
Using FAUST with ROS
(version 0.0.04)

GRAME
Centre National de Création Musicale

October 2014

2

Contents

1 Introduction 5

1.1 FAUST . 5

1.1.1 Design Principles . 5

1.1.2 Signal Processor Semantic . 6

1.2 ROS . 6

1.2.1 What is it ? . 6

1.2.2 Concepts . 7

1.3 Using FAUST with ROS . 9

1.4 Audio Server . 10

2 Compiling FAUST Program for ROS Use 11

2.1 Compiling in a FAUST Archive . 11

2.2 Compiling in a Workspace . 12

2.3 Example . 12

3 Using FAUST Nodes 15

3.1 Run the Master . 15

3.2 Run a FAUST Node . 16

3.3 To Which Topics is a FAUST Node Subscribing ? 16

3.4 How to Escape from a Running Node ? . 17

4 FAUST Messages 19

4.1 faust_param.msg . 19

4.2 How to Use these Messages ? . 20

3

4 CONTENTS

5 Common Error Messages 21

5.1 The command does not output anything 21

5.2 No such file or directory . 21

5.3 Fatal error during catkin_make operation 21

5.4 [rosrun] error . 22

Chapter 1

Introduction

FAUST (Functional Audio Stream) is a functional programming language specifically
designed for real-time signal processing and synthesis. FAUST targets high-performance
signal processing applications and audio plug-ins for a variety of platforms and stan-
dards.
ROS (Robot Operating System) is a flexible framework for writing robot software. It
is a collection of tools, libraries, and conventions that aim to simplify the task of cre-
ating complex and robust robot behavior across a wide variety of robotic platforms.

1.1 FAUST

1.1.1 Design Principles

Various principles have guided the design of FAUST:

• FAUST is a specification language. It aims at providing an adequate notation to
describe signal processors from a mathematical point of view. FAUST is, as much
as possible, free from implementation details.

• FAUST programs are fully compiled, not interpreted. The compiler translates
FAUST programs into equivalent C++ programs taking care of generating the
most efficient code. The result can generally compete with, and sometimes even
outperform, C++ code written by seasoned programmers.

• The generated code works at the sample level. It is therefore suited to imple-
ment low-level DSP functions like recursive filters. Moreover the code can be
easily embedded. It is self-contained and doesn’t depend of any DSP library or
runtime system. It has a very deterministic behavior and a constant memory
footprint.

• The semantic of FAUST is simple and well defined. This is not just of academic
interest. It allows the FAUST compiler to be semantically driven. Instead of
compiling a program literally, it compiles the mathematical function it denotes.
This feature is useful for example to promote components reuse while preserv-
ing optimal performance.

5

6 CHAPTER 1. INTRODUCTION

• FAUST is a textual language but nevertheless block-diagram oriented. It ac-
tually combines two approaches: functional programming and algebraic block-
diagrams. The key idea is to view block-diagram construction as function com-
position. For that purpose, FAUST relies on a block-diagram algebra of five com-
position operations (: , ~ <: :>).

• Thanks to the notion of architecture, FAUST programs can be easily deployed
on a large variety of audio platforms and plugin formats without any change to
the FAUST code.

1.1.2 Signal Processor Semantic

A FAUST program describes a signal processor. The role of a signal processor is to trans-
form a group of (possibly empty) input signals in order to produce a group of (possi-
bly empty) output signals. Most audio equipments can be modeled as signal processors.
They have audio inputs, audio outputs as well as control signals interfaced with slid-
ers, knobs, vu-meters, etc...

For more informations about FAUST, please see faust-quick-reference.pdf and the tuto-
rials in FAUST documentation.

1.2 ROS

1.2.1 What is it ?

Creating truly robust, general-purpose robot software is hard. From the robot’s per-
This section’s content (1.2

ROS) is taken from ROS
documentation. It can be

found on ROS official
website and ROS wiki.

spective, problems that seem trivial to humans often vary wildly between instances
of tasks and environments. Dealing with these variations is so hard that no single
individual, laboratory, or institution can hope to do it on their own.

ROS is an open-source, meta-operating system for your robot. It provides the ser-
vices you would expect from an operating system, including hardware abstraction,
low-level device control, implementation of commonly-used functionality, message-
passing between processes, and package management. It also provides tools and li-
braries for obtaining, building, writing, and running code across multiple computers.

As a result, ROS was built from the ground up to encourage collaborative robotics
software development. For example, one laboratory might have experts in mapping
indoor environments, and could contribute a world-class system for producing maps.
Another group might have experts at using maps to navigate, and yet another group
might have discovered a computer vision approach that works well for recognizing
small objects in clutter. ROS was designed specifically for groups like these to collab-
orate and build upon each other’s work, as is described throughout this site.

http://www.ros.org
http://www.ros.org
http://www.wiki.ros.org

1.2. ROS 7

1.2.2 Concepts

Filesystem level

The filesystem level concepts mainly cover ROS resources that you encounter on disk,
such as:

• Packages are the main unit for organizing software in ROS. A package may con-
tain ROS runtime processes (nodes), a ROS-dependent library, datasets, config-
uration files, or anything else that is usefully organized together. Packages are
the most atomic build item and release item in ROS. Meaning that the most
granular thing you can build and release is a package.

• Metapackages are specialized Packages which only serve to represent a group
of related other packages.

• Services : Service descriptions, stored in my_package/srv/MyServiceType.srv,
define the request and response data structures for services in ROS.

• Messages : Message descriptions, stored in my_package/msg/MyMessageType.msg,
define the data structures for messages sent in ROS.

Computation Graph level

The Computation Graph is the peer-to-peer network of ROS processes that are pro-
cessing data together. The basic Computation Graph concepts of ROS are nodes,
Master, Parameter Server, messages, services, topics, and bags, all of which provide
data to the Graph in different ways.

• Master : The ROS Master provides name registration and lookup to the rest
of the Computation Graph. Without the Master, nodes would not be able to
find each other, exchange messages, or invoke services.

• Nodes : Nodes are processes that perform computation. ROS is designed to be
modular at a fine-grained scale; a robot control system usually comprises many
nodes. For example, one node controls a laser range-finder, one node controls
the wheel motors, one node performs localization, one node performs path
planning, one Node provides a graphical view of the system, and so on. A ROS
node is written with the use of a ROS client library, such as roscpp or rospy.

• Topics : Messages are routed via a transport system with publish / subscribe
semantics. A node sends out a message by publishing it to a given topic. The
topic is a name that is used to identify the content of the message. A node that
is interested in a certain kind of data will subscribe to the appropriate topic.
There may be multiple concurrent publishers and subscribers for a single topic,
and a single node may publish and/or subscribe to multiple topics. In general,
publishers and subscribers are not aware of each others’ existence. The idea is
to decouple the production of information from its consumption. Logically,
one can think of a topic as a strongly typed message bus. Each bus has a name,
and anyone can connect to the bus to send or receive messages as long as they
are the right type.

http://wiki.ros.org/Services
http://wiki.ros.org/Messages
http://wiki.ros.org/Client%20Libraries
http://wiki.ros.org/roscpp
http://wiki.ros.org/rospy
http://wiki.ros.org/Topics

8 CHAPTER 1. INTRODUCTION

• The Parameter Server : The Parameter Server allows data to be stored by key
in a central location. It is currently part of the Master.

• Messages : Nodes communicate with each other by passing messages. A mes-
sage is simply a data structure, comprising typed fields. Standard primitive
types (integer, floating point, boolean, etc.) are supported, as are arrays of prim-
itive types. Messages can include arbitrarily nested structures and arrays (much
like C structures).

Node 1

Node 2

Topic 1

Topic 2

Node 3

Node 4

publishing

publish
ing

publish
ing

subscribing

subscribing subscribing

MASTER

Figure 1.1: ROS Concepts in a diagram

Names

Names are really important in ROS. Valid names have these characteristics :

• first chararacter is an alpha character : [a-z][A-Z]

• subsequent characters can be alphanumeric : [a-z][A-Z][0-9], underscores : _
or forward slash : /

• there is at most one forward slash : /

For more informations on ROS and tutorials, please have a look to the website :
www.wiki.ros.org.

http://wiki.ros.org/Messages
www.wiki.ros.org

1.3. USING FAUST WITH ROS 9

1.3 Using FAUST with ROS

The idea of using FAUST modules with ROS could be summed up in the following
diagrams.

.dsp file
FAUST

compiler

FAUST part

.cpp file CMake
ROS

executable

ROS part

Figure 1.2: Compilation process

As shown on figure 1.2, the dsp file is compiled into a C++ file thanks to the FAUST
compiler. Then, the C++ file can be compiled with CMake in a ROS package to
create a ROS executable, that you can run with rosrun.

Robot
sensors
topic

datas pro-
cessing
node

topic
for faust
messages

topic
for faust
messages

FAUST
node :
signal

processing

FAUST
node :
signal

processing

subscribing publishing

publishing

subscribing

subscribing

Figure 1.3: Robot using ROS

Once the executables coming from DSP files compiled, you can run and combine
then with robotic applications (figure 1.3).

10 CHAPTER 1. INTRODUCTION

1.4 Audio Server

FAUST applications use the jack audio server. Make sure it is installed on your ma-
chine.

ROS : processing
and interface

jack : audio server

Node 1

ROS : processing
and interface

jack : audio server

Node 2nodes parameters
through topics

audio datas

Figure 1.4: APIs used by FAUST nodes

Chapter 2

Compiling FAUST
Program for ROS Use

To compile a FAUST program for a ROS use, you can use either the faust2ros com-
mand, or the faust2rosgtk one, which adds a gtk graphic user interface to the simple
faust2ros command. Note that all the FAUST compilation options remain.

2.1 Compiling in a FAUST Archive

In order to compile a DSP file into a FAUST archive, just type the command followed
by your file :

faust2ros file.dsp

It should output :

file.zip;

and the resulting file.zip folder should contain the following elements:

faust_msgs messages package to handle faust messages
file package containing a .cpp file corresponding to the DSP file

If the DSP file is not in the current directory, make sure to type the right path. For
instance :

faust2ros ~/faust/examples/myfile.dsp

Comment: If you want to use the faust2rosgtk command, the output will have
a _gtk extension. For instance :

faust2rosgtk file.dsp

should output :

file_gtk.zip;

11

12 CHAPTER 2. COMPILING FAUST PROGRAM FOR ROS USE

and the resulting file_gtk.zip folder should contain the following elements:

faust_msgs messages package to handle faust messages
file_gtk package containing a .cpp file corresponding to the DSP file

2.2 Compiling in a Workspace

Thanks to the option -install, you have the possibility to create a package from
your DSP file directly in the a workspace you chose. Just type :

faust2ros -install faust_ws file.dsp

It should output :

file.cpp;

and you should have a faust_ws repository looking like this :

faust_ws
build
devel
src

faust_msgs : Messages Package
Files to handle Faust messages.

include
msg

param_faust.msg
src
CMakeLists.txt
package.xml

file : File Package .
include
src

file.cpp : File generated with Faust compiler .
CMakeLists.txt
package.xml

2.3 Example

Here is an example of three files compilation.

Input :

faust2rosgtk -install foo_ws -o foo1 file1.dsp
-install foo_ws -o foo2 file2.dsp
-install bar_ws -o bar file3.dsp

2.3. EXAMPLE 13

Output :

˜
foo_ws

faust_msgs
foo1
foo2

bar_ws
bar

14 CHAPTER 2. COMPILING FAUST PROGRAM FOR ROS USE

Chapter 3

Using FAUST Nodes

Once your DSP files are compiled into ROS executables, you can run them into a
ROS master.

3.1 Run the Master

A FAUST node needs a master to run. You can check if a master is already running
by typing :

rostopic list

Then, there are two possibilities :

• Either you get the following message :

ERROR: Unable to communicate with master!

which means there is no master running

• Or you get :

/rosout
/rosout_agg

which means a master is already running.

To run a master, you have to type the following command :

roscore

15

16 CHAPTER 3. USING FAUST NODES

3.2 Run a FAUST Node

Now that your master is running, you can run your FAUST node. It is quite simple.
Type :

rosrun mynodepackage mynode

For instance, if your node name is foo, then type :

rosrun foo foo

If you get an error message looking like this :

[rosrun] Couldn ’t find executable named foo below /path/
to/myworkspace/src/foo

then refer to section 5.4

3.3 To Which Topics is a FAUST Node Subscribing ?

Once your FAUST node is running, it automatically subscribes to topics correspond-
ing to the parameters you can modify, and to the widgets the gtk graphic interface has.
For instance, if you use a FAUST node generated from the noise.dsp file (in the exam-
ples directory), the noise_gtk node will subscribe to the topic noise_gtk/Volume
and the graphic interface will look like this :

Figure 3.1: noise_gtk graphic interface

3.4. HOW TO ESCAPE FROM A RUNNING NODE ? 17

A more complex example like the harpe.dsp file, which contains three widgets, can
generate several topics to subscribe to :

/harpe_gtk/attenuation
/harpe_gtk/hand
/harpe_gtk/level

and the graphic interface can look like this :

Figure 3.2: harpe_gtk graphic interface

If you want to change the topic name, just remap them while running your node :

rosrun myfaustpackage myfaustnode /topicname :=/
newtopicname

For instance, to remap the /harpe/hand topic to /play, then run the harpe node like
this :

rosrun harpe harpe /harpe/hand :=/ play

3.4 How to Escape from a Running Node ?

To close a node running in ROS, you have two possibilities, depending on the graphic
interface :

• If your node has a graphic interface, then quit by clicking on the red cross in
the corner of the window.

• If your node does not have any graphic interface, then quit by typing Ctrl+C
in the node’s terminal window.

18 CHAPTER 3. USING FAUST NODES

Chapter 4

FAUST Messages

In order to share data, ROS nodes publish in and subscribe to topics. Topics can
handle only one type of messages (a float, a string and an integer, etc . . .).
A FAUST node is configured to read a single type of messages : faust_param.msg.

4.1 faust_param.msg

When you compile a DSP file, a faust_msgs package is automatically created next to
your file package. As describe above in chapter 2, the faust_msgs package contains
a msg folder, in which is the faust_param.msg file. When you make the workspace
with catkin_make, a faust_param.h file is created in the devel/include/faust_msgs
directory. For more informations and details about messages in ROS, refer to ROS
documentation.
The faust_param messages definition is very simple :

float32 value

It means this message only constituted by a float, which is named value.

19

http://wiki.ros.org/msg
http://wiki.ros.org/msg

20 CHAPTER 4. FAUST MESSAGES

4.2 How to Use these Messages ?

Let’s put it in diagram :

sensor
data get

published
into that

topic

data are
processed
to fit to

faust_param
type

processed
data get

published
into that

topic

parameters
are set

Sensor
messages

FAUST
messages:

a float

FAUST
messages:

a float

Figure 4.1: Diagram explaining messages dynamic between a sensor topic and a FAUST
node

Data coming from a sensor need to get processed to be used by a FAUST node. For
example, if the data is an image message, coming from a camera, you cannot use it
directly : you need to perform some processing on the picture, in order t get the
value you’re interested in. Once this value is processed, you can send it to a FAUST
topic, on which a FAUST node has subscribed. The FAUST node is now able to change
its parameter value.

Chapter 5

Common Error Messages

Compiling can fail. Here are some common mistakes and how to solve them.

5.1 The command does not output anything

If, after typing your command followed by a file name, your terminal does not output
anything like myfile.zip; or myfile.cpp; and returns only a blank line, make sure
you are in the correct directory or you entered the correct path to reach the DSP
file.

5.2 No such file or directory

If you used the -install option, make sure you typed the complete workspace path.
For instance, instead of typing this :

faust2ros -install myworkspace ~/path/to/myfile.dsp

you should type :

faust2ros -install path/to/myworkspace ~/path/to/myfile.
dsp

5.3 Fatal error during catkin_make operation

Once your DSP file compiled into a cpp file, if you try to compile it into a ROS
executable, the terminal might output :

fatal error: faust_msgs/faust_param.h: No such file or
directory

21

22 CHAPTER 5. COMMON ERROR MESSAGES

You have two possibilities :

• If your workspace is only a test workspace, then type :

source path/to/myworkspace/devel/setup.bash

in your terminal.

• If your workspace is going to be your current ROS workspace, you can add it to
the source directories :

echo "source path/to/myworkspace/devel/setup.bash" >>
~/. bashrc

5.4 [rosrun] error

If, while trying to run a FAUST node (called myname), an error message showed up
saying :

[rosrun] Couldn ’t find executable named myname below /
path/to/myworkspace/src/myname

Then you have to source your workspace :

• If your workspace is only a test workspace, then type :

source path/to/myworkspace/devel/setup.bash

in your terminal.

• If your workspace is going to be your current ROS workspace, you can add it to
the source directories :

echo "source path/to/myworkspace/devel/setup.bash" >>
~/. bashrc

	Introduction
	Faust
	Design Principles
	Signal Processor Semantic

	ROS
	What is it ?
	Concepts

	Using Faust with ROS
	Audio Server

	Compiling Faust Program for ROS Use
	Compiling in a Faust Archive
	Compiling in a Workspace
	Example

	Using Faust Nodes
	Run the Master
	Run a Faust Node
	To Which Topics is a Faust Node Subscribing ?
	How to Escape from a Running Node ?

	Faust Messages
	faust_param.msg
	How to Use these Messages ?

	Common Error Messages
	The command does not output anything
	No such file or directory
	Fatal error during 'catkinmake' operation
	[rosrun] error

