existing encrypted database:

1. The attribute that you specify depends on how the database was originally
encrypted:

• If the database was encrypted using the bootPassword mechanism, specify
the bootPassword attribute. For example:

jdbc:derby:wombat;bootPassword=clo760uds2caPe
• If the database was encrypted using an external key, specify the

encryptionKey attribute. For example:

jdbc:derby:flintstone;encryptionAlgorithm=AES/CBC/NoPadding;
encryptionKey=c566bab9ee8b62a5ddb4d9229224c678

If the algorithm that was used when the database was created is not the
default algorithm, you must also specify the encryptionAlgorithm attribute. The
default encryption algorithm used by Derby is DES/CBC/NoPadding.

Specifying attributes in a properties object

Instead of specifying attributes on the connection URL, you can specify attributes
as properties in a Properties object that you pass as a second argument to the
DriverManager.getConnection method.

For example, to set the user name and password:

Class.forName("org.apache.derby.jdbc.EmbeddedDriver");

Properties p = new Properties();

p.setProperty("user", "sa");
p.setProperty("password", "manager");

Derby Developer's Guide

32

p.setProperty("create", "true");

Connection conn = DriverManager.getConnection(
 "jdbc:derby:mynewDB", p);

If you are running on JDK 6 or higher, you do not normally need to invoke
Class.forName(). In that environment, the EmbeddedDriver loads automatically.
The only exception to this rule is when you need to shut down Derby in the middle of your
application and then restart it. To restart Derby, create a new instance of the driver as
follows:

Class.forName("org.apache.derby.jdbc.EmbeddedDriver").newInstance();

Note: If you specify any attributes both on the connection URL and in a Properties
object, the attributes on the connection URL override the attributes in the Properties
object.

Using in-memory databases
For testing and developing applications, or for processing transient or reproducible data,
you can use Derby's in-memory database facility.

An in-memory database resides completely in main memory, not in the file system. It is
useful for testing and developing applications, when you may want to create and discard
databases that will never be used again. It is also useful when you need to process only
temporary or reproducible data.

If you have the required memory available, you may also benefit from faster processing
(no disk I/O) and from the simplicity of not having to explicitly delete databases you have
finished with.

Creating an in-memory database

To create an in-memory database, specify memory as the JDBC subsubprotocol. For
example, to create an in-memory database named myDB using the embedded driver, use
the following connection URL:

jdbc:derby:memory:myDB;create=true

For the network client driver, use the following connection URL. Because the client driver
does not understand the memory subsubprotocol, you must include it in the database
name:

jdbc:derby://myhost:1527/memory:myDB;create=true

Be careful to specify a colon (:) after memory.

Referring to in-memory databases

When you create or refer to an in-memory database, any path that is not absolute is
interpreted as relative to the system directory, just as with file system databases. For
example, if the system directory is C:\myderby, the following paths are regarded as
equivalent:

jdbc:derby:memory:db
jdbc:derby:memory:C:\myderby\db

Similarly, Derby treats the following URLs as names for the same in-memory database:

jdbc:derby:memory:/home/myname/db
jdbc:derby:memory:/home/myname/../myname/db

Conventions for specifying the database path has more information on database paths.

Derby Developer's Guide

33

Using in-memory databases

When you use an in-memory database, you need to make sure to configure the heap
and the Derby page cache size. See "Configure Derby to use an in-memory database" in
Tuning Derby for details.

For examples of how to use an in-memory database, see some of the ij command
examples in the Derby Tools and Utilities Guide (execute and async, for example).

Removing an in-memory database

To remove an in-memory database, use the connection URL attribute drop as follows:

jdbc:derby:memory:myDB;drop=true

jdbc:derby://myhost:1527/memory:myDB;drop=true

You can shut down an in-memory database using the shutdown=true attribute before
you drop the database, but this is optional. Dropping the database also performs the
shutdown.

When you drop the database, Derby issues what appears to be an error but is
actually an indication of success. You need to catch error 08006, as described in "The
WwdEmbedded program" in Getting Started with Derby.

If user authentication and SQL authorization are both enabled, only the database owner
can drop the database.

An in-memory database is automatically removed if any of the following happens:

• The Java Virtual Machine (JVM) is shut down normally (for example, if you exit the
ij tool)

• The JVM crashes
• The machine you are running on crashes or shuts down

Persisting an in-memory database

If you create an in-memory database and then decided that you want
to keep it after all, you can use one of the backup system procedures
(SYSCS_UTIL.SYSCS_BACKUP_DATABASE, for example) to persist it. You can
then boot it as an in-memory database at a later time, or use it as a normal file system
database. See "Backing up and restoring databases" in Derby Server and Administration
Guide for information on using the backup procedures.

Working with Derby properties
This section describes how to use Derby properties. For details on specific properties,
see the "Derby properties" section of the Derby Reference Manual.

Properties overview

Derby lets you configure behavior or attributes of a system, a specific database, or a
specific conglomerate (a table or index) through the use of properties.

Examples of behavior or attributes that you can configure are:
• Whether to authorize users
• Page size of tables and indexes
• Where and whether to create an error log
• Which databases in the system to boot

Scope of properties
You use properties to configure a Derby system, database, or conglomerate.

Derby Developer's Guide

34

• system-wide

Most properties can be set on a system-wide basis; that is, you set a property for
the entire system and all its databases and conglomerates, if this is applicable.
Some properties, such as error handling and automatic booting, can be configured
only in this way, since they apply to the entire system. (For information about the
Derby system, see Derby system.)

• database-wide

Some properties can also be set on a database-wide basis. That is, the property is
true for the selected database only and not for the other databases in the system
unless it is set individually within each of them.

For properties that affect conglomerates, changing the value of such properties affects
only conglomerates that are created after the change. Conglomerates created earlier are
unaffected.

Note: Database-wide properties are stored in the database and are simpler for
deployment, in the sense that they follow the database. Database-wide properties
are also recommended for security reasons when you use Derby BUILTIN user
authentication (see Derby and security). System-wide properties can be more practical
during the development process.

> Important: Derby's BUILTIN authentication mechanism is suitable only for
development and testing purposes, and it will no longer be documented in future
releases. It is strongly recommended that production systems rely on NATIVE
authentication, an external directory service such as LDAP, or a user-defined class for
authentication. It is also strongly recommended that production systems protect network
connections with SSL/TLS.

Persistence of properties

A database-wide property always has persistence. That is, its value is stored in the
database. Typically, it is in effect until you explicitly change the property or until you set a
system-wide property with precedence over database-wide properties (see Precedence
of properties).

To disable or turn off a database-wide property setting, set its value to null. This has
the effect of removing the property from the list of database properties and restoring the
system property setting, if there is one (and if derby.database.propertiesOnly has not
been set; see Protection of database-wide properties).

A system-wide property might have persistence, depending on how you set it. If you set it
programmatically, it persists only for the duration of the JVM of the application that set it.
If you set it in the derby.properties file, a property persists until:

• That value is changed and the system is rebooted
• The file is removed from the system and the system is rebooted
• The database is booted outside of that system

Precedence of properties
The search order for properties is:

1. System-wide properties set programmatically (as a command-line option to the JVM
when starting the application or within application code)

2. Database-wide properties
3. System-wide properties set in the derby.properties file

This means, for example, that system-wide properties set programmatically override
database-wide properties and system-wide properties set in the derby.properties file, and
that database-wide properties override system-wide properties set in the derby.properties
file.

Derby Developer's Guide

35

Protection of database-wide properties:

There is one important exception to the search order for properties described above:
When you set the derby.database.propertiesOnly property to true, database-wide
properties cannot be overridden by system-wide properties.

This property ensures that a database's environment cannot be modified by the
environment in which it is booted. Any application running in an embedded environment
can set this property to true for security reasons.

See the "Derby properties" section of the Derby Reference Manual for details on the
derby.database.propertiesOnly property.

Dynamic versus static properties

Most properties are dynamic; that means you can set them while Derby is running, and
their values change without requiring a reboot of Derby. In some cases, this change
takes place immediately; in some cases, it takes place at the next connection.

Some properties are static, which means changes to their values will not take effect while
Derby is running. You must restart or set them before (or while) starting Derby.

For more information, see Making dynamic or static changes to properties.

Setting Derby properties

This section covers the different ways of setting properties.

Setting system-wide properties

You can set system-wide properties programmatically (as a command-line option to
the JVM when starting the application or within application code) or in the text file
derby.properties.

Changing the system-wide properties programmatically:

You can set properties programmatically -- either in application code before booting
the Derby driver or as a command-line option to the Java Virtual Machine (JVM) when
booting the application that starts up Derby. When you set properties programmatically,
these properties persist only for the duration of the application. Properties set
programmatically are not written to the derby.properties file or made persistent in any
other way by Derby.

Note: Setting properties programmatically works only for the application that starts up
Derby; for example, for an application in an embedded environment or for the application
server that starts up a server product. It does not work for client applications connecting
to a server that is running.

You can set properties programmatically in the following ways:

• As a parameter to the JVM command line
• Using a Properties object within an application or statement

As a parameter to the JVM command line

You can set system-wide properties as parameters to the JVM command line when you
start up the application or framework in which Derby is embedded. To do so, you typically
use the -D option. For example:

java -Dderby.system.home=C:\home\Derby\
 -Dderby.storage.pageSize=8192 JDBCTest

Using a Properties object within an application or statement

Derby Developer's Guide

36

In embedded mode, your application runs in the same JVM as Derby, so you can also
set system properties within an application using a Properties object before loading the
Derby JDBC driver. The following example sets derby.system.home on Windows.

Properties p = System.getProperties();
p.setProperty("derby.system.home", "C:\databases\sample");

Note: If you pass in a Properties object as an argument to the
DriverManager.getConnection call when connecting to a database, those properties are
used as database connection URL attributes, not as properties of the type discussed in
this section. For more information, see Connecting to databases and Working with the
database connection URL attributes as well as the Derby Reference Manual.
Changing the system-wide properties by using the derby.properties file:

You can set persistent system-wide properties in a text file called derby.properties, which
must be placed in the directory specified by the derby.system.home property. There is
one derby.properties file per system, not one per database. The file must be created in
the system directory. In a client/server environment, that directory is on the server. (For
more information about a Derby system and the system directory, see Derby system.)

Derby does not:
• Provide this file
• Automatically create this file for you
• Automatically write any properties or values to this file

Instead, you must create, write, and edit this file yourself.

The file should be in the format created by the java.util.Properties.save method.

The following is the text of a sample properties file:

derby.infolog.append=true
derby.storage.pageSize=8192
derby.storage.pageReservedSpace=60

Properties set this way are persistent for the system until changed, until the file is
removed from the system, or until the system is booted in some other directory (in which
case Derby would be looking for derby.properties in that new directory). If a database is
removed from a system, system-wide properties do not "travel" with the database unless
explicitly set again.

Verifying system properties:

You can find out the value of a system property if you set it programmatically. You cannot
find out the value of a system property if you set it in the derby.properties file.

For example, if you set the value of the derby.storage.pageSize system-wide
property in your program or on the command line, the following code will retrieve its value
from the System Properties object:

Properties sprops = System.getProperties();
System.out.println("derby.storage.pageSize value: "
+ sprops.getProperty("derby.storage.pageSize"));

You can also use Java Management Extensions (JMX) technology to obtain system
information, including some settings that correspond to system properties. For details,
see "Using Java Management Extensions (JMX) technology" in the Derby Server and
Administration Guide.

Setting database-wide properties

Database-wide properties, which affect a single database, are stored within the database
itself. This allows different databases within a single Derby system to have different

Derby Developer's Guide

37

properties and ensures that the properties are correctly retained when a database is
moved away from its original system or copied.

You should use database-wide properties wherever possible for ease of deployment and
for security.

You set and verify database-wide properties using system procedures within SQL
statements.

To set a property, you connect to the database, create a statement, and then use the
SYSCS_UTIL.SYSCS_SET_DATABASE_PROPERTY procedure, passing the name of the
property and the value.

To check the current value of a property, you connect to the database, create a
statement, and then use the SYSCS_UTIL.SYSCS_GET_DATABASE_PROPERTY function,
passing in the name of the property.

If you specify an invalid value, Derby uses the default value for the property. (If you call
the SYSCS_UTIL.SYSCS_GET_DATABASE_PROPERTY function, however, it displays the
invalid value.)

See the Derby Reference Manual for more information on how to use these system
functions and procedures.

Setting properties in a client/server environment

In a client/server environment, you must set the system properties for the server's
system. That means that when you are using the derby.properties file, the file exists in
the server's derby.system.home directory. Client applications can set database-wide
properties because they are set via SQL statements.

The following table summarizes the ways to set properties.

Table 3. Ways to set properties

Type of Property How You Set It

System-wide • In derby.properties
• As a command-line option when starting the JVM

that holds the server or, if the server is started
from within a program, programmatically by the
program that hosts the server

Database-wide Using system procedures and functions in an SQL
statement

Making dynamic or static changes to properties
Note: Properties set in the derby.properties file and on the command line of the
application that boots Derby are always static, because Derby reads this file and those
parameters only at startup.
Only properties set in the following ways have the potential to be dynamic:

• As database-wide properties
• As system-wide properties via a Properties object in the application in which the

Derby engine is embedded

See the "Derby properties" section of the Derby Reference Manual for information about
specific properties.

Properties case study

Derby allows you a lot of freedom in configuring your system. This freedom can be
confusing if you do not understand how properties work. You also have the option of

Derby Developer's Guide

38

not setting any properties and instead using the Derby defaults, which are tuned for a
single-user embedded system.

Imagine the following scenario of an embedded environment:

Your system has a derby.properties file, a text file in the system directory, which you
have created and named system_directory. Your databases have also been created in
this directory. The properties file sets the following property:

derby.storage.pageSize=8192

You start up your application, being sure to set the derby.system.home property
appropriately:

java -Dderby.system.home=c:\system_directory MyApp

The command lines in this example assume that you are using a Windows system.

You then create a new table:

CREATE TABLE table1 (a INT, b VARCHAR(10))

Derby takes the page size of 8192 from the system-wide properties set in the
derby.properties file, since the property has not been set any other way.

You shut down and then restart your application, setting the value of
derby.storage.pageSize to 4096 programmatically, as a parameter to the JVM command
line:

java -Dderby.system.home=c:\system_directory
 -Dderby.storage.pageSize=4096 MyApp

CREATE TABLE anothertable (a INT, b VARCHAR(10))

The page size for the anothertable table will be 4096 bytes.

You establish a connection to the database and set the value of the page size for all new
tables to 32768 as a database-wide property:

CallableStatement cs =
 conn.prepareCall("CALL SYSCS_UTIL.SYSCS_SET_DATABASE_PROPERTY(?, ?)");
cs.setString(1, "derby.storage.pageSize");
cs.setString(2, "32768");
cs.execute();
cs.close();

You then create a new table that automatically inherits the page size set by the property:

CREATE TABLE table2 (a INT, b VARCHAR(10))

The page size for the table2 table is 32768 bytes.

You shut down the application, then restart, this time forgetting to set the system-wide
property programmatically (as a command-line option to the JVM):

java -Dderby.system.home=c:\system_directory MyApp

You then create another table:

CREATE TABLE table4 (a INT, b VARCHAR(10))

Derby uses the persistent database-wide property of 32768 for this table, since the
database-wide property set in the previous session is persistent and overrides the
system-wide property set in the derby.properties file.

Derby Developer's Guide

39

What you have is a situation in which three different tables each get a different page size,
even though the derby.properties file remained constant.

If you remove the derby.properties file from the system or remove the database from its
current location (forgetting to move the file with it), you could get yet another value for a
new table.

To avoid this situation, be consistent in the way you set properties.

Derby Developer's Guide

40

Deploying Derby applications

Typically, once you have developed a Derby application and database, you package up
the application, the Derby libraries, and the database in some means for distribution to
your users. This process is called deployment.

This section discusses issues for deploying Derby applications and databases.

Deployment issues
This section discusses deployment options and details.

Embedded deployment application overview

In an embedded environment, Derby runs in the same JVM as the application.

The application can be a single-user application or a multi-user application server. In the
latter case, Derby runs embedded in the user-provided server framework, and any client
applications use user-provided connectivity or allow the application server to handle all
database interaction.

The following figure shows Derby embedded in a single-user Java application.

Figure 3. Derby embedded in a single-user Java application

The following figure shows Derby embedded in a multi-user Java application server.

Figure 4. Derby embedded in a multi-user Java application server

When a Derby database is embedded in a Java application, the database is dedicated
to that single application. If you deploy more than one copy of the application, each
application has its own copy of the database and Derby software. A Derby server
framework can work in multi-threaded, multi-connection mode and can even connect
to more than one database at a time. A server framework, such as the Derby Network

Derby Developer's Guide

41

Server, can be used to manage multiple connections and handle network capabilities.
Some server framework solutions, such as WebSphere Application Server, provide
additional features such as web services and connection pooling. However, only one
server framework at a time can operate against a Derby database.

The Derby application accesses an embedded Derby database through the JDBC API.
To connect, an application makes a call to the local Derby JDBC driver. Accessing the
JDBC driver automatically starts the embedded Derby software. The calling application is
responsible for shutting down the embedded Derby database software.

Deploying Derby in an embedded environment

You can embed Derby in any Java application (single- or multi-user) by deploying the
following packages.

• The Derby library (derby.jar).
• The libraries for the application. You have the option of storing these libraries in the

database.
• The database or databases used by the application, in the context of their system

directory.

In the following figure, the top graphic shows the deployment of an application, where
the application, the Derby software for embedded use, the derby.properties file and
the database are four objects. The bottom graphic shows a simplified deployment by
reducing the number of objects to two by storing the application and the properties file in
the database.

Figure 5. Two approaches to deploying a Derby application in an embedded
environment

Embedded systems and properties

Database-wide properties are stored in the database and are simpler for deployment,
while system-wide parameters might be easier for development.

Derby Developer's Guide

42

• If you are setting any system-wide properties, see if they can be set as
database-wide properties instead.

• Are any properties being set in the derby.properties file? Some properties can only
be set on a system-wide basis. If so, deploy the entire system directory along with
the properties file. Deploy only those databases that you wish to include. Setting
properties programmatically can simplify this step- you will not have to worry about
deploying the system directory/properties file.

Extra steps are required for deploying an application and an embedded database on
read-only media.

Creating Derby databases for read-only use
You can create Derby databases for use on read-only media such as CD-ROMs.

Derby databases in zip or jar files are also read-only databases. Typically, read-only
databases are deployed with an application in an embedded environment.

Creating and preparing the database for read-only use

To create databases for use on read-only media, perform these steps.

1. Create and populate the database on read-write media.
2. Commit all transactions and shut down Derby in the prescribed manner. If you do

not shut down Derby in the prescribed manner, Derby will need to perform recovery
the next time the system boots. Derby cannot perform recovery on read-only media.

3. Delete the tmp directory if one was created within your database directory. If you
include this directory, Derby will attempt to delete it and will return errors when
attempting to boot a database on read-only media.

4. For the read-only database, set the property derby.storage.tempDirectory to a
writable location.

Derby needs to write to temporary files for large sorts required by such SQL
statements as ORDER BY, UNION, DISTINCT, and GROUP BY. For more
information about this property, see the Derby Reference Manual.

derby.storage.tempDirectory=c:/temp/mytemp
5. Configure the database to send error messages to a writable file or to an output

stream.

For information on the derby.stream.error.file property, see the Derby Reference
Manual.

derby.stream.error.file=c:/temp/mylog.LOG

Be sure to set these properties so that they are deployed with the database.

Deploying the database on the read-only media

To deploy the database on read-only media, perform the following steps.

1. Move the database directory to the read-only media, including the necessary
subdirectory directories (log and seg0) and the file service.properties.

2. Use the database as usual, except that you will not be able to insert or update any
data in the database or create or drop dictionary objects.

Transferring read-only databases to archive (jar or zip) files

Derby Developer's Guide

43

Once a database has been created in Derby, it can be stored in a jar or zip file and
continue to be accessed by Derby in read-only mode.

This allows a read-only database to be distributed as a single file instead of as multiple
files within a directory and to be compressed. In fact, a jar or zip file can contain any
number of Derby databases and can also contain other information not related to Derby,
such as application data or code.

You cannot store the derby.properties file in a jar or zip file.

To create a jar or zip file containing one or more Derby databases:
1. Create a database for use on read-only media.
2. From the directory that contains the database folder, archive the database directory

and its contents. For example, for the database sales that lives in the system
directory C:\london, issue the command from london. Do not issue the command
from inside the database directory itself.

For example, archive the database folder and its contents using the JAR program from
the JDK. You can use any zip or jar tool to generate the archive.

This command archives the database directory sales and its contents into a compressed
jar file called dbs.jar.

cd C:\london
jar cMf C:\dbs.jar sales

You can add multiple databases with jar. For example, this command puts the sales
databases and the boiledfood database (in the subdirectory products) into the archive.

cd C:\london
jar cMf C:\dbs.jar sales products\boiledfood

The relative paths of the database in the jar need not match their original relative paths.
You can do this by allowing your archive tool to change the path, or by moving the
original databases before archiving them.

The archive can be compressed or uncompressed, or individual databases can be
uncompressed or compressed if your archive tool allows it. Compressed databases take
up a smaller amount of space on disk, depending on the data loaded, but are slower to
access.

Once the database is archived into the jar or zip file, it has no relationship to the original
database. The original database can continue to be modified if desired.

Accessing a read-only database in a zip/jar file

To access a database in a zip/jar, you specify the jar in the subsubprotocol.

jdbc:derby:jar:(pathToArchive)databasePathWithinArchive

The pathToArchive is the absolute path to the archive file. The
databasePathWithinArchive is the relative path to the database within the archive. For
example:

jdbc:derby:jar:(C:/dbs.jar)products/boiledfood
jdbc:derby:jar:(C:/dbs.jar)sales

If you have trouble finding a database within an archive, check the contents of the archive
using your archive tool. The databasePathWithinArchive must match the one in the
archive. You might find that the path in the archive has a leading slash, and thus the URL
would be:

jdbc:derby:jar:(C:/dbs.jar)/products/boiledfood

Derby Developer's Guide

44

Databases in a jar or zip file are always opened read-only and there is currently no
support to allow updates of any type.

Accessing databases within a jar file using the classpath

Once an archive containing one or more Derby databases has been created it can be
placed in the classpath. This allows access to a database from within an application
without the application's knowing the path of the archive.

When jar or zip files are part of the classpath, you specify the classpath subsubprotocol
instead of the jar subsubprotocol to connect to them.

To access a database in a zip or jar file in the classpath:

1. Set the classpath to include the jar or zip file before starting up Derby:

CLASSPATH="C:\dbs.jar;%CLASSPATH%"
2. Connect to a database within the jar or zip file with the following connection URL:

jdbc:derby:classpath:databasePathWithinArchive

For example:

jdbc:derby:classpath:products/boiledfood

Databases on read-only media and DatabaseMetaData

Databases on read-only media return true for DatabaseMetaData.isReadOnly.

Loading classes from a database
You can store application logic in a database and then load classes from the database.

Application logic, which can be used by SQL functions and procedures, includes
Java class files and other resources. Storing application code simplifies application
deployment, since it reduces the potential for problems with a user's classpath.

In an embedded environment, when application logic is stored in the database, Derby
can access classes loaded by the Derby class loader from stored jar files.

Class loading overview

You store application classes and resources by storing one or more jar files in the
database. Then your application can access classes loaded by Derby from the jar file and
does not need to be coded in a particular way. The only difference is the way in which
you invoke the application.

Here are the basic steps.

Create jar files for your application

Include any Java classes in a jar file that are intended for Derby class loading, except the
following classes:

• The standard Java packages (java.*, javax.*)

Derby does not prevent you from storing such a jar file in the database, but these
classes are never loaded from the jar file.

• The classes that are supplied with your Java environment (for example, sun.*)

Derby Developer's Guide

45

A running Derby system can load classes from any number of jar files from any number
of schemas and databases.

Create jar files intended for Derby database class loading the same way you create a jar
file for inclusion in a user's classpath. For example, consider an application targeted at
travel agencies:

jar cf travelagent.jar travelagent/*.class.

Various IDEs have tools to generate a list of contents for a jar file based on your
application. If your application requires classes from other jar files, you have a choice:

• Extract the required third-party classes from their jar file and include only those
classes in your jar file.

Use this option when you need only a small subset of the classes in the third-party
jar file.

• Store the third-party jar file in the database.

Use this option when you need most or all of the classes in the third-party jar file,
since your application and third-party logic can be upgraded separately.

• Deploy the third-party jar file in the user's class path.

Use this option when the classes are already installed on a user's machine (for
example, Objectspace's JGL classes).

Add the jar file or files to the database

Use a set of procedures to install, replace, and remove jar files in a database.
When you install a jar file in a database, you give it a Derby jar name, which is an
SQL92Identifier.

Note: Once a jar file has been installed, you cannot modify any of the individual classes
or resources within the jar file. Instead, you must replace the entire jar file.
Jar file examples:

See the Derby Reference Manual for reference information about the jar file system
procedures and complete syntax.

Installing jar files:

-- SQL statement
CALL sqlj.install_jar(
 'tours.jar', 'APP.Sample1', 0)

-- SQL statement
-- using a quoted identifier for the
-- Derby jar name
CALL sqlj.install_jar(
 'tours.jar', 'APP."Sample2"', 0)

Removing jar files:

-- SQL statement
CALL sqlj.remove_jar(
 'APP.Sample1', 0)

Replacing jar files:

-- SQL statement
CALL sqlj.replace_jar(
 'c:\myjarfiles\newtours.jar', 'APP.Sample1')

Derby Developer's Guide

46

Enable database class loading with a property

Once you have added one or more jar files to a database, you must set the database
jar classpath by including the jar file or files in the derby.database.classpath property to
enable Derby to load classes from the jar files.

This property, which behaves like a classpath, specifies the jar files to be searched for
classes and resources and the order in which they are searched. If Derby does not find a
needed class stored in the database, it can retrieve the class from the user's classpath.
(Derby first looks in the user's classpath before looking in the database.)

• Separate jar files with a colon (:).
• Use fully qualified identifiers for the jar files (schema name and jar name).
• Set the property as a database-level property for the database.

Example:

CALL SYSCS_UTIL.SYSCS_SET_DATABASE_PROPERTY(
 'derby.database.classpath',
 'APP.ToursLogic:APP.ACCOUNTINGLOGIC')

See "derby.database.classpath" in the Derby Reference Manual for more information
about the property.

Note: Derby's class loader looks first in the user's classpath for any needed classes, and
then in the database. To ensure class loading with the database class loader, remove
classes from the classpath.
Code your applications

In your applications, you load the classes either by indirectly referencing them in the code
or by directly using java.lang.Class.forName.

You load resources the way you normally would, using the standard
java.lang.Class.getResourceAsStream, a mechanism that allows an application to access
resources defined in the classpath without knowing where or how they are stored.

You do not need to make any changes to the way code interacts with Derby and its JDBC
driver. An application can safely attempt to boot Derby, even though it is already running,
without any errors. Applications connect to Derby in the usual manner.

Note: The method getResource is not supported.

Dynamic changes to jar files or to the database jar classpath

When you store jar files in a single database and make those jar files available to that
database, it is possible to make changes to jar files or to change the database jar
"classpath" dynamically (without having to reboot).

That is, when you install or replace a jar file within an SQL statement or change the
database jar "classpath" (the derby.database.classpath property),Derby is able to load
the new classes right away without your having to reboot.

Requirements for dynamic changes

Certain conditions must be met for Derby to be able to load the new classes right away
without you having to reboot.

• You originally configured database-level class loading for the database correctly.
Turning on the database-level class loading property requires setting the
derby.database.classpath property with valid two-part names, then rebooting.

• If changes to the derby.database.classpath property are needed to reflect new jar
files, you change the property to a valid value.

If these requirements are not met, you will have to reboot to see the changes.

Derby Developer's Guide

47

Notes on dynamic changes

When you are changing the derby.database.classpath property, all classes loaded from
database jar files are reloaded, even for a jar file that has not changed.

Remember that the user's classpath is searched first.

Any existing prepared statements will use the previously loaded classes unless they
require class loading, in which case they will fail with a ClassNotFound error.

Cached objects do not match objects created with newly loaded classes. For example, an
in-memory Customer object will not match a new Customer object if the Customer class
has been reloaded, and it will raise a ClassCastException.

Derby Developer's Guide

48

Derby server-side programming

This section discusses special programming for Derby.

In particular, this section discusses how to program database-side JDBC routines,
triggers, and table functions.

Programming database-side JDBC routines
Methods invoked within an application are called application-side methods. Methods
invoked within Derby are called database-side routines.

An application-side method can be exactly the same as a database-side routine. The only
difference is where you invoke them. You write the method only once. Where you invoke
the method--within the application or within an SQL statement--determines whether it is
an "application-side" or a "database-side" method.

Database-side JDBC routines and nested connections

Most database-side JDBC routines need to share the same transaction space as the
statements that called them.

The reasons for this are:

• to avoid blocking and deadlocks
• to ensure that any updates done from within the routine are atomic with the outer

transaction

In order to use the same transaction, the routine must use the same connection as the
parent SQL statement in which the routine was executed. Connections re-used in this
way are called nested connections.

Use the connection URL jdbc:default:connection to re-use the current Connection.

The database donnection URL jdbc:default:connection allows a Java method to get the
Connection of the SQL statement that called it. This is the standard (SQL standard, Part
13, SQL Routines and Java) mechanism to obtain the nested connection object. The
method would get a Connection as follows:

Connection conn = DriverManager.getConnection(
 "jdbc:default:connection");

URL attributes are not supported as part of this connection URL. Any URL attributes
specified in a Properties object, user name, or password that are passed to a
java.sql.DriverManager.getConnection() call will be ignored.

Loading a JDBC driver in a database-side routine is not required.

Requirements for database-side JDBC routines using nested connections

In order to preserve transactional atomicity, database-side JDBC routines that use nested
connections have the following limitations.

• Can issue a commit or rollback only within a procedure (not a function).
• Cannot change the auto-commit connection attribute.
• Cannot modify the data in a table used by the parent statement that called the

routine, using INSERT, UPDATE, or DELETE. For example, if a SELECT statement
using the T table calls the changeTables procedure, changeTables cannot
modify data in the T table.

Derby Developer's Guide

49

• Cannot drop a table used by the statement that called the routine.
• Cannot be in a class whose static initializer executes DDL statements.

In addition, the Connection object that represents the nested connection always has its
auto-commit mode set to false.

Database-side JDBC routines using non-nested connections

A database-side JDBC routine can create a new connection instead of using a nested
connection. Statements executed in the routine will be part of a different transaction, and
so can issue commits and rollbacks.

Such a routine can connect to a database different from the one to which the parent SQL
statement that called it is connected. The routine does not use the same transaction or
Connection. It establishes a new Connection and transaction.

Note: If database-side JDBC routines do not use nested connections, this means that
they are operating outside of the normal DBMS transaction control, so it is not good
practice to use them indiscriminately.
Invoking a procedure using the CALL command

If a procedure uses only IN parameters, Derby can execute the procedure by using the
SQL CALL command. A stored procedure with IN, OUT, or INOUT parameters can be
invoked from a client application by using a CallableStatement.

You can invoke the procedure in an SQL statement such as the following:

CALL MYPROC()

Note: You can roll back a CALL statement only if no commits or rollbacks occur within
the specified procedure.

You can also use the CALL command to execute a routine that returns a value, but you
will not be able to access the value.

Database-side JDBC routines and SQLExceptions

It is possible to code database-side routines, like application-side methods, to catch
SQLExceptions. SQLExceptions that are caught within a routine are hidden from the
calling application code.

When such SQLExceptions are of transaction severity (such as deadlocks), this "hiding"
of the exception causes unexpected problems.

This is because errors of transaction severity roll back work already done by a
transaction (not just the piece executed by the called method) and silently begin a new
transaction. When the method execution is complete, Derby detects that the outer
statement was invalidated by a deadlock and rolls back any work done in the new
transaction as well. This is the expected behavior, because all the statements in between
explicit commits should be treated atomically; the new transaction implicitly begun by
Derby's rollback was not intended by the application designer.

However, this is not the same behavior that would happen if the method were invoked in
the application. In that situation, Derby would roll back the work done by the transaction
and silently begin a new transaction. Work in the new transaction would not be rolled
back when the method returned. However, coding the application in that way means
that the transaction did not end where you expected it to and is probably a programming
mistake. Coding in this manner is not recommended.

A method that catches a deadlock exception and then continues is probably making a
mistake. Errors of transaction severity should be caught not by nested code, but only by

Derby Developer's Guide

50

the outermost application code. That is the only way to ensure that transactions begin
and end where you expect them to.

Not all database vendors handle nested deadlocks the same way. For this and other
reasons, it is not possible to write portable SQL-invoking methods. However, it is possible
to write SQL-invoking methods that behave identically regardless of whether you invoke
them in the application or as a routine in the database.

In order to ensure identical application- and database-side handling of nested errors,
code try-catch blocks to check for the severity of exceptions as follows:

try {
 preparedStatement.execute();
} catch (SQLException se) {
 String SQLState = se.getSQLState();
 if (SQLState.equals("23505"))
 { correctDuplicateKey(); }
 else if (SQLState.equals("22003")) {
 correctArithmeticOverflow(); }
 else { throw se; }
}

Of course, users also have the choice of not wrapping SQL statements in try-catch blocks
within methods. In that case, SQLExceptions are caught higher up in their applications,
which is the desired behavior.

User-defined SQLExceptions

When the execution of a database-side method raises an error, Derby wraps that
exception in an SQLException with an SQLState of 38000.

You can avoid having Derby wrap the exception if:

• The exception is an SQLException
• The range of the SQLState is 38001-38999

(This conforms to the SQL99 standard.)

Programming trigger actions
Derby allows you to create triggers. When you create a trigger, you define an action or
set of actions that are executed when a database event occurs on a specified table. A
database event is a delete, insert, or update operation.

For example, if you define a trigger for a delete on a particular table, the trigger action is
executed whenever someone deletes a row or rows from the table.

The CREATE TRIGGER statement in the Derby Reference Manual goes into detail of the
complete CREATE TRIGGER syntax. This section provides information on defining the
trigger action itself, which is only one aspect of creating triggers.

This section refers to the CREATE TRIGGER statement as the trigger actions.

Trigger action overview

A trigger action is a simple SQL statement.

For example:

CREATE TRIGGER . . .
DELETE FROM flightavailability
 WHERE flight_id IN (SELECT flight_id FROM flightavailability
 WHERE YEAR(flight_date) < 2005);)

Derby Developer's Guide

51

A trigger action does have some limitations, though; for example, it cannot contain
dynamic parameters or alter the table on which the trigger is defined. See "TriggerAction"
in the Derby Reference Manual for details.

Performing referential actions

Derby provides referential actions. Examples in this section are included to illustrate how
to write triggers.

You can choose to use standard SQL referential integrity to obtain this functionality,
rather than writing triggers. See the Derby Reference Manual for more information on
referential integrity.

Accessing before and after rows

Many trigger actions need to access the values of the rows being changed.

Such trigger actions need to know one or both of the following:

• the "before" values of the rows being changed (their values before the database
event that caused the trigger to fire)

• the "after" values of the rows being changed (the values to which the database
event is setting them)

Derby provides transition variables and transition tables for a trigger action to access
these values. See "Referencing Old and New Values: The Referencing Clause" in the
Derby Reference Manual.

Examples of trigger actions

The following trigger action copies a row from the flights table into the flight_history table
whenever any row gets inserted into flights and adds the comment "inserted from trig1" in
the status column of the flight_history table.

CREATE TRIGGER trig1
AFTER UPDATE ON flights
REFERENCING OLD AS UPDATEDROW
FOR EACH ROW MODE DB2SQL
INSERT INTO flights_history
VALUES (UPDATEDROW.FLIGHT_ID, UPDATEDROW.SEGMENT_NUMBER,
UPDATEDROW.ORIG_AIRPORT, UPDATEDROW.DEPART_TIME,
UPDATED ROW.DEST_AIRPORT, UPDATEDROW.ARRIVE_TIME,
UPDATEDROW.MEAL, UPDATEDROW.FLYING_TIME, UPDATEDROW.MILES,
UPDATEDROW.AIRCRAFT,'INSERTED FROM trig1');

Triggers and exceptions

Exceptions raised by triggers have a statement severity; they roll back the statement that
caused the trigger to fire.

This rule applies to nested triggers (triggers that are fired by other triggers). If a trigger
action raises an exception (and it is not caught), the transaction on the current connection
is rolled back to the point before the triggering event. For example, suppose Trigger A
causes Trigger B to fire. If Trigger B throws an exception, the current connection is rolled
back to the point before the statement in Trigger A that caused Trigger B to fire. Trigger
A is then free to catch the exception thrown by Trigger B and continue with its work. If
Trigger A does not throw an exception, the statement that caused Trigger A, as well as
any work done in Trigger A, continues until the transaction in the current connection is
either committed or rolled back. However, if Trigger A does not catch the exception from

Derby Developer's Guide

52

Trigger B, it is as if Trigger A had thrown the exception. In that case, the statement that
caused Trigger A to fire is rolled back, along with any work done by both of the triggers.

Aborting statements and transactions

You might want a trigger action to be able to abort the triggering statement or even the
entire transaction.

Triggers that use the current connection are not permitted to commit or roll back the
connection, so how do you do that? The answer is: have the trigger throw an exception,
which is by default a statement-level exception (which rolls back the statement). The
application-side code that contains the statement that caused the trigger to fire can then
roll back the entire connection if desired. Programming triggers in this respect is no
different from programming any database-side JDBC method.

Programming Derby-style table functions
Derby lets you create table functions. Table functions are functions which package up
external data to look like Derby tables. The external data can be an XML file, a table in a
foreign database, a live data feed--in short, any information source that can be presented
as a JDBC ResultSet.

Derby-style table functions let you efficiently import foreign data into Derby tables. Table
functions let you join Derby tables with any of the following data sources:

• XML-formatted reports and logs
• Queries that run in foreign databases
• Streaming data from sensors
• RSS feeds

See "CREATE FUNCTION statement" in the Derby Reference Manual for the complete
syntax needed to declare Derby-style table functions. The following topics provide
information on how to write Java methods which wrap foreign data sources inside
ResultSets.

Overview of Derby-style table functions

A Derby-style table function is a method which returns a JDBC ResultSet.

Most of the ResultSet methods can be written as stubs which simply raise exceptions.
However, the Derby-style table function must implement the following ResultSet
methods:

• next()
• close()
• wasNull()
• getXXX() - When invoking a Derby-style table function at runtime, Derby calls a

getXXX() method on each referenced column. The particular getXXX() method is
based on the column's data type as declared in the CREATE FUNCTION statement.
Preferred getXXX() methods for Derby-style table functions explains how Derby
selects an appropriate getXXX() method. However, nothing prevents application
code from calling other getXXX() methods on the ResultSet. The returned ResultSet
needs to implement the getXXX() methods which Derby will call as well as all
getXXX() methods which the application will call.

A Derby-style table function is materialized by a public static method which returns a
ResultSet:

public static ResultSet read() {...}

Derby Developer's Guide

53

The public static method is then bound to a Derby function name:

CREATE FUNCTION externalEmployees
()
RETURNS TABLE
(
 employeeId INT,
 lastName VARCHAR(50),
 firstName VARCHAR(50),
 birthday DATE
)
LANGUAGE JAVA
PARAMETER STYLE DERBY_JDBC_RESULT_SET
READS SQL DATA
EXTERNAL NAME 'com.example.hrSchema.EmployeeTable.read'

To invoke a table function, wrap it in a TABLE constructor in the FROM list of a query.
Note that the table alias (in this example "s") is a required part of the syntax:

INSERT INTO employees
 SELECT s.*
 FROM TABLE (externalEmployees()) s;

With a normal table function, you must select its entire contents. You can, however, write
a restricted table function that lets you limit the rows and columns you select. A restricted
table function can improve performance greatly. See Writing restricted table functions for
details.

Preferred getXXX() methods for Derby-style table functions

While scanning a Derby-style table function, Derby calls a preferred getXXX() method
for each column, based on the column's data type. If Derby is running on a small device
platform and presenting the JSR 169 interface to clients, then the methods which Derby
calls are slightly different. This is because JSR 169 does not support BigDecimal.

The following table lists the preferred getXXX() method for each Derby data type.

Table 4. getXXX() methods called for declared SQL types

Column Type Declared
by CREATE FUNCTION

getXXX() Method
Called by

Derby for JDBC
3.0 and 4.0

getXXX() Method
Called by Derby

for JSR 169

BIGINT getLong() Same

BLOB getBlob() Same

CHAR getString() Same

CHAR FOR BIT DATA getBytes() Same

CLOB getClob() Same

DATE getDate() Same

DECIMAL getBigDecimal() getString()

DOUBLE getDouble() Same

DOUBLE PRECISION getDouble() Same

FLOAT getDouble() Same

INTEGER getInt() Same

Derby Developer's Guide

54

Column Type Declared
by CREATE FUNCTION

getXXX() Method
Called by

Derby for JDBC
3.0 and 4.0

getXXX() Method
Called by Derby

for JSR 169

LONG VARCHAR getString() Same

LONG VARCHAR FOR BIT DATA getBytes() Same

NUMERIC getBigDecimal() getString()

REAL getFloat() Same

SMALLINT getShort() Same

TIME getTime() Same

TIMESTAMP getTimestamp() Same

VARCHAR getString() Same

VARCHAR FOR BIT DATA getBytes() Same

XML Not supported Not supported

Example Derby-style table function

The following simple table function selects rows from a foreign database.

package com.example.hrSchema;

import java.sql.*;

/**
 * Sample Table Function for reading the employee table in an
 * external database.
 */
public class EmployeeTable
{
 public static ResultSet read()
 throws SQLException
 {
 Connection conn = getConnection();
 PreparedStatement ps = conn.prepareStatement(
 "select * from hrSchema.EmployeeTable");

 return ps.executeQuery();
 }

 protected static Connection getConnection()
 throws SQLException
 {
 String EXTERNAL_DRIVER = "com.mysql.jdbc.Driver";

 try {
 Class.forName(EXTERNAL_DRIVER);
 }
 catch (ClassNotFoundException e) {
 throw new SQLException("Could not find class "
 + EXTERNAL_DRIVER);
 }

 Connection conn = DriverManager.getConnection(
 "jdbc:mysql://localhost/hr?user=root&password=mysql-passwd"
);

Derby Developer's Guide

55

 return conn;
 }
}

Writing restricted table functions

Restricted table functions are Derby-style table functions which perform more efficiently
because they can be told in advance which columns they will be asked to fetch along
with simple limits on those columns. This feature exploits the expressiveness of the Java
programming language and does not require any extensions to SQL.

A table function returns a rectangular chunk of data. If you use a restricted table function,
Derby can tell the table function to return a shorter and narrower rectangle.

Consider the following scan of a table in a foreign database:

 select id, firstName, lastName
 from table(foreignDatabaseEmployeeTable()) s
 where lastName = 'Stone'

If foreignDatabaseEmployeeTable is a restricted table function, Derby can tell the table
function to fetch only the id, firstName, and lastName columns. In addition, Derby can tell
the table function that it does not need to scan the entire foreign table; instead, the table
function only needs to retrieve information for employees whose last name is "Stone".

Depending on the table function and query, this feature can support 1000X, 1000000X, or
even greater performance improvements.

How to use restricted table functions

Creating and using a restricted table function involves the following steps:

1. Implement - You must write a class which implements both java.sql.ResultSet
and the Derby-specific interface org.apache.derby.vti.RestrictedVTI. This interface
defines an initScan() method. When executing a query, Derby uses that method to
tell the table function what columns it will have to fetch and what bounds should be
applied to those columns in order to reduce the number of rows returned. For the
rest of this discussion, this user-written class will be referred to as MyVTIClass.

2. Publish - You must publish the table function by creating a public static method
which returns a MyVTIClass. This is important. The Derby compiler must be
able to see that the table function returns an object which implements both
java.sql.ResultSet and org.apache.derby.vti.RestrictedVTI.

3. Declare - You declare the table function to Derby using the same CREATE
FUNCTION syntax you are already familiar with. This syntax does not change.

4. Invoke - You then use the table function in a query. When Derby compiles
the query, it sees that the return type of the table function implements
org.apache.derby.vti.RestrictedVTI. Armed with this information, at runtime Derby
calls the initScan() method once before calling any of the ResultSet methods.

For example, you would declare the function as follows:

public class MyVTIClass implements ResultSet, RestrictedVTI
{
 ...

 public void initScan(java.lang.String[] columnNames,
 org.apache.derby.vti.Restriction restriction)
 throws SQLException {
 ...
 }
}

Derby Developer's Guide

56

Then you publish the table function method:

public static MyVTIClass foreignDatabaseEmployeeTable()
 throws SQLException {
 ...
}

Then you declare the table function to Derby:

create function foreignDatabaseEmployeeTable()
returns table
(
 id int,
 birthday date,
 taxPayerID varchar(50),
 firstName varchar(50),
 lastName varchar(50)
)
language java
parameter style DERBY_JDBC_RESULT_SET
no sql
external name
 'com.example.portal.ForeignQueries.foreignDatabaseEmployeeTable'

Finally, you invoke the table function in a query:

select id, firstName, lastName
from table(foreignDatabaseEmployeeTable()) s
where lastName = 'Stone'

When you invoke this query, Derby does the following:

• Prepare - When Derby prepares the query, Derby sees that the
foreignDatabaseEmployeeTable() method returns an object which implements
org.apache.derby.vti.RestrictedVTI. This is all that Derby needs to know in order to
compile a plan which takes advantage of this feature.

• Execute - When Derby executes the query, Derby calls initScan(). In this example,
Derby calls initScan() with the following arguments:

initScan(new String[] { "ID", null, null, "FIRSTNAME", "LASTNAME"
 },
 new Restriction.ColumnQualifier(
 "LASTNAME", ORDER_OP_EQUALS, "Stone"))

This, in turn, causes the following to happen:

• Width - The call to initScan() told the table function what columns should be
fetched.

• Length - The call to initScan() told the table function how to filter the rows it
returns.

• Loop - Derby then calls MyVTIClass.next() and retrieves rows until
MyVTIClass.next() returns false. For each row, Derby calls:

• MyVTIClass.getInt(1) to get the id column.
• MyVTIClass.getString(4) to get the firstName column.
• MyVTIClass.getString(5) to get the lastName column.

Contract

Derby calls initScan() before calling any other method on the ResultSet. The call to
initScan() merely passes hints, which the restricted table function can exploit in order
to perform better. Derby enforces the restriction outside the table function. Therefore,

Derby Developer's Guide

57

a restricted table function can still fetch extra columns and can ignore part or all of the
restriction set by the call to initScan().

Affected Operations

Compared to ordinary table functions, a restricted table function can perform better in
queries involving the following comparisons of its columns to constants:

<
<=
=
!=
<>
>
>=
IS NULL
IS NOT NULL

In addition, performance gains can be realized for queries involving the following
operators on the columns of the restricted table function:

LIKE
BETWEEN

However, this feature does not boost performance either for the IN operator, or in
situations where Derby transforms OR lists into IN lists. See "Or transformations" in
Tuning Derby for more information.

Optimizer support for Derby-style table functions

This topic explains how to fine-tune the Derby optimizer's decision about where to place a
table function in the join order.

By default, the Derby optimizer makes the following assumptions about a table function:

• Expensive - It is expensive to create and loop through the rows of the table
function. This makes it likely that the optimizer will place the table function in an
outer slot of the join order so that it will not be looped through often.

• Repeatable - The table function can be instantiated multiple times with the same
results. This is probably true for most table functions. However, some table
functions may open read-once streams. If the optimizer knows that a table function
is repeatable, then the optimizer can place the table function in an inner slot where
the function can be invoked multiple times. If a table function is not repeatable, then
the optimizer must either place it in the outermost slot or invoke the function once
and store its contents in a temporary table.

The user can override this optimizer behavior by giving the optimizer more information.
Here's how to do this:

• No-arg constructor - The table function's class must have a public constructor
whose signature has no arguments.

• VTICosting - The class must also implement org.apache.derby.vti.VTICosting. This
involves implementing the following methods as described in Measuring the cost of
Derby-style table functions and Example VTICosting implementation:

• getEstimatedCostPerInstantiation() - This method estimates the cost of
invoking the table function and looping through its rows. The returned value
adds together two estimates:

• Empty table - This is the cost of invoking the table function, even if it
contains 0 rows. See the description of variable E in Measuring the cost
of Derby-style table functions.

Derby Developer's Guide

58

• Scanning - This is the cost of looping through all of the rows returned by
the table function. See the calculation of P*N in Measuring the cost of
Derby-style table functions.

• getEstimatedRowCount() - This guesses the number of rows returned by
invoking the table function.

• supportsMultipleInstantiations() - This returns false if the table function returns
different results when invoked more than once.

Measuring the cost of Derby-style table functions

This topic shows how to measure the cost of a Derby-style table function.

The following formula describes how to estimate the value returned by
VTICosting.getEstimatedCostPerInstantiation():

C = I * A

where

• C = The estimated Cost for creating and running the table function. That is, the
value returned by VTICosting.getEstimatedCostPerInstantiation(). In general, Cost
is a measure of time in milliseconds.

• I = The optimizer's Imprecision. A measure of how skewed the optimizer's estimates
tend to be in your particular environment. See below for instructions on how to
estimate this Imprecision.

• A = The Actual time in milliseconds which it takes to create and run this table
function.

Calculating the optimizer's imprecision

We treat optimizer Imprecision as a constant across the runtime environment. The
following formula describes it:

I = O / T

where

• O = The Optimizer's estimated cost for a plan.
• T = The Total runtime in milliseconds for the plan.

To estimate these values, turn on Derby statistics collection and run the following
experiment several times, averaging the results:

• Select = Select all of the rows from a big table.
• Record = In the statistics output, look for the ResultSet which represents the table

scan. That scan has a field labelled "optimizer estimated cost". That's O. Now look
for the fields in that ResultSet's statistics labelled "constructor time", "open time",
"next time", and "close time". Add up all of those fields. That total is T.

For example:

MAXIMUMDISPLAYWIDTH 7000;

CALL SYSCS_UTIL.SYSCS_SET_RUNTIMESTATISTICS(1);
CALL SYSCS_UTIL.SYSCS_SET_STATISTICS_TIMING(1);

select * from T;

values SYSCS_UTIL.SYSCS_GET_RUNTIMESTATISTICS();

Calculating the actual runtime cost of a table function

The following formula explains how to compute the Actual runtime cost for the table
function:

Derby Developer's Guide

59

A = (P * N) + E

where

• P = The runtime spent Per row (in milliseconds).
• N = The Number of rows in the table function.
• E = The time spent creating an Empty instance of the table function which has no

rows in it. Usually, P * N dwarfs E. That is, the table function instantiation cost is
very small compared to the actual cost of looping through the rows. However, for
some table functions, E may be significant and may dominate the table function's
cost when N is small.

You may know that E is basically 0. If so, you can skip this step. Otherwise, to estimate
E, turn on Derby statistics collection and run the following experiment several times,
averaging the results:

• Short-circuit = Short-circuit the next() method of the ResultSet returned by your
Derby-style table function so that it returns false the first time it is called. This makes
it appear that the ResultSet has no rows.

• Select = Select all of the rows from the table function.
• Record = In the statistics output, look for the VTIResultSet which represents the

table function scan. Add up the values of the fields in that VTIResultSet's statistics
labelled "constructor time", "open time", "next time", and "close time". That total is E.

To estimate P, turn on Derby statistics collection and run the following experiment several
times, averaging the results:

• Select = Select all of the rows from the table function.
• Record = In the statistics output, look for the VTIResultSet which represents the

table function scan. Add up the values of the fields in that VTIResultSet's statistics
labelled "constructor time", "open time", "next time", and "close time". Subtract E
from the result. Now divide by the value of the field "Rows seen". The result is P.

Computing the value returned by getEstimatedCostPerInstantiation()

Putting all of this together, the following formula describes the value returned by your
table function's VTICosting.getEstimatedCostPerInstantiation() method.

C = O/T * [(P * N) + E]

Example VTICosting implementation

Once you have measured your table function's cost, you can write the VTICosting
methods.

Optimizer fine-tuning can be added to the EmployeeTable table function shown before in
Example Derby-style table function:

package com.example.hrSchema;

import java.io.Serializable;
import java.sql.*;

import org.apache.derby.vti.VTICosting;
import org.apache.derby.vti.VTIEnvironment;

/**
 * Tuned table function.
 */
public class TunedEmployeeTable extends EmployeeTable
 implements VTICosting
{
 public TunedEmployeeTable() {}

Derby Developer's Guide

60

 public double getEstimatedRowCount(VTIEnvironment optimizerState)
 throws SQLException
 {
 return getRowCount(optimizerState);
 }

 public double getEstimatedCostPerInstantiation(
 VTIEnvironment optimizerState) throws SQLException
 {
 double I = 100.0; // optimizer imprecision
 double P = 10.0; // cost per row in milliseconds
 double E = 0.0; // cost of instantiating the external
 // ResultSet
 double N = getRowCount(optimizerState);

 return I * ((P * N) + E);
 }

 public boolean supportsMultipleInstantiations(
 VTIEnvironment optimizerState) throws SQLException
 {
 return true;
 }

 //

 private double getRowCount(VTIEnvironment optimizerState)
 throws SQLException
 {
 String ROW_COUNT_KEY = "rowCountKey";
 Double estimatedRowCount = (Double) getSharedState(
 optimizerState, ROW_COUNT_KEY);

 if (estimatedRowCount == null)
 {
 Connection conn = getConnection();
 PreparedStatement ps = conn.prepareStatement(
 "select count(*) from hrSchema.EmployeeTable");
 ResultSet rs = ps.executeQuery();

 rs.next();
 estimatedRowCount = new Double(rs.getDouble(1));

 setSharedState(optimizerState, ROW_COUNT_KEY,
 estimatedRowCount);

 rs.close();
 ps.close();
 conn.close();
 }

 return estimatedRowCount.doubleValue();
 }

 private Serializable getSharedState(
 VTIEnvironment optimizerState, String key)
 {
 return (Serializable) optimizerState.getSharedState(key);
 }

 private void setSharedState(VTIEnvironment optimizerState,
 String key, Serializable value)
 {
 optimizerState.setSharedState(key, value);
 }
}

Programming user-defined types

Derby Developer's Guide

61

Derby allows you to create user-defined types. A user-defined type is a serializable
Java class whose instances are stored in columns. The class must implement the
java.io.Serializable interface, and it must be declared to Derby by means of a CREATE
TYPE statement.

The key to designing a good user-defined type is to remember that data evolves over
time, just like code. A good user-defined type has version information built into it. This
allows the user-defined data to upgrade itself as the application changes. For this reason,
it is a good idea for a user-defined type to implement java.io.Externalizable and not just
java.io.Serializable. Although the SQL standard allows a Java class to implement only
java.io.Serializable, this is bad practice for the following reasons:

• Recompilation - If the second version of your application is compiled on a different
platform from the first version, then your serialized objects may fail to deserialize.
This problem and a possible workaround are discussed in the "Version Control"
section near the end of this Serialization Primer and in the last paragraph of the
header comment for java.io.Serializable.

• Evolution - Your tools for evolving a class which simply implements
java.io.Serializable are very limited.

Fortunately, it is easy to write a version-aware UDT which implements java.io.Serializable
and can evolve itself over time. For example, here is the first version of such a class:

package com.example.types;

import java.io.*;
import java.math.*;

public class Price implements Externalizable
{
 // initial version id
 private static final int FIRST_VERSION = 0;

 public String currencyCode;
 public BigDecimal amount;

 // zero-arg constructor needed by Externalizable machinery
 public Price() {}

 public Price(String currencyCode, BigDecimal amount)
 {
 this.currencyCode = currencyCode;
 this.amount = amount;
 }

 // Externalizable implementation
 public void writeExternal(ObjectOutput out) throws IOException
 {
 // first write the version id
 out.writeInt(FIRST_VERSION);

 // now write the state
 out.writeObject(currencyCode);
 out.writeObject(amount);
 }

 public void readExternal(ObjectInput in)
 throws IOException, ClassNotFoundException
 {
 // read the version id
 int oldVersion = in.readInt();
 if (oldVersion < FIRST_VERSION) {
 throw new IOException("Corrupt data stream.");
 }
 if (oldVersion > FIRST_VERSION) {

http://java.sun.com/developer/technicalArticles/Programming/serialization/

Derby Developer's Guide

62

 throw new IOException("Can't deserialize from the future."
);
 }

 currencyCode = (String) in.readObject();
 amount = (BigDecimal) in.readObject();
 }
}

After this, it is easy to write a second version of the user-defined type which adds a new
field. When old versions of Price values are read from the database, they upgrade
themselves on the fly. Changes are shown in bold:

package com.example.types;

import java.io.*;
import java.math.*;
import java.sql.*;

public class Price implements Externalizable
{
 // initial version id
 private static final int FIRST_VERSION = 0;
 private static final int TIMESTAMPED_VERSION = FIRST_VERSION + 1;

 private static final Timestamp DEFAULT_TIMESTAMP = new Timestamp(0L
);

 public String currencyCode;
 public BigDecimal amount;
 public Timestamp timeInstant;

 // 0-arg constructor needed by Externalizable machinery
 public Price() {}

 public Price(String currencyCode, BigDecimal amount,
 Timestamp timeInstant)
 {
 this.currencyCode = currencyCode;
 this.amount = amount;
 this.timeInstant = timeInstant;
 }

 // Externalizable implementation
 public void writeExternal(ObjectOutput out) throws IOException
 {
 // first write the version id
 out.writeInt(TIMESTAMPED_VERSION);

 // now write the state
 out.writeObject(currencyCode);
 out.writeObject(amount);
 out.writeObject(timeInstant);
 }

 public void readExternal(ObjectInput in)
 throws IOException, ClassNotFoundException
 {
 // read the version id
 int oldVersion = in.readInt();
 if (oldVersion < FIRST_VERSION) {
 throw new IOException("Corrupt data stream.");
 }
 if (oldVersion > TIMESTAMPED_VERSION) {
 throw new IOException("Can't deserialize from the future."
);
 }

Derby Developer's Guide

63

 currencyCode = (String) in.readObject();
 amount = (BigDecimal) in.readObject();

 if (oldVersion >= TIMESTAMPED_VERSION) {
 timeInstant = (Timestamp) in.readObject();
 }
 else {
 timeInstant = DEFAULT_TIMESTAMP;
 }
 }
}

An application needs to keep its code in sync across all tiers. This is true for all Java
code which runs both in the client and in the server. This is true for functions and
procedures which run in multiple tiers. It is also true for user-defined types which run
in multiple tiers. The programmer should code defensively for the case when the client
and server are running different versions of the application code. In particular, the
programmer should write defensive serialization logic for user-defined types so that the
application gracefully handles client/server version mismatches.

Derby Developer's Guide

64

Controlling Derby application behavior

This section looks at some advanced Derby application concepts.

The JDBC connection and transaction model
Session and transaction capabilities for SQL are handled through JDBC routines, not by
SQL commands.

JDBC defines a system session and transaction model for database access. A session
is the duration of one connection to the database and is handled by a JDBC Connection
object.

Connections

A Connection object represents a connection with a database.

Within the scope of one Connection, you access only a single Derby database.
(Database-side JDBC routines can allow you to access more than one database in
some circumstances.) A single application might allow one or more Connections to
Derby, either to a single database or to many different databases, provided that all the
databases are within the same system.

With DriverManager, you use the connection URL as an argument to get the
getConnection method to specify which database to connect to and other details.

The following example shows an application establishing three separate connections to
two different databases in the current system.

Connection conn = DriverManager.getConnection(
 "jdbc:derby:sample");
System.out.println("Connected to database sample");
conn.setAutoCommit(false);
Connection conn2 = DriverManager.getConnection(
 "jdbc:derby:newDB;create=true");
System.out.println("Created AND connected to newDB");
conn2.setAutoCommit(false);
Connection conn3 = DriverManager.getConnection(
 "jdbc:derby:newDB");
System.out.println("Got second connection to newDB");
conn3.setAutoCommit(false);

A Connection object has no association with any specific thread; during its lifetime, any
number of threads might have access to it, as controlled by the application.

Statements

To execute SQL statements against a database, an application uses
Statements (java.sql.Statement) and PreparedStatements
(java.sql.PreparedStatement), or CallableStatements
(java.sql.CallableStatement) for stored procedures.

Because PreparedStatement extends Statement and CallableStatement extends
PreparedStatement, this section refers to both as Statements. Statements are obtained
from and are associated with a particular Connection.

ResultSets and Cursors

Executing a Statement that returns values gives a ResultSet
(java.sql.ResultSet), allowing the application to obtain the results of the statement.

Derby Developer's Guide

65

Only one ResultSet can be open for a particular Statement at any time, as per the
JDBC specification.

Thus, executing a Statement automatically closes any open ResultSet generated by an
earlier execution of that Statement.

For this reason, you must use a different Statement to update a cursor (a named
ResultSet) from the one used to generate the cursor.

The names of open cursors must be unique within a Connection.

Nested connections

SQL statements can include routine invocations. If these routines interact with the
database, they must use a Connection.

Transactions

A transaction is a set of one or more SQL statements that make up a logical unit of work
that you can either commit or roll back and that will be recovered in the event of a system
failure.

All the statements in the transaction are atomic. A transaction is associated with a
single Connection object (and database). A transaction cannot span Connections (or
databases).

Derby permits schema and data manipulation statements (DML) to be intermixed within
a single transaction. If you create a table in one transaction, you can also insert into it
in that same transaction. A schema manipulation statement (DDL) is not automatically
committed when it is performed, but participates in the transaction within which it is
issued. Because DDL requires exclusive locks on system tables, keep transactions that
involve DDL short.

Transactions when auto-commit is disabled

When auto-commit is disabled, you use a Connection object's commit and rollback
methods to commit or roll back a transaction.

The commit method makes permanent the changes resulting from the transaction
and releases locks. The rollback method undoes all the changes resulting from the
transaction and releases locks. A transaction encompasses all the SQL statements
executed against a single Connection object since the last commit or rollback.

You do not need to explicitly begin a transaction. You implicitly end one transaction and
begin a new one after disabling auto-commit, changing the isolation level, or after calling
commit or rollback.

Committing a transaction also closes all ResultSet objects excluding the ResultSet
objects associated with cursors with holdability true. The default holdability of the
cursors is true and ResultSet objects associated with them need to be closed
explicitly. A commit will not close such ResultSet objects. It also releases any database
locks currently held by the Connection, whether or not these objects were created in
different threads.

Using auto-commit

A new connection to a Derby database is in auto-commit mode by default, as specified by
the JDBC standard.

Auto-commit mode means that when a statement is completed, the method commit is
called on that statement automatically. Auto-commit in effect makes every SQL statement
a transaction. The commit occurs when the statement completes or the next statement
is executed, whichever comes first. In the case of a statement returning a forward only

Derby Developer's Guide

66

ResultSet, the statement completes when the last row of the ResultSet has been
retrieved or the ResultSet has been closed explicitly. In the case of a statement
returning a scrollable ResultSet, the statement completes only when the ResultSet
has been closed explicitly.

Some applications might prefer to work with Derby in auto-commit mode; some might
prefer to work with auto-commit turned off. You should be aware of the implications of
using either model.

You should be aware of the following when you use auto-commit:

• Cursors

You cannot use auto-commit if you do any positioned updates or deletes (that is, an
update or delete statement with a WHERE CURRENT OF clause) on cursors which
have the ResultSet.CLOSE_CURSORS_AT_COMMIT holdability value set.

Auto-commit automatically closes cursors that are explicitly opened with the
ResultSet.CLOSE_CURSORS_AT_COMMIT value, when you do any in-place
updates or deletes.

An updatable cursor declared to be held across commit (this is the default value)
can execute updates and issue multiple commits before closing the cursor. After an
explicit or implicit commit, a holdable forward-only cursor must be repositioned with
a call to the next method before it can accessed again. In this state, the only other
valid operation besides calling next is calling close.

• Database-side JDBC routines (routines using nested connections)

You cannot execute functions within SQL statements if those functions perform a
commit or rollback on the current connection. Since in auto-commit mode all SQL
statements are implicitly committed, Derby turns off auto-commit during execution of
database-side routines and turns it back on when the statement completes.

Routines that use nested connections are not permitted to turn auto-commit on or
off.

• Table-level locking and the SERIALIZABLE isolation level

When an application uses table-level locking and the SERIALIZABLE isolation level,
all statements that access tables hold at least shared table locks. Shared locks
prevent other transactions that update data from accessing the table. A transaction
holds a lock on a table until the transaction commits. So even a SELECT statement
holds a shared lock on a table until its connection commits and a new transaction
begins.

The following table summarizes how applications behave with auto-commit on or off.

Table 5. Application behavior with auto-commit on or off

Topic Auto-Commit On Auto-Commit Off

Transactions Each statement is a
separate transaction.

Commit() or rollback()
completes a transaction.

Database-side JDBC routines
(routines that use nested
connections)

Auto-commit is turned
off.

Works (no explicit
commits or rollbacks are
allowed).

Updatable cursors Works for holdable
cursors; does not work
for non-holdable cursors.

Works.

Derby Developer's Guide

67

Topic Auto-Commit On Auto-Commit Off

Multiple connections accessing
the same data

Works. Works. Lower
concurrency when
applications use
SERIALIZABLE isolation
mode and table-level
locking.

Updatable ResultSets Works. Works.

Savepoints Does not work. Works.

Turning off auto-commit

You can disable auto-commit with the Connection class's setAutoCommit method.

conn.setAutoCommit(false);

Explicitly closing Statements, ResultSets, and Connections

You should explicitly close Statements, ResultSets, and Connections when you no
longer need them.

Connections to Derby are resources external to an application, and the garbage collector
will not close them automatically.

For example, close a Statement object using its close method; close a Connection
object using its close method. If auto-commit is disabled, active transactions need to be
explicitly committed or rolled back before closing the connection

Statement versus transaction runtime rollback

When an SQL statement generates an exception, this exception results in a runtime
rollback. A runtime rollback is a system-generated rollback of a statement or transaction
by Derby, as opposed to an explicit rollback call from your application.

Extremely severe exceptions, such as disk-full errors, shut down the system, and the
transaction is rolled back when the database is next booted. Severe exceptions, such as
deadlock, cause transaction rollback; Derby rolls back all changes since the beginning
of the transaction and implicitly begins a new transaction. Less severe exceptions, such
as syntax errors, result in statement rollback; Derby rolls back only changes made by the
statement that caused the error. The application developer can insert code to explicitly
roll back the entire transaction if desired.

Derby supports partial rollback through the use of savepoints. See Using savepoints for
more information.

Using savepoints

The Savepoint interface contains methods to set, release, or roll back a transaction to
designated savepoints. Once a savepoint has been set, the transaction can be rolled
back to that savepoint without affecting preceding work. Savepoints provide finer-grained
control of transactions by marking intermediate points within a transaction.

Setting and rolling back to a savepoint

The Connection.setSavepoint method sets a savepoint within the current transaction. The
Connection.rollback method is overloaded to take a savepoint argument.

The code example below inserts a row into a table, sets the savepoint svpt1, and then
inserts a second row. When the transaction is later rolled back to svpt1, the second
insertion is undone, but the first insertion remains intact. In other words, when the
transaction is committed, only the row containing '1' will be added to TABLE1.

Derby Developer's Guide

68

conn.setAutoCommit(false); // Autocommit must be off to use savepoints.
Statement stmt = conn.createStatement();
int rows = stmt.executeUpdate("INSERT INTO TABLE1 (COL1) VALUES(1)");
// set savepoint
Savepoint svpt1 = conn.setSavepoint("S1");
rows = stmt.executeUpdate("INSERT INTO TABLE1 (COL1) VALUES (2)");
...
conn.rollback(svpt1);
...
conn.commit();

Releasing a savepoint

The method Connection.releaseSavepoint takes a Savepoint object as a parameter and
removes it from the current transaction. Once a savepoint has been released, attempting
to reference it in a rollback operation will cause an SQLException to be thrown.

Any savepoints that have been created in a transaction are automatically released and
become invalid when the transaction is committed or when the entire transaction is rolled
back.

Rolling a transaction back to a savepoint automatically releases and makes invalid any
other savepoints created after the savepoint in question.

Rules for savepoints

The savepoint cannot be set within a batch of statements to enable partial recovery. If a
savepoint is set any time before the method executeBatch is called, it is set before any of
the statements that have been added to the batch are executed.

A savepoint can be reused after it has been released explicitly (by issuing a release of
the savepoint) or implicitly (by issuing a connection commit/rollback to that savepoint or
to a savepoint declared earlier than that savepoint).

It is possible to nest savepoints, but only in an embedded environment.

Result set and cursor mechanisms
A result set maintains a cursor, which points to its current row of data. It can be used to
step through and process the rows one by one.

In Derby, any SELECT statement generates a cursor which can be controlled by a
java.sql.ResultSet object. Derby does not support SQL-92's DECLARE CURSOR
language construct to create cursors, however Derby supports positioned deletes and
positioned updates of updatable cursors.

Simple non-updatable result sets

This example is an excerpt from a sample JDBC application that generates a result set
with a simple SELECT statement and then processes the rows.

Connection conn = DriverManager.getConnection(
 "jdbc:derby:sample");
Statement s = conn.createStatement();
s.execute("set schema 'SAMP'");
//note that autocommit is on--it is on by default in JDBC
ResultSet rs = s.executeQuery(
 "SELECT empno, firstnme, lastname, salary, bonus, comm "
 + "FROM samp.employee");
/** a standard JDBC ResultSet. It maintains a
 * cursor that points to the current row of data. The cursor
 * moves down one row each time the method next() is called.
 * You can scroll one way only--forward--with the next()
 * method. When auto-commit is on, after you reach the

Derby Developer's Guide

69

 * last row the statement is considered completed
 * and the transaction is committed.
 */
System.out.println("last name" + "," + "first name" + ": earnings");
/* here we are scrolling through the result set
with the next() method.*/
while (rs.next()) {
 // processing the rows
 String firstnme = rs.getString("FIRSTNME");
 String lastName = rs.getString("LASTNAME");
 BigDecimal salary = rs.getBigDecimal("SALARY");
 BigDecimal bonus = rs.getBigDecimal("BONUS");
 BigDecimal comm = rs.getBigDecimal("COMM");
 System.out.println(lastName + ", " + firstnme + ": "
 + (salary.add(bonus.add(comm))));
}
rs.close();
// once we've iterated through the last row,
// the transaction commits automatically and releases
//shared locks
s.close();

Updatable result sets

Updatable result sets in Derby can be updated by using result set update methods
(updateRow(),deleteRow() and insertRow()), or by using positioned update or
delete queries.

Both scrollable and non-scrollable result sets can be updatable in Derby.

If the query which was executed to create the result set is not updatable, Derby will
downgrade the concurrency mode to ResultSet.CONCUR_READ_ONLY, and add a
warning about this on the ResultSet. The compilation of the query fails if the result set
cannot be updatable, and contains a FOR UPDATE clause.

Positioned updates and deletes can be performed if the query contains FOR UPDATE or if
the concurrency mode for the result set is ResultSet.CONCUR_UPDATABLE.

To use the result set update methods, the concurrency mode for the result set must be
ResultSet.CONCUR_UPDATABLE. The query does not need to contain FOR UPDATE to
use these methods.

Updatable cursors lock the current row with an update lock when positioned on the row,
regardless of isolation level. Therefore, to avoid excessive locking of rows, only use
concurrency mode ResultSet.CONCUR_UPDATABLE or the FOR UPDATE clause when
you actually need to update the rows. For more information about locking, see Types and
scope of locks in Derby systems.

Requirements for updatable result sets

Only specific SELECT statements- simple accesses of a single table-allow you to update
or delete rows as you step through them.

For more information, see "SELECT statement" and "FOR UPDATE clause" in the Derby
Reference Manual.

Forward only updatable result sets

A forward only updatable result set maintains a cursor which can only move in one
direction (forward), and also update rows.

To create a forward only updatable result set, the statement has to be
created with concurrency mode ResultSet.CONCUR_UPDATABLE and type
ResultSet.TYPE_FORWARD_ONLY.
Note: The default type is ResultSet.TYPE_FORWARD_ONLY.

Derby Developer's Guide

70

Example of using ResultSet.updateXXX() + ResultSet.updateRow() to update
a row:

 Statement stmt = conn.createStatement(ResultSet.TYPE_FORWARD_ONLY,
 ResultSet.CONCUR_UPDATABLE);
 ResultSet uprs = stmt.executeQuery(
 "SELECT FIRSTNAME, LASTNAME, WORKDEPT, BONUS " +
 "FROM EMPLOYEE");

 while (uprs.next()) {
 int newBonus = uprs.getInt("BONUS") + 100;
 uprs.updateInt("BONUS", newBonus);
 uprs.updateRow();
 }

Example of using ResultSet.deleteRow() to delete a row:

 Statement stmt = conn.createStatement(ResultSet.TYPE_FORWARD_ONLY,
 ResultSet.CONCUR_UPDATABLE);
 ResultSet uprs = stmt.executeQuery(
 "SELECT FIRSTNAME, LASTNAME, WORKDEPT, BONUS " +
 "FROM EMPLOYEE");

 while (uprs.next()) {
 if (uprs.getInt("WORKDEPT")==300) {
 uprs.deleteRow();
 }
 }

Visibility of changes
• After an update or delete is made on a forward only result set, the result set's

cursor is no longer on the row just updated or deleted, but immediately before
the next row in the result set (it is necessary to move to the next row before
any further row operations are allowed). This means that changes made by
ResultSet.updateRow() and ResultSet.deleteRow() are never visible.

• If a row has been inserted, i.e using ResultSet.insertRow() it may be visible in
a forward only result set.

Conflicting operations

The current row of the result set cannot be changed by other transactions, since it will
be locked with an update lock. Result sets held open after a commit have to move to the
next row before allowing any operations on it.

Some conflicts may prevent the result set from doing updates/deletes:
• If the current row is deleted by a statement in the same transaction, calls to
ResultSet.updateRow() will cause an exception, since the cursor is no longer
positioned on a valid row.

Scrollable updatable result sets

A scrollable updatable result set maintains a cursor which can both scroll and update
rows.

Derby only supports scrollable insensitive result sets. To create a scrollable
insensitive result set which is updatable, the statement has to be created
with concurrency mode ResultSet.CONCUR_UPDATABLE and type
ResultSet.TYPE_SCROLL_INSENSITIVE.

Example of using result set update methods to update a row:

 Statement stmt =
 conn.createStatement(ResultSet.TYPE_SCROLL_INSENSITIVE,

Derby Developer's Guide

71

 ResultSet.CONCUR_UPDATABLE);
 ResultSet uprs = stmt.executeQuery(
 "SELECT FIRSTNAME, LASTNAME, WORKDEPT, BONUS " +
 "FROM EMPLOYEE");

 uprs.absolute(5); // update the fifth row
 int newBonus = uprs.getInt("BONUS") + 100;
 uprs.updateInt("BONUS", newBonus);
 uprs.updateRow();

Example of using ResultSet.deleteRow() to delete a row:

 Statement stmt =
 conn.createStatement(ResultSet.TYPE_SCROLL_INSENSITIVE,
 ResultSet.CONCUR_UPDATABLE);
 ResultSet uprs = stmt.executeQuery(
 "SELECT FIRSTNAME, LASTNAME, WORKDEPT, BONUS " +
 "FROM EMPLOYEE");

 uprs.last();
 uprs.relative(-5); // moves to the 5th from the last row
 uprs.deleteRow();

Visibility of changes
• Changes caused by other statements, triggers and other transactions (others) are

considered as other changes, and are not visible in scrollable insensitive result sets.
• Own updates and deletes are visible in Derby's scrollable insensitive result sets.

Note: Derby handles changes made using positioned updates and deletes as own
changes, so when made via a result set's cursor such changes are also visible in
that result set.

• Rows inserted to the table may become visible in the result set.
• ResultSet.rowDeleted() returns true if the row has been deleted using

the cursor or result set. It does not detect deletes made by other statements or
transactions. Note that the method will also work for result sets with concurrency
CONCUR_READ_ONLY if the underlying result set is FOR UPDATE and a cursor
was used to delete the row.

• ResultSet.rowUpdated() returns true if the row has been updated using
the cursor or result set. It does not detect updates made by other statements or
transactions. Note that the method will also work for result sets with concurrency
CONCUR_READ_ONLY if the underlying result set is FOR UPDATE and a cursor
was used to update the row.

• Note: Both ResultSet.rowUpdated() and ResultSet.rowDeleted() return
true if the row first is updated and later deleted.

Please be aware that even if changes caused by others are not visible in the result set,
SQL operations, including positioned updates, which access the current row will read and
use the row data as it is in the database, not as it is reflected in the result set.

Conflicting operations

A conflict may occur in scrollable insensitive result sets if a row is updated/deleted by
another committed transaction, or if a row is updated by another statement in the same
transaction. The row which the cursor is positioned on is locked, however once it moves
to another row, the lock may be released depending on transaction isolation level. This
means that rows in the scrollable insensitive result set may have been updated/deleted
by other transactions after they were fetched.

Since the result set is insensitive, it will not detect the changes made by others. When
doing updates using the result set, conflicting changes on the columns being changed will
be overwritten.

Some conflicts may prevent the result set from doing updates/deletes:

Derby Developer's Guide

72

• The row has been deleted after it was read into the result set: Scrollable insensitive
result sets will give a warning with SQLState 01001 .

• The table has been compressed: Scrollable insensitive result sets will give a
warning with SQLState 01001. A compress conflict may happen if the cursor is
held over a commit. This is because the table intent lock is released on commit, and
not reclaimed until the cursor moves to another row.

To avoid conflicts with other transactions, you may increase the transaction isolation
level to repeatable read or serializable. This will make the transaction hold locks on the
rows which have been read until it commits.
Note: When you use holdable result sets, be aware that the locks will be released on
commit, and conflicts may occur regardless of isolation level. You should probably avoid
using holdable result sets if your application relies on transactional behavior for the result
set.
Inserting rows with updatable result sets

Updatable result set can be used to insert rows to the table, by using
ResultSet.insertRow().

When inserting a row, each column in the insert row that does not allow null as a value
and does not have a default value must be given a value using the appropriate update
method. If the inserted row satisfies the query predicate, it may become visible in the
result set.

Example of using ResultSet.insertRow() to insert a row:

 Statement stmt = conn.createStatement(ResultSet.TYPE_FORWARD_ONLY,
 ResultSet.CONCUR_UPDATABLE);
 ResultSet uprs = stmt.executeQuery(
 "SELECT firstname, lastname, workdept, bonus " +
 "FROM employee");
 uprs.moveToInsertRow();
 uprs.updateString("FIRSTNAME", "Andreas");
 uprs.updateString("LASTNAME", "Korneliussen");
 uprs.updateInt("WORKDEPT", 123);
 uprs.insertRow();
 uprs.moveToCurrentRow();

Naming or accessing the name of a cursor

There is no SQL language command to assign a name to a cursor. You can use
the JDBC setCursorName method to assign a name to a ResultSet that allows
positioned updates and deletes.

You assign a name to a ResultSet with the setCursorName method of the
Statement interface. You assign the name to a cursor before executing the Statement
that will generate it.

Statement s3 = conn.createStatement();
// name the statement so we can reference the result set
// it generates
s3.setCursorName("UPDATABLESTATEMENT");
// we will be able to use the following statement later
// to access the current row of the cursor
// a result set needs to be obtained prior to using the
// WHERE CURRENT syntax
ResultSet rs = s3.executeQuery("select * from
 FlightBookings FOR UPDATE of number_seats");
PreparedStatement ps2 = conn.prepareStatement(
 "UPDATE FlightBookings SET number_seats = ? " +
 "WHERE CURRENT OF UPDATABLESTATEMENT");

Typically, you do not assign a name to the cursor, but let the system generate one for
you automatically. You can determine the system-generated cursor name of a ResultSet

Derby Developer's Guide

73

generated by a SELECT statement using the ResultSet class's getCursorName
method.

PreparedStatement ps2 = conn.prepareStatement(
 "UPDATE employee SET bonus = ? WHERE CURRENT OF "+
 Updatable.getCursorName());

Extended updatable result set example

Connection conn = DriverManager.getConnection("jdbc:derby:sample");
conn.setAutoCommit(false);

// Create the statement with concurrency mode CONCUR_UPDATABLE
// to allow result sets to be updatable
Statement stmt = conn.createStatement(ResultSet.TYPE_FORWARD_ONLY,
 ResultSet.CONCUR_UPDATABLE,
 ResultSet.CLOSE_CURSORS_AT_COMMIT);
// Updatable statements have some requirements
// for example, select must be on a single table
ResultSet uprs = stmt.executeQuery(
 "SELECT FIRSTNME, LASTNAME, WORKDEPT, BONUS " +
 "FROM EMPLOYEE FOR UPDATE of BONUS"); // Only bonus can be updated

String theDept="E21";

while (uprs.next()) {
 String firstnme = uprs.getString("FIRSTNME");
 String lastName = uprs.getString("LASTNAME");
 String workDept = uprs.getString("WORKDEPT");
 BigDecimal bonus = uprs.getBigDecimal("BONUS");
 if (workDept.equals(theDept)) {
 // if the current row meets our criteria,
 // update the updatable column in the row
 uprs.updateBigDecimal("BONUS",
 bonus.add(BigDecimal.valueOf(250L)));
 uprs.updateRow();
 System.out.println("Updating bonus for employee:" +
 firstnme + lastName);
 }
}
conn.commit(); // commit the transaction
// close object
uprs.close();
stmt.close();
// Close connection if the application does not need it any more
conn.close();

Result sets and auto-commit

Except for the result sets associated with holdable cursors, issuing a commit will cause
all result sets on your connection to be closed.

The JDBC application is not required to have auto-commit off when using update
methods on updatable result set, even if the result set is not holdable. Positioned updates
and deletes cannot be used in combination with autocommit and non-holdable result
sets.

Scrollable result sets

JDBC provides two types of result sets that allow you to scroll in either direction or
to move the cursor to a particular row. Derby supports one of these types: scrollable
insensitive result sets (ResultSet.TYPE_SCROLL_INSENSITIVE).

Derby Developer's Guide

74

When you use a result set of type of type ResultSet.TYPE_SCROLL_INSENSITIVE,
Derby materializes rows from the first one in the result set up to the one with the biggest
row number as the rows are requested. The materialized rows will be backed to disk if
necessary, to avoid excessive memory usage.

Insensitive result sets, in contrast to sensitive result sets, cannot see changes made by
others on the rows which have been materialized. Derby allows updates of scrollable
insensitive result sets; see Visibility of changes, which also explains visibility of own
changes.

Note: Derby does not support result sets of type
ResultSet.TYPE_SCROLL_SENSITIVE.

//autocommit does not have to be off because even if
//we accidentally scroll past the last row, the implicit commit
//on the the statement will not close the result set because result sets
//are held over commit by default
conn.setAutoCommit(false);
Statement s4 = conn.createStatement(ResultSet.TYPE_SCROLL_INSENSITIVE,
 ResultSet.CONCUR_READ_ONLY);
s4.execute("set schema 'SAMP'");
ResultSet scroller=s4.executeQuery(
 "SELECT sales_person, region, sales FROM sales " +
 "WHERE sales > 8 ORDER BY sales DESC");
if (scroller.first()) { // One row is now materialized
 System.out.println("The sales rep who sold the highest number" +
 " of sales is " +
 scroller.getString("SALES_PERSON"));
} else {
 System.out.println("There are no rows.");
}
scroller.beforeFirst();
scroller.afterLast(); // By calling afterlast(), all rows will be
 materialized
scroller.absolute(3);
if (!scroller.isAfterLast()) {
 System.out.println("The employee with the third highest number " +
 "of sales is " +
 scroller.getString("SALES_PERSON") + ", with " +
 scroller.getInt("SALES") + " sales");
}
if (scroller.isLast()) {
 System.out.println("There are only three rows.");
}
if (scroller.last()) {
 System.out.println("The least highest number " +
 "of sales of the top three sales is: " +
 scroller.getInt("SALES"));
}
scroller.close();
s4.close();
conn.commit()
conn.close();
System.out.println("Closed connection");

Holdable result sets

The holdable result set feature permits an application to keep result sets open after
implicit or explicit commits. By default, the cursor controlled by the result set is held open
after a commit.

Note: Derby also supports non-holdable result sets.

When you create a statement, you can specify that the result set will be automatically
closed when a commit occurs. Result sets are automatically closed when a transaction
aborts, whether or not they have been specified to be held open.

Derby Developer's Guide

75

To specify whether a result set should be held open after a commit takes place,
supply one of the following ResultSet parameters to the Connection method
createStatement, prepareStatement, or prepareCall:

• CLOSE_CURSORS_AT_COMMIT

Result sets are closed when an implicit or explicit commit is performed.
• HOLD_CURSORS_OVER_COMMIT

Result sets are held open when a commit is performed, implicitly or explicitly. This is
the default behavior.

The method Statement.getResultSetHoldability() indicates whether a result set generated
by the Statement object stays open or closes, upon commit. See the Derby Reference
Manual for more information.

When an implicit or explicit commit occurs, result sets that hold cursors open behave as
follows:

• Open result sets remain open. Non-scrollable result sets becomes positioned before
the next logical row of the result set. Scrollable insensitive result sets keep their
current position.

• When the session is terminated, the result set is closed and destroyed.
• All locks are released, including locks protecting the current cursor position.
• For non-scrollable result sets, immediately following a commit, the only valid

operations that can be performed on the ResultSet object are:
• positioning the result set to the next row with ResultSet.next().
• closing the result set with ResultSet.close().

When a rollback or rollback to savepoint occurs, either explicitly or implicitly, the following
behavior applies:

• All open result sets are closed.
• All locks acquired during the unit of work are released.

Note: Holdable result sets do not work with XA transactions in Derby. When
working with XA transactions, the result set should be opened with holdability
ResultSet.CLOSE_CURSORS_AT_COMMIT.
Holdable result sets and autocommit

When autocommit is on, a positioned update or delete statement will automatically cause
the transaction to commit.

If the result set has holdability ResultSet.CLOSE_CURSORS_AT_COMMIT, combined
with autocommit on, Derby gives an exception on positioned updates and deletes
because the cursor is closed immediately before the positioned statement is commenced,
as mandated by JDBC. In contrast, no such implicit commit is done when using result set
updates methods.

Non-holdable result set example

The following example uses Connection.createStatement to return a ResultSet that will
close after a commit is performed.

Connection conn = ds.getConnection(user, passwd);
Statement stmt =
conn.createStatement(ResultSet.TYPE_SCROLL_INSENSITIVE,
 ResultSet.CONCUR_READ_ONLY,
 ResultSet.CLOSE_CURSORS_AT_COMMIT);

Locking, concurrency, and isolation

Derby Developer's Guide

76

This section discusses topics pertinent to multi-user systems, in which concurrency is
important.

Derby is configured by default to work well for multi-user systems. For single-user
systems, you might want to tune your system so that it uses fewer resources; see Lock
granularity.

Isolation levels and concurrency

Derby provides four transaction isolation levels. Setting the transaction isolation level
for a connection allows a user to specify how severely the user's transaction should be
isolated from other transactions.

For example, it allows you to specify whether transaction A is allowed to make changes
to data that have been viewed by transaction B before transaction B has committed.

A connection determines its own isolation level, so JDBC provides an application with
a way to specify a level of transaction isolation. It specifies four levels of transaction
isolation. The higher the transaction isolation, the more care is taken to avoid conflicts;
avoiding conflicts sometimes means locking out transactions. Lower isolation levels thus
allow greater concurrency.

Inserts, updates, and deletes always behave the same no matter what the isolation level
is. Only the behavior of select statements varies.

To set isolation levels you can use the JDBC Connection.setTransactionIsolation method
or the SQL SET ISOLATION statement.

If there is an active transaction, the network client driver always commits the active
transaction, whether you use the JDBC Connection.setTransactionIsolation method
or the SQL SET ISOLATION statement. It does this even if the method call or
statement does not actually change the isolation level (that is, if it sets the isolation
level to its current value). The embedded driver also always commits the active
transaction if you use the SET ISOLATION statement. However, if you use the
Connection.setTransactionIsolation method, the embedded driver commits the active
transaction only if the call to Connection.setTransactionIsolation actually changes the
isolation level.

The names of the isolation levels are different, depending on whether you use a JDBC
method or SQL statement. The following table shows the equivalent names for isolation
levels whether they are set through the JDBC method or an SQL statement.

Table 6. Mapping of JDBC transaction isolation levels to Derby isolation levels

Isolation Levels for JDBC Isolation Levels for SQL

Connection.TRANSACTION_READ_UNCOMMITTED
(ANSI level 0)

UR, DIRTY READ, READ
UNCOMMITTED

Connection.TRANSACTION_READ_COMMITTED (ANSI
level 1)

CS, CURSOR STABILITY,
READ COMMITTED

Connection.TRANSACTION_REPEATABLE_READ
(ANSI level 2)

RS

Connection.TRANSACTION_SERIALIZABLE (ANSI level
3)

RR, REPEATABLE READ,
SERIALIZABLE

These levels allow you to avoid particular kinds of transaction anomalies, which are
described in the following table.

Derby Developer's Guide

77

Table 7. Transaction anomalies

Anomaly Example

Dirty Reads

A dirty read happens when a transaction
reads data that is being modified by
another transaction that has not yet
committed.

Transaction A begins.

UPDATE employee SET salary = 31650
WHERE empno = '000090'

Transaction B begins.

SELECT * FROM employee

(Transaction B sees data updated by
transaction A. Those updates have not yet
been committed.)

Nonrepeatable Reads

Nonrepeatable reads happen when a
query returns data that would be different
if the query were repeated within the
same transaction. Nonrepeatable reads
can occur when other transactions are
modifying data that a transaction is
reading.

Transaction A begins.

SELECT * FROM employee
WHERE empno = '000090'

Transaction B begins.

UPDATE employee SET salary = 30100
WHERE empno = '000090'

(Transaction B updates rows viewed
by transaction A before transaction A
commits.) If Transaction A issues the
same SELECT statement, the results will
be different.

Phantom Reads

Records that appear in a set being read by
another transaction. Phantom reads can
occur when other transactions insert rows
that would satisfy the WHERE clause of
another transaction's statement.

Transaction A begins.

SELECT * FROM employee
 WHERE salary > 30000

Transaction B begins.

INSERT INTO employee
(empno, firstnme, midinit,
lastname, job,
salary) VALUES ('000350', 'NICK',
'A','GREEN','LEGAL COUNSEL',35000)

Transaction B inserts a row that would
satisfy the query in Transaction A if it were
issued again.

The transaction isolation level is a way of specifying whether these transaction anomalies
are allowed. The transaction isolation level thus affects the quantity of data locked by a
particular transaction. In addition, a DBMS's locking schema might also affect whether
these anomalies are allowed. A DBMS can lock either the entire table or only specific
rows in order to prevent transaction anomalies.

The following table shows which anomalies are possible under the various locking
schemas and isolation levels.

Table 8. When transaction anomalies are possible

Derby Developer's Guide

78

Isolation Level
Table-Level

Locking
Row-Level

Locking

TRANSACTION_READ_UNCOMMITTED Dirty reads,
nonrepeatable
reads, and phantom
reads possible

Dirty reads,
nonrepeatable
reads, and phantom
reads possible

TRANSACTION_READ_COMMITTED Nonrepeatable
reads and phantom
reads possible

Nonrepeatable
reads and phantom
reads possible

TRANSACTION_REPEATABLE_READ Phantom reads not
possible because
entire table is
locked

Phantom reads
possible

TRANSACTION_SERIALIZABLE None None

The following java.sql.Connection isolation levels are supported:

• TRANSACTION_SERIALIZABLE

RR, SERIALIZABLE, or REPEATABLE READ from SQL.

TRANSACTION_SERIALIZABLE means that Derby treats the transactions as if
they occurred serially (one after the other) instead of concurrently. Derby issues
locks to prevent all the transaction anomalies listed in Transaction anomalies from
occurring. The type of lock it issues is sometimes called a range lock.

• TRANSACTION_REPEATABLE_READ

RS from SQL.

TRANSACTION_REPEATABLE_READ means that Derby issues locks to prevent
only dirty reads and nonrepeatable reads, but not phantoms. It does not issue range
locks for selects.

• TRANSACTION_READ_COMMITTED

CS or CURSOR STABILITY from SQL.

TRANSACTION_READ_COMMITTED means that Derby issues locks to prevent
only dirty reads, not all the transaction anomalies listed in Transaction anomalies.

TRANSACTION_READ_COMMITTED is the default isolation level for transactions.
• TRANSACTION_READ_UNCOMMITTED

UR, DIRTY READ, or READ UNCOMMITTED from SQL.

For a SELECT INTO, FETCH with a read-only cursor, full select used in an
INSERT, full select/subquery in an UPDATE/DELETE, or scalar full select
(wherever used), READ UNCOMMITTED allows:

• Any row that is read during the unit of work to be changed by other application
processes.

• Any row that was changed by another application process to be read even if
the change has not been committed by the application process.

For other operations, the rules that apply to READ COMMITTED also apply to
READ UNCOMMITTED.

Configuring isolation levels

Derby Developer's Guide

79

If a connection does not specify its isolation level, it inherits the default isolation level for
the Derby system. The default value is CS.

When set to CS, the connection inherits the TRANSACTION_READ_COMMITTED
isolation level. When set to RR, the connection inherits the
TRANSACTION_SERIALIZABLE isolation level, when set to RS, the connection inherits
the TRANSACTION_REPEATABLE_READ isolation level, and when set to UR, the
connection inherits the TRANSACTION_READ_UNCOMMITTED isolation level.

To override the inherited default, use the methods of java.sql.Connection.

In addition, a connection can change the isolation level of the transaction within an
SQL statement. For more information, see "SET ISOLATION statement" in the Derby
Reference Manual. You can use the WITH clause to change the isolation level for the
current statement only, not the transaction. For information about the WITH clause, see
"SELECT statement" in the Derby Reference Manual.

In all cases except when you change the isolation level using the WITH clause, changing
the isolation level commits the current transaction. In most cases, the current transaction
is committed even if you set the isolation level in a way that does not change it (that is, if
you set it to its current value). See Isolation levels and concurrency for details.

Note: For information about how to choose a particular isolation level, see "Shielding
users from Derby class-loading events" in Tuning Derby and Multi-thread programming
tips.

Lock granularity

Derby can be configured for table-level locking. With table-level locking, when a
transaction locks data in order to prevent any transaction anomalies, it always locks the
entire table, not just those rows being accessed.

By default, Derby is configured for row-level locking. Row-level locking uses more
memory but allows greater concurrency, which works better in multi-user systems.
Table-level locking works best with single-user applications or read-only applications.

You typically set lock granularity for the entire Derby system, not for a particular
application. However, at runtime, Derby may escalate the lock granularity for a particular
transaction from row-level locking to table-level locking for performance reasons. You
have some control over the threshold at which this occurs. For information on turning
off row-level locking, see "derby.storage.rowLocking" in the Derby Reference Manual.
For more information about automatic lock escalation, see "About the system's selection
of lock granularity" and "Transaction-based lock escalation" in Tuning Derby. For more
information on tuning your Derby system, see "Tuning databases and applications," also
in Tuning Derby.

Types and scope of locks in Derby systems

There are several types of locks available in Derby systems, including exclusive, shared,
and update locks.

Exclusive locks

When a statement modifies data, its transaction holds an exclusive lock on data that
prevents other transactions from accessing the data.

This lock remains in place until the transaction holding the lock issues a commit or
rollback. Table-level locking lowers concurrency in a multi-user system.

Derby Developer's Guide

80

Shared locks

When a statement reads data without making any modifications, its transaction obtains a
shared lock on the data.

Another transaction that tries to read the same data is permitted to read, but
a transaction that tries to update the data will be prevented from doing so
until the shared lock is released. How long this shared lock is held depends
on the isolation level of the transaction holding the lock. Transactions using
the TRANSACTION_READ_COMMITTED isolation level release the lock
when the transaction steps through to the next row. Transactions using the
TRANSACTION_SERIALIZABLE or TRANSACTION_REPEATABLE_READ
isolation level hold the lock until the transaction is committed, so even a SELECT
can prevent updates if a commit is never issued. Transactions using the
TRANSACTION_READ_UNCOMMITTED isolation level do not request any locks.

Update locks

When a user-defined update cursor (created with the FOR UPDATE clause or by using
concurrency mode ResultSet.CONCUR_UPDATABLE) reads data, its transaction
obtains an update lock on the data.

If the user-defined update cursor updates the data, the update lock is converted to an
exclusive lock. If the cursor does not update the row, when the transaction steps through
to the next row, transactions using the TRANSACTION_READ_COMMITTED isolation
level release the lock. (For update locks, the TRANSACTION_READ_UNCOMMITTED
isolation level acts the same way as TRANSACTION_READ_COMMITTED.)

Update locks help minimize deadlocks.

Lock compatibility

The following table shows the compatibility between lock types. "Yes" means that the
lock types are compatible, while "No" means that they are incompatible.

Table 9. Lock Compatibility Matrix

Lock Type Shared Update Exclusive

Shared Yes Yes No

Update Yes No No

Exclusive No No No

Scope of locks

The amount of data locked by a statement can vary.

Table locks

A statement can lock the entire table.

Table-level locking systems always lock entire tables.

Row-level locking systems can lock entire tables if the WHERE clause of a statement
cannot use an index. For example, UPDATES that cannot use an index lock the entire
table.

Row-level locking systems can lock entire tables if a high number of single-row locks
would be less efficient than a single table-level lock. Choosing table-level locking
instead of row-level locking for performance reasons is called lock escalation. For more
information about this topic, see "About the system's selection of lock granularity" and
"Transaction-based lock escalation" in Tuning Derby.

Derby Developer's Guide

81

Single-row locks

A statement can lock only a single row at a time.

For row-level locking systems:
• For TRANSACTION_REPEATABLE_READ isolation, the locks are released at the

end of the transaction.
• For TRANSACTION_READ_COMMITTED isolation, Derby locks rows only as the

application steps through the rows in the result. The current row is locked. The row
lock is released when the application goes to the next row.

• For TRANSACTION_SERIALIZABLE isolation, however, Derby locks the whole set
before the application begins stepping through.

• For TRANSACTION_READ_UNCOMMITTED, no row locks are requested.

Derby locks single rows for INSERT statements, holding each row until the transaction is
committed. If there is an index associated with the table, the previous key is also locked.

Range locks

A statement can lock a range of rows (range lock).

For row-level locking systems:
• For any isolation level, Derby locks all the rows in the result plus an entire range of

rows for updates or deletes.
• For the TRANSACTION_SERIALIZABLE isolation level, Derby locks all the rows

in the result plus an entire range of rows in the table for SELECTs to prevent
nonrepeatable reads and phantoms.

For example, if a SELECT statement specifies rows in the Employee table where the
salary is BETWEEN two values, the system can lock more than just the actual rows it
returns in the result. It also must lock the entire range of rows between those two values
to prevent another transaction from inserting, deleting, or updating a row within that
range.

An index must be available for a range lock. If one is not available, Derby locks the entire
table.

The following table summarizes the types and scopes of locking.

Table 10. Types and scopes of locking

Transaction Isolation Level
Table-Level

Locking
Row-Level

Locking

Connection.TRANSACTION_READ_UNCOMMITTED
(SQL: UR)

For SELECT
statements,
table-level
locking is never
requested using
this isolation
level. For other
statements,
same as for TRANSACTION_READ_COMMITTED.

SELECT
statements
get no locks.
For other
statements,
same as for TRANSACTION_READ_COMMITTED.

Connection.TRANSACTION_READ_COMMITTED
(SQL: CS)

SELECT
statements
get a shared
lock on the
entire table.
The locks are
released when

SELECTs lock
and release
single rows
as the user
steps through
the ResultSet.
UPDATEs and

Derby Developer's Guide

82

Transaction Isolation Level
Table-Level

Locking
Row-Level

Locking

the user closes
the ResultSet.
Other
statements get
exclusive locks
on the entire
table, which are
released when
the transaction
commits.

DELETEs get
exclusive locks
on a range of
rows. INSERT
statements
get exclusive
locks on single
rows (and
sometimes on
the preceding
rows).

Connection.TRANSACTION_REPEATABLE_READ
(SQL: RS)

Same as for TRANSACTION_SERIALIZABLESELECT
statements get
shared locks
on the rows
that satisfy the
WHERE clause
(but do not
prevent inserts
into this range).
UPDATEs and
DELETEs get
exclusive locks
on a range of
rows. INSERT
statements
get exclusive
locks on single
rows (and
sometimes on
the preceding
rows).

Connection.TRANSACTION_SERIALIZABLE (SQL:
RR)

SELECT
statements get
a shared lock
on the entire
table. Other
statements get
exclusive locks
on the entire
table, which are
released when
the transaction
commits.

SELECT
statements get
shared locks
on a range of
rows. UPDATE
and DELETE
statements get
exclusive locks
on a range of
rows. INSERT
statements
get exclusive
locks on single
rows (and
sometimes on
the preceding
rows).

Derby Developer's Guide

83

Notes on locking

In addition to the locks already described, foreign key lookups require briefly held shared
locks on the referenced table (row or table, depending on the configuration).

The table and examples in this section do not take performance-based lock escalation
into account. Remember that the system can choose table-level locking for performance
reasons.

Deadlocks

In a database, a deadlock is a situation in which two or more transactions are waiting for
one another to give up locks.

For example, Transaction A might hold a lock on some rows in the Accounts table and
needs to update some rows in the Orders table to finish. Transaction B holds locks on
those very rows in the Orders table but needs to update the rows in the Accounts table
held by Transaction A. Transaction A cannot complete its transaction because of the
lock on Orders. Transaction B cannot complete its transaction because of the lock on
Accounts. All activity comes to a halt and remains at a standstill forever unless the DBMS
detects the deadlock and aborts one of the transactions. The following figure shows this
situation.

Figure 6. A deadlock where two transactions are waiting for one another to give up
locks

Avoiding deadlocks

Using both row-level locking and the TRANSACTION_READ_COMMITTED isolation
level makes it likely that you will avoid deadlocks (both settings are Derby defaults).
However, deadlocks are still possible.

Derby application developers can avoid deadlocks by using consistent application logic;
for example, transactions that access Accounts and Orders should always access the
tables in the same order. That way, in the scenario described above, Transaction B
simply waits for transaction A to release the lock on Orders before it begins. When
transaction A releases the lock on Orders, Transaction B can proceed freely.

Another tool available to you is the LOCK TABLE statement. A transaction can attempt
to lock a table in exclusive mode when it starts to prevent other transactions from getting

Derby Developer's Guide

84

shared locks on a table. For more information, see "LOCK TABLE statement" in the
Derby Reference Manual.

Deadlock detection

When a transaction waits more than a specific amount of time to obtain a lock (called the
deadlock timeout), Derby can detect whether the transaction is involved in a deadlock.

When Derby analyzes such a situation for deadlocks it tries to determine how many
transactions are involved in the deadlock (two or more). Usually aborting one transaction
breaks the deadlock. Derby must pick one transaction as the victim and abort that
transaction; it picks the transaction that holds the fewest number of locks as the victim,
on the assumption that transaction has performed the least amount of work. (This may
not be the case, however; the transaction might have recently been escalated from
row-level locking to table locking and thus hold a small number of locks even though it
has done the most work.)

When Derby aborts the victim transaction, it receives a deadlock error (an SQLException
with an SQLState of 40001). The error message gives you the transaction IDs, the
statements, and the status of locks involved in a deadlock situation.

ERROR 40001: A lock could not be obtained due to a deadlock,
cycle of locks & waiters is:
Lock : ROW, DEPARTMENT, (1,14)
Waiting XID : {752, X} , APP, update department set location='Boise'
 where deptno='E21'
Granted XID : {758, X} Lock : ROW, EMPLOYEE, (2,8)
Waiting XID : {758, U} , APP, update employee set bonus=150 where
 salary=23840
Granted XID : {752, X} The selected victim is XID : 752

For information on configuring when deadlock checking occurs, see Configuring deadlock
detection and lock wait timeouts.

Note: Deadlocks are detected only within a single database. Deadlocks across multiple
databases are not detected. Non-database deadlocks caused by Java synchronization
primitives are not detected by Derby.
Lock wait timeouts

Even if a transaction is not involved in a deadlock, it might have to wait a considerable
amount of time to obtain a lock because of a long-running transaction or transactions
holding locks on the tables it needs.

In such a situation, you might not want a transaction to wait indefinitely. Instead, you
might want the waiting transaction to abort, or time out, after a reasonable amount of
time, called a lock wait timeout.

Configuring deadlock detection and lock wait timeouts

You configure the amount of time a transaction waits before Derby does any deadlock
checking with the derby.locks.deadlockTimeout property.

You configure the amount of time a transaction waits before timing out with the
derby.locks.waitTimeout property. When configuring your database or system,
you should consider these properties together. For example, in order for any deadlock
checking to occur, the derby.locks.deadlockTimeout property must be set to a
value lower than the derby.locks.waitTimeout property. If it is set to a value equal
to or higher than the derby.locks.waitTimeout, the transaction times out before
Derby does any deadlock checking.

By default, derby.locks.waitTimeout is set to 60 seconds. -1 is the equivalent of no wait
timeout. This means that transactions never time out, although Derby can choose a
transaction as a deadlock victim.

Derby Developer's Guide

85

In the following figure, derby.locks.deadlockTimeout is set to 30 seconds, while
derby.locks.waitTimeout has no limit.

Figure 7. Configuration with deadlock checking after 30 seconds and no lock wait
timeouts

In the following figure, derby.locks.deadlockTimeout is set to 60 seconds, while
derby.locks.waitTimeout is set to 90 seconds.

Figure 8. Configuration with deadlock checking after 60 seconds and lock wait
timeout at 90 seconds

In the following figure, derby.locks.deadlockTimeout is set to 60 seconds, while
derby.locks.waitTimeout is set to 50 seconds, lower than the deadlock timeout
limit.

Figure 9. Configuration with no deadlock checking and a 50-second lock wait
timeout

Derby Developer's Guide

86

Debugging Deadlocks

If deadlocks occur frequently in your multi-user system with a particular application, you
might need to do some debugging.

Derby provides a class to help you in this situation, org.apache.derby.diag.LockTable.
Access to the LockTable information is provided via the SYSCS_DIAG.LOCK_TABLE
diagnostic table.

The SYSCS_DIAG.LOCK_TABLE diagnostic table shows all of the locks
that are currently held in the Derby database. You can reference the
SYSCS_DIAG.LOCK_TABLE diagnostic table directly in a statement.

For example:

SELECT * FROM SYSCS_DIAG.LOCK_TABLE

When the SYSCS_DIAG.LOCK_TABLE diagnostic table is referenced in a statement, a
snapshot of the lock table is taken.

For more information about how to use this table:
• See "SYSCS_DIAG diagnostic tables and functions" in the Derby Reference

Manual.
• See the LockTable API documentation.

You can also set the property derby.locks.deadlockTrace to dump additional information
to the derby.log file about any deadlocks that occur on your system. See the Tuning
Guide for more information on this property. For information, see the Derby Server and
Administration Guide.

Additional general information about diagnosing locking problems can be found in the
Derby Wiki at http://wiki.apache.org/db-derby/LockDebugging.

Programming applications to handle deadlocks

When you configure your system for deadlock and lockwait timeouts and an application
could be chosen as a victim when the transaction times out, you should program your
application to handle them.

To do this, test for SQLExceptions with SQLStates of 40001 (deadlock timeout) or
40XL1 or 40XL2 (lockwait timeout).

http://db.apache.org/derby/javadoc/engine/org/apache/derby/diag/LockTable.html
http://wiki.apache.org/db-derby/LockDebugging

Derby Developer's Guide

87

In the case of a deadlock you might want to re-try the transaction that was chosen as a
victim. In the case of a lock wait timeout, you probably do not want to do this right away.

The following code is one example of how to handle a deadlock timeout.

/// if this code might encounter a deadlock,
// put the whole thing in a try/catch block
// then try again if the deadlock victim exception
// was thrown
try {
 s6.executeUpdate(
 "UPDATE employee " +
 "SET bonus = 625 "
 "WHERE empno='000150'");
 s6.executeUpdate("UPDATE project " +
 "SET respemp = '000150' " +
 "WHERE projno='IF1000'");
}
// note: do not catch such exceptions in database-side methods;
// catch such exceptions only at the outermost level of
// application code.
// See Database-side JDBC routines and SQLExceptions.
catch (SQLException se) {
 if (se.getSQLState().equals("40001")) {
 // it was chosen as a victim of a deadlock.
 // try again at least once at this point.
 System.out.println("Will try the transaction again.");
 s6.executeUpdate("UPDATE employee " +
 "SET bonus = 625 " +
 "WHERE empno='000150'");
 s6.executeUpdate("UPDATE project " +
 "SET respemp = 000150 " +
 "WHERE projno='IF1000'");
 }
 else throw se;
}

Working with multiple connections to a single database
This section discusses deploying Derby so that many connections can exist to a single
database.

Deployment options and threading and connection modes

A database can be available to multiple connections in several situations.

• Multiple applications access a single database (possible only when Derby is running
inside a server framework).

• A single application has more than one Connection to the same database.

The way you deploy Derby affects the ways applications can use multi-threading and
connections, as shown in the following table.

Table 11. Threading and connection modes

Connection Mode Embedded Server

Multi-Threaded

From an application, using
a singleConnection to
a Derby database and
issuing requests against

Supply a single Connection
object to separate threads.
Derby ensures that only
one operation is applied
at a time for consistency.
Server frameworks

Server frameworks can
automatically multi-thread
operations. Remote
client applications can
multi-thread if desired.

Derby Developer's Guide

88

Connection Mode Embedded Server

that connection in multiple
threads.

automatically manage
multi-threaded operations.

Multi-Connection

From an application, using
multiple connections to a
Derby database and issuing
requests against those
connections on multiple
threads.

Create individual
connections within a single
application and use the
appropriate connection for
each JDBC request. The
connections can all be to
the same database, or can
be to different databases in
the same Derby system.

Remote client applications
can establish the multiple
connections desired.

Multi-User

Multiple applications (or
JVMs) accessing the same
Derby database. Each user
application has its own
connection or connections
to the database.

Not possible. Only one
application can access
a database at a time,
and only one application
can access a specific
system at a time. When
using a pre-1.4 JVM,
Derby might not prevent
multiple applications from
concurrently accessing the
same Derby system, but
do not allow this because
such access can corrupt
the databases involved.

Only one server should
access a database at a
time. Multiple remote client
applications can access the
same server, and thus can
access the same database
at the same time through
that server.

Multi-user database access

Multi-user database access is possible if Derby is running inside a server framework.

If more than one client application tries to modify the same data, the connection that
gets the table first gets the lock on the data (either specific rows or the entire table).
The second connection has to wait until the first connection commits or rolls back the
transaction in order to access the data. If two connections are only querying and not
modifying data, they can both access the same data at the same time because they can
each get a shared lock.

Multiple connections from a single application

A single application can work with multiple Connections to the same database and assign
them to different threads.

You can avoid concurrency and deadlock problems in your application in several ways:

• Use the TRANSACTION_READ_COMMITTED isolation level and turn on row-level
locking (the defaults).

• Beware of deadlocks caused by using more than one Connection in a single thread
(the most obvious case). For example, if the thread tries to update the same table
from two different Connections, a deadlock can occur.

• Assign Connections to threads that handle discrete tasks. For example, do not have
two threads update the Hotels table. Have one thread update the Hotels table and a
different one update the Groups table.

• If threads access the same tables, commit transactions often.

Derby Developer's Guide

89

• Multi-threaded Java applications have the ability to self-deadlock without even
accessing a database, so beware of that too.

• Use nested connections to share the same lock space.

Working with multiple threads sharing a single connection
JDBC allows you to share a single Connection among multiple threads.

Pitfalls of sharing a connection among threads

Here is a review of the potential pitfalls of sharing a single Connection among multiple
threads.

• Committing or rolling back a transaction closes all open ResultSet objects and
currently executing Statements, unless you are using held cursors.

If one thread commits, it closes the Statements and ResultSets of all other threads
using the same connection.

• Executing a Statement automatically closes any existing open ResultSet generated
by an earlier execution of that Statement.

If threads share Statements, one thread could close another's ResultSet.

In many cases, it is easier to assign each thread to a distinct Connection. If thread
A does database work that is not transactionally related to thread B, assign them to
different Connections. For example, if thread A is associated with a user input window
that allows users to delete hotels and thread B is associated with a user window that
allows users to view city information, assign those threads to different Connections. That
way, when thread A commits, it does not affect any ResultSets or Statements of thread
B.

Another strategy is to have one thread do queries and another thread do updates.
Queries hold shared locks until the transaction commits in SERIALIZABLE isolation
mode; use READ_COMMITTED instead.

Yet another strategy is to have only one thread do database access. Have other threads
get information from the database access thread.

Multiple threads are permitted to share a Connection, Statement, or ResultSet. However,
the application programmer must ensure that one thread does not affect the behavior of
the others.

Recommended Practices

Here are some tips for avoiding unexpected behavior:

• Avoid sharing Statements (and their ResultSets) among threads.
• Each time a thread executes a Statement, it should process the results before

relinquishing the Connection.
• Each time a thread accesses the Connection, it should consistently commit or not,

depending on application protocol.
• Have one thread be the "managing" database Connection thread that should

handle the higher-level tasks, such as establishing the Connection, committing,
rolling back, changing Connection properties such as auto-commit, closing the
Connection, shutting down the database (in an embedded environment), and so
on.

• Close ResultSets and Statements that are no longer needed in order to release
resources.

Multi-thread programming tips

Derby Developer's Guide

90

You may be sharing a Connection among multiple threads because you have
experienced poor concurrency using separate transactions.

Here are some tips for increasing concurrency:

• Use row-level locking.
• Use the TRANSACTION_READ_COMMITTED isolation level.
• Avoid queries that cannot use indexes; they require locking of all the rows in the

table (if only very briefly) and might block an update.

In addition, some programmers might share a statement among multiple threads to avoid
the overhead of each thread's having its own. Using the single statement cache, threads
can share the same statement from different connections. For more information, see
"Using the statement cache" in Tuning Derby.

Example of threads sharing a statement

This example shows what can happen if two threads try to share a single Statement.

PreparedStatement ps = conn.prepareStatement(
 "UPDATE account SET balance = balance + ? WHERE id = ?");
/* now assume two threads T1,T2 are given this
java.sql.PreparedStatement object and that the following events
happen in the order shown (pseudojava code)*/
T1 - ps.setBigDecimal(1, 100.00);
T1 - ps.setLong(2, 1234);
T2 - ps.setBigDecimal(1, -500.00);
// *** At this point the prepared statement has the parameters
// -500.00 and 1234
// T1 thinks it is adding 100.00 to account 1234 but actually
// it is subtracting 500.00
T1 - ps.executeUpdate();
T2 - ps.setLong(2, 5678);
// T2 executes the correct update
 T2 - ps.executeUpdate();
/* Also, the auto-commit mode of the connection can lead
to some strange behavior.*/

If it is absolutely necessary, the application can get around this problem with Java
synchronization.

If the threads each obtain their own PreparedStatement (with identical text), their
setXXX calls do not interfere with each other. Moreover, Derby is able to share the same
compiled query plan between the two statements; it needs to maintain only separate
state information. However, there is the potential for confusion in regard to the timing of
the commit, since a single commit commits all the statements in a transaction.

Working with database threads in an embedded environment
As a rule, do not use Thread.interrupt() calls to signal possibly waiting threads that
are also accessing a database, because Derby may catch the interrupt and close the
connection to the database. Use wait and notify calls instead.

There are also special considerations when working with more than one database
thread in an application, as described in Working with multiple threads sharing a single
connection.

When queries, batches, and statements that wait for database locks run longer than
expected, you can use interrupts to stop them. If you do, the connection will be closed
and an exception will be thrown.

If you design an application whose database threads may see interrupts, you should plan
for the following behavior:

Derby Developer's Guide

91

• If a thread is interrupted and the interrupt status flag is not cleared before entering
a Derby JDBC call, or if the thread is interrupted while inside a Derby JDBC call,
the connection that is experiencing the interrupt will be terminated in the following
situations:

• If a query fetches rows from a database table after the interrupt has occurred
• If the execution of a new element in a batched statement is attempted after the

interrupt has occurred
• If an interrupt is received while a transaction is waiting for a lock

If the connection is terminated, the application thread will experience the following
consequences:

• The JDBC call will raise an SQLException with state "08000" ("Connection
closed by unknown interrupt").

• Outstanding transactional work on that connection will be rolled back, and all
of its locks will be released.

• The connection cannot be used to execute any further JDBC calls.

On return from the JDBC call, the Thread.isInterrupted() method of the thread will
return true, whether or not an exception terminating the connection was thrown.
That is, even if Derby does not heed an interrupt, the flag will remain set on exit
from the JDBC call.

• All other connections will remain open. This includes other connections which the
interrupted thread may be using. These connections will remain open at least until
the thread tries to use one of its other connections. If the thead has neglected to
clear its interrupted status flag, this connection is also subject to termination as
described above.

• The application should normally be prepared to catch the 08000 exceptions, discard
the dead connection, clear the interrupted status of the thread, and then restart the
transaction in a new connection.

Working with Derby SQLExceptions in an application
JDBC generates exceptions of the type java.sql.SQLException. If your application
runs on JDK 1.6 or higher, the exceptions will be the refined subtypes of
java.sql.SQLException introduced by JDBC4. To see the exceptions generated by Derby,
retrieve and process the SQLExceptions in a catch block.

Information provided in SQL Exceptions

Derby provides the message, SQLState values, and error codes in SQL exceptions.

Use the getSQLState and getMessage methods to view the SQLState and error
messages. Use getErrorCode to see the error code. The error code defines the
severity of the error and is not unique to each exception.
Note: Severity is not standardized in Derby. Applications should not depend on the
severity returned from SQL exceptions.

Applications should also check for and process java.sql.SQLWarnings, which are
processed in a similar way. Derby issues an SQLWarning if the create=true attribute
is specified and the database already exists.

Example of processing SQLExceptions

A single error can generate more than one SQLException. Use a loop and the
getNextException method to process all SQLExceptions in the chain. In many
cases, the second exception in the chain is the pertinent one.

The following is an example:

Derby Developer's Guide

92

catch (Throwable e) {
 System.out.println("exception thrown:");
 errorPrint(e);
}
static void errorPrint(Throwable e) {
 if (e instanceof SQLException)
 SQLExceptionPrint((SQLException)e);
 else
 System.out.println("A non-SQL error: " + e.toString());
}
static void SQLExceptionPrint(SQLException sqle) {
 while (sqle != null) {
 System.out.println("\n---SQLException Caught---\n");
 System.out.println("SQLState: " + (sqle).getSQLState());
 System.out.println("Severity: " + (sqle).getErrorCode());
 System.out.println("Message: " + (sqle).getMessage());
 sqle.printStackTrace();
 sqle = sqle.getNextException();
 }
}

If your application runs on JDK 1.4 or higher, then the SQLException may wrap another,
triggering exception, like an IOException. To inspect this additional, wrapped error, call
the SQLException's getCause method.

See also "Derby Exception Messages and SQL States", in the Derby Reference Manual.

Derby Developer's Guide

93

Using Derby as a Java EE resource manager

The Java Platform, Enterprise Edition (the Java EE platform) is a standard for
development of enterprise applications based on reusable components in a multi-tier
environment. In addition to the features of the Java Platform, Standard Edition (the
Java SE platform), the Java EE platform adds support for Enterprise JavaBeans (EJB)
technology, the Java Persistence API, JavaServer Faces technology, Java Servlet
technology, JavaServer Pages (JSP) technology, and many more. The Java EE platform
architecture is used to bring together existing technologies and enterprise applications in
a single, manageable environment.

Derby is a Java EE platform conformant component in a distributed Java EE system.
As such, Derby is one part of a larger system that includes, among other things, a JNDI
server, a connection pool module, a transaction manager, a resource manager, and user
applications. Within this system, Derby can serve as the resource manager.

For more information on the Java EE platform, see
http://www.oracle.com/technetwork/java/javaee/documentation/index.html.

Note: This section does not show you how to use Derby as a Resource Manager.
Instead, it provides details specific to Derby that are not covered in the specification. This
information is useful to programmers developing other modules in a distributed Java EE
system, not to end-user application developers.

In order to qualify as a resource manager in a Java EE system, the Java EE
platform requires three basic areas of support. These three areas of support involve
implementation of APIs and are described in "Java EE Compliance: Java Transaction API
and javax.sql Extensions" in the Derby Reference Manual.

This chapter describes the Derby classes that implement the APIs and provides some
implementation-specific details.

Classes that pertain to resource managers
Derby provides two variants of each DataSource interface defined by the JDBC API.

Applications that run on the J2SE 1.4 or 1.5 platform must use the first variant.
Applications that run on the Java SE 6 platform can use either of the two variants.
However, the DataSource methods specific to the JDBC 4 API are available only from the
second variant (the one whose class name ends with "40").

If an application is running on the Java SE 6 platform, all connection objects returned
from the DataSource will be JDBC 4 connection objects, regardless of which DataSource
variant is in use.

The Derby implementation classes for the DataSource interfaces are as follows:

• org.apache.derby.jdbc.EmbeddedDataSource and
org.apache.derby.jdbc.EmbeddedDataSource40

Implements the javax.sql.DataSource interface, which a JNDI server can reference.
Typically this is the object that you work with as a DataSource.

• org.apache.derby.jdbc.EmbeddedConnectionPoolDataSource and
org.apache.derby.jdbc.EmbeddedConnectionPoolDataSource40

Implements the javax.sql.ConnectionPoolDataSource interface. A factory for
PooledConnection objects.

http://www.oracle.com/technetwork/java/javaee/documentation/index.html

Derby Developer's Guide

94

• org.apache.derby.jdbc.EmbeddedXADataSource and
org.apache.derby.jdbc.EmbeddedXADataSource40

Derby's implementation of the javax.sql.XADataSource interface.

See the javadoc for each class for more information.

Getting a DataSource
Normally, you can simply work with the interfaces for javax.sql.DataSource,
javax.sql.ConnectionPoolDataSource, and javax.sql.XADataSource, as shown in the
following examples.

// If your application is running on the Java SE 6 platform,
// and if you would like to call DataSource methods specific
// to the JDBC 4 API (for example, isWrapperFor), use the
// JDBC 4 variants of these classes:
//
// org.apache.derby.jdbc.EmbeddedConnectionPoolDataSource40
// org.apache.derby.jdbc.EmbeddedDataSource40
// org.apache.derby.jdbc.EmbeddedXADataSource40
//
import org.apache.derby.jdbc.EmbeddedConnectionPoolDataSource;
import org.apache.derby.jdbc.EmbeddedDataSource;
import org.apache.derby.jdbc.EmbeddedXADataSource;

javax.sql.ConnectionPoolDataSource cpds = new
 EmbeddedConnectionPoolDataSource();
javax.sql.DataSource ds = new EmbeddedDataSource();
javax.sql.XADataSource xads = new EmbeddedXADataSource();

Derby provides six properties for a DataSource. These properties are in
org.apache.derby.jdbc.EmbeddedDataSource. They are:

• DatabaseName

This mandatory property must be set. It identifies which database to access.
To access a database named wombat located at /local1/db/wombat, call
setDatabaseName("/local1/db/wombat") on the data source object.

• CreateDatabase

Optional. Sets a property to create a database the next time the getConnection
method of a data source object is called. The string createString is always "create"
(or possibly null). (Use the method setDatabaseName() to define the name of the
database.)

• ShutdownDatabase

Optional. Sets a property to shut down a database. The string shutDownString is
always "shutdown" (or possibly null). Shuts down the database the next time the
getConnection method of a data source object is called.

• DataSourceName

Optional. Name for ConnectionPoolDataSource or XADataSource. Not used by the
data source object. Used for informational purposes only.

• Description

Optional. Description of the data source. Not used by the data source object. Used
for informational purposes only.

• connectionAttributes

Optional. Connection attributes specific to Derby. See the Derby Reference Manual
for a more information about the attributes.

Derby Developer's Guide

95

Shutting down or creating a database
If you need to shut down or create a database, it is easiest just to work with the
Derby-specific implementations of interfaces, as shown in these examples.

javax.sql.XADataSource xads = makeXADataSource(mydb, true);

// example of setting property directory using
// Derby 's XADataSource object
import org.apache.derby.jdbc.EmbeddedXADataSource;
import javax.sql.XADataSource;
// dbname is the database name
// if create is true, create the database if not already created
XADataSource makeXADataSource (String dbname, boolean create)
{
 //
 // If your application runs on JDK 1.6 or higher, then
 // you will use the JDBC4 variant of this class:
 // EmbeddedXADataSource40.
 //
 EmbeddedXADataSource xads = new EmbeddedXADataSource();
 // use Derby 's setDatabaseName call
 xads.setDatabaseName(dbname);
 if (create)
 xads.setCreateDatabase("create");
 return xads;
}

Setting the property does not create or shut down the database. The database is not
actually created or shut down until the next connection request.

Derby Developer's Guide

96

Derby and security

Derby can be deployed in a number of ways and in a number of different environments.
The security needs of the Derby system are also diverse.

Derby supplies or supports the following optional security mechanisms:

• Authentication

Authentication determines whether you are a legal user. It establishes your identity.
Derby verifies user names and passwords before permitting access to the Derby
system.

For more information about authentication, see Working with user authentication.
• Authorization

Authorization determines what operations can be performed by you, that is, by your
Derby identity. Authorization grants users or roles permission to read a database or
to write to a database.

For more information about authorization, see User authorizations.
• Disk encryption

Derby provides ways to encrypt data stored on disk.

For more information about encryption, see Encrypting databases on disk.
• Validation of certificates for signed jar files

Derby validates certificates for classes loaded from signed jar files.

For more information about using signed jar files, see Signed jar files.
• Network encryption and authentication

Derby network traffic may be encrypted with SSL/TLS. SSL/TLS certificate
authentication is also supported. See "Network encryption and authentication with
SSL/TLS" in the Derby Server and Administration Guide for details.

The section "Derby Network Server advanced topics" in the Derby Server and
Administration Guide has more information on security issues. The Derby Reference
Manual describes many security-related properties and system procedures, as well
as such statements as GRANT, REVOKE, CREATE ROLE, DROP ROLE, CREATE
PROCEDURE, and CREATE FUNCTION.

Identity in Derby

Derby provides two kinds of identity:

• System-wide identity: Currently, any legal system-wide identity enjoys authorization
to perform the following operations:

• Create databases
• Restore databases
• Shut down the Derby engine

• Database-specific identity: If you are a legal identity in a specific database, you may
enjoy the following rights:

• You can connect to that database, provided that coarse-grained connection
authorization has not been set to noAccess.

• You can shut down that database, encrypt it, and upgrade it, provided that you
are the database owner.

• You can create your own SQL objects and write data to your own tables,
provided that your coarse-grained connection authorization has not been set
to readOnlyAccess.

Derby Developer's Guide

97

• You can access other SQL objects, provided that the owners have granted
you fine-grained SQL access to those objects, and provided you have not
been limited by coarse-grained readOnlyAccess.

The distinction between fine-grained SQL authorization and coarse-grained connection
organization is described in User authorizations.

Security mechanisms in action

The following figure shows some of the Derby security mechanisms at work in a
client/server environment. User authentication is performed by accessing an LDAP
directory service. The data in the database is not encrypted in this trusted environment.

Figure 10. Using an LDAP directory service in a trusted environment

The following figure shows how another Derby security mechanism, disk encryption,
protects data when the recipient might not know how to protect data. It is useful for
databases deployed in an embedded environment.

Figure 11. Using disk encryption to protect data

Derby Developer's Guide

98

Configuring security for your environment
In most cases, you enable Derby's security features through the use of properties. It is
important to understand the best way of setting properties for your environment.

Derby does not come with a built-in superuser. For that reason, be careful when
configuring Derby for user authentication and user authorization.

1. When first working with security, work with system-level properties only so that you
can easily override them if you make a mistake.

2. Be sure to create at least one valid user, and grant that user full (read-write) access.
For example, you might always want to create a user called sa with the password
derby while you are developing.

3. Test the authentication system while it is still configured at the system level. Be
absolutely certain that you have configured the system correctly before setting the
properties as database-level properties.

4. Before disabling system-level properties (by setting derby.database.propertiesOnly
to true), test that at least one database-level read-write user (such as sa) is valid.
If you do not have at least one valid user that the system can authenticate, you will
not be able to access your database.

Configuring security in a client/server environment

This procedure requires a system with multiple databases and some administrative
resources.

1. Configure security features as system properties. See Scope of properties and
Setting system-wide properties.

2. Provide administrative-level protection for the derby.properties file and Derby
databases. For example, you can protect these files and directories with operating
system permissions and firewalls.

3. Turn on user authentication for your system. All users must provide valid user
IDs and passwords to access the Derby system. Use NATIVE authentication (or,
alternatively, LDAP or a user-defined class).

> Important: It is also strongly recommended that production systems protect
network connections with SSL/TLS.

4. Configure SQL authorization for your databases.
5. Check and if necessary configure your Derby network security according to your

environment. See the section "Network client security" in the Derby Server and
Administration Guide.

Configuring security in an embedded environment

In an embedded environment, typically there is only one database per system and there
are no administrative resources to protect databases.

To configure security in an embedded environment:
1. Encrypt the database when you create it.
2. Configure all security features as database-level properties. These properties are

stored in the database (which is encrypted). See Scope of properties and Setting
database-wide properties for more information.

3. Turn on protection for database-level properties so that they cannot be overridden
by system properties by setting the derby.database.propertiesOnly property to
TRUE. See the Derby Reference Manual for details on this property.

4. To prevent unauthorized users from accessing databases once they are booted,
turn on user authentication and SQL authorization for the database. Use NATIVE
authentication or, alternatively, LDAP or a user-defined class.

Derby Developer's Guide

99

Working with user authentication
Derby provides support for user authentication and user authorization. User
authentication determines whether a user is a valid user. It establishes the user's identity.
User authorization determines what operations a user's established identity can perform.
You are strongly urged to implement both authentication and authorization on any
multi-user database used in production.

When user authentication is enabled (by default, it is not enabled), the user that requests
a connection must provide a valid name and password, which Derby verifies against the
repository of users defined for the system. After Derby authenticates the user as valid,
user authorization determines what operations the user can perform on the database to
which the user is requesting a connection.

For user authentication, Derby allows you to provide a repository of users in a number of
different ways:

• You can use Derby's NATIVE authentication mechanism to store user credentials in
a database. See Using NATIVE authentication for details.

• You can hook Derby up to an external directory service elsewhere in your
enterprise.

• You can create your own directory service.
• You can use Derby's simple BUILTIN mechanism for creating a repository of users.

> Important: Derby's BUILTIN authentication mechanism is suitable only for
development and testing purposes, and it will no longer be documented in future
releases. It is strongly recommended that production systems rely on NATIVE
authentication, an external directory service such as LDAP, or a user-defined class for
authentication. It is also strongly recommended that production systems protect network
connections with SSL/TLS.

You can define a repository of users for a particular database or for an entire system,
depending on whether you use system-wide or database-wide properties.

When Derby user authentication is enabled and Derby uses an external directory service,
the architecture looks something like that shown in the following figure. The application
can be a single-user application with an embedded Derby engine or a multi-user
application server.

Figure 12. Derby user authentication using an external service

Derby Developer's Guide

100

Derby always runs embedded in another Java application, whether that application is a
single-user application or a multiple-user application server or connectivity framework.

A database can be accessed by only one JVM at a time, so it is possible to deploy a
system in which the application in which Derby is embedded, not Derby, handles the
user authentication by connecting to an external directory service. The application can
be a single-user application with an embedded Derby engine or a multi-user application
server. The following figure shows this kind of deployment.

Figure 13. Application user authentication using an external service

Using NATIVE authentication

Derby's simplest authentication mechanism is NATIVE authentication.

When you use NATIVE authentication, user names and encrypted passwords are stored
in a database. You can specify a dedicated credentials database for this purpose, or you
can store the credentials in the same database you use for your application data. The
credentials are stored in the SYSUSERS system table of the database.

To specify NATIVE authentication, specify one of the following values for the
derby.authentication.provider property:

• NATIVE:credentialsDB

This value tells Derby to use credentialsDB, a dedicated database, to store user
credentials. This value must be set by using system-wide Java Virtual Machine
(JVM) properties or by using the derby.properties file; it cannot be set in
the database by using the SYSCS_UTIL.SYSCS_SET_DATABASE_PROPERTY
procedure. When this system-wide value is set, credentialsDB is used to
authenticate all operations. If an individual database holds credentials for the
database owner, the global credentials database is used only to authenticate
system-wide operations such as engine shutdown.

The value of credentialsDB must be a valid name for a database.
• NATIVE:credentialsDB:LOCAL

This value tells Derby to use credentialsDB for system-wide operations, but to use
an individual database's SYSUSERS system table to authenticate connections to
that database. This value must be set by using system-wide JVM properties or by
using the derby.properties file; it cannot be set in the database by using the
SYSCS_UTIL.SYSCS_SET_DATABASE_PROPERTY system procedure.

Derby Developer's Guide

101

Working with a credentials database

With NATIVE authentication, a database can become a credentials database in any of
the following ways:

• When the database is being created, it is identified as the
credentials database by the system-level property setting
derby.authentication.provider=NATIVE:credentialsDB.

• When the database is being created, LOCAL authentication of
connections is specified by the system-level property setting
derby.authentication.provider=NATIVE:credentialsDB:LOCAL.

• When the database already exists, the database owner calls the
SYSCS_UTIL.SYSCS_CREATE_USER system procedure to store the database
owner's credentials in the database. If the database owner calls this procedure to
store another user's credentials first, an error is raised.

When a database becomes a credentials database, the following things happen:

• The value of derby.authentication.provider=NATIVE::LOCAL is stored in
the database, marking it as a credentials database.

• From this point forward, the value of derby.authentication.provider cannot
be overridden or changed for connections to this database.

• If the database is being newly created, the database owner's credentials (provided
in the connection arguments) are stored in the database's SYSUSERS system
table.

• All future connections to the database are authenticated against the credentials in
its SYSUSERS system table.

NATIVE authentication and other database properties

When NATIVE authentication is enabled, Derby behaves as
if the derby.connection.requireAuthentication and
derby.database.sqlAuthorization properties are also set. That is, a user name
and password must be specified whenever a user connects to a database, and object
owners control access to database objects. See Setting the SQL standard authorization
mode for more information, and see NATIVE authentication and SQL authorization
example for an example of the use of NATIVE authentication.

For maximum security, the passwords that users specify when they connect to
databases have an expiration date that you can modify by using the property
derby.authentication.native.passwordLifetimeMillis. The password of
the database owner never expires. By default, ordinary user passwords expire after 31
days.

If a password is about to expire, or if the database owner's password is near what
would be the expiration date, Derby issues a warning that the password will soon expire
(or, in the database owner's case, that the password is stale). By default, the warning
is issued if the password is due to expire in one-eighth of the password's lifetime.
For example, if the password has a 31-day lifetime, the warning will be issued 3.875
days before the expiration date. You can change this proportion by using the property
derby.authentication.native.passwordLifetimeThreshold.

Use the derby.authentication.builtin.algorithm property to
change the way passwords are encrypted when they are stored in the
SYSUSERS system table. The default algorithm is SHA-256. Two related
properties are derby.authentication.builtin.saltLength and
derby.authentication.builtin.iterations, which can be used to make the
hashed passwords harder for attackers to crack.

Managing users and passwords

Derby Developer's Guide

102

To manage users and passwords, Derby provides a group of system procedures:

• To create users for a database, the database owner calls
SYSCS_UTIL.SYSCS_CREATE_USER, which takes a user name and password
as arguments. This procedure can also be executed by a user or role to which the
database owner has granted sufficient privileges.

• To remove a user, the database owner calls SYSCS_UTIL.SYSCS_DROP_USER,
which takes one argument, the user name of the user. This procedure can also
be executed by a user or role to which the database owner has granted sufficient
privileges.

• To reset a forgotten or expired password, the database owner calls
SYSCS_UTIL.SYSCS_RESET_PASSWORD, with a user name and password as
arguments. This procedure can also be executed by a user or role to which the
database owner has granted sufficient privileges.

• To change a user's own password, any user can call the system procedure
SYSCS_UTIL.SYSCS_MODIFY_PASSWORD, which takes only one argument, the
password. Typically, a user calls this procedure when their password is about to
expire.

Converting an existing database to use NATIVE authentication

If you wish to apply NATIVE authentication to a database that was created without it, the
procedure is slightly different depending on whether you specify NATIVE:credentialsDB
or NATIVE:credentialsDB:LOCAL:

• If you specify NATIVE:credentialsDB, add users of the existing database to
the credentialsDB. For instance, if the old database was created without any
authentication, then its default user name is APP, and you could do the following:

CALL SYSCS_UTIL.SYSCS_CREATE_USER('app', 'app');
• If you plan to specify NATIVE:credentialsDB:LOCAL, first connect to the existing

database as its database owner using its old authentication scheme. Call
SYSCS_UTIL.SYSCS_CREATE_USER to add credentials for the database owner.
For example, if the existing database was created with no authentication, the
database owner is APP, and you would add credentials for APP as shown above.

Enabling user authentication

If you use NATIVE authentication, you do not need to set the
derby.connection.requireAuthentication property. When you create a
database with NATIVE authentication, simply specify a username and password, and that
user becomes the database owner.

If you do not use NATIVE authentication, you must set the
derby.connection.requireAuthentication property to true to enable user
authentication; if you do not set this property, Derby does not require a user name and
password. You can set this property as a system-wide property or as a database-wide
property. For a multi-user product, you would typically set it for the system in the
derby.properties file for your server, since it is in a trusted environment.

Note: If you start a Derby system with user authentication enabled but without defining
at least one user, you will not be able to shut down the system gracefully. When Derby is
running in a connectivity server and user authentication is turned on, stopping the server
requires a user name and password. You will need to alter shutdown scripts accordingly.

Note: Additionally, if you create and start a Derby system with user authentication and
SQL authorization both enabled, or plan to enable them later, you should make sure you
create the database by connecting as the user that is to become the database owner. If
you neglect to supply a user when the database is created, the database owner will by

Derby Developer's Guide

103

default become "APP". If you later enable both authentication and SQL authorization and
"APP" is a not valid user name, you will not be able to perform operations restricted to
the database owner, including shutting down the database (as opposed to the full system
which may currently be shut down by any authenticated user, see previous note). Nor will
you be able to (re)encrypt the database nor perform a full upgrade of it.

Defining users

Derby provides several ways to define the repository of users and passwords. To
specify which of these services to use with your Derby system, set the property
derby.authentication.provider to an appropriate value.

Setting the property as a system-wide property creates system-wide users. Setting the
property as a database-wide property creates users for a single database only.

• Using NATIVE authentication
• External directory service: LDAP directory service.
• User-defined class
• BUILTIN Derby users

Note: Shutting down the Derby system (for example, using the shutdown=true form of
the connection URL without specifying a particular database) when user authentication is
turned on requires that you define at least one user as a system-wide user.

External directory service

A directory service stores names and attributes of those names. A typical use for a
directory service is to store user names and passwords for a computer system. Derby
uses the Java naming and directory interface (JNDI) to interact with external directory
services that can provide authentication of users' names and passwords.

LDAP directory service

You can allow Derby to authenticate users against an existing LDAP directory service
within your enterprise. LDAP (lightweight directory access protocol) provides an open
directory access protocol running over TCP/IP. An LDAP directory service can quickly
authenticate a user's name and password.

The runtime library provided with the Java Development Kit (JDK)
includes libraries that allow you to access an LDAP directory service.
See the API documentation for the javax.naming.ldap package at
http://download.oracle.com/javase/6/docs/api/, the LDAP section of the
JNDI tutorial at http://download.oracle.com/javase/tutorial/jndi/ldap/, and the
LDAP section of the JNDI specification at
http://download.oracle.com/javase/1.5.0/docs/guide/jndi/spec/jndi/
jndi.5.html#pgfId=999241.

To use an LDAP directory service, set derby.authentication.provider to LDAP and specify
appropriate permissions in your security policy file.

Examples of LDAP service providers include the 389 Directory Server and OpenLDAP.

Setting up Derby to use your LDAP directory service:

When specifying LDAP as your authentication service, you must specify what LDAP
server to use.

• Set the property derby.authentication.server to the URL to the LDAP server. For
example:

derby.authentication.server=ldap://godfrey:389/

http://download.oracle.com/javase/6/docs/api/
http://download.oracle.com/javase/tutorial/jndi/ldap/
http://download.oracle.com/javase/1.5.0/docs/guide/jndi/spec/jndi/jndi.5.html#pgfId=999241
http://download.oracle.com/javase/1.5.0/docs/guide/jndi/spec/jndi/jndi.5.html#pgfId=999241

Derby Developer's Guide

104

The LDAP server may be specified using just the server name, the server
name and its port number separated by a colon, or an "ldap" URL. If a full
URL is not provided, Derby will by default use unencrypted LDAP. To use SSL
encrypted LDAP, a URL starting with "ldaps://" must be provided. For details on the
derby.authentication.server property, see the Derby Reference Manual.

• Grant java.net.SocketPermission to derby.jar, so that the Derby code is allowed
to contact the LDAP server to perform the authentication. See Granting permissions
to Derby for more information.

Guest access to search for DNs:

In an LDAP system, users are hierarchically organized in the directory as a set of
entries. An entry is a set of name-attribute pairs identified by a unique name, called a DN
(distinguished name).

An entry is unambiguously identified by a DN, which is the concatenation of selected
attributes from each entry in the tree along a path leading from the root down to the
named entry, ordered from right to left. For example, a DN for a user might look like this:

cn=mary,ou=People,o=example.com

uid=mary,ou=People,o=example.com

The allowable entries for the name are defined by the entry's objectClass.

An LDAP client can bind to the directory (successfully log in) if it provides a user ID and
password. The user ID must be a DN, the fully qualified list of names and attributes. This
means that the user must provide a very long name.

Typically, the user knows only a simple user name (e.g., the first part of the DN above,
mary). With Derby, you do not need the full DN, because an LDAP client (Derby) can go
to the directory first as a guest or even an anonymous user, search for the full DN, then
rebind to the directory using the full DN (and thus authenticate the user).

Derby typically initiates a search for a full DN before binding to the directory using the full
DN for user authentication. Derby does not initiate a search in the following cases:

• You have set derby.authentication.ldap.searchFilter to derby.user.
• A user DN has been cached locally for the specific user with the

derby.user.UserName property.

For more information, see "derby.authentication.ldap.searchFilter" in the Derby
Reference Manual.

Some systems permit anonymous searches; other require a user DN and password. You
can specify a user's DN and password for the search with the properties listed below.
In addition, you can limit the scope of the search by specifying a filter (definition of the
object class for the user) and a base (directory from which to begin the search) with the
properties listed below.

• derby.authentication.ldap.searchAuthDN (optional)

Specifies the DN with which to bind (authenticate) to the server when searching
for user DNs. This parameter is optional if anonymous access is supported by your
server. If specified, this value must be a DN recognized by the directory service,
and it must also have the authority to search for the entries.

If not set, it defaults to an anonymous search using the root DN specified by the
derby.authentication.ldap.searchBase property. For example:

uid=guest,o=example.com
• derby.authentication.ldap.searchAuthPW (optional)

Derby Developer's Guide

105

Specifies the password to use for the guest user configured above to bind to the
directory service when looking up the DN. If not set, it defaults to an anonymous
search using the root DN specified by the derby.authentication.ldap.searchBase
property.

myPassword
• derby.authentication.ldap.searchBase (optional)

Specifies the root DN of the point in your hierarchy from which to begin a guest
search for the user's DN. For example:

ou=people,o=example.com

When using Netscape Directory Server, set this property to the root DN, the special
entry to which access control does not apply (optional).

To narrow the search, you can specify a user's objectClass.

• derby.authentication.ldap.searchFilter (optional)

Set derby.authentication.ldap.searchFilter to a logical expression that specifies what
constitutes a user for your LDAP directory service. The default value of this property
is objectClass=inetOrgPerson. For example:

objectClass=person

See the Derby Reference Manual for details on all these properties.

LDAP performance issues:

For performance reasons, the LDAP directory server should be in the same LAN as
Derby. Derby does not cache the user's credential information locally and thus must
connect to the directory server every time a user connects.

Connection requests that provide the full DN are faster than those that must search for
the full DN.

LDAP restrictions:

Derby does not support LDAP groups.

JNDI-specific properties for external directory services

Derby allows you to set a few advanced JNDI properties, which you can set in any of the
supported ways of setting Derby properties. Typically you would set these at the same
level (database or system) for which you configured the external authentication service.

The list of supported properties can be found in Appendix A: JNDI
Standard Environment Properties in the Java Naming and Directory API at
http://download.oracle.com/javase/1.5.0/docs/guide/jndi/spec/jndi/properties.html. The
external directory service must support the property.

Each JNDI provider has its set of properties that you can set within the Derby system.

For example, you can set the property java.naming.security.authentication to allow user
credentials to be encrypted on the network if the provider supports it. You can also
specify that SSL be used with LDAP (LDAPS).

User-defined class

Set derby.authentication.provider to the full name of a class that implements the public
interface org.apache.derby.authentication.UserAuthenticator.

By writing your own class that fulfills some minimal requirements, you can hook Derby
up to an external authentication service other than LDAP. To do so, specify an external

http://download.oracle.com/javase/1.5.0/docs/guide/jndi/spec/jndi/properties.html

Derby Developer's Guide

106

authentication service by setting the property derby.authentication.provider to a
class name that you want Derby to load at startup.

The class that provides the external authentication service must implement the public
interface org.apache.derby.authentication.UserAuthenticator and throw exceptions of the
type java.sql.SQLException where appropriate.

Using a user-defined class makes Derby adaptable to various naming and directory
services.

Example of setting a user-defined class:

A very simple example of a class that implements the
org.apache.derby.authentication.UserAuthenticator interface.

import org.apache.derby.authentication.UserAuthenticator;
import java.io.FileInputStream;
import java.util.Properties;
import java.sql.SQLException;
/**
 * A simple example of a specialized Authentication scheme.
 * The system property 'derby.connection.requireAuthentication'
 * must be set
 * to true and 'derby.authentication.provider' must
 * contain the full class name of the overriden authentication
 * scheme, i.e., the name of this class.
 *
 * @see org.apache.derby.authentication.UserAuthenticator
 */

public class MyAuthenticationSchemeImpl implements
UserAuthenticator {
 private static final String USERS_CONFIG_FILE = "myUsers.cfg";
 private static Properties usersConfig;

 // Constructor
 // We get passed some Users properties if the
 //authentication service could not set them as
 //part of System properties.
 //
 public MyAuthenticationSchemeImpl() {
 }
 /* static block where we load the users definition from a
users configuration file.*/

 static {
 /* load users config file as Java properties
 File must be in the same directory where
 Derby gets started.
 (otherwise full path must be specified) */
 FileInputStream in = null;
 usersConfig = new Properties();
 try {
 in = new FileInputStream(USERS_CONFIG_FILE);
 usersConfig.load(in);
 in.close();
 } catch (java.io.IOException ie) {
 // No Config file. Raise error message
 System.err.println(
 "WARNING: Error during Users Config file
retrieval");
 System.err.println("Exception: " + ie);
 }
 }
 /**
 * Authenticate the passed-in user's credentials.
 * A more complex class could make calls
 * to any external users directory.
 *

Derby Developer's Guide

107

 * @param userName The user's name
 * @param userPassword The user's password
 * @param databaseName The database
 * @param infoAdditional jdbc connection info.
 * @exception SQLException on failure
 */
 public boolean authenticateUser(String userName,
 String userPassword,
 String databaseName,
 Properties info)
 throws SQLException
 {
 /* Specific Authentication scheme logic.
 If user has been authenticated, then simply return.
 If user name and/or password are invalid,
 then raise the appropriate exception.

 This example allows only users defined in the
 users config properties object.

 Check if the passed-in user has been defined for the system.
 We expect to find and match the property corresponding to
 the credentials passed in. */
 if (userName == null)
 // We do not tolerate 'guest' user for now.
 return false;
 //
 // Check if user exists in our users config (file)
 // properties set.
 // If we did not find the user in the users config set, then
 // try to find if the user is defined as a System property.
 //
 String actualUserPassword;
 actualUserPassword = usersConfig.getProperty(userName);
 if (actualUserPassword == null)
 actualUserPassword = System.getProperty(userName);
 if (actualUserPassword == null)
 // no such passed-in user found
 return false;
 // check if the password matches
 if (!actualUserPassword.equals(userPassword))
 return false;
 // Now, check if the user is a valid user of the database
 if (databaseName != null)
 {
 /* if database users restriction lists present, then check
 if there is one for this database and if so,
 check if the user is a valid one of that database.
 For this example, the only user we authorize in database
 DarkSide is user 'DarthVader'. This is the only database
 users restriction list we have for this example.
 We authorize any valid (login) user to access the
 OTHER databases in the system.
 Note that database users ACLs could be set in the same
 properties file or a separate one and implemented as you
 wish. */
 //
 if (databaseName.equals("DarkSide")) {
 // check if user is a valid one.
 if (!userName.equals("DarthVader"))
 // This user is not a valid one of the passed-in
 return false;
 }
 }
 // The user is a valid one in this database
 return true;
 }
}

Derby Developer's Guide

108

BUILTIN Derby users

Derby provides a simple repository of user names and passwords using the BUILTIN
authentication mechanism.

> Important: Derby's BUILTIN authentication mechanism is suitable only for
development and testing purposes, and it will no longer be documented in future
releases. It is strongly recommended that production systems rely on NATIVE
authentication, an external directory service such as LDAP, or a user-defined class for
authentication. It is also strongly recommended that production systems protect network
connections with SSL/TLS.

To use the BUILTIN repository, set derby.authentication.provider to BUILTIN.

derby.authentication.provider=BUILTIN

You can create user names and passwords for Derby users by specifying them with the
derby.user.UserName property.

Note: These user names are case-sensitive for user authentication. User names are
SQL92Identifiers. Delimited identifiers are allowed:

derby.user."FRed"=java

Note: For passwords, it is a good idea not to use words that would be easily guessed,
such as a login name or simple words or numbers. A password should be a mix of
numbers and upper- and lowercase letters.
Database-level properties

When you create users with database-level properties, those users are available to the
specified database only.

You set the property once for each user. To delete a user, set that user's password to
null.

-- adding the user sa with password 'derbypass'
CALL SYSCS_UTIL.SYSCS_SET_DATABASE_PROPERTY(
 'derby.user.sa', 'derbypass')
-- adding the user mary with password 'little7xylamb'
CALL SYSCS_UTIL.SYSCS_SET_DATABASE_PROPERTY(
 'derby.user.mary', 'little7xylamb')
-- removing mary by setting password to null
CALL SYSCS_UTIL.SYSCS_SET_DATABASE_PROPERTY(
 'derby.user.mary', null)

System-level properties

When you create users with system-level properties, those users are available to all
databases in the system.

You set the value of this system-wide property once for each user, so you can set it
several times. To delete a user, remove that user from the file.

You can define this property in the usual ways -- typically in the derby.properties file. For
more information about setting properties, see Working with Derby properties.

Here is a sample excerpt from the derby.properties file:

Users definition
#
derby.user.sa=derbypass
derby.user.mary=little7xylamb

List of user authentication properties

Derby Developer's Guide

109

The following table summarizes the Derby properties related to user authentication.

For details on these properties, see the Derby Reference Manual.

Table 12. User authentication properties

Property Name Use

derby.authentication.provider Specifies the kind of user
authentication to use.

derby.authentication.builtin.algorithmSpecifies the message digest
algorithm to use to protect the
passwords that are stored in the
database when using NATIVE or
BUILTIN authentication.

derby.authentication.builtin.iterationsSpecifies the number of times to apply
the hash function specified by the
message digest algorithm.

derby.authentication.builtin.saltLengthSpecifies the number of bytes of
random salt that will be added to users'
credentials before hashing them.

derby.authentication.native.passwordLifetimeMillisSpecifies the number of milliseconds
that a password used for NATIVE
authentication remans valid.

derby.authentication.native.passwordLifetimeThresholdSpecifies the threshold that triggers
a password-expiration warning for
NATIVE authentication.

derby.connection.requireAuthenticationTurns on user authentication. If
NATIVE authentication is used, Derby
behaves as if this property is set to
TRUE.

derby.authentication.server For LDAP user authentication,
specifies the location of the server.

derby.authentication.ldap.searchAuthDN,
derby.authentication.ldap.searchAuthPW,
derby.authentication.ldap.searchFilter,
and derby.authentication.ldap.searchBase

Configures the way that DN searches
are performed.

derby.user.UserName Creates a user name and password for
the BUILTIN user repository in Derby.

java.naming.* JNDI properties. See Appendix A in
the JNDI API reference (http://
download.oracle.com/javase/1.5.0/
docs/guide/jndi/spec/jn
di/properties.html) for more information
about these properties.

> Important: Derby's BUILTIN authentication mechanism is suitable only for
development and testing purposes, and it will no longer be documented in future
releases. It is strongly recommended that production systems rely on NATIVE
authentication, an external directory service such as LDAP, or a user-defined class for
authentication. It is also strongly recommended that production systems protect network
connections with SSL/TLS.

http://download.oracle.com/javase/1.5.0/docs/guide/jndi/spec/jndi/properties.html
http://download.oracle.com/javase/1.5.0/docs/guide/jndi/spec/jndi/properties.html
http://download.oracle.com/javase/1.5.0/docs/guide/jndi/spec/jndi/properties.html
http://download.oracle.com/javase/1.5.0/docs/guide/jndi/spec/jndi/properties.html

Derby Developer's Guide

110

Programming applications for Derby user authentication

This section discusses programming user authentication into applications for use with
Derby.

Programming the application to provide the user and password

In the DriverManager.getConnection call, an application can provide the user name and
password in the following ways.

• Separately as arguments to the following signature of the method:
getConnection(String url, String user, String password)

Connection conn = DriverManager.getConnection(
 "jdbc:derby:myDB", "mary", "little7xylamb");

• As attributes to the database connection URL

Connection conn = DriverManager.getConnection(
 "jdbc:derby:myDB;user=mary;password=little7xylamb");

• By setting the user and password properties in a Properties object as with other
connection URL attributes

Properties p = new Properties();
p.put("user", "mary");
p.put("password", "little7xylamb");
Connection conn = DriverManager.getConnection(
 "jdbc:derby:myDB", p);

Note: The password is not encrypted. When you are using Derby in the context of a
server framework, the framework should be responsible for encrypting the password
across the network. If your framework does not encrypt the password, it is strongly
recommended that you protect network connections with SSL/TLS.

For information about the treatment of user names within the Derby system, see Users
and authorization identifiers.

Login failure exceptions with user authentication

If user authentication is turned on and a valid user name and password are not provided,
SQLException 08004 is raised.

ERROR 08004: Connection refused : Invalid authentication.

Users and authorization identifiers
User names within the Derby system are known as authorization identifiers. The
authorization identifier is a string that represents the name of the user, if one was
provided in the connection request.

For example, the built-in function CURRENT_USER returns the authorization identifier for
the current user.

Once the authorization identifier is passed to the Derby system, it becomes an
SQL92Identifier. SQL92Identifiers-the kind of identifiers that represent database
objects such as tables and columns-are case-insensitive (they are converted to all
caps) unless delimited with double quotes, are limited to 128 characters, and have other
limitations.

User names must be valid authorization identifiers even if user authentication is turned
off, and even if all users are allowed access to all databases.

For more information about SQL92Identifiers, see the Derby Reference Manual.

Derby Developer's Guide

111

Authorization identifiers, user authentication, and user authorization

When working with both user authentication and user authorization, you need to
understand how user names are treated by each system.

If an external authentication system is used, the conversion of the user's name to an
authorization identifier does not happen until after authentication has occurred but before
user authorization. Imagine, for example, a user named Fred.

• Within the user authentication system, Fred is known as FRed. Your external user
authorization service is case-sensitive, so Fred must always type his name that
way.

Connection conn = DriverManager.getConnection(
 "jdbc:derby:myDB", "FRed", "flintstone");

• Within the Derby user authorization system, Fred becomes a case-insensitive
authorization identifier. Fred is known as FRED.

Let's take a second example, where Fred has a slightly different name within the user
authentication system.

• Within the user authentication system, Fred is known as Fred!. You must now put
double quotes around the name, because it is not a valid SQL92Identifier.
(Derby knows to remove the double quotes when passing the name to the external
authentication system.)

Connection conn = DriverManager.getConnection(
 "jdbc:derby:myDB", "\"Fred!\"", "flintstone");

• Within the Derby user authorization system, Fred becomes a case-sensitive
authorization identifier. Fred is known as Fred!.

As shown in the first example, your external authentication system may be
case-sensitive, whereas the authorization identifier within Derby may not be. If your
authentication system allows two distinct users whose names differ by case, delimit all
user names within the connection request to make all user names case-sensitive within
the Derby system. In addition, you must also delimit user names that do not conform to
SQL92Identifier rules with double quotes.

Database owner

The term database owner refers to the current authorization identifier when the database
is created, that is, the user creating the database. If you use NATIVE authentication, or
if you manually enable or plan to enable SQL authorization, controlling the identity of the
database owner becomes important.

When a database is created, the database owner of that database gets implicitly
set to the authorization identifier used in the connect operation which creates the
database, for example by supplying the URL attribute "user". Note that this applies
even if authentication is not (yet) enabled. In SQL, the built-in functions USER and the
equivalent CURRENT_USER return the current authorization identifier.

If the database is created without supplying a user (only possible if authentication is not
enabled), the database owner gets set to the default authorization identifier, "APP", which
is also the name of the default schema, see the section "SET SCHEMA statement" in the
Derby Reference Manual.

The database owner has automatic SQL level permissions when SQL authorization is
enabled, see more about this in User authorizations.

Derby Developer's Guide

112

To further enhance security, when bothauthentication and SQL authorization are enabled
for a database, Derby restricts some special powers to the database owner: only the
database owner is allowed to shut down the database, to encrypt or reencrypt the
database or to perform a full upgrade of it. These powers can not be delegated.

Attention: There is currently no way of changing the database owner once the database
is created. This means that if you plan to run with SQL authorization enabled, you should
make sure to create the database as the user you want to be the owner.

User names and schemas

User names can affect a user's default schema.

For information about user names and schemas, see "SET SCHEMA statement" in the
Derby Reference Manual.

Exceptions when using authorization identifiers

Specifying an invalid authorization identifier in a database user authorization property
raises an exception. Specifying an invalid authorization identifier in a connection request
raises an exception.

User authorizations
When you specify user authorizations, Derby verifies that a user has been granted
permission to access a system, database, object, or SQL action.

There are two types of user authorization in Derby, connection authorization and SQL
authorization:

• Connection authorization specifies the coarse-grained access that users have to
connect to a system or database.

• SQL authorization controls the fine-grained permissions that users have on
database objects or for SQL actions.

You can set the user authorization properties in Derby as system-level properties or
database-level properties.

Set system-level user authorizations when you are developing applications, or when
you want to specify a secure default authorization for all users to connect to all of the
databases in the system.

Attention: If you use NATIVE authentication, fine-grained SQL authorization is
automatically enabled, and by default, all users enjoy full coarse-grained access to the
database. In this situation, fine-grained SQL authorization cannot be turned off. However,
you can still adjust coarse-grained access to the database.

User authorization properties

There are several properties that you can set to control database-level user
authorizations. Some of the properties are general properties that set the access mode
for all users. Other properties are user specific properties that set the type of access for
specific user IDs.

The following properties affect authorization:
• The derby.database.sqlAuthorization property enables SQL

standard authorization. Use the derby.database.sqlAuthorization
property to specify if object owners can grant and revoke permission for
users to perform SQL actions on database objects. The default setting for
the derby.database.sqlAuthorization property is FALSE. When the

Derby Developer's Guide

113

derby.database.sqlAuthorization property is set to TRUE, object owners
can use the GRANT and REVOKE SQL statements to set the user permissions for
specific database objects or for specific SQL actions.

• The derby.database.defaultConnectionMode property controls the default
coarse-grained access mode. This property specifies the default connection
access that users have when they connect to the database. If you do not explicitly
set the derby.database.defaultConnectionMode property, the default
coarse-grained connection authorization for a database is fullAccess, which is
read-write access.

• The derby.database.fullAccessUsers and
derby.database.readOnlyAccessUsers properties are additional
coarse-grained access properties. These properties can be used to specify the user
IDs that have read-write access and read-only access to a database.

If you do not specify the coarse-grained user authorizations for a specific user ID, that
user ID inherits the database's default coarse-grained connection authorization.

Tip: If you set the derby.database.defaultConnectionMode property to
noAccess or readOnlyAccess, you should allow at least one user read-write access.
Otherwise, depending on the default connection authorization you specify, you will
configure the database so that it cannot be accessed or changed.

How user authorization properties work together
The derby.database.defaultConnectionMode property and the
derby.database.sqlAuthorization property work together. The default settings
for these properties allow anyone to access and drop the database objects that you
create. You can change the default access mode by specifying different settings for these
properties.

• When the derby.database.sqlAuthorization property is FALSE, the
ability to read from or write to database objects is determined by the setting
for the derby.database.defaultConnectionMode property. If the
derby.database.defaultConnectionMode property is set to readOnlyAccess,
users can access all of the database objects but they cannot update or drop the
objects.

• When the derby.database.sqlAuthorization property is TRUE, the ability
to read from or write to database objects is further restricted to the owner of the
database objects. The owner must grant permission for others to access the
database objects. No one but the owner of an object or the database owner can
drop the object.

• The coarse-grained access mode specified for the
derby.database.defaultConnectionMode property supplements the
permissions that are granted by the owner of a database object. For example, if
a user is granted INSERT privileges on a table but the user only has read-only
connection authorization, the user cannot insert data into the table.

Changes to connection authorization settings

Connection authorization properties are fixed for the duration of a connection. If you
change the connection authorization properties during a connection, those changes are
not in affect until you establish a new connection.

Setting the SQL standard authorization mode

If you use NATIVE authentication, SQL standard authorization is automatically enabled.
Otherwise, use the derby.database.sqlAuthorization property to enable SQL
standard authorization.

Derby Developer's Guide

114

If SQL standard authorization mode is enabled, object owners can grant and revoke
permission for other users to perform actions on database objects. SQL standard
authorization mode also controls users' ability to create, set, and drop roles.

The valid settings for the derby.database.sqlAuthorization property are:

• TRUE
• FALSE

The default setting for the derby.database.sqlAuthorization property is FALSE,
unless NATIVE authentication is enabled.

The derby.database.sqlAuthorization property is usable only if the property
derby.connection.requireAuthentication is also set to true, since SQL
authorization is of no value unless authentication is also enabled. (With NATIVE
authentication, both are enabled automatically.)

After you set the derby.database.sqlAuthorization property to TRUE, you
cannot set the property back to FALSE.

You can set the derby.database.sqlAuthorization property as a system property
or as a database property. If you set this property as a system property before you create
the databases, all new databases will automatically have SQL authorization enabled. If
the databases already exist, you can set this property only as a database property.

To enable SQL standard authorization for the entire system, set the
derby.database.sqlAuthorization property as a system property:

derby.database.sqlAuthorization=true

To enable SQL standard authorization for a specific database, set the
derby.database.sqlAuthorization property as a database property:

CALL SYSCS_UTIL.SYSCS_SET_DATABASE_PROPERTY(
 'derby.database.sqlAuthorization',
 'true')

Using SQL standard authorization

When the SQL standard authorization mode is enabled, object owners can use the
GRANT and REVOKE SQL statements to set the user privileges for specific database
objects or for specific SQL actions. They can also use roles to administer privileges.

The SQL standard authorization mode is a SQL2003 compatible access control
system. You enable the SQL standard authorization mode by setting the
derby.database.sqlAuthorization property to TRUE.

While Derby has a simpler database access mode which can be set to provide users with
full, read-only, or no access authorization, this simpler access mode is less appropriate
for most client-server database configurations. When users or applications issue SQL
statements directly against the database, the Derby SQL authorization mode provides a
more precise mechanism to limit the actions that users can take on the database.

The GRANT statement is used to grant specific privileges to users or to roles, or to grant
roles to users or to roles. The REVOKE statement is used to revoke privileges and role
grants. The grant and revoke privileges are:

• DELETE
• EXECUTE
• INSERT
• SELECT
• REFERENCES
• TRIGGER
• UPDATE

Derby Developer's Guide

115

When a table, view, function, or procedure is created, the person that creates the object
is referred to as the owner of the object. Only the object owner and the database owner
have full privileges on the object. No other users have privileges on the object until the
object owner grants privileges to them.

Another way of saying that privileges on objects belong to the owner is to call them
definer rights, as opposed to invoker rights. This is the terminology used by the SQL
standard.

See the Derby Reference Manual for more information on the GRANT and REVOKE
statements.

Public and individual user privileges

The object owner can grant and revoke privileges for specific users, for specific roles,
or for all users. The keyword PUBLIC is used to specify all users. When PUBLIC is
specified, the privileges affect all current and future users. The privileges granted and
revoked to PUBLIC and to individual users or roles are independent. For example, a
SELECT privilege on table t is granted to both PUBLIC and to the user harry. The
SELECT privilege is later revoked from user harry, but user harry has access to table
t through the PUBLIC privilege.

Exception: When you create a view, trigger, or constraint, Derby first checks to
determine if you have the required privileges at the user level. If you have the user-level
privileges, the object is created and is dependent on that user-level privilege. If you
do not have the required privileges at the user-level, Derby checks to determine if
you have the required privileges at the PUBLIC level. If you have the PUBLIC level
privileges, the object is created and is dependent on that PUBLIC level privilege. After
the object is created, if the privilege on which the object depends is revoked, the object is
automatically dropped. Derby does not try to determine if you have other privileges that
can replace the privileges that are being revoked.
Example 1

User zhi creates table t1 and grants SELECT privileges to user harry on table
t1. User zhi grants SELECT privileges to PUBLIC on table t1. User harry creates
view v1 with the statement SELECT * from zhi.t1. The view depends on the
user-level privilege that user harry has on t1. Subsequently, user zhi revokes
SELECT privileges from user harry on table t1. As a result, the view harry.v1 is
dropped.

Example 2
User anita creates table t1 and grants SELECT privileges to PUBLIC. User harry
creates view v1 with the statement SELECT * from anita.t1. The view depends
on the PUBLIC level privilege that user harry has on t1, since user harry does
not have user-level privileges on table t1 when he creates the view harry.v1.
Subsequently, user anita grants SELECT privileges to user harry on table
anita.t1. The view harry.v1 continues to depend on the PUBLIC level privilege
that user harry has on t1. When user anita revokes SELECT privileges from
PUBLIC on table t1, the view harry.v1 is dropped.

See Privileges on views, triggers, and constraints for more information.

Privileges on views, triggers, and constraints

Views, triggers, and constraints operate with the privileges of the owner of the view,
trigger, or constraint.

For example, suppose that user anita wants to create a view using the following
statement:

CREATE VIEW s.v(vc1,vc2,vc3)
 AS SELECT t1.c1,t1.c2,f(t1.c3)
 FROM t1 JOIN t2 ON t1.c1 = t2.c1

Derby Developer's Guide

116

 WHERE t2.c2 = 5

User anita needs the following privileges to create the view:

• Ownership of the schema s, so that she can create something in the schema
• Ownership of the table t1, so that she can allow others to see columns in the table
• SELECT privilege on column t2.c1 and column t2.c2
• EXECUTE privilege on function f

When the view is created, only user anita has the SELECT privilege on it. User anita
can grant the SELECT privilege on any or all of the columns of view s.v to anyone, even
to users that do not have the SELECT privilege on t1 or t2, or the EXECUTE privilege
on f. User anita then grants the SELECT privilege on view s.v to user harry. When
user harry issues a SELECT statement on the view s.v, Derby checks to determine if
user harry has the SELECT privilege on view s.v. Derby does not check to determine if
user harry has the SELECT privilege on t1 or t2, or the EXECUTE privilege on f.

Privileges on triggers and constraints work the same way as privileges on views. When
a view, trigger, or constraint is created, Derby checks that the owner has the required
privileges. Other users do not need to have those privileges to perform actions on a view,
trigger, or constraint.

If the required privileges are revoked from the owner of a view, trigger, or constraint, the
object is dropped as part of the REVOKE statement.

Another way of saying that privileges on objects belong to the owner is to call them
definer rights, as opposed to invoker rights. This is the terminology used by the SQL
standard.

Using SQL roles

When the SQL standard authorization mode is enabled, object owners can use the SQL
roles facility to administer privileges.

SQL roles are useful for administering privileges when a database has many users.
Roles provide a more powerful way to grant privileges to users' sessions than to grant
privileges to each user of the database, which easily becomes tedious and error-prone
when many users are involved. Roles do not in and of themselves give better database
security, but used correctly, they facilitate better security. Only the database owner can
create, grant, revoke, and drop roles. However, object owners can grant and revoke
privileges for those objects to and from roles, as well as to and from individual users and
PUBLIC (all users).

Note: Derby implements a subset of SQL roles. The fact that only the database owner
can create, grant, revoke, and drop roles is an implementation restriction.

Creating and granting roles

Roles are available only when SQL authorization mode is enabled (that is, when the
property derby.database.sqlAuthorization is set to TRUE).

Old databases must be (hard) upgraded to at least Release 10.5 before roles can be
used.

If SQL authorization mode is enabled, the database owner can use the CREATE ROLE
statement to create roles. The database owner can then use the GRANT statement to
grant a role to one or more users, to PUBLIC, or to another role.

A role A contains another role B if role B is granted to role A, or is contained in a role C
granted to role A. Privileges granted to a contained role are inherited by the containing
roles. So the set of privileges identified by role A is the union of the privileges granted to
role A and the privileges granted to any contained roles of role A.

For example, suppose the database owner issued the following statements:

Derby Developer's Guide

117

 create role reader;
 create role updater;
 create role taskLeaderA;
 create role taskLeaderB;
 create role projectLeader;
 grant reader to updater;
 grant updater to taskLeaderA;
 grant updater to taskLeaderB;
 grant taskLeaderA to projectLeader;
 grant taskLeaderB to projectLeader;

The roles would then have the following containment relationships:

• The projectLeader role contains the taskLeaderA and taskLeaderB roles.
• The taskLeaderA and taskLeaderB roles both contain the updater role.
• The updater role contains the reader role.

In this case, the projectLeader role contains all the other roles and has all their
privileges. If the database owner then revokes updater from taskLeaderA,
projectLeader still contains that role through taskLeaderB.

The SYSCS_DIAG.CONTAINED_ROLES diagnostic table function can be used to
determine the set of contained roles for a role.

Cycles are not permitted in role grants. That is, if a role contains another role, you cannot
grant the container role to the contained role. For example, the following statement would
not be permitted:

grant projectLeader to updater;

Setting roles

When a user first connects to Derby, no role is set, and the CURRENT_ROLE function
returns null. During a session, the user can call the SET ROLE statement to set the
current role for that session. The role can be any role that has been granted to the
session's current user or to PUBLIC. To unset the current role, call SET ROLE with an
argument of NONE. At any time during a session, there is always a current user, but
there is a current role only if SET ROLE has been called with an argument other than
NONE. If a current role is not set, the session has only the privileges granted to the user
directly or to PUBLIC.

For example, if the database owner created and granted the roles shown in the previous
session, a user would have to issue a SET ROLE statement to have them take effect.
Suppose a user issued the following statement:

SET ROLE taskLeaderA;

Assuming that the database owner had granted the taskLeaderA role to the user, the
user would be allowed to set the role as shown and would have all the privileges granted
to the taskLeaderA, updater, and reader roles.

To retrieve the current role identifier in SQL, call the CURRENT_ROLE function.

Within stored procedures and functions that contain SQL, the current role depends on
whether the routine executes with invoker's rights or with definer's rights, as specified
by the EXTERNAL SECURITY clause in the CREATE FUNCTION or CREATE
PROCEDURE statements in the Derby Reference Manual. During execution, the current
user and current role are kept on an authorization stack which is pushed during a stored
routine call.

Within routines that execute with invoker's rights, the following applies: initially, inside a
nested connection, the current role is set to that of the calling context. So is the current
user. Such routines may set any role granted to the invoker or to PUBLIC.

Derby Developer's Guide

118

Within routines that execute with definer's rights, the following applies: initially, inside a
nested connection, the current role is NULL, and the current user is that of the definer.
Such routines may set any role granted to the definer or to PUBLIC.

Upon return from the stored procedure or function, the authorization stack is popped,
so the current role of the calling context is not affected by any setting of the role inside
the called procedure or function. If the stored procedure opens more than one nested
connection, these all share the same (stacked) current role (and user) state. Any dynamic
result set passed out of a stored procedure sees the current role (or user) of the nested
context.

Granting privileges to roles

Once a role has been created, both the database owner and the object owner can
grant privileges on tables and routines to that role. You can grant the same privileges
to roles that you can grant to users. Granting a privilege to a role implicitly grants
privileges to all roles that contain that role. For example, if you grant delete privileges
on a table to updater, every user in the updater, taskLeaderA, taskLeaderB,
and projectLeader role will also have delete privileges on that table, but users in the
reader role will not.

Revoking privileges from a role

Either the database owner or the object owner can revoke privileges from a role.

When a privilege is revoked from a role A, that privilege is no longer held by role A,
unless A otherwise inherits that privilege from a contained role.

If a privilege to an object is revoked from role A, a session will lose that privilege if it has
a current role set to A or a role that contains A, unless one or more of the following is
true:

• The privilege is granted directly to the current user
• The privilege is granted to PUBLIC
• The privilege is also granted to another role B in the current role's set of contained

roles
• The session's current user is the database owner or the object owner

Revoking roles

The database owner can use the REVOKE statement to revoke a role from a user, from
PUBLIC, or from another role.

When a role is revoked from a user, that session can no longer keep that role, nor can it
take on that role in a SET ROLE statement, unless the role is also granted to PUBLIC.
If that role is the current role of an existing session, the current privileges of the session
lose any extra privileges obtained through setting that role.

The default drop behavior is CASCADE. Therefore, all persistent objects (constraints,
views and triggers) that rely on that role are dropped. Although there may be other
ways of fulfilling that privilege at the time of the revoke, any dependent objects are still
dropped. This is an implementation limitation. Any prepared statement that is potentially
affected will be checked again on the next execute. A result set that depends on a role
will remain open even if that role is revoked from a user.

When a role is revoked from a role, the default drop behavior is also CASCADE.
Suppose you revoke role A from role B. Revoking the role will have the effect of revoking
all additional applicable privileges obtained through A from B. Roles that contain B will
also lose those privileges, unless A is still contained in some other role C granted to B,
or the privileges come through some other role. See Creating and granting roles for an
example.

Dropping roles

Derby Developer's Guide

119

Only the database owner can drop a role. To drop a role, use the DROP ROLE
statement.

Dropping a role effectively revokes all grants of this role to users and other roles.

Further information
For details on the following statements, functions, and system table related to roles, see
the Derby Reference Manual.

• CREATE ROLE statement
• SET ROLE statement
• DROP ROLE statement
• GRANT statement
• REVOKE statement
• CURRENT_ROLE function
• SYSCS_DIAG.CONTAINED_ROLES table function
• SYSROLES system table

Upgrading an old database to use SQL standard authorization

An old, unprotected database can be shielded with authentication and SQL authorization
later on.

Upgrading Authentication and Authorization

To protect a single-user database and convert it to a shared, multi-user database, simply
enable authentication and SQL authorization. To do this, first turn on user authentication
as described in the section on Working with user authentication. Make sure that you
supply login credentials for the database owner. In most single-user databases, the
database owner is APP. However, the database owner could be some other user if the
original database creation URL specified a user name--see the section on Database
owner. If you are unsure about who owns the database, run the following query:

select authorizationid from sys.sysschemas where schemaname = 'SYS'

After enabling user authentication, turn on SQL authorization. To do this, connect to the
database as the database owner and issue the following command:

call syscs_util.syscs_set_database_property(
 'derby.database.sqlAuthorization', 'true')

Now shutdown the database to activate the new value of
derby.database.sqlAuthorization. The next time you boot the database, it will be
protected by authentication and SQL authorization.

Behavior of Upgraded Databases

You will notice the following behavior changes in your upgraded database:

• Data - Users can access data in their own schemas. However, users cannot access
data in schemas owned by other users. In particular, other users cannot access
data in schemas belonging to the database owner. The database owner may need
to GRANT access to that data.

• Database Maintenance - In a single-user database, anyone can run maintenance
procedures to backup/restore and import/export data. In the upgraded, multi-user
database, only the database owner can perform these sensitive operations.

SQL standard authorization exceptions

SQL exceptions are returned when errors occur with SQL authorization.

The following errors can result from the CREATE ROLE statement:

• You cannot create a role if you are not the database owner. An attempt to do so
raises the SQLException 4251A.

Derby Developer's Guide

120

• You cannot create a role if a role with that name already exists. An attempt to do so
raises the SQLException X0Y68.

• You cannot create a role name if there is a user by that name. An attempt to create
a role name that conflicts with an existing user name raises the SQLException
X0Y68.

• A role name cannot start with the prefix SYS (after case normalization). Use of the
prefix SYS raises the SQLException 4293A.

• You cannot create a role with the name PUBLIC (after case normalization). PUBLIC
is a reserved authorization identifier. An attempt to create a role with the name
PUBLIC raises SQLException 4251B.

The following errors can result from the DROP ROLE statement:

• You cannot drop a role if you are not the database owner. An attempt to do so
raises the SQLException 4251A.

• You cannot drop a role that does not exist. An attempt to do so raises the
SQLException 0P000.

The following errors can result from the SET ROLE statement:

• You cannot set a role if you are not the database owner. An attempt to do so raises
the SQLException 4251A.

• You cannot set a role that does not exist. An attempt to do so raises the
SQLException 0P000.

• You cannot set a role when a transaction is in progress. An attempt to do so raises
the SQLException 25001.

• You cannot use NONE or a malformed identifier as a string or ? argument to SET
ROLE. An attempt to do so raises the SQLException XCXA0.

The following errors can result from the GRANT statement:

• You cannot grant a role if you are not the database owner. An attempt to do so
raises the SQLException 4251A.

• You cannot grant a role that does not exist. An attempt to do so raises the
SQLException 0P000.

• You cannot grant the role "PUBLIC". An attempt to do so raises the SQLException
4251B.

• You cannot grant a role if doing so would create a circularity by granting a container
role to a contained role. An attempt to do so raises the SQLException 4251C.

The following errors can result from the REVOKE statement:

• You cannot revoke a role if you are not the database owner. An attempt to do so
raises the SQLException 4251A.

• You cannot revoke a role that does not exist. An attempt to do so raises the
SQLException 0P000.

• You cannot revoke the role "PUBLIC". An attempt to do so raises the SQLException
4251B.

For all statements, an attempt to specify an identifier argument more than 128 characters
long raises the SQLException 42622.

Setting the default connection access mode

You can use the derby.database.defaultConnectionMode property to specify the
default type of access that users have when they connect to the database.

If you use SQL authorization (the default with NATIVE authentication), you typically do
not use this property.

The valid settings for the derby.database.defaultConnectionMode property are:

Derby Developer's Guide

121

• noAccess
• readOnlyAccess
• fullAccess

If you do not specify a setting for the derby.database.defaultConnectionMode
property, the default access setting is fullAccess.

To set the default connection access mode, specify the access in a CALL statement. For
example:

To specify read-write access for the system administrator userID sa and the read-only
as the default access for anyone else who connects to the database, issue these CALL
statements:

CALL SYSCS_UTIL.SYSCS_SET_DATABASE_PROPERTY(
 'derby.database.fullAccessUsers', 'sa')

CALL SYSCS_UTIL.SYSCS_SET_DATABASE_PROPERTY(
 'derby.database.defaultConnectionMode',
 'readOnlyAccess')

To specify read-write access for the user ID Fred and no access for other users, issue
these CALL statements:

CALL SYSCS_UTIL.SYSCS_SET_DATABASE_PROPERTY(
 'derby.database.fullAccessUsers', 'Fred')

CALL SYSCS_UTIL.SYSCS_SET_DATABASE_PROPERTY(
 'derby.database.defaultConnectionMode',
 'noAccess')

Setting access for individual users

You can use the derby.database.fullAccessUsers and
derby.database.readOnlyAccessUsers properties to specify the user IDs that
have read-write access and read-only access to a database.

If you use SQL authorization (the default with NATIVE authentication), you typically do
not use these properties.

You can specify multiple user IDs by using a comma-separated list, with no spaces
between the comma and the next user ID.

To set the user authorizations for individual users, specify the access in a CALL
statement. For example:

To specify read-write access for the system administrator user ID sa and for the user ID
maria, issue this CALL statement:

CALL SYSCS_UTIL.SYSCS_SET_DATABASE_PROPERTY(
 'derby.database.fullAccessUsers', 'sa,maria')

To specify read-only access for a guest user ID and for Fred, issue this CALL statement:

CALL SYSCS_UTIL.SYSCS_SET_DATABASE_PROPERTY(
 'derby.database.readOnlyAccessUsers', 'guest,Fred')

To specify read-write access for the user ID "Elena!", use delimited identifiers for the user
ID. For example:

CALL SYSCS_UTIL.SYSCS_SET_DATABASE_PROPERTY(
 'derby.database.fullAccessUsers', '"Elena!"')

Derby Developer's Guide

122

Read-only and full access permissions

The actions that users can perform on a Derby database are determined by the type of
access that users have to the database objects.

The following table lists the actions that users can perform based on the type of access
that a user is granted on a database. These actions apply to regular databases, source
databases, and target databases.
Table 13. Actions that are authorized by type of access

Action Read-only access Full access

Executing SELECT statements Yes Yes

Reading database properties Yes Yes

Loading database classes from jar files Yes Yes

Executing INSERT, UPDATE, or DELETE
statements

No Yes

Executing DDL statements No Yes

Adding or replacing jar files No Yes

Setting database properties No Yes

User authorization exceptions

SQL exceptions are returned when errors occur with user authorizations.

Derby validates the database properties when you set the properties. An exception is
returned if you specify an invalid value when you set these properties.

If a user attempts to connect to a database but is not authorized to connect to that
database, the SQLException 04501 is returned.

If a user with read-only access attempts to write to a database, the SQLException 08004
- connection refused is returned.

Encrypting databases on disk
Derby provides a way for you to encrypt your data on disk.

Typically, database systems encrypt and decrypt data in transport over the network,
using industry-standard systems. This system works well for client/server databases;
the server is assumed to be in a trusted, safe environment, managed by a system
administrator. In addition, the recipient of the data is trusted and should be capable of
protecting the data. The only risk comes when transporting data over the wire, and data
encryption happens during network transport only.

However, Derby databases are platform-independent files that are designed to be easily
shared in a number of ways, including transport over the Internet. Recipients of the data
might not know how, or might not have the means, to properly protect the data.

This data encryption feature provides the ability to store user data in an encrypted form.
The user who boots the database must provide a boot password.

Note: Jar files stored in the database are not encrypted.

Requirements for Derby encryption

Derby supports disk encryption and requires an encryption provider. An encryption
provider implements the Java cryptography concepts. The JRE for Java SE 1.4 and

Derby Developer's Guide

123

higher includes Java Cryptographic Extensions (JCE, part of the Java Cryptography
Architecture) and one or more default encryption providers. For more information, see the
Java Cryptography Architecture (JCA) Reference Guide.

Working with encryption

This section describes using encryption in Derby.

Encrypting databases on creation

You configure a Derby database for encryption when you create the database by
specifying the dataEncryption=true attribute on the connection URL.

The Java Runtime Environment (JRE) determines the default encryption provider, as
follows:

• For J2SE/J2EE 1.4 or higher, the JRE's provider is the default.
• If your environment for some reason does not include a provider, it must be

specified.

You have the option of specifying an alternate encryption provider. The default encryption
algorithm is DES, but you have the option of specifying an alternate algorithm as well.
See Specifying an alternate encryption provider

Encrypting an existing unencrypted database

You can encrypt an unencrypted Derby database by specifying attributes on the
connection URL when you boot the database. The attributes that you specify depend on
how you want the database encrypted.

• If the database is configured with log archival, you must disable log archival and
perform a shutdown before you can encrypt the database.

• If there are any global transaction that are in the prepared state after recovery, the
database cannot be encrypted.

When you encrypt an existing, unencrypted database, you can specify whether the
database should be encrypted using a boot password or an external encryption key. You
can also specify the encryptionProvider attribute and the encryptionAlgorithm attribute on
the connection URL. The database is configure with the specified encryption attributes
and all of the existing data in the database is encrypted.

Encrypting a database is a time consuming process because it involves encrypting all
of the existing data in the database. If the process is interrupted before completion, all
the changes are rolled back the next time that the database is booted. If the interruption
occurs immediately after the database is encrypted but before the connection is returned
to the application, you might not be able to boot the database without the boot password
or external encryption key. In these rare circumstances, you should try to boot the
database with the boot password or the external encryption key.

Recommendation: Ensure that you have enough free disk space before you encrypt
a database. In addition to the disk space required for the current size of the database,
temporary disk space is required to store the old version of the data to restore the
database back to it's original state if the encryption is interrupted or returns errors. All of
the temporary disk space is released back to the operating system after the database is
encrypted.

To encrypt an existing unencrypted database:

1. Specify the dataEncryption=true attribute and either the encryptionKey attribute or
the bootPassword attribute in a URL and boot the database.

For example, to encrypt the salesdb database with the boot password
abc1234xyz, specify the following attributes in the URL:

http://download.oracle.com/javase/6/docs/technotes/guides/security/crypto/CryptoSpec.html

Derby Developer's Guide

124

jdbc:derby:salesdb;dataEncryption=true;bootPassword=abc1234xyz

If authentication and SQL authorization are both enabled, the credentials of the
database owner must be supplied as well, since encryption is a restricted operation.

If you disabled log archival before you encrypted the database, create a new
backup of the database after the database is encrypted. For more information,
see the section "Backing up and restoring databases" in the Derby Server and
Administration Guide, particularly "Roll-forward recovery".

Creating the boot password

When you encrypt a database you must also specify a boot password, which is an
alpha-numeric string used to generate the encryption key.

The length of the encryption key depends on the algorithm used:

• AES (128, 192, and 256 bits)
• DES (the default) (56 bits)
• DESede (168 bits)
• All other algorithms (128 bits)

Note: The boot password should have at least as many characters as number of bytes
in the encryption key (56 bits=8 bytes, 168 bits=24 bytes, 128 bits=16 bytes). The
minimum number of characters for the boot password allowed by Derby is eight.

It is a good idea not to use words that would be easily guessed, such as a login name
or simple words or numbers. A bootPassword, like any password, should be a mix of
numbers and upper- and lowercase letters.

You turn on and configure encryption and specify the corresponding boot password on
the connection URL for a database when you create it:

jdbc:derby:encryptionDB1;create=true;dataEncryption=true;
 bootPassword=clo760uds2caPe

Note: If you lose the bootPassword and the database is not currently booted, you will not
be able to connect to the database anymore. (If you know the current bootPassword, you
can change it. See Encrypting databases with a new key.)
Specifying an alternate encryption provider:

You can specify an alternate provider when you create the database with the
encryptionProvider=providerName attribute.

You must specify the full package and class name of the provider, and you must also add
the libraries to the application's classpath.

-- using the the provider library jce_jdk13-10b4.zip|
-- available from www.bouncycastle.org
jdbc:derby:encryptedDB3;create=true;dataEncryption=true;
bootPassword=clo760uds2caPe;
encryptionProvider=org.bouncycastle.jce.provider.BouncyCastleProvider;
encryptionAlgorithm=DES/CBC/NoPadding

-- using a provider
-- available from
-- http://jcewww.iaik.tu-graz.ac.at/download.html
jdbc:derby:encryptedDB3;create=true;dataEncryption=true;
bootPassword=clo760uds2caPe;
encryptionProvider=iaik.security.provider.IAIK;encryptionAlgorithm=
DES/CBC/NoPadding

Specifying an alternate encryption algorithm:

Derby supports the following encryption algorithms.

Derby Developer's Guide

125

• DES (the default)
• DESede (also known as triple DES)
• Any encryption algorithm that fulfills the following requirements:

• It is symmetric
• It is a block cipher, with a block size of 8 bytes
• It uses the NoPadding padding scheme
• Its secret key can be represented as an arbitrary byte array
• It requires exactly one initialization parameter, an initialization vector of type

javax.crypto.spec.IvParameterSpec
• It can use javax.crypto.spec.SecretKeySpec to represent its key

For example, the algorithm Blowfish implemented in the Java Cryptography
Extension (JCE) packages (javax.crypto.*) fulfills these requirements.

By Java convention, an encryption algorithm is specified like this:

algorithmName/feedbackMode/padding

The only feedback modes allowed are:

• CBC
• CFB
• ECB
• OFB

The only padding mode allowed is NoPadding.

By default, Derby uses the DES algorithm of DES/CBC/NoPadding.

To specify an alternate encryption algorithm when you create a database, use the
encryptionAlgorithm=algorithm attribute. If the algorithm you specify is not supported by
the provider you have specified, Derby throws an exception.

To specify the AES encryption algorithm with a key length other than the default of 128,
specify the encryptionKeyLength attribute. For example, you might specify the following
connection attributes:

jdbc:derby:encdbcbc_192;create=true;dataEncryption=true;
encryptionKeyLength=192;encryptionAlgorithm=AES/CBC/NoPadding;
bootPassword=Thursday

To use the AES algorithm with a key length of 192 or 256, you must use unrestricted
policy jar files for your JRE. You can obtain these files from your Java provider. They
might have a name like "Java Cryptography Extension (JCE) Unlimited Strength
Jurisdiction Policy Files." If you specify a non-default key length using the default policy
jar files, a Java exception occurs.

Encrypting databases with a new key

You can apply a new encryption key to a Derby database by specifying a new boot
password or a new external key.

Encrypting a database with a new encryption key is a time consuming process because
it involves encrypting all of the existing data in the database with the new encryption key.
If the process is interrupted before completion, all the changes are rolled back the next
time that the database is booted. If the interruption occurs immediately after the database
is encrypted with the new encryption key but before the connection is returned to the
application, you might not be able to boot the database with the old encryption key. In
these rare circumstances, you should try to boot the database with the new encryption
key.

Derby Developer's Guide

126

Recommendation: Ensure that you have enough free disk space before you encrypt
a database with a new key. In addition to the disk space required for the current size
of the database, temporary disk space is required to store the old version of the data
to restore the database back to it's original state if the new encryption is interrupted or
returns errors. All of the temporary disk space is released back to the operating system
after the database is reconfigured to work with the new encryption key.

To encrypt a database with a new encryption key:

1. Use the type of encryption that is currently used to encrypt the database:
• To encrypt the database with a new boot password key, use the

newBootPassword attribute.
• To encrypt the database with a new external encryption key, use the

newEncryptionKey attribute.

If authentication and SQL authorization are both enabled, the credentials of the
database owner must be supplied, since reencryption is a restricted operation.

Encrypting databases with a new boot password:

You can apply a new boot password to a Derby database by specifying the
newBootPassword attribute on the connection URL when you boot the database.

• If the database is configured with log archival for roll-forward recovery, you must
disable log archival and perform a shutdown before you can encrypt the database
with a new boot password.

• If there are any global transaction that are in the prepared state after recovery, the
database cannot be encrypted with a new boot password.

• If the database is currently encrypted with an external encryption key, you should
use the newEncryptionKey attribute to encrypt the database.

When you use the newBootPassword attribute, a new encryption key is generated
internally by the engine and the key is protected using the new boot password. The
newly generated encryption key encrypts the database, including the existing data. You
cannot change the encryption provider or encryption algorithm when you apply a new
boot password.

To encrypt a database with a new boot password:

1. Specify the newBootPassword attribute in a URL and reboot the database.

For example, when the following URL is used when the salesdb database is
rebooted, the database is encrypted with the new encryption key, and is protected
by the password new1234xyz:

 jdbc:derby:salesdb;bootPassword=abc1234xyz;newBootPassword=new1234xyz

If authentication and SQL authorization are both enabled, the credentials of
the database owner must be supplied as well, since reencryption is a restricted
operation.

If you disabled log archival before you applied the new boot password, create
a new backup of the database after the database is reconfigured with the new
boot password. For more information, see the section "Backing up and restoring
databases" in the Derby Server and Administration Guide, particularly "Roll-forward
recovery".

Encrypting databases with a new external encryption key:

You can apply a new external encryption key to a Derby database by specifying the
newEncryptionKey attribute on the connection URL when you boot the database.

Derby Developer's Guide

127

• If the database is configured with log archival for roll-forward recovery, you must
disable log archival and perform a shutdown before you can encrypt the database
with a new external encryption key.

• If there are any global transaction that are in the prepared state after recovery, the
database cannot be encrypted with a new encryption key.

• If the database is currently encrypted with a boot password , you should use the
newBootPassword attribute to encrypt the database.

To encrypt a database with a new external encryption key:

1. Specify the newEncryptionKey attribute in a URL and reboot the database.

For example, when the following URL is used when the salesdb database
is rebooted, the database is encrypted with the new encryption key
6862636465666768:

jdbc:derby:salesdb;encryptionKey=6162636465666768;newEncryptionKey=6862636465666768'

If authentication and SQL authorization are both enabled, the credentials of the
database owner must be supplied as well, since encryption is a restricted operation.

If you disabled log archival before you applied the new encryption key, create a new
backup of the database after the database is reconfigured with the new encryption
key. For more information, see the section "Backing up and restoring databases" in
the Derby Server and Administration Guide, particularly "Roll-forward recovery".

Booting an encrypted database

If you create an encrypted database using the bootPassword attribute, you must specify
the boot password to reboot the database. If you create an encrypted database using the
encryptionKey attribute, you must specify the encryptionKey to reboot the database.

Encrypted databases cannot be booted automatically along with all other system
databases on system startup (see "derby.system.bootAll" in the Derby Reference
Manual). Instead, you boot encrypted databases when you first connect to the database.

Booting a database with the bootPassword attribute
To access an encrypted database called wombat that was created with the boot
password clo760uds2caPe, use the following connection URL:

jdbc:derby:wombat;bootPassword=clo760uds2caPe

Booting a database with the encryptionKey attribute
To access an encrypted database called flintstone that was created with
the encryptionKey=c566bab9ee8b62a5ddb4d9229224c678 and with the
encryptionAlgorithm=AES/CBC/NoPadding, use the following connection URL:

jdbc:derby:flintstone;encryptionAlgorithm=AES/CBC/NoPadding;
encryptionKey=c566bab9ee8b62a5ddb4d9229224c678

After the database is booted, all connections can access the database without the boot
password. Only a connection that boots the database requires the key.

For example, the following connections would boot the database and require the boot
password or encryption key, depending on what mechanism was used to encrypt the
database originally:

• The first connection to the database in the JVM session
• The first connection to the database after the database has been explicitly shut

down
• The first connection to the database after the system has been shut down and then

rebooted

Derby Developer's Guide

128

Note: The boot password and the encryption key are not meant to prevent unauthorized
connections to the database after the database is booted. To protect a database after it
has been booted, turn on user authentication (see Working with user authentication).

Signed jar files
In a Java SE environment, Derby can detect digital signatures on jar files. When
attempting to load a class from a signed jar file stored in the database, Derby will verify
the validity of the signature.

Note: The Derby class loader only validates the integrity of the signed jar file and that
the certificate has not expired. Derby cannot ascertain whether the validity/identity
of declared signer is correct. To validate identity, use a Security Manager (i.e., an
implementation of java.lang.SecurityManager).

When loading classes from an application jar file in a Java SE environment, Derby
behaves as follows:

• If the class is signed, Derby will:
• Verify that the jar was signed using a X.509 certificate (i.e., can be

represented by the class java.security.cert.X509Certificate). If not, throw an
exception.

• Verify that the digital signature matches the contents of the file. If not, throw an
exception.

• Check that the set of signing certificates are all valid for the current date and
time. If any certificate has expired or is not yet valid, throw an exception.

• Pass the array of certificates to the setSigners() method of
java.lang.ClassLoader. This allows security managers to obtain the list of
signers for a class (using java.lang.Class.getSigners) and then validate the
identity of the signers using the services of a Public Key Infrastructure (PKI).

Note: Derby does not provide a security manager.

For more information about signed jar files, see
http://docs.oracle.com/javase/7/docs/technotes/guides/jar/jar.html.

For more information about Java security, go to
http://docs.oracle.com/javase/7/docs/technotes/guides/security/..

Notes on the Derby security features
The Derby security model has some basic limitations.

You can use database properties to specify what users can and cannot access your
database. However, if someone gets physical access to your database (for example,
if they are able to copy it onto their own disk), they can subvert all other security
mechanisms given enough time and skill. Your best Derby defense against this possibility
is to encrypt the data (which also encrypts the database properties). However, if the
encryption can be broken, the data is vulnerable.

There are no authorization checks for system-wide operations. Anyone who can
authenticate at the system level can shut down the Derby engine and restore databases.
Your best Derby defense here is to limit the number of users who can authenticate at
the system level. This is easy to do with NATIVE authentication: put only one superuser
in the system-wide credentials database, and store the database-specific users in their
respective databases. With LDAP authentication, you can do this by using different LDAP
servers for system-wide and database-specific authentication.

http://docs.oracle.com/javase/7/docs/technotes/guides/jar/jar.html
http://docs.oracle.com/javase/7/docs/technotes/guides/security/

Derby Developer's Guide

129

User authentication and authorization examples
This section provides examples that show user authentication and authorization in Derby
in either a client/server environment or in an embedded environment.

NATIVE authentication and SQL authorization example

This example consists of the program NativeAuthenticationExample.java, which
shows how to use Derby's NATIVE user authentication and SQL authorization with either
the embedded or the client driver.

Note: It is strongly recommended that, in addition to using Derby's NATIVE
authentication mechanism, LDAP, or a user-defined class for authentication, production
systems protect network connections with SSL/TLS.

See Using NATIVE authentication for information on NATIVE authentication. See User
authorizations for more information on using SQL authorization, which allows you to use
ANSI SQL Standard GRANT and REVOKE statements.

The program does the following:

1. Uses a system property to set the authentication provider to
NATIVE:nativeAuthDB:LOCAL, meaning that nativeAuthDB is the credentials
database and that all user credentials are stored there.

2. If you are running the program using the client driver, starts the Network Server.
3. Creates a database named nativeAuthDB as the user sysadm, who is therefore

the database owner. Only the database owner has the right to set and read
database properties.

4. Calls the SYSCS_UTIL.SYSCS_CREATE_USER system procedure to create several
users: noacc, guest, and sqlsam. The user sysadm has already been created
automatically.

5. Creates the roles adder and viewer.
6. Grants the role adder to sqlsam, and grants the role viewer to guest.
7. Creates a table, accessibletbl, and inserts a value into it.
8. Grants SELECT and INSERT privileges on accessibletbl to adder.
9. Tries to connect to the database without supplying credentials, and fails, as

expected.
10. Connects to the database as a user who has not been granted any privileges. The

connection succeeds, but the user does not attempt to perform any operations,
since no operations would be permitted.

11. Connects to the database as guest, who has the role viewer.
12. Sets the current role to viewer; the user succeeds in executing a SELECT

statement on the table, but cannot execute an INSERT statement.
13. Connects to the database as sqlsam, who has the role adder.
14. Sets the current role to adder; the user succeeds in executing both a SELECT and

an INSERT statement, but is unable to execute a DELETE statement.
15. Using the connection of the database owner sysadm, deletes the table, the two

roles, and the three users created previously.
16. If you are running the program using the client driver, shuts down the Network

Server.
17. Closes the connection and shuts down Derby, using the database owner's

credentials.

The instructions for compiling and running the program are in the comment at the
beginning of the program. DERBY_LIB is the directory that contains the Derby jar files,
typically DERBY_HOME/lib.

Source code for NativeAuthenticationExample.java

Derby Developer's Guide

130

// does not use derby.properties

import java.io.PrintWriter;
import java.sql.*;

import org.apache.derby.drda.NetworkServerControl;

/*
 * <p>
 * This program showcases how SQL authorization is automatically turned
 * on when you run with NATIVE authentication. You can run this program
 * either embedded or client server.
 * </p>
 *
 * <p>
 * Here's how you compile the program:
 * </p>
 *
 * <pre>
 * javac -cp ${DERBY_LIB}/derbynet.jar NativeAuthenticationExample.java
 * </pre>
 *
 * <p>
 * Here's how you run the program embedded:
 * </p>
 *
 * <pre>
 * java -cp ${DERBY_LIB}/derby.jar:. NativeAuthenticationExample embedded
 * </pre>
 *
 * <p>
 * Here's how you run the program client/server:
 * </p>
 *
 * <pre>
 * java -cp \
 *
 ${DERBY_LIB}/derby.jar:${DERBY_LIB}/derbynet.jar:${DERBY_LIB}/
derbyclient.jar:. \
 * NativeAuthenticationExample client
 * </pre>
 */
public class NativeAuthenticationExample
{
 ///
 //
 // CONSTANTS
 //
 ///

 private static final String DB_NAME="nativeAuthDB";

 // stored as SYSADM
 private static final String DB_OWNER="sysadm";
 private static final String DB_OWNER_PASSWORD="shh123ihtybb87m";

 private static final String USER_WITHOUT_ROLE="NOACC";
 private static final String
 USER_WITHOUT_ROLE_PASSWORD="ajaxj3x9";

 private static final String READER="GUEST";
 private static final String READER_PASSWORD="java5w6x";

 private static final String WRITER="SQLSAM";
 private static final String WRITER_PASSWORD="light8q9bulb";

 private static final String EMBEDDED = "embedded";
 private static final String CLIENT = "client";

 ///

Derby Developer's Guide

131

 //
 // STATE
 //
 ///

 private boolean _runningEmbedded;
 private NetworkServerControl _server;

 ///
 //
 // ENTRY POINT
 //
 ///

 public static void main(String... args)
 {
 NativeAuthenticationExample demo = parseArgs(args);

 if (demo != null)
 {
 demo.execute();
 }
 else
 {
 println("Bad command line args.");
 }
 }

 private static NativeAuthenticationExample parseArgs(String... args
)
 {
 if ((args == null) || (args.length != 1))
 {
 return null;
 }

 String mode = args[0];

 if (EMBEDDED.equals(mode))
 {
 return new NativeAuthenticationExample(true);
 }
 else if (CLIENT.equals(mode))
 {
 return new NativeAuthenticationExample(false);
 }
 else
 {
 return null;
 }
 }

 ///
 //
 // CONSTRUCTOR
 //
 ///

 private NativeAuthenticationExample(boolean runningEmbedded)
 {
 _runningEmbedded = runningEmbedded;
 }

 ///
 //
 // FEATURE SHOWCASE
 //
 ///

 /**

Derby Developer's Guide

132

 * Run all of the experiments
 */
 private void execute()
 {
 try
 {
 String authenticationProvider =
 "NATIVE:" + DB_NAME + ":LOCAL";

 // this turns on NATIVE authentication as well as
 // SQL authorization
 println("Setting authentication provider to " +
 authenticationProvider);
 System.setProperty("derby.authentication.provider",
 authenticationProvider);

 if (!_runningEmbedded)
 {
 startServer();
 }

 Connection dboConn = createDatabase();

 createUsers(dboConn);
 createRoles(dboConn);
 createTable(dboConn);

 tryToConnectWithoutCredentials(); //should fail

 // a valid user can connect even if they haven't been
 // assigned any roles
 getConnection(USER_WITHOUT_ROLE,
 USER_WITHOUT_ROLE_PASSWORD);

 verifyReaderPrivileges();
 verifyWriterPrivileges();

 println("Using database owner connection again");

 dropTable(dboConn);
 dropRoles(dboConn);
 dropUsers(dboConn);

 cleanUpAndShutDown();

 } catch (Exception e)
 {
 errorPrintAndExit(e);
 }
 }

 /**
 * Create more users. Note that the credentials for the database
 * owner were stored in the database automatically when the
 * database was created.
 */
 public void createUsers(Connection conn)
 throws SQLException
 {
 println("Storing some sample users in the database.");

 PreparedStatement ps = prepare
 (conn, "call syscs_util.syscs_create_user(?, ?)");

 createUser(ps, USER_WITHOUT_ROLE, USER_WITHOUT_ROLE_PASSWORD);
 createUser(ps, READER, READER_PASSWORD);
 createUser(ps, WRITER, WRITER_PASSWORD);

 ps.close();
 }

Derby Developer's Guide

133

 private void createUser(PreparedStatement ps, String userName,
 String password)
 throws SQLException
 {
 println("Creating user " + userName);
 ps.setString(1, userName);
 ps.setString(2, password);
 ps.execute();
 }

 /**
 * Create roles and grant them privileges.
 */
 private void createRoles(Connection conn)
 throws SQLException
 {
 println("Creating roles and granting privileges to them...");

 execute(conn, "CREATE ROLE adder");
 execute(conn, "CREATE ROLE viewer");

 execute(conn, "GRANT adder TO " + WRITER);
 execute(conn, "GRANT viewer TO " + READER);
 }

 /**
 * Create and populate a table and grant privileges related to it.
 */
 private void createTable(Connection conn)
 throws SQLException
 {
 println("Creating table accessibletbl...");
 execute(conn,
 "CREATE TABLE accessibletbl(textcol VARCHAR(6))");
 execute(conn, "INSERT INTO accessibletbl VALUES('hello')");

 println("Granting select/insert privileges to adder...");
 execute(conn,
 "GRANT SELECT, INSERT ON accessibletbl TO adder");

 println("Granting select privileges to viewer");
 execute(conn, "GRANT SELECT ON accessibletbl TO viewer");
 }

 /**
 * Drop users except for database owner.
 */
 public void dropUsers(Connection conn)
 throws SQLException
 {
 println("Dropping sample users from the database...");

 PreparedStatement ps = prepare
 (conn, "call syscs_util.syscs_drop_user(?)");

 dropUser(ps, USER_WITHOUT_ROLE);
 dropUser(ps, READER);
 dropUser(ps, WRITER);

 ps.close();
 }

 private void dropUser(PreparedStatement ps, String userName)
 throws SQLException
 {
 println("Dropping user " + userName);
 ps.setString(1, userName);
 ps.execute();
 }

Derby Developer's Guide

134

 /**
 * Drop roles.
 */
 private void dropRoles(Connection conn)
 throws SQLException
 {
 println("Dropping roles...");

 execute(conn, "DROP ROLE adder");
 execute(conn, "DROP ROLE viewer");
 }

 /**
 * Drop the table.
 */
 private void dropTable(Connection conn)
 throws SQLException
 {
 execute(conn, "DROP TABLE accessibletbl");
 }

 /**
 * Try to connect without supplying credentials
 */
 private void tryToConnectWithoutCredentials()
 throws Exception
 {
 println("Trying to connect without supplying credentials...");

 try {
 getConnection(null, null);
 println("ERROR: Unexpectedly connected to database " +
 DB_NAME);
 cleanUpAndShutDown();
 } catch (SQLException e)
 {
 if (e.getSQLState().equals("08004"))
 {
 println
 (
 "As expected, could not get a connection without " +
 "supplying credentials."
);
 } else
 {
 errorPrintAndExit(e);
 }
 }
 }

 /**
 * Verify that the READER user can select but not insert
 */
 private void verifyReaderPrivileges()
 throws Exception
 {
 Connection readerConn = getConnection(READER,
 READER_PASSWORD);

 println("Setting role to VIEWER");
 execute(readerConn, "SET ROLE VIEWER");

 readRow(readerConn); // should succeed

 try {
 writeRow(readerConn);
 println("ERROR: Unexpectedly allowed to insert into table"
);
 cleanUpAndShutDown();

Derby Developer's Guide

135

 } catch (SQLException e)
 {
 if (e.getSQLState().equals("42500"))
 {
 println("As expected, failed to insert row.");
 }
 else
 {
 errorPrintAndExit(e);
 }
 }

 readerConn.close();
 }

 /**
 * Verify that the WRITER can read and write but not delete
 */
 private void verifyWriterPrivileges()
 throws Exception
 {
 Connection writerConn = getConnection(WRITER,
 WRITER_PASSWORD);

 // set role to ADDER
 println("Setting role to ADDER");
 execute(writerConn, "SET ROLE ADDER");

 // should succeed
 readRow(writerConn);
 writeRow(writerConn);

 try {
 deleteRow(writerConn); // should fail

 println("ERROR: Unexpectedly allowed to DELETE.");
 cleanUpAndShutDown();
 } catch (SQLException e)
 {
 if (e.getSQLState().equals("42500"))
 {
 println("As expected, failed to delete rows.");
 }
 else
 {
 errorPrintAndExit(e);
 }
 }

 writerConn.close();
 }

 private void readRow(Connection conn) throws SQLException
 {
 PreparedStatement ps = prepare
 (conn, "SELECT * FROM sysadm.accessibletbl");
 ResultSet rs = ps.executeQuery();
 while(rs.next())
 {
 println
 ("Value of sysadm.accessibletbl/textcol = " +
 rs.getString(1));
 }
 rs.close();
 ps.close();
 }

 private void writeRow(Connection conn) throws SQLException
 {
 execute(conn,

Derby Developer's Guide

136

 "INSERT INTO sysadm.accessibletbl VALUES('guest')");
 }

 private void deleteRow(Connection conn) throws SQLException
 {
 execute(conn, "DELETE FROM sysadm.accessibletbl");
 }

 ///
 //
 // SQL HELPERS
 //
 ///

 /**
 * Execute a statement
 */
 private void execute(Connection conn, String text)
 throws SQLException
 {
 PreparedStatement ps = prepare(conn, text);

 ps.execute();
 ps.close();
 }

 /**
 * Prepare a statement
 */
 private PreparedStatement prepare(Connection conn, String text)
 throws SQLException
 {
 println(" Preparing: " + text);
 return conn.prepareStatement(text);
 }

 ///
 //
 // CONNECTION MANAGEMENT
 //
 ///

 /**
 * Create the database
 */
 private Connection createDatabase()
 throws SQLException
 {
 String connectionURL = getConnectionURL
 (DB_NAME, DB_OWNER, DB_OWNER_PASSWORD, true, false);

 println("Creating database via this URL: " + connectionURL);

 return DriverManager.getConnection(connectionURL);
 }

 /**
 * Shut down the engine and exit.
 */
 private void cleanUpAndShutDown()
 throws Exception
 {
 // Shut down the server before the engine. this is so that
 // we can authenticate the shutdown credentials in the
 // booted database.
 if (_server != null)
 {
 stopServer();
 }

Derby Developer's Guide

137

 // the engine should only be brought down locally
 _runningEmbedded = true;
 shutdownEngine();

 System.exit(1);
 }

 private void shutdownEngine()
 {
 String shutdownURL = getConnectionURL
 (null, DB_OWNER, DB_OWNER_PASSWORD, false, true);

 try
 {
 println("Shutting down engine via this URL: " +
 shutdownURL);
 DriverManager.getConnection(shutdownURL);
 } catch (SQLException se)
 {
 if (se.getSQLState().equals("XJ015"))
 {
 println("Derby engine shut down normally");
 }
 else
 {
 printSQLException(se);
 }
 }
 }

 /**
 * Get a connection to the database
 */
 private Connection getConnection(String userName, String password)
 throws SQLException
 {
 String connectionURL = getConnectionURL
 (DB_NAME, userName, password, false, false);

 println("Getting connection via this URL: " + connectionURL);

 return DriverManager.getConnection(connectionURL);
 }

 private String getConnectionURL(String dbName, String userName,
 String password, boolean createDB, boolean shutdownDB)
 {
 String connectionURL = _runningEmbedded ?
 "jdbc:derby:" :
 "jdbc:derby://localhost:1527/";

 if (dbName != null)
 {
 connectionURL = connectionURL + DB_NAME;
 }
 if (userName != null)
 {
 connectionURL = connectionURL + ";user=" + userName;
 }
 if (password != null)
 {
 connectionURL = connectionURL + ";password=" + password;
 }
 if (createDB)
 {
 connectionURL = connectionURL + ";create=true";
 }
 if (shutdownDB)
 {
 connectionURL = connectionURL + ";shutdown=true";

Derby Developer's Guide

138

 }

 return connectionURL;
 }

 ///
 //
 // SERVER MANAGEMENT
 //
 ///

 /**
 * Start the Derby server
 */
 private void startServer()
 throws Exception
 {
 _server = new NetworkServerControl(DB_OWNER,
 DB_OWNER_PASSWORD);

 println("Starting the Derby server...");
 _server.start(new PrintWriter(System.out));

 // pause to let the server come up
 Thread.sleep(5000L);
 }

 /**
 * Shut down the Derby server
 */
 private void stopServer()
 throws Exception
 {
 println("Stopping the Derby server...");
 _server.shutdown();

 // pause to let the server come down
 Thread.sleep(5000L);
 }

 ///
 //
 // DIAGNOSTIC PRINTING
 //
 ///

 /**
 * Report exceptions and exit.
 */
 private void errorPrintAndExit(Throwable e)
 {
 if (e instanceof SQLException)
 {
 printSQLException((SQLException) e);
 }
 else
 {
 println("A non-SQL error occurred.");
 e.printStackTrace();
 }

 System.exit(1);
 }

 /**
 * Print a list of SQLExceptions.
 */
 private void printSQLException(SQLException sqle)
 {
 while (sqle != null)

Derby Developer's Guide

139

 {
 println("\n---SQLException Caught---\n");
 println(" SQLState: " + (sqle).getSQLState());
 println(" Severity: " + (sqle).getErrorCode());
 println(" Message: " + (sqle).getMessage());

 sqle.printStackTrace();

 sqle = sqle.getNextException();
 }
 }

 /**
 * Print a diagnostic line to the console
 */
 private static void println(String text)
 {
 System.out.println(text);
 }
}

Setting LDAP user authentication properties in a client/server environment

In this example, Derby is running in a user-designed application server.

Derby provides the user authentication, not the application server. The server is running
in a secure environment, the application server encrypts the passwords, and a database
administrator is available. The administrator configures security using system-level
properties in the derby.properties file and has protected this file with operating system
tools. Derby connects to an existing LDAP directory service within the enterprise to
authenticate users.

The default access mode for all databases is set to fullAccess (the default).

The derby.properties file for the server includes the following entries:

turn on user authentication
derby.connection.requireAuthentication=true
set the authentication provider to an external LDAP server
derby.authentication.provider=LDAP
the host name and port number of the LDAP server
derby.authentication.server=godfrey:389
the search base for user names
derby.authentication.ldap.searchBase=o=oakland.example.com
explicitly show the access mode for databases (this is default)
derby.database.defaultConnectionMode=fullAccess

With these settings, all users must be authenticated by the LDAP server in order to
access any Derby databases.

The database administrator has determined that one database, accountingDB,
has additional security needs. Within a connection to that database, the database
administrator uses database-wide properties (which override properties set in the
derby.properties file) to limit access to this database. Only the users prez, cfo, and
numberCruncher have full (read-write) access to this database, and only clerk1 and
clerk2 have read-only access to this database. No other users can access the database.

CALL SYSCS_UTIL.SYSCS_SET_DATABASE_PROPERTY(
 'derby.database.defaultConnectionMode', 'noAccess')

CALL SYSCS_UTIL.SYSCS_SET_DATABASE_PROPERTY(
 'derby.database.fullAccessUsers',
 'prez,cfo,numberCruncher')

CALL SYSCS_UTIL.SYSCS_SET_DATABASE_PROPERTY(
 'derby.database.readOnlyAccessUsers', 'clerk1,clerk2')

Derby Developer's Guide

140

The database administrator then requires all current users to disconnect and re-connect.
These property changes do not go into effect for current connections. The database
administrator can force current users to reconnect by shutting down the database

Running Derby under a security manager
When running within an application or application server with a Java security manager
enabled, Derby must be granted certain permissions to execute and access database
files.

For more information about permissions and examples of
creating permission objects and granting permissions, see
the Security Architecture specification at
http://docs.oracle.com/javase/7/docs/technotes/guides/security/spec/security-
spec.doc.html.

Granting permissions to Derby

This section discusses which permissions should be granted to Derby (the code base
derby.jar).

See "Default Policy Implementation and Policy File Syntax" at
http://docs.oracle.com/javase/7/docs/technotes/guides/security/PolicyFiles.html for more
information about creating policy files.

Mandatory permissions
permission java.lang.RuntimePermission createClassLoader

Mandatory. It allows Derby to execute SQL queries and supports loading class files
from jar files stored in the database.

permission java.util.PropertyPermission "derby.*", "read"
Allows Derby to read individual Derby properties set in the JVM machine's system
set. If the action is denied, properties in the JVM machine's system set are ignored.

permission java.util.PropertyPermission "derby.storage.jvmInstanceId",
"write"

This property is used by Derby to prevent the accidental boot of the database by two
class loaders. If the database is booted by two class loaders, database corruption can
occur. If write permission for this property is not granted, a message is printed to the
log file which indicates that the Derby database is not protected from dual boot and
possible corruption.

Database access permissions
permission java.io.FilePermission "directory${/}/-", "read,write,delete"

Allows Derby to manage files within the database that maps to the directory specified.
For read-only databases, only the "read" action needs to be granted.

Optional permissions
permission java.io.FilePermission "${derby.system.home}", "read,write"

Allows Derby to determine the system directory when set by derby.system.home
and create it if needed. If the system directory already exists then only the "read"
permission needs to be granted.

permission java.util.PropertyPermission "user.dir", "read"
Permits access to the system directory value if derby.system.home is not set or no
permission has been granted to read the derby.system.home property.

permission java.util.PropertyPermission "sun.arch.data.model", "read"
If set by the JVM, this is the definite answer to whether the system is 32 or 64 bit.

permission java.util.PropertyPermission "os.arch", "read"

http://docs.oracle.com/javase/7/docs/technotes/guides/security/spec/security-spec.doc.html
http://docs.oracle.com/javase/7/docs/technotes/guides/security/spec/security-spec.doc.html
http://docs.oracle.com/javase/7/docs/technotes/guides/security/PolicyFiles.html

Derby Developer's Guide

141

Used by Derby to determine if the system is 32 or 64 bit, if the system property
sun.arch.data.model isn't set by the JVM. Derby has to recognize the value of os.arch
to determine if the system is 32 or 64 bit, and if the value isn't recognized a heuristic
will be used instead.

permission java.io.FilePermission
"${derby.system.home}${/}derby.properties", "read"

Allows Derby to read the system properties file from the system directory.
permission java.io.FilePermission "${derby.system.home}${/}derby.log",
"read,write,delete"
permission java.io.FilePermission "${user.dir}${/}derby.log",
"read,write,delete";

Only one of these permissions is needed. Permits the application to read, write,
and delete to the Derby log file, unless the log has been re-directed. (See
the derby.stream.error properties in the Derby Reference Manual for more
information.) If one of the requested valid actions is denied, the Derby log will be
java.lang.System.err.

permission java.security.SecurityPermission "getPolicy"
You need this permission if you want to change the security policy on the fly and
reload it into a running system. Given this permission, a DBA can reload the policy
file by calling the SYSCS_UTIL.SYSCS_RELOAD_SECURITY_POLICY system
procedure. For more information, see the section which describes this procedure in
the Derby Reference Manual.

permission java.lang.RuntimePermission "setContextClassLoader"
Allows Derby to set the context class loader for long running threads to null to
avoid potential for class loader leaks in application server environments when the
application server starts Derby in a custom class loader.

permission java.lang.RuntimePermission "getClassLoader"
This permission is also needed when setting the context class loader to avoid class
loader leaks. The class loader for the parent is saved and set to null before creation
of the thread and restored afterwards.

permission java.lang.RuntimePermission "getStackTrace";
permission java.lang.RuntimePermission "modifyThreadGroup";

These two permissions are needed to allow extended diagnostics, specifically
the stack traces of all threads, to be dumped to derby.log on severe errors and
when the derby.stream.error.extendedDiagSeverityLevel property is set. See the
documentation of this property in the Derby Reference Manual for details.

permission javax.management.MBeanServerPermission
"createMBeanServer";

Allows Derby to create an MBean server. If the JVM running Derby supports the
platform MBean server, Derby will automatically try to create such a server if it
does not already exist. For details, see "Using Java Management Extensions (JMX)
technology" in the Derby Server and Administration Guide.

permission javax.management.MBeanPermission
"org.apache.derby.*#[org.apache.derby:*]","registerMBean,unregisterMBean";

Allows Derby to register and unregister its (JMX) MBeans. Such MBeans are
associated with the domain org.apache.derby, which is also the prefix
of the fully qualified class name of all Derby MBeans. For more information
about the Derby MBeans, refer to the public API (Javadoc) documentation
of the package org.apache.derby.mbeans and its subpackages. It is
possible to fine-tune this permission, for example in order to allow access only
to certain MBeans. To fine-tune this permission, see the API documentation for
javax.management.MBeanPermission or the JMX Instrumentation and Agent
Specification.

permission javax.management.MBeanTrustPermission "register";
Trusts Derby code to be the source of MBeans and to register these in the MBean
server.

Derby Developer's Guide

142

permission java.net.SocketPermission "localhost:389", "connect,resolve";
Allows Derby code to contact the LDAP server to perform authentication. This
permission must be granted to derby.jar. Port 389 is the default LDAP port.

permission java.sql.SQLPermission "callAbort";
Allows Derby code to call the java.sql.Connection.abort method. This
permission must be granted both to the Derby JDBC driver (by granting it to
derby.jar and derbyclient.jar) and to the application code that calls
Connection.abort(). Do not grant this permission to application code unless you
are certain that only superusers can invoke the code.

Combining permissions
You might grant one FilePermission that encompasses several or all of the permissions
instead of separately granting a number of the more specific permissions. For example:

permission java.io.FilePermission "${derby.system.home}/-",
 "read,write,delete";

This allows the Derby engine complete access to the system directory and any
databases contained in the system directory.

Examples of Java security policy files for embedded Derby
Java security policy file example 1

/* Grants permission to run Derby and access all */
/* databases under the Derby system home */
/* when it is specified by the system property */
/* Derby.system.home */

/* Note Derby.system.home must be an absolute pathname */

grant codeBase "file://f:/derby/lib/derby.jar" {

 permission java.lang.RuntimePermission "createClassLoader";
 permission java.util.PropertyPermission "derby.*", "read";
 permission.java.io.FilePermission "${derby.system.home}","read";
 permission java.io.FilePermission "${derby.system.home}${/}
 -", "read,write,delete";
 permission java.util.PropertyPermission "derby.storage.jvmInstanceId",
 "write";
};

Java security policy file example 2

/* Grants permission to run Derby and access all */
/* databases under the Derby system home */
/* when it defaults to the current directory */

grant codeBase "file://f:/derby/lib/derby.jar" {
 permission java.lang.RuntimePermission "createClassLoader";
 permission java.util.PropertyPermission "derby.*", "read";
 permission java.util.PropertyPermission "user.dir", "read";
 permission java.io.FilePermission "${derby.system.home}","read";
 permission java.io.FilePermission "${user.dir}${/}-",
 "read,write,delete";
 permission java.util.PropertyPermission "derby.storage.jvmInstanceId",
 "write";

};

Java security policy file example 3

/* Grants permission to run Derby and access a single */
/* database (salesdb) under the Derby system home */

Derby Developer's Guide

143

/* Note Derby.system.home must be an absolute pathname */

grant codeBase "file://f:/derby/lib/derby.jar" {

 permission java.lang.RuntimePermission "createClassLoader";
 permission java.util.PropertyPermission "derby.*", "read";
 permission java.io.FilePermission "${derby.system.home}","read";
 permission java.io.FilePermission "${derby.system.home}${/}*",
 "read,write,delete";
 permission java.io.FilePermission "${derby.system.home}${/}
 salesdb${/}-", "read,write,delete";
 permission java.util.PropertyPermission "derby.storage.jvmInstanceId",
 "write";

};

Derby Developer's Guide

144

Developing tools and using Derby with an IDE

Applications such as database tools are designed to work with databases whose
schemas and contents are unknown in advance. This section discusses a few topics
useful for such applications.

Offering connection choices to the user
JDBC's java.sql.Driver.getPropertyInfo method allows a generic GUI tool to determine
the properties for which it should prompt a user in order to get enough information to
connect to a database. Depending on the values the user has supplied so far, additional
values might become necessary. It might be necessary to iterate though several calls to
getPropertyInfo.

If no more properties are necessary, the call returns an array of zero length.

In a Derby system, do not use the method against an instance of
org.apache.derby.jdbc.EmbeddedDriver. Instead, request the JDBC driver from the driver
manager:

java.sql.DriverManager.getDriver(
 "jdbc:derby:").getPropertyInfo(URL, Prop)

In a Derby system, the properties returned in the DriverPropertyInfo object are
connection URL attributes, including a list of booted databases in a system (the
databaseName attribute).

Databases in a system are not automatically booted until you connect with them. You can
configure your system to retain the former behavior, in which case the steps described
in this section will continue to work. See "derby.system.bootAll" in the Derby Reference
Manual.

getPropertyInfo requires a connection URL and a Properties object as
parameters. Typically, what you pass are values that you will use in a future call to
java.sql.DriverManager.getConnection when you actually connect to the database.

A call to getPropertyInfo with parameters that contain sufficient information to connect
successfully returns an array of zero length. (Receiving this zero-length array does not
guarantee that the getConnection call will succeed, because something else could go
wrong.)

Repeat calls to getPropertyInfo until it returns a zero-length array or none of the
properties remaining are desired.

The DriverPropertyInfo Array

When a non-zero-length array is returned by getPropertyInfo, each element is a
DriverPropertyInfo object representing a connection URL attribute that has not
already been specified. Only those that make sense in the current context are returned.

This DriverPropertyInfo object contains:

• name of the attribute
• description
• current value

If an attribute has a default value, this is set in the value field of DriverPropertyInfo,
even if the attribute has not been set in the connection URL or the Properties

Derby Developer's Guide

145

object. If the attribute does not have a default value and it is not set in the URL or
the Properties object, its value will be null.

• list of choices
• whether required for a connection request

Several fields in a DriverPropertyInfo object are allowed to be null.

DriverPropertyInfo array example

Here is some example code:

import java.sql.*;
import java.util.Properties;
// start with the least amount of information
// to see the full list of choices
// we could also enter with a URL and Properties
// provided by a user.
String url = "jdbc:derby:";
Properties info = new Properties();
Driver cDriver = DriverManager.getDriver(url);
for (;;)
 {
 DriverPropertyInfo[] attributes = cDriver.getPropertyInfo(
 url, info);
 // zero length means a connection attempt can be made
 if (attributes.length == 0)
 break;
 // insert code here to process the array, e.g.,
 // display all options in a GUI and allow the user to
 // pick and then set the attributes in info or URL.
 }
// try the connection
Connection conn = DriverManager.getConnection(url, info);

Using Derby with IDEs
When you use an integrated development environment (IDE) to develop an embedded
Derby application, you might need to run Derby within a server framework.

This is because an IDE might try connecting to the database from two different JVMs,
whereas only a single JVM instance should connect to a Derby database at one time
(multiple connections from the same JVM are allowed).

An "embedded Derby application" is one which runs in the same JVM
as the application. Such an application uses the embedded Derby
driver (org.apache.derby.jdbc.EmbeddedDriver) and connection URL
(jdbc:derby:databaseName). If you use this driver name or connection URL from
the IDE, when the IDE tries to open a second connection to the same database with the
embedded Derby, the attempt fails. Two JVMs cannot connect to the same database in
embedded mode.

IDEs and multiple JVMs

When you use an integrated development environment (IDE) to build a Java application,
you can launch the application from within the IDE at any point in the development
process. Typically, the IDE launches a JVM dedicated to the application. When the
application completes, the JVM exits. Any database connections established by the
application are closed.

During the development of a database application, most IDEs allow you to test individual
database connections and queries without running the entire application. When you test
an individual database connection or query (which requires a database connection),
the IDE might launch a JVM that runs in a specialized testing environment. In this case,

Derby Developer's Guide

146

when a test completes, the JVM remains active and available for further testing, and the
database connection established during the test remains open.

Because of the behaviors of the IDE described above, if you use the embedded Derby
JDBC driver, you may encounter errors connecting in the following situations:

• You test an individual query or database connection and then try to run an
application that uses the same database as the tested feature.

The database connection established by testing the connection or query stays
open, and prevents the application from establishing a connection to the same
database.

• You run an application, and before it completes (for example, while it waits for user
input), you attempt to run a second application or to test a connection or query that
uses the same database as the first application.

Derby Developer's Guide

147

SQL tips

This section provides some examples of interesting SQL features. It also includes a few
non-SQL tips.

Retrieving the database connection URL
Derby does not have a built-in function that returns the name of the database.
However, you can use DatabaseMetaData to return the connection URL of any local
Connection.

/* in java */
String myURL = conn.getMetaData().getURL();

Supplying a parameter only once
If you want to supply a parameter value once and use it multiple times within a query, put
it in the FROM clause with an appropriate CAST.

SELECT phonebook.*
 FROM phonebook, (VALUES (CAST(? AS INT), CAST(? AS VARCHAR(255))))
 AS Choice(choice, search_string)
 WHERE search_string = (case when choice = 1 then firstnme
 when choice=2 then lastname
 when choice=3 then phonenumber end);

This query selects what the second parameter will be compared to based on the value in
the first parameter. Putting the parameters in the FROM clause means that they need to
be applied only once to the query, and you can give them names so that you can refer to
them elsewhere in the query. In the example above, the first parameter is given the name
choice, and the second parameter is given the name search_string.

Defining an identity column
An identity column is a column that stores numbers that increment by one with each
insertion. Identity columns are sometimes called autoincrement columns.

Derby provides autoincrement as a built-in feature; see CREATE TABLE statement in the
Derby Reference Manual.

Below is an example that shows how to use an identity column to create the MAP_ID
column of the MAPS table in the toursDB database.

CREATE TABLE MAPS
(
MAP_ID INTEGER NOT NULL GENERATED ALWAYS AS IDENTITY (START WITH 1,
 INCREMENT BY 1),
MAP_NAME VARCHAR(24) NOT NULL,
REGION VARCHAR(26),
AREA DECIMAL(8,4) NOT NULL,
PHOTO_FORMAT VARCHAR(26) NOT NULL,
PICTURE BLOB(102400),
UNIQUE (MAP_ID, MAP_NAME)
)

Using third-party tools

Derby Developer's Guide

148

You can hook into any JDBC tool with just our JDBC Driver class name
(org.apache.derby.jdbc.EmbeddedDriver) and Derby's JDBC connection URL.

Tricks of the VALUES clause
This section contains some tips to use with the VALUES clause.

Multiple rows

Derby supports the complete SQL-92 VALUES clause; this is very handy in several
cases.

The first useful case is that it can be used to insert multiple rows:

INSERT INTO OneColumnTable VALUES 1,2,3,4,5,6,7,8

INSERT INTO TwoColumnTable VALUES
 (1, 'first row'),
 (2, 'second row'),
 (3, 'third row')

Dynamic parameters reduce the number of times execute requests are sent across:

ij> -- send 5 rows at a time:
ij> PREPARE p1 AS 'INSERT INTO ThreeColumnTable VALUES
(?,?,?), (?,?,?), (?,?,?), (?,?,?), (?,?,?)';
ij> EXECUTE p1 USING 'VALUES (''1st'',1,1,''2nd'',2,2,''3rd'',
3,3,''4th'',4,4,''5th'',5,5)';

Mapping column values to return values

Multiple-row VALUES tables are useful in mapping column values to desired return
values in queries.

-- get the names of all departments in OhioSELECT DeptName
FROM Depts,
(VALUES (1, 'Shoe'),
 (2, 'Laces'),
 (4, 'Polish'))
AS DeptMap(DeptCode,DeptDesc)
WHERE Depts.DeptCode = DeptMap.DeptCode
AND Depts.DeptLocn LIKE '%Ohio%'

You might also find it useful to store values used often for mapping in a persistent table
and then using that table in the query.

Creating empty queries

You may need Derby to create "empty" queries in existing applications for filling in bits of
functionality that Derby does not supply.

Empty queries of the right size and shape can be formed off a single values table and a
"WHERE FALSE" condition:

SELECT *
FROM (VALUES ('',1,"TRUE")) AS ProcedureInfo(ProcedureName,NumParameters,

ProcedureValid)
WHERE 1=0

Derby Developer's Guide

149

Localizing Derby

Derby offers support for locales.

The word locale in the Java platform refers to an instance of a class that identifies
a particular combination of language and region. If a Java class varies its behavior
according to locale, it is said to be locale-sensitive. Derby provides some support for
locales for databases and other components such as the tools and the installer.

It also provides a feature to support databases in many different languages, a feature
which is independent of a particular territory.

When you create or upgrade a database, you can use the territory attribute to associate
a non-default territory with the database. For information about how to use the territory
attribute, see the Derby Reference Manual.

SQL parser support for Unicode
To support users in many different languages, Derby's SQL parser understands all
Unicode characters and allows any Unicode character or number to be used in an
identifier.

Derby does not attempt to ensure that the characters in identifiers are valid in the
database's locale.

Character-based collation in Derby
A character set is a set of symbols and encodings. Character data types are represented
as Unicode 2.0 sequences in Derby.

How collation works in Derby

Derby supports a wide range of character sets and encodes all of the character sets by
using the Unicode support provided by the java.lang.Character class in the Java Virtual
Machine (JVM) in which the Derby database runs. See the Java API documentation for
the java.lang.Character class for the exact level of Unicode Standard that is supported.

A collation is a set of rules for comparing characters in a character set. In Derby the
collation rules affect comparisons of the CHAR and VARCHAR data types. Collation rules
also affect how the LIKE Boolean operator processes the CHAR, VARCHAR, CLOB, and
LONG VARCHAR data types.

The default Derby collation rule is based on the binary Unicode values of the characters.
So a character is greater than (<), equal to (=), or less than (>) another character based
on the numeric comparison of the Unicode values. This rule allows for very efficient
comparisons of character strings.

Note: When LIKE comparisons are used, Derby compares one character at a time for
non-metacharacters. This is different than the way Derby processes = comparisons. The
comparisons with the = operator compare the entire character string on left side of the
= operator with the entire character string on the right side of the = operator. See the
Differences between LIKE and equal (=) comparisons section below.

Territory-based collation

Derby also supports the ability to define collation rules that are appropriate to a territory,
and is referred to as territory-based collation. Derby supports the territories that Java
supports.

Derby Developer's Guide

150

You can specifically set the territory of a database when you create the database. If
you do not specify a territory, Derby uses the default territory of the JVM in which the
database is created. Each JVM can support many territories that are independent
from the default territory for the JVM. Collation support for these additional territories is
provided through the java.text.RuleBasedCollator class and the set of rules for
these territories. Refer to the JVM specification for details of how these rules are used
to provide territory specific collation. Derby currently supports only running those rules
that can be loaded dynamically from the running JVM based on the territory attribute.
Overrides to these rules by the user are not supported.

The territory-based collation in Derby affects how the CHAR and VARCHAR data types
are compared. Specifying territory-based collation also impacts how the LIKE Boolean
operator processes CHAR, VARCHAR, CLOB, and LONG VARCHAR data.

Territory-based collation does add extra processing overhead to all character-based
comparison operations.

Database attributes that control collation

When you create a Derby database, the attributes that you set determine the collation
that is used with all of character data in the database. The following table shows some
examples.

Table 14. The create database attributes that control collation

Example Create URLs Collation Is Driven By

jdbc:derby:abcDB;create=true Unicode codepoint
collation (UCS_BASIC),
which is the default
collation for Derby
databases.

jdbc:derby:abcDB;create=true;territory=es_MX Unicode codepoint
collation (UCS_BASIC).
The collation
attribute is not set.

jdbc:derby:abcDB;create=true;collation=TERRITORY_BASED The territory of the JVM,
since the territory
attribute is not set.
Tip: To determine the
territory of the JVM, run Locale.getDefault().

jdbc:derby:abcDB;create=true;territory=es_MX;collation=TERRITORY_BASEDThe territory
attribute.

Collation examples

With Unicode codepoint collation (UCS_BASIC), the numerical values of the Unicode
encoding of the characters are used directly for ordering. For example, the FRUIT table
contains the NAME column that uses the VARCHAR(20) data type. The contents of the
NAME column are:

orange
apple
Banana
Pineapple
Grape

UCS_BASIC collation sorts all lower case letters before upper case letters. The
statement SELECT * FROM FRUIT ORDER BY NAME returns:

Derby Developer's Guide

151

apple
orange
Banana
Grape
Pineapple

If the database is created with the territory attribute set to en_US (English language,
United States country code), and the collation attribute set to TERRITORY_BASED, the
results of the statement SELECT * FROM FRUIT ORDER BY NAME returns:

apple
Banana
Grape
orange
Pineapple

The collation set for the database also impacts comparison operators on character
data types. For example, the statement SELECT * FROM FRUIT WHERE NAME >
'Banana' ORDER BY NAME returns:

 UCS_BASIC collation Territory-based collation
 Grape Grape
 Pineapple orange
 Pineapple

For information on creating case-insensitive databases, see Creating a database with
territory-based collation.

Differences between LIKE and equal (=) comparisons
When you use territory-based collation, the comparisons can return different results
when you use the LIKE and equal (=) operators. For example, suppose that the Derby
database is set to use a territory where the character 'z' has same collation elements as
'xy'. Consider the following two WHERE clauses:

1. WHERE 'zcb' = 'xycb'
2. WHERE 'zcb' LIKE 'xy_b'

For WHERE clause 1, Derby returns TRUE because the collation elements for the entire
string 'zcb' will match the collation elements of the entire string 'xycb'.

For WHERE clause 2, Derby returns FALSE because collation element for character 'z'
does not match the collation element for character 'x'. In addition, when metacharacter
such as an underscore is used with the LIKE operator, the metacharacter counts for
one character in the string value. A clause like WHERE 'xycb' LIKE '_cb' returns FALSE
because 'x' is compared to the metacharacter _ and 'y' does not match 'c'.

Other components with locale support
Derby also provides locale support for the following components:

• Database error messages are in the language of the locale, if support is explicitly
provided for that locale with a special library.

For example, Derby explicitly supports Spanish-language error messages. If a
database's locale is set to one of the Spanish-language locales, Derby returns error
messages in the Spanish language.

• The Derby tools. In the case of the tools, locale support includes locale-specific
interface and error messages and localized data display.

For more information about localization of the Derby tools, see the Derby Tools and
Utilities Guide.

Derby Developer's Guide

152

Localized messages require special libraries.

The locale of the database is set by the territory=ll_CC attribute when the database
is created. However, the locale of the error messages and tools is not determined by
the locale of the database. The locale of the error messages and tools is determined
by the default system locale. This means that it is possible to create a database with a
non-default locale. In such a case, error messages are not returned in the language of
the locale of the database but are returned in the language of the default locale instead.

Note: You can override the default locale for ij with a property on the JVM. For more
information, see the Derby Tools and Utilities Guide.

Messages libraries
The following list describes the items required in order for Derby to provide localized
messages.

• You must have the locale-specific Derby jar file. Derby provides such jars for only
some locales. You will find the locale jar files in the /lib directory in your Derby
installation.

• The locale-specific Derby jar file must be in the classpath.

The locale-specific Derby jar file is named derbyLocale_ll_CC.jar, where ll is
the two-letter code for language, and CC is the two-letter code for country. For
example, the name of the jar file for error messages for the German locale is
derbyLocale_de_DE.jar.

Derby supports the following locales:
• derbyLocale_cs.jar - Czech
• derbyLocale_de_DE.jar - German
• derbyLocale_es.jar - Spanish
• derbyLocale_fr.jar - French
• derbyLocale_hu.jar - Hungarian
• derbyLocale_it.jar - Italian
• derbyLocale_ja_JP.jar - Japanese
• derbyLocale_ko_KR.jar - Korean
• derbyLocale_pl.jar - Polish
• derbyLocale_pt_BR.jar - Brazilian Portuguese
• derbyLocale_ru.jar - Russian
• derbyLocale_zh_CN.jar - Simplified Chinese
• derbyLocale_zh_TW.jar - Traditional Chinese

Derby Developer's Guide

153

Derby and standards

Derby adheres to SQL99 or newer standards wherever possible. This section describes
those features currently in Derby that are not standard; these features are currently being
evaluated and might be removed in future releases.

This section describes those parts of Derby that are non-standard or not typical for a
database system.

ALTER TABLE syntax
Derby uses a slightly different ALTER TABLE syntax for altering column defaults.
While SQL99 uses DROP and SET, Derby uses DEFAULT.

Calling functions and procedures
Derby supports the CALL (procedure) statement for calling external procedures
declared by the CREATE PROCEDURE statement. Built-in functions and
user-defined functions declared with the CREATE FUNCTION command can be
called as part of an SQL select statement or by using either a VALUES clause or
VALUES expression.

CLOB and BLOB data types
Derby supports the standard CLOB and BLOB data types. BLOB and CLOB values
are limited to a maximum of 2,147,483,647 characters.

Cursors
Derby uses JDBC's result sets, and does not provide SQL for manipulating cursors
except for positioned update and delete. Derby's scrollable insensitive cursors are
provided through JDBC, not through SQL commands.

DECIMAL max precision
For Derby, the maximum precision for DECIMAL columns is 31 digits. SQL99 does
not require a specific maximum precision for decimals, but most products have a
maximum precision of 15-32 digits.

Dynamic SQL
Derby uses JDBC's Prepared Statement, and does not provide SQL commands for
dynamic SQL.

Expressions on LONGs
Derby permits expressions on LONG VARCHAR; however, LONG VARCHAR data
types are not allowed in the following clauses, operations, constraints, functions, and
predicates:

• GROUP BY clauses
• ORDER BY clauses
• JOIN operations
• PRIMARY KEY constraints
• Foreign KEY constraints
• UNIQUE key constraints
• MIN aggregate function
• MAX aggregate function
• [NOT] IN predicate
• UNION, INTERSECT, and EXCEPT operators

SQL99 also places some restrictions on expressions on LONG types.
Information schema

Derby uses its own system catalog that can be accessed using standard JDBC
DatabaseMetadata calls. Derby does not provide the standard Information Schema
views.

NOT NULL characteristic
The SQL standard says NOT NULL is a constraint, and can be named and viewed in
the information schema as such. Derby does not provide naming for NOT NULL, nor

Derby Developer's Guide

154

does it present it as a constraint in the information schema, only as a characteristic of
the column.

Stored routines and PSM
Derby supports external procedures using the Java programming language.
Procedures are managed using the CREATE PROCEDURE and DROP
PROCEDURE statements.

Transactions
All operations in Derby are transactional. Derby supports transaction control using
JDBC Connection methods. This includes support for savepoints and for the four
JDBC transaction isolation levels. The only SQL command provided for transaction
control is SET TRANSACTION ISOLATION.

XML data types and operators
Derby supports the XML data type and a set of operators that work with the XML data
type, but does not provide JDBC support for the XML data type. The XML data type and
operators are based on a small subset of the SQL/XML specification.

The XML data type and operators are defined only in the SQL layer.

There is no JDBC-side support for XML data types. It is not possible to bind directly
into an XML value or to retrieve an XML value directly from a result set. Instead, you
must bind and retrieve the XML data as Java strings or character streams by explicitly
specifying the appropriate XML operator as part of the SQL statements:

• Create a table with a XML data typed column. For example:

CREATE TABLE xml_data(xml_col XML);
• Use the XMLPARSE operator for binding data into XML values. For example:

INSERT INTO xml_data(xml_col)
 VALUES(XMLPARSE(DOCUMENT ' <name> Derby </name>' PRESERVE
 WHITESPACE));

Note: You must insert the XML keywords DOCUMENT and PRESERVE
WHITESPACE. Actual XML data should be inside single quotation marks, and
values should be within the starting XML tag and the ending XML tag.

• Use the XMLSERIALIZE operator to retrieve XML values from a result set. For
example:

SELECT XMLSERIALIZE(xml_col AS CLOB) FROM xml_data;

Note: You can also specify xml_col AS VARCHAR(25).
• Use non-XML data retrieved from a non-XML column to create an XML fragment.

For example:

 SELECT '<my_self>' ||
 '<name>'|| my_name ||'</name>' ||
 '<age>'|| TRIM(CHAR(my_age)) ||'</age>'||
 '</my_self>'
 FROM my_non_xml_table;

Note: This will result in XML fragments, which you must plug into an XML
document.

Additionally, there is no JDBC metadata support for the XML data type.

The XML data type is not allowed in any of the clauses or operations that are described
in the section on expressions on LONG data types in Derby and standards.

For the XML operators to work properly, Derby requires that a JAXP parser, such as
Apache Xerces, and an implementation of the DOM Level 3 XPath specification, such

Derby Developer's Guide

155

as Apache Xalan, are included in the Java classpath. If either the parser or the XPath
processor is missing from the classpath, Derby disallows any XML-related operations.

Classpath and version issues

Most Java Virtual Machines (JVMs) that are version 1.6 or later, have the required
libraries embedded in the JVM. If you are using one of these JVMs, you may not need to
add any classes to your classpath.

If your JVM does not include the required libraries, you must add Apache Xalan, or some
other library that implements the required functionality, to your classpath.

Some JVMs include a version of Xalan that is not new enough. If your JVM comes with a
too old version of Xalan, you may need to override the version of Xalan in the JVM with
a newer version by using the Endorsed Standards Override Mechanism described at
http://download.oracle.com/javase/1.4.2/docs/guide/standards/. To use this mechanism,
download and install a binary distribution of Xalan from Apache and set the system
property java.endorsed.dirs to point to the Xalan installation directory.

http://download.oracle.com/javase/1.4.2/docs/guide/standards/

Derby Developer's Guide

156

Trademarks

The following terms are trademarks or registered trademarks of other companies and
have been used in at least one of the documents in the Apache Derby documentation
library:

Cloudscape, DB2, DB2 Universal Database, DRDA, and IBM are trademarks of
International Business Machines Corporation in the United States, other countries, or
both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft
Corporation in the United States, other countries, or both.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names
may be trademarks of their respective owners.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Other company, product, or service names may be trademarks or service marks of
others.

	Cover
	Contents
	Copyright
	License
	About this guide
	Purpose of this guide
	Audience
	How this guide is organized

	After installing
	The installation directory
	Batch files and shell scripts

	Derby and JVMs
	Derby libraries and classpath
	UNIX-specific issues
	Configuring file descriptors
	Scripts

	Upgrades
	Preparing to upgrade
	Upgrading a database
	Soft upgrade limitations

	JDBC applications and Derby basics
	Application development overview
	Derby embedded basics
	Derby JDBC driver
	Derby JDBC database connection URL
	Derby system
	One Derby instance for each Java Virtual Machine (JVM)
	Booting databases
	Shutting down the system
	Defining the system directory
	The error log
	derby.properties
	Double-booting system behavior
	Recommended practices

	A Derby database
	The database directory
	Creating, dropping, and backing up databases
	Single database shutdown
	Storage and recovery
	Log on separate device
	Database pages
	Database-wide properties
	Derby database limitations

	Connecting to databases
	Connecting to databases within the system
	Connecting to databases outside the system directory
	Conventions for specifying the database path
	Special database access
	Accessing databases from the classpath
	Accessing databases from a jar or zip file

	Database connection examples

	Working with the database connection URL attributes
	Using the databaseName attribute
	Shutting down Derby or an individual database
	Creating and accessing a database
	Providing a user name and password
	Creating a database with territory-based collation
	Encrypting a database when you create it
	Creating an encrypted database with an external key
	Booting an encrypted database
	Specifying attributes in a properties object

	Using in-memory databases
	Working with Derby properties
	Properties overview
	Scope of properties
	Persistence of properties
	Precedence of properties
	Protection of database-wide properties

	Dynamic versus static properties

	Setting Derby properties
	Setting system-wide properties
	Changing the system-wide properties programmatically
	Changing the system-wide properties by using the derby.properties file
	Verifying system properties

	Setting database-wide properties
	Setting properties in a client/server environment
	Making dynamic or static changes to properties

	Properties case study

	Deploying Derby applications
	Deployment issues
	Embedded deployment application overview
	Deploying Derby in an embedded environment
	Embedded systems and properties

	Creating Derby databases for read-only use
	Creating and preparing the database for read-only use
	Deploying the database on the read-only media
	Transferring read-only databases to archive (jar or zip) files
	Accessing a read-only database in a zip/jar file
	Accessing databases within a jar file using the classpath
	Databases on read-only media and DatabaseMetaData

	Loading classes from a database
	Class loading overview
	Create jar files for your application
	Add the jar file or files to the database
	Jar file examples
	Installing jar files
	Removing jar files
	Replacing jar files

	Enable database class loading with a property
	Code your applications

	Dynamic changes to jar files or to the database jar classpath
	Requirements for dynamic changes
	Notes on dynamic changes

	Derby server-side programming
	Programming database-side JDBC routines
	Database-side JDBC routines and nested connections
	Requirements for database-side JDBC routines using nested connections

	Database-side JDBC routines using non-nested connections
	Invoking a procedure using the CALL command

	Database-side JDBC routines and SQLExceptions
	User-defined SQLExceptions

	Programming trigger actions
	Trigger action overview
	Performing referential actions
	Accessing before and after rows
	Examples of trigger actions
	Triggers and exceptions
	Aborting statements and transactions

	Programming
Derby-style table
functions
	Overview of
Derby-style table
functions
	Preferred getXXX() methods for
Derby-style table
functions

	Example Derby-style
table function
	Writing restricted table functions
	Optimizer support for
Derby-style table
functions
	Measuring the cost of
Derby-style table
functions
	Example VTICosting implementation

	Programming user-defined types

	Controlling Derby application behavior
	The JDBC connection and transaction model
	Connections
	Statements
	ResultSets and Cursors
	Nested connections

	Transactions
	Transactions when auto-commit is disabled
	Using auto-commit
	Turning off auto-commit
	Explicitly closing Statements, ResultSets, and Connections
	Statement versus transaction runtime rollback
	Using savepoints

	Result set and cursor mechanisms
	Simple non-updatable result sets
	Updatable result sets
	Requirements for updatable result sets
	Forward only updatable result sets
	Scrollable updatable result sets
	Inserting rows with updatable result sets
	Naming or accessing the name of a cursor
	Extended updatable result set example

	Result sets and auto-commit
	Scrollable result sets
	Holdable result sets
	Holdable result sets and autocommit
	Non-holdable result set example

	Locking, concurrency, and isolation
	Isolation levels and concurrency
	Configuring isolation levels
	Lock granularity
	Types and scope of locks in Derby systems
	Exclusive locks
	Shared locks
	Update locks
	Lock compatibility
	Scope of locks
	Notes on locking

	Deadlocks
	Avoiding deadlocks
	Deadlock detection
	Lock wait timeouts
	Configuring deadlock detection and lock wait timeouts
	Debugging Deadlocks
	Programming applications to handle deadlocks

	Working with multiple connections to a single database
	Deployment options and threading and connection modes
	Multi-user database access
	Multiple connections from a single application

	Working with multiple threads sharing a single connection
	Pitfalls of sharing a connection among threads
	Multi-thread programming tips
	Example of threads sharing a statement

	Working with database threads in an embedded environment
	Working with Derby SQLExceptions in an application
	Information provided in SQL Exceptions
	Example of processing SQLExceptions

	Using Derby as a Java EE resource manager
	Classes that pertain to resource managers
	Getting a DataSource
	Shutting down or creating a database

	Derby and security
	Configuring security for your environment
	Configuring security in a client/server environment
	Configuring security in an embedded environment

	Working with user authentication
	Using NATIVE authentication
	Enabling user authentication
	Defining users
	External directory service
	LDAP directory service
	Setting up Derby to
use your LDAP directory service
	Guest access to search for DNs
	LDAP performance issues
	LDAP restrictions

	JNDI-specific properties for external directory services
	User-defined class
	Example of setting a user-defined class

	BUILTIN Derby users
	Database-level properties
	System-level properties

	List of user authentication properties
	Programming applications for Derby user authentication
	Programming the application to provide the user and password
	Login failure exceptions with user authentication

	Users and authorization identifiers
	Authorization identifiers, user authentication, and user authorization
	Database owner

	User names and schemas
	Exceptions when using authorization identifiers

	User authorizations
	Setting the SQL standard authorization mode
	Using SQL standard authorization
	Privileges on views, triggers, and constraints
	Using SQL roles
	Upgrading an old database to use SQL standard authorization
	SQL standard authorization exceptions

	Setting the default connection access mode
	Setting access for individual users
	Read-only and full access permissions
	User authorization exceptions

	Encrypting databases on disk
	Requirements for Derby encryption
	Working with encryption
	Encrypting databases on creation
	Encrypting an existing unencrypted database
	Creating the boot password
	Specifying an alternate encryption provider
	Specifying an alternate encryption algorithm

	Encrypting databases with a new key
	Encrypting databases with a new boot password
	Encrypting databases with a new external encryption key

	Booting an encrypted database

	Signed jar files
	Notes on the Derby security features
	User authentication and authorization examples
	NATIVE authentication and SQL authorization example
	Setting LDAP user authentication properties in a client/server environment

	Running Derby under a security manager
	Granting permissions to Derby
	Examples of Java security policy files for embedded Derby
	Java security policy file example 1
	Java security policy file example 2
	Java security policy file example 3

	Developing tools and using Derby with an IDE
	Offering connection choices to the user
	The DriverPropertyInfo Array
	DriverPropertyInfo array example

	Using Derby with IDEs
	IDEs and multiple JVMs

	SQL tips
	Retrieving the database connection URL
	Supplying a parameter only once
	Defining an identity column
	Using third-party tools
	Tricks of the VALUES clause
	Multiple rows
	Mapping column values to return values
	Creating empty queries

	Localizing Derby
	SQL parser support for Unicode
	Character-based collation in Derby
	Other components with locale support
	Messages libraries

	Derby and standards
	XML data types and operators

	Trademarks

