
High-Performance Numerical Library for Solving Eigenvalue Problems

FEAST Eigenvalue Solver v3.0

User Guide
Eric Polizzi, James Kestyn

http:://www.feast-solver.org

Eric Polizzi Research Lab.
Department of Electrical and Computer Engineering,

Department of Mathematics and Statistics,

University of Massachusetts, Amherst

References

If you are using FEAST, please consider citing one or more publications below in your work.

Main reference
E. Polizzi, Density-Matrix-Based Algorithms for Solving Eigenvalue Problems,
Phys. Rev. B. Vol. 79, 115112 (2009)

Math analysis
P. Tang, E. Polizzi, FEAST as a Subspace Iteration EigenSolver Accelerated by Approximate Spectral Projection;
SIAM Journal on Matrix Analysis and Applications (SIMAX) 35(2), 354390 - (2014)

Non-Hermitian solver
J. Kestyn, E. Polizzi, P. T. P. Tang, FEAST Eigensolver for Non-Hermitian Problems,
arxiv.org/abs/1506.04463 (2015)

Hermitian using Zolotarev quadrature
S. Güttel, E. Polizzi, P. T. P. Tang, G. Viaud, Optimized Quadrature Rules and Load Balancing for the FEAST
Eigenvalue Solver,
SIAM Journal on Scientific Computing (SISC), to appear (2015), arxiv.org/abs/1407.8078 (2014)

Eigenvalue count using stochastic estimates
E. Di Napoli, E. Polizzi, Y. Saad, Efficient Estimation of Eigenvalue Counts in an Interval,
arxiv.org/abs/1308.4275 (2015)

Contact

If you have any questions or feedback regarding FEAST, please send an-email to feastsolver@gmail.com.

FEAST algorithm and software team, collaborators and contributors

Algorithm and research Software development

Eric Polizzi Lead v3.0, v2.1, v2.0, v1.0

James Kestyn Non-Hermitian FEAST v3.0
UMass improved schemes, tunings, tools FEAST non-Hermitian upgrade
Amherst Brendan Gavin Non-linear eigenvector problem
Team expanded subspace scheme

Braegan Spring SPIKE-SMP v1.0 v3.0
scalable banded system solver FEAST banded interfaces upgrade

Peter Tang General FEAST algorithm analysis
Intel improved schemes

Collaborators Yousef Saad Eigenvalue count estimates
& U. of Minnesota new FEAST schemes (in progress)

Contributors Edoardo Di Napoli Eigenvalue count estimates
Jülich Supercomput.
Stefan Güttel Zolotarev quadrature & analysis v3.0
Manchester U. Zolotarev quadrature database
Gautier Viaud Zolotarev quadrature & analysis
ECP France
Ahmed Sameh SPIKE-SMP v1.0
Purdue U. SVD-FEAST (in progress)

Acknowledgments

We acknowledge the many helpful technical discussions and inputs from Dr. Sergey Kuznetsov and team
members from Intel-MKL. This work has been partially supported by Intel Corporation.

A. Table of Contents

A. Table of Contents 3

1 Updates/Upgrades Summary 4
1.1 From v2.1 to v3.0 . 4

2 Preliminary 6
2.1 The FEAST Algorithm . 6
2.2 The FEAST Solver Package version v3.0 . 7
2.2.1 Using the FEAST-SMP version . 8
2.2.2 Using the FEAST-MPI version . 8
2.3 Installation and Setup: A Step by Step Procedure . 9
2.3.1 Installation- Compilation . 9
2.3.2 Linking FEAST . 11
2.4 A simple “Hello World” Example (F90, C, MPI-F90, MPI-C) 12

3 FEAST Interfaces 16
3.1 Basics . 16
3.1.1 Definition . 16
3.1.2 Common Declarations . 17
3.2 FEAST RCI interfaces . 18
3.2.1 Specific declarations . 18
3.2.2 RCI Mechanism . 19
3.3 FEAST predefined interfaces . 20
3.3.1 Specific declarations . 20
3.3.2 Matrix storage . 22

4 FEAST Parameters and Search Contour 23
4.1 Input FEAST parameters . 23
4.2 Defining a search contour . 24
4.3 Output FEAST info details . 25

5 FEAST: General use 26
5.1 Single search interval and FEAST-SMP . 26
5.2 Single search interval and FEAST-MPI . 27
5.3 Multiple search intervals and FEAST-MPI . 27

6 FEAST in action 29
6.1 Examples: Hermitian/Non-Hermitian; Fortran/C/MPI; Dense/Banded/Sparse 29
6.2 FEAST utility sparse drivers . 30

7 Additional Tools for FEAST 32
7.1 Stochastic estimate . 32
7.2 Custom contours . 32
7.2.1 Defining a Custom Contour using {C,Z}FEAST customcontour 32
7.2.2 Calling the Expert FEAST Routines . 34
7.3 List of all FEAST tool routines . 35

1 Updates/Upgrades Summary

If you are a FEAST’s first time user, you can skip this section.

Here is a summary of the most important updates/upgrades.

1.1 From v2.1 to v3.0

• A variety of new features have been added in v3.0. This includes support for non-Hermitian matrices,
elliptical contours and custom user-defined contours, stochastic estimates for the number of eigenvalues
inside search interval, and different quadrature rules. Many new routines have been added. See Table
1 for a summary.

Family of Eigenvalue Problems Routines in v3.0
AX = BXΛ

AHX̂ = BHX̂Λ∗ Elliptical Contours (Standard) Custom Contour (Expert)

Real and Symmetric {s,d}feast srci {s,d}feast srcix

A = AT , B spd, X = X̂ real, Λ real {s,d}feast {sy,sb,scsr}{ev,gv} {s,d}feast {sy,sb,scsr}{ev,gv}x
Complex and Hermitian {c,z}feast hrci {c,z}feast hrcix

A = AH , B hpd, X = X̂ complex, Λ real {c,z}feast {he,hb,hcsr}{ev,gv} {c,z}feast {he,hb,hcsr}{ev,gv}x
Complex and Symmetric {c,z}feast srci {c,z}feast srcix

A = AT , B = BT , X = X̂∗ complex, Λ complex {c,z}feast {sy,sb,scsr}{ev,gv} {c,z}feast {sy,sb,scsr}{ev,gv}x
Real and Non-Symmetric {s,d}feast grci {s,d}feast grcix

A,B general, X 6= X̂ complex, Λ complex {s,d}feast {ge,gb,gcsr}{ev,gv} {s,d}feast {ge,gb,gcsr}{ev,gv}x
Complex and General {c,z}feast grci {c,z}feast grcix

A,B general, X 6= X̂ complex, Λ complex {c,z}feast {ge,gb,gcsr}{ev,gv} {c,z}feast {ge,gb,gcsr}{ev,gv}x

Table 1: Summary of all routines in FEAST v3.0 (140 total) - new routines in red

• Non-Hermitian routines use a different variant of the FEAST algorithm than Hermitian cases. The
major difference is the use of dual subspaces, Q and Q̂, corresponding to Right X and Left X̂ eigenvec-
tors. Also, the search interval must become 2-dimensional to account for complex eigenvalues. More
detail is given in:

FEAST Eigensolver for Non-Hermitian Problems,
J. Kestyn, E. Polizzi, P. Tang, http://arxiv.org/abs/1506.04463 (2015)

• FEAST now offers multiple quadrature rules: Gauss, Trapezoidal and Zolotarev (for the Hermitian
case), as well as elliptical complex contour. More detail is given in:

Optimized Quadrature Rules and Load Balancing for the FEAST Eigenvalue Solver,
S. Güttel, E. Polizzi, P. T. Tang, G. Viaud, http://arxiv.org/abs/1407.8078

• All FEAST routines can be called within their “expert mode” version which features new user input
lists for nodes and weights.

• Stochastic estimates for the number of eigenvalues inside of the search interval are now available.
This feature can help users in estimating a value for the search subspace M0. Refer to the following
publication for more information.

Efficient Estimation of Eigenvalue Counts in an Interval,
E. Di Napoli , E. Polizzi, Y. Saad, http://arxiv.org/abs/1308.4275

• Various utility routines have also been added (see section 6). We note in particular the possibility
for the users to design their own contour shape in the complex plane. This is particularly helpful
for non-Hermitian routines as it grants flexibility in targeting specific eigenvalues. See Section 6 for
additional information.

http://arxiv.org/abs/1506.04463
http://arxiv.org/abs/1407.8078
http://arxiv.org/abs/1308.4275

• FEAST PARAMETERS- new or updated fpm parameters:

– fpm(2) is updated- inludes more options for #nodes in the half-contour (for Hermitian FEAST)
If fpm(16)=0,2, values permitted [1 to 20, 24, 32, 40, 48, 56]
If fpm(16)=1, all values permitted

– fpm(6) is updated- default value changed to 1 -
Convergence criteria on trace (0) or eigenvectors relative residual (1)

– fpm(8) is added - Total number of contour integration nodes (i.e. complex shifts) for non-
Hermitian FEAST.
If fpm(17)=0, values permitted [2 to 40, 48, 64, 80, 96, 112]
If fpm(17)=1, all values permitted
Remark: fpm(8) represents the #nodes for the full contour while fpm(2) represents the #nodes
for the half-contour used by Hermitian FEAST.

– fpm(10) is added - can be used with the FEAST predefined driver interfaces (0: default, 1: store
all the linear system factorizations).
Remark: (i) storing the factorizations will significantly improve the performances (for FEAST
DENSE in particular), but can significantly increase the memory usage; (ii) option 1 works with
FEAST-MPI as well - store all factors associated to a given mpi process

– fpm(14) is modified - include option 2
0- default normal FEAST execution
1- return only subspace Q size M0 after 1 contour
2- return stochastic estimates of the #eigenvalue (in argument ’M’ and ’res’ for running average)

– fpm(16) is added - Integration type for symmetric (0: Gauss/Default, 1: Trapezoidal, 2: Zolotarev)

– fpm(17) is added - Integration type for non-symmetric (0: Gauss, 1: Trapezoidal/Default)

– fpm(18) is added - Ratio for ellipsoid contour - fpm(18)/100 is ratio ’vertical axis’/’horizontal
axis’ of the ellipse using the definition of the search contour. For example:
value 100 is the default (circle);
value 50 will create a 50% flat ellipse;
value 200 will create a 200% tall ellipse.

– fpm(19) is added - Rotation angle in degree [-180:180] for Ellipsoid contour and using FEAST
non-Hermitian- Origin of the rotation is the vertical axis.

2 Preliminary

“The solution of the algebraic eigenvalue problem has for long had a particular fascination for me because it illustrates

so well the difference between what might be termed classical mathematics and practical numerical analysis. The

eigenvalue problem has a deceptively simple formulation and the background theory has been known for many years;

yet the determination of accurate solutions presents a wide variety of challenging problems.”

J. H. Wilkinson- The Algebraic Eigenvalue Problem- 1965

In his seminal textbook, J. H. Wilkinson artfully outlined the fundamentals, difficulties and numerical
challenges for addressing the eigenvalue problem. Since then, the eigenvalue problem has led to many
challenging numerical questions and a central problem: how can we compute eigenvalues and eigenvectors
in an efficient manner and how accurate are they?

In many modern science and engineering applications, especially for those where the underlying system
matrices are large and sparse, it is often the case that only selected segments of the eigenvalue spectrum are
of interest. Although extensive efforts have been devoted to develop new numerical algorithms and library
packages, they are all commonly facing new challenges for addressing the current large-scale simulations needs
for ever higher level of accuracy, robustness and scalability on modern parallel architectures. The FEAST
eigensolver library package is intended to uniquely address all those issues. Its originality lies with a new
transformative numerical approach to the traditional eigenvalue algorithm design - the FEAST algorithm.

2.1 The FEAST Algorithm

Unlike any other eigenvalue numerical software, the FEAST solver is based on a new algorithm which deviates
fundamentally from the Krylov subspace based techniques (Arnoldi and Lanczos algorithms), Davidson-
Jacobi techniques or other traditional subspace iteration techniques. The FEAST algorithm is a general
purpose eigenvalue solver which takes its inspiration from the density-matrix representation and contour inte-
gration technique in quantum mechanics1. FEAST can be used for solving the generalized eigenvalue problem
AX = BXΛ (Hermitian or non-Hermitian), and obtaining all the eigenvalues λ and (left/right) eigenvectors
within a given search interval [λmin, λmax] or an arbitrary contour in the complex plane. FEAST’s main
building block is a numerical quadrature computation i.e. Q =

∑
wjQj , consisting of solving independent

linear systems along a complex contour i.e. (zjB−A)Qj = Y (with zj quadrature node), each with multiple
right hand sides Y . A Rayleigh-Ritz procedure is then used to generate a reduced dense eigenvalue problem
orders of magnitude smaller than the original one (the size of this reduced problem is of the order of the num-
ber of eigenpairs inside the search interval/contour). The algorithm contains elements from complex analysis,
numerical linear algebra and approximation theory, to produce an optimal subspace iteration method using
spectral projectors2. Not only the FEAST algorithm features some unique and remarkable convergence and
robustness properties, it can exploit a key strength of modern computer architectures, namely, multiple
levels of parallelism. All the important intrinsic properties of the algorithm, which have been analyzed and
commented at length in publications, can be summarized as follows:

(i) all multiplicities are naturally captured;

(ii) no explicit orthogonalization procedure on long vectors is required;

(iii) reusable subspace capable to generate suitable initial guess;

(iv) allows the use of iterative methods for solving large-sparse linear systems;

(v) can exploit natural parallelism at three different levels:

1. search intervals can be treated separately (no overlap);

2. linear systems can be solved independently across the quadrature nodes of the complex contour;

3. each complex linear system with multiple right-hand-sides can be solved in parallel.

Consequently, within a parallel environment, the algorithm complexity depends on solving a single
linear system.

1E. Polizzi, Phys. Rev. B. Vol. 79, 115112 (2009)
2P. Tang, E. Polizzi, SIMAX 35(2), 354390 - (2014)

2.2 The FEAST Solver Package version v3.0

The FEAST numerical library package (www.feast-solver.org) has first been developed and released (un-
der free BSD license) in Sep. 2009 (v1.0), follows by upgrades in Mar. 2012 (v2.0), and Feb. 2013 (v2.1)
[version adopted by Intel-MKL]. The current version of the FEAST package (v3.0) released in Jun. 2015, fo-
cuses on solving the Hermitian and Non-Hermitian eigenvalue problems (real symmetric, real non-symmetric,
complex Hermitian, complex non-Hermitian, complex symmetric) on both shared-memory architecture (i.e.
FEAST-SMP version) and distributed architecture (i.e. FEAST-MPI version including the three levels of
parallelism MPI-MPI-OpenMP).

FEAST is a comprehensive numerical library offering both simplicity and flexibility, and packaged around
a “black-box” interface as depicted in Figure 1.

Figure 1: “Black-box” interface for the Hermitian
problem. FEAST requires a search interval and a
search subspace size M0. It includes features such as
reverse communication interfaces (RCI) that are ma-
trix format independent, and linear system solver in-
dependent, as well as ready to use predefined interfaces
for dense, banded and sparse systems. For the pre-
defined interfaces case the “black-box” region extends
then to the right dashed box, and only the system ma-
trices are required as inputs from the users. The RCI
interfaces represent the kernel of FEAST which can be
customized by the users to allow maximum flexibility
for their specific applications. Users have then the pos-
sibility to integrate their own linear system solvers (di-
rect or iterative with or without preconditioner) and
handle their own matrix-vector multiplication proce-
dure.

The current main features of the FEAST package include:

• Standard or generalized Hermitian and non-Hermitian eigenvalue problems (left/right eigenvectors and
bi-orthonormal basis);

• Two libraries: SMP version (one node), and MPI version (multi-nodes);

• Real/Complex arithmetic and Single/Double precisions;

• A set of flexible and useful practical options (quadrature rules, contour shapes, stopping criteria, initial
guess, etc.)

• Fast stochastic estimates for search subspace size M0.

• Source code and pre-compiled libraries provided for common architectures (e.g. x64)- FEAST is written
in Fortran 90, but the FEAST libraries do not contain Fortran runtime dependencies to maximize
portability (e.g. compatibility with any Fortran or C compilers).

• Reverse communication interfaces (RCI): Maximum flexibility for application specific. Those are
matrix format independent, inner system solver independent, so users must provide their own linear
system solvers (direct or iterative) and mat-vec utility routines.

• Predefined driver interfaces for dense, banded, and sparse (CSR) formats: Less flexibility but easy
to use (”plug and play”):

– FEAST DENSE interfaces require LAPACK.

– FEAST BANDED interfaces use the SPIKE-SMP linear system solver (included)

– FEAST SPARSE interfaces requires the Intel MKL-PARDISO solver.

• All the FEAST interfaces require (any optimized) LAPACK and BLAS packages.

• Multiple utility routines are also included (e.g. user-defined custom contour in complex plane, variation
of the spectral projector rational function, extract nodes/weights from predefined quadrature rules,
etc.)

• Examples and documentation included,

• Utility sparse drivers included (i.e. users can also provide their matrix systems in coordinate/matrix-
market format for testing, timing, etc.).

Remark: Although it could be possible to develop a large collection of FEAST drivers that can be linked
with all the main linear system solver packages, we are rather focusing our efforts on the development of
highly efficient, functional and flexible FEAST RCI interfaces which are placed on top of the computational
hierarchy. Within the FEAST RCI interfaces, maximum flexibility is indeed available to the users for
choosing their preferred and/or application specific direct linear system method or iterative method with
(customized or generic) preconditioner.

2.2.1 Using the FEAST-SMP version

For a given search interval, parallelism (via shared memory programming) is not explicitly implemented
in FEAST i.e. the inner linear systems are solved one after another within one node (avoid the fight for
resources). Therefore, parallelism can only be achieved if the inner system solver and the mat-vec routines
are threaded. Using the FEAST predefined drivers, in particular, parallelism is implicitly obtained within
the shared memory version of BLAS, LAPACK, SPIKE-SMP or MKL-PARDISO. If FEAST is linked with
the INTEL-MKL library, the shell variable MKL NUM THREADS can be used for setting automatically the
number of threads (cores) for both BLAS, LAPACK and MKL-PARDISO. In the general case, the user is
responsible for activated the threaded capabilities of their BLAS, LAPACK libraries and their own linear
systems solvers - most likely using the shell variable OMP NUM THREADS. The latter must be defined with the
FEAST-BANDED interfaces since they are already making use of our own SPIKE-SMP solver.

Remark: If memory resource is not an issue (in particular for small to moderate size systems), the
flag fpm(10) should be changed to value 1. In this case, all the factorizations performed by the FEAST
predefined drivers (dense, banded, sparse) will be saved into memory (i.e. they are not recomputed along
the FEAST iterations) and performances will improved. With this option the FEAST-DENSE interface,
in particular, should become more competitive in comparison with the LAPACK eigenvalue routines for
computing selected eigenpairs.

2.2.2 Using the FEAST-MPI version

In the current FEAST version, only the second-level of parallelism is explicitly addressed by the code. This is
accomplished in a trivial fashion by sending off the different linear systems (which can be solved independently
for the points along the complex contour) along the compute nodes. From the user perspective, interfaces
and arguments list stay completely unchanged and it is the -lpfeast, etc. library (instead of -lfeast,
etc.) that needs to be linked within an MPI environment. Although, FEAST can run on any numbers of
MPI processors, there will be a peak of performance if the number of MPI processes is equal to the number
of contour points i.e. either fpm(2) or fpm(8) depending on the nature the eigenvalue problem and the
FEAST drivers. Indeed, the MPI implementation in v3.0 does not yet provide an option for the third level
of parallelism (system solver level) and FEAST still needs to call a shared-memory solver. However, it is
important to note that a MPI-level management has been added to allow easy parallelism of the search
interval using a coarser level of MPI (i.e. first level parallelism). For this case, a new flag fpm(9) has been
added as the only new input required by FEAST. This flag can be set equal to a new local communicator
variable “MPI COMM WORLD” which contains the selected user’s MPI processes for a given search interval.
If only one search interval is used, this new flag is set by default to the global “MPI COMM WORLD” value
in the FEAST initialization step.

2.3 Installation and Setup: A Step by Step Procedure

In this section, we address the following question: How should you install and link the FEAST library?

2.3.1 Installation- Compilation

Please follow the following steps (for Linux/Unix systems):

1. Download the latest FEAST version in http://www.ecs.umass.edu/∼polizzi/feast, for example,
let us call this package feast 3.0.tgz.

2. Put the file in your preferred directory such as $HOME directory or (for example) /opt/ directory if you
have ROOT privilege.

3. Execute: tar -xzvf feast 3.0.tgz; Figure 2 represents the main FEAST tree directory being created.

FEAST
|

3 .0
|

−−
| | | | | |

doc example in c lude l i b s r c u t i l i t y
| | | |

−−−−−−− −−−−−−−− −−−−−−− −−−−−
|−Hermitian |−x64 |− ke rne l |−SMP
|−Non−Hermitian |−dense |−MPI

|−banded |−data
|− spar s e

Figure 2: Main FEAST tree directory.

4. let us denote <FEAST directory> the package’s main directory after installation. For example, it could
be

∼/home/FEAST/3.0 or /opt/FEAST/3.0.

It is not mandatory but recommended to define the Shell variable $FEASTROOT, e.g.

export FEASTROOT=<FEAST directory>
or set FEASTROOT=<FEAST directory>

respectively for the BASH or CSH shells. One of this command can be placed in the appropriate shell
startup file in $HOME (i.e .bashrc or .cshrc).

5. The FEAST pre-compiled libraries can be found at

$FEASTROOT/lib/<arch>

where <arch> denotes the computer architecture. Currently, the following architectures are provided:

• x64 for common 64 bits architectures (e.g. Intel em64t: Nehalem, Xeon, Pentium, Centrino etc.;
amd64),

The pre-compiled libraries are free from Fortran90 runtime dependencies (i.e. they can be called from
any Fortran or C codes without compatibility issues). For the FEAST-MPI, the precompiled library
include two versions MPICH2 and OpenMPI. If your current architecture is listed above, you can
proceed directly to step 7, if not, you will need to compile the FEAST library in the next step. You
would also need to compile FEAST-MPI if you are using a different MPI implementation that the one
proposed here.

6. Compilation of the FEAST library source code:

• Go to the directory $FEASTROOT/src

• Edit the make.inc file, and follow the directions. Depending on your options, you would need
to change appropriately the name/path of the Fortran90 or/and C Compilers and optionally MPI.

Two main options are possible:

1- FEAST is written in Fortran90 so direct compilation is possible using any Fortran90 com-
pilers (tested with ifort and gfortran). If this option is selected, users must then be aware
of runtime dependency problems. For example, if the FEAST library is compiled using ifort

but the user code is compiled using gfortran or C then the flag -lifcoremt should be added
to this latter; In contrast, if the FEAST library is compiled using gfortran but the user code
is compiled using ifort or C, the flag -lgfortran should be used instead.

2- Compilation free from Fortran90 runtime dependencies (i.e. some low-level Fortran intrinsic
functions are replaced by C ones). This is the best option since once compiled, the library
could be called from any Fortran or C codes removing compatibility issues. This compilation
can be performed using any C compilers (gcc for example), but it currently does require the
use of the Intel Fortran Compiler.

The same source codes are used for compiling FEAST-SMP and/or FEAST-MPI. For this latter,
the MPI instructions are then activated by compiler directives (a flag <-DMPI> is added). The user
is also free to choose any MPI implementations (tested with Intel-MPI, MPICH2 and OpenMPI).

• For creating the FEAST-SMP: Execute:
make ARCH=<arch> LIB=feast all
where <arch> is your selected name for your architecture; your FEAST library including:
libfeast sparse.a

libfeast banded.a

libfeast dense.a

libfeast.a

will then be created in $FEASTROOT/lib/<arch> .

• Alternatively, for creating the FEAST-MPI library: Execute:
make ARCH=<arch> LIB=pfeast all to obtain:
libpfeast sparse.a

libpfeast banded.a

libpfeast dense.a

libpfeast.a

You may want to rename these libraries with a particular extension name associated with your
MPI compilation.

7. Congratulations, FEAST is now installed successfully on your computer !!

2.3.2 Linking FEAST

In order to use the FEAST library for your F77, F90, C or MPI application, you will then need to add
the following instructions in your Makefile:

• for the LIBRARY PATH: -L/$FEASTROOT/lib/<arch>

• for the LIBRARY LINKS using FEAST-SMP: (examples)
-lfeast (FEAST kernel alone - Reverse Communication Interfaces)
-lfeast dense -lfeast (FEAST dense interfaces)
-lfeast banded -lfeast (FEAST banded interfaces)
-lfeast sparse -lfeast (FEAST sparse interfaces)
-lfeast sparse -lfeast banded -lfeast (FEAST sparse and banded interfaces)

• for the LIBRARY LINKS using FEAST-MPI:(examples)
-lpfeast<ext> (FEAST kernel alone - Reverse Communication Interfaces)
-lpfeast dense<ext> -lpfeast<ext> (FEAST dense interfaces)
-lpfeast banded<ext> -lpfeast<ext> (FEAST banded interfaces)
-lpfeast sparse<ext> -lpfeast<ext> (FEAST sparse interfaces)
-lpfeast sparse<ext> -lpfeast banded<ext> -lpfeast<ext> (FEAST sparse and banded in-
terfaces)
where, in the precompiled library, <ext> is the extension name associated with impi, mpich2

or openmpi respectively for Intel MPI, MPICH2 and OpenMPI.

In order to illustrate how should one use the above FEAST library links including dependencies,
let us call (for example) -llapack, -lblas respectively your link for the your optimized LAPACK
and BLAS packages. The complete library links with dependencies are then given for FEAST-
SMP or FEAST-MPI by (examples):
-l<p>feast -l<yourownsystemsolver> -llapack -lblas

-l<p>feast dense -lfeast -llapack -lblas

-l<p>feast banded -lfeast -llapack -lblas

Remarks
1- -l<yourownsystemsolver> represents the link to your own system solver in Figure 1.
2- If -lfeast sparse or -lpfeast sparse<ext> are used, they must be linked with Intel MKL
(which contains both MKL PARDISO, LAPACK and BLAS)

• for the INCLUDE PATH: -I/$(FEASTROOT)/include

It is mandatory only for C codes. Additionally, instructions need to be added in the header C file
(all that apply):
#include "feast.h"

#include "feast sparse.h"

#include "feast banded.h"

#include "feast dense.h"

2.4 A simple “Hello World” Example (F90, C, MPI-F90, MPI-C)

This example solves a 2-by-2 dense standard eigenvalue system Ax = λx where

A =

(
2 −1
−1 2

)
(1)

and the two eigenvalue solutions are known to be λ1 = 1, λ2 = 3 which can be associated respectively with
the orthonormal eigenvectors (

√
2/2,
√

2/2) and (
√

2/2,−
√

2/2).
Let us suppose that one can specify a search interval, a single call to the DFEAST SYEV subroutine solves

then this dense standard eigenvalue system in double precision. Also, the FEAST parameters can be set to
their default values by a call to the FEASTINIT subroutine.

F90

The Fortran90 source code of helloworld.f90 is listed in Figure 3.

Figure 3: A very simple F90 “helloworld” example. This code can be found in <FEAST direc-
tory> /example/Hermitian/Fortran/1 dense.

To create the executable, compile and link the source program with the FEAST v3.0 library, one can
use:

>ifort helloworld.f90 -o helloworld -L<FEAST directory>/lib/<arch> -lfeast dense -lfeast -mkl

where we assume that: (i) the FORTRAN compiler is ifort the Intel’s one, (ii) the FEAST package has
been installed in a directory called <FEAST directory>, (iii) the user architecture is <arch> (x64, ia64, etc.),
(iv) MKL is used to link the LAPACK and BLAS libraries.

A run of the resulting executable looks like

> ./helloworld

and the output of the run appears in Figure 4.

∗∗∗
∗∗∗∗∗∗∗∗∗∗∗ FEAST− BEGIN ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗∗∗
Routine DFEAST S{}{}
L i s t o f input parameters fpm(1:64)−− i f d i f f e r e n t from d e f a u l t

fpm(1)=1
Search i n t e r v a l [−5.000000000000000 e +00; 5.000000000000000 e +00]
S i z e system 2
S i z e subspace 2
#Linear systems 8
−−−
#Loop | #Eig | Trace | Error−Trace | Max−Res idua l
−−−
0 2 4.000000000000015 e+00 1.000000000000000 e+00 2.512147933894036 e−15
==>FEAST has s u c c e s s f u l l y converged (to d e s i r e d t o l e r a n c e)
∗∗∗
∗∗∗∗∗∗∗∗∗∗∗ FEAST− END∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗∗∗

FEAST OUTPUT INFO 0
∗∗∗
∗∗∗∗∗∗∗∗∗∗∗∗∗∗ REPORT ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗∗∗
Search i n t e r v a l [Emin ,Emax] −5.00000000000000 5.00000000000000
mode found/ subspace 2 2
i t e r a t i o n s 0
TRACE 4.00000000000002
Re la t i v e e r r o r on the Trace 1.00000000000000
Eigenva lues / Res idua l s

1 1.00000000000000 7.536443801682115E−016
2 3.00000000000001 2.512147933894036E−015

Eigenvector s
1 (0.707106781186547 0.707106781186549)
2 (0.707106781186552 −0.707106781186545)

Figure 4: Output results for the simple F90 “helloworld” example.

C

Similarly to the F90 example, the corresponding C source code of the helloworld example (helloworld.c)
is listed in Figure 5. The executable can now be created using the gcc compiler (for example), along with
the -lm library:

gcc helloworld.c -o helloworld \
-I<FEAST directory>/include -L<FEAST directory>/lib/<arch> -lfeast dense -lfeast \
-Wl,--start-group -lmkl intel lp64 -lmkl intel thread -lmkl core -Wl,--end-group \
-liomp5 -lpthread -lm

where we assume that FEAST has been compiled without runtime dependencies. In contrast, if the FEAST
library was compiled using ifort alone then the flag -lifcoremt should be added above; In turn, if the
FEAST library was compiled using gfortran alone, it is the flag -lgfortran that should be added instead.

Figure 5: A very simple C “helloworld” example. This code can be found in <FEAST direc-
tory> /example/Hermitian/C/1 dense.

MPI-F90

Similarly to the F90 example, the corresponding MPI-F90 source code of the helloworld example (phelloworld.f90)
is listed in Figure 6. The executable can now be created using mpif90 (for example):

mpif90 -f90=ifort phelloworld.f90 -o phelloworld \
-L<FEAST directory>/lib/<arch> -lpfeast dense -lpfeast -mkl

where we assume that: (i) the Intel Fortran compiler is used, (ii) the FEAST-MPI library has been compiled
using the same MPI implementation.

A run of the resulting executable looks like

> mpirun− ppn 1− n < x > ./phelloworld

where < x > represents the number of nodes.

MPI-C

Similarly to the MPI-F90 example, the corresponding MPI-C source code of the helloworld example
(phelloworld.c) is listed in Figure 6. The executable can now be created using mpicc (for example):

mpicc -cc=gcc helloworld.f90 -o helloworld \
-L<FEAST directory>/lib/<arch> -lpfeast dense -lpfeast \
-Wl,--start-group -lmkl intel lp64 -lmkl intel thread -lmkl core -Wl,--end-group \
-liomp5 -lpthread -lm

where we assume that: (i) the gnu C compiler is used, (ii) the FEAST-MPI library has been compiled using
the same MPI implementation , (iii) FEAST has been compiled without runtime dependencies (otherwise
see comments in C example section).

Figure 6: A very simple MPI-F90 and MPI-C “helloworld” example. These codes can be found in <FEAST

directory> /example/Hermitian/<Fortran-MPI,C-MPI>/1 dense

3 FEAST Interfaces

3.1 Basics

3.1.1 Definition

There are two different type of interfaces available in the FEAST library:

Reverse communication interfaces (RCI):

Tfeast Yrci

with their expert version

Tfeast Yrcix

These interfaces constitute the kernel of FEAST.
They are matrix free format (the interfaces are
independent of the matrix data formats), users
can then define their own explicit or implicit data
format. Mat-vec routines and direct/iterative lin-
ear system solvers must also be provided by the users.

Format predefined interfaces:

Tfeast YFev and Tfeast YFgv,

with their expert versions

Tfeast YFevx and Tfeast YFgvx,

These interfaces for standard “ev” and general-
ized “gv” problems can be considered as pre-
defined optimized drivers for Tfeast Yrci and
Tfeast Yrcix that act on commonly used matrix
data storage (dense, banded and sparse-CSR), using
predefined mat-vec routines and preselected inner lin-
ear system solvers.

• T is the data type of matrix A (and matrix B if any) i.e.

Value of T Type of matrices

s single precision

d double precision

c complex single precision

z complex double precision

• YF is the problem type (Symmetric, Hermitian, or General) and storage format (Dense, Banded,
Sparse). Together they define the problem.

Y F Problem Type Matrix Format Linear Solver

s y Symmetric Dense LAPACK
h e Hermitian Dense LAPACK
g e General Dense LAPACK
s b Symmetric Banded SPIKE
h b Hermitian Banded SPIKE
g b General Banded SPIKE
s csr Symmetric Sparse MKL-PARDISO
h csr Hermitian Sparse MKL-PARDISO
g csr General Sparse MKL-PARDISO

The different FEAST interface names and combinations are summarized in Table 2.

RCI- interfaces

{s,d,c,z}feast srci

{c,z}feast hrci

{s,d,c,z}feast grci

DENSE- interfaces

{s,d,c,z}feast sy{ev,gv}
{c,z}feast he{ev,gv}

{s,d,c,z}feast ge{ev,gv}

BANDED- interfaces

{s,d,c,z}feast sb{ev,gv}
{c,z}feast hb{ev,gv}

{s,d,c,z}feast gb{ev,gv}
SPARSE- interfaces

{s,d,c,z}feast scsr{ev,gv}
{c,z}feast hcsr{ev,gv}

{s,d,c,z}feast gcsr{ev,gv}

Table 2: List of all FEAST interfaces available in FEAST v3.0. Expert routines include x at the end.

3.1.2 Common Declarations

The arguments list for the FEAST interfaces are commonly defined as follows:

Tfeast Y{interface} ({List},fpm,epsout,loop,{List-I},M0,E,X,M,res,info)
Tfeast Y{interface}x ({List},fpm,epsout,loop,{List-I},M0,E,X,M,res,info,Zne,Wne)

where {List} and {List-I} denote a series of arguments that are specific to each interfaces and will be
presented in the next sections. The rest of the arguments are common to both RCI and predefined FEAST
interfaces and their definition is given in Table 3.

Type (Fortran) Input/Output Description

fpm integer(64) in FEAST input parameters (see Table 9)
The size should be at least 64

epsout Type(S) if T=s,c out Relative error on the trace
or |tracek − tracek−1|/max(|Emin|, |Emax|), or
Type(D) if T=d,z |tracek − tracek−1|/(|Emid|+ r)

loop integer out # of FEAST subspace iterations
M0 integer in/out Search subspace dimension

On entry: initial guess (M0>M)
On exit: new suitable M0 if guess too large

E Type(S)(M0) if TY=ss,ch out Eigenvalues
Type(D)(M0) if TY=ds,zh the first M values are in the search interval
Type(C)(M0) if TY=sg,cg,cs the others M0-M values are outside
Type(Z)(M0) if TY=dg,zg,zs

X Type(S)(N,M0) if TY=ss in/out Eigenvectors (N: size of the system)
Type(D)(N,M0) if TY=ds On entry: guess subspace if fpm(5)=1
Type(C)(N,M0) if TY=ch,cs On exit: (right) eigenvectors solutions X(1:N,1:M)

Type(Z)(N,M0) if TY=zh,zs (same ordering as in E)
Type(C)(N,2*M0) if TY=sg,cg Remark: * left vectors (if calculated) in X(1:N,M0+1:M0+M)

Type(Z)(N,2*M0) if TY=dg,zg * if fpm(14)=1, first Q subspace on exit
M integer out # Eigenvalues found in search interval

estimated eigenvalues if fpm(14)=2
res Type(S)(M0) if TY=ss,ch,cs out Relative residual res(1:M) (right); res(M0+1:M0+M) (left)

Type(D)(M0) if TY=ds,zh,zs (right) ||Axi − λiBxi||1/||αBxi||1
Type(S)(2*M0) if TY=sg,cg (left) ||AHxi − λ∗i B

Hxi||1/||αBHxi||1
Type(D)(2*M0) if TY=dg,zg Remark: * α = max(|Emin|, |Emax|) or α = (|Emid|+ r)

* if fpm(14)=2, res(1:M) running average for M

info integer out Error handling (if =0: successful exit)
(see Table 10 for all INFO return codes)

Zne,Wne Type(C)(fpm(2)) if TY=ss,ch in Custom integration nodes and weights- Expert mode
Type(Z)(fpm(2)) if TY=ds,zh

Type(C)(fpm(8)) if TY=sg,cg,cs

Type(Z)(fpm(8)) if TY=dg,zg,zs

Table 3: List of arguments common for the RCI and predefined FEAST interfaces.
Remark: the arrays E, X and res return the eigenpairs and associated residuals. The solutions within the
intervals are contained in the first M components of the arrays. The left vectors (if calculated) are contained
in X(1:N,M0+1:M0+M). Note for expert use: the solutions that are directly outside the intervals can also be
found with less accuracy in the other M0-M components (i.e. from element M+1 to M0). In addition where
spurious solutions may be found in the processing of the FEAST algorithm, those are put at the end of the
arrays E and X and are flagged with the value −1 in the array res.

3.2 FEAST RCI interfaces

These interfaces are useful if your application requires specific linear system solvers (direct or iterative)
or/and specific matrix storage (explicit or implicit). If this is not the case, you may want to skip this section
and go directly to the section 3.3 on predefined interfaces.

3.2.1 Specific declarations

The arguments list for the FEAST RCI interfaces is defined as follows:

Tfeast Yrci ({List-rci},fpm,epsout,loop,{List-I},M0,E,X,M,res,info)

Tfeast Yrcix ({List-rci},fpm,epsout,loop,{List-I},M0,E,X,M,res,info,Zne,Wne)

The series of arguments in {List-rci} and {List-I} are defined in Table 4 and their description is
provided in Table 5.

T Y List-rci List-I

d,s s {ijob,N,Ze,work1,zwork2,Aq,Bq} {Emin,Emax}
z,c h {ijob,N,Ze,zwork1,zwork2,zAq,zBq} {Emin,Emax}
d,s g {ijob,N,Ze,zwork1,zwork2,zAq,zBq} {Emid,r}
z,c s {ijob,N,Ze,zwork1,zwork2,zAq,zBq} {Emid,r}
z,c g {ijob,N,Ze,zwork1,zwork2,zAq,zBq} {Emid,r}

Table 4: List of arguments specific for the Tfeast Yrci{x} interfaces.

Type (Fortran) Input/ Description
Output

ijob integer in/out ID of the FEAST RCI operation
On entry: ijob=-1 (initialization)
On exit: ijob=0,10,11,20,21,30,31,40,41

N integer in Size of the system
Ze Type(C) if T=s,c out Coordinate along the complex contour

Type(Z) if T=d,z

work1 Type(S)(N,M0) if T=s in/out Workspace
Type(D)(N,M0) if T=d

zwork1 Type(C)(N,M0) if TY=ch,cs in/out Workspace
Type(C)(N,2*M0) if TY=sg,cg

Type(Z)(N,M0) if TY=zh,zs

Type(Z)(N,2*M0) if TY=dg,zg

zwork2 Type(C)N,M0) if T=s,c in/out Workspace
Type(Z)(N,M0) if T=d,z

Aq or Bq Type(S)(M0,M0) if T=s in/out Workspace for the reduced eigenvalue problem
Type(D)(M0,M0) if T=d

zAq or zBq Type(C)(M0,M0) if T=s,c in/out Workspace for the reduced eigenvalue problem
Type(Z)(M0,M0) if T=d,z

Emin Type(S) if T=s,c in Lower bound of search interval
Type(D) if T=d,z Hermitian problem

Emax Type(S) if T=s,c in Upper bound of search interval
Type(D) if T=d,z Hermitian problem

Emid Type(C) if T=s,c in Coordinate center of the contour ellipse
Type(Z) if T=d,z non-Hermitian problem

r Type(S) if T=d,z in Horizontal radius of the contour ellipse
Type(D) if T=s,c non-Hermitian problem

Table 5: Definition of arguments specific for the Tfeast Yrci{x} interfaces.

3.2.2 RCI Mechanism

Using the FEAST RCI interfaces, the ijob parameter must first be initialized with the value −1. Once the
RCI interface is called, the value of the ijob output parameter, if different than 0, is used to identify the
FEAST operation that needs to be done by the user Users have then the possibility to customize their own
matrix direct or iterative factorization and linear solve techniques as well as their own matrix multiplication
routine. Table 6 lists all the required cases options needed using Tfeast Yrci{X} interfaces, depending on
the choices for TY. The general reverse communication interface (RCI) mechanism is detailed in Figure 7.

T Y ijob parameter values - cases required

d,s s {10,11,30,40}
z,c h {10,11,{20},21,30,40}
d,s g {10,11,{20},21,30,31,40,41}
z,c s {10,11,{20},21,30,31,40,41}
z,c g {10,11,{20},21,30,31,40,41}

Table 6: Required options for the Tfeast Yrci{x} interfaces.

i j o b=−1 ! i n i t i a l i z a t i o n
do whi l e (i j o b /=0)

c a l l T f ea s t Yrc i {x}({ List−r c i } , fpm , epsout , loop ,{ List−I } ,M0,E,X,M, res , in fo ,{Zne ,Wne})
s e l e c t case (i j o b)
case (10) ! ! Fac to r i z e the complex matrix Az <=(ZeB−A) − or f a c t o r i z e a p r e c o n d i t i o n e r o f Az

. <<< user entry
case (11) ! ! So lve the l i n e a r system with fpm (23) rhs ; Az ∗ Qz=zwork2 (1 :N, 1 : fpm (2 3))

! ! Result in zwork2 <= Qz (1 :N, 1 : fpm (23))
. <<< user entry
case (20) ! ! Fac to r i z e (∗ only i f ∗ needed by case (21)) the complex matrix Az’<=AzˆH

! !ATTENTION: The matrix Az from case (10) cannot be ove rwr i t t en
! ! − t h i s opt ion would r e q u i r e a d d i t i o n a l memory storage−
! !REMARK: case (20) becomes o b s o l e t e i f the s o l v e in case (21) can be performed
! ! by r eu s ing the f a c t o r i z a t i o n in case (10)

. <<< user entry
case (21) ! ! So lve the l i n e a r system with fpm (23) rhs ; AzˆH ∗ Qz=zwork2 (1 :N, 1 : fpm (2 3))

! ! Result in zwork2 <= Qz (1 :N, 1 : fpm (23))
. <<< user entry
case (30) ! ! Perform m u l t i p l i c a t i o n A ∗ X(1 :N, i : j) r e s u l t in {z}work1 (1 :N, i : j)

! ! where i=fpm (24) and j=fpm(24)+fpm(25)−1
. <<< user entry
case (31) ! ! Perform m u l t i p l i c a t i o n AˆH ∗ X(1 :N, i : j) r e s u l t in {z}work1 (1 :N, i : j)

! ! where i=fpm (34) and j=fpm(34)+fpm(35)−1
. <<< user entry
case (40) ! ! Perform m u l t i p l i c a t i o n B ∗ X(1 :N, i : j) r e s u l t in {z}work1 (1 :N, i : j)

! ! where i=fpm (24) and j=fpm(24)+fpm(25)−1
. <<< user entry
case (41) ! ! Perform m u l t i p l i c a t i o n BˆH ∗ X(1 :N, i : j) r e s u l t in {z}work1 (1 :N, i : j)

! ! where i=fpm (34) and j=fpm(34)+fpm(35)−1
. <<< user entry
end s e l e c t

end do

Figure 7: Description of the general FEAST reverse communication interface mechanism (Fortran example).
Remark: (i) For standard eigenvalue problems case(40) and case(41) involve only copy operations;
(ii) If the whole interface is called within an MPI-environment and the code is linked to FEAST MPI (i.e.
-lpfeast), the operations on the contour integration and the mat-vec operations with multiple rhs, will be
automatically distributed among the MPI processes.

3.3 FEAST predefined interfaces

3.3.1 Specific declarations

For the generalized eigenvalue problem:

Tfeast YFgv ({List-A},{List-B},fpm,epsout,loop,{List-I},M0,E,X,M,res,info)
Tfeast YFgvx ({List-A},{List-B},fpm,epsout,loop,{List-I},M0,E,X,M,res,info,Zne,Wne)

For the standard eigenvalue problem:

Tfeast YFev ({List-A},fpm,epsout,loop,{List-I},M0,E,X,M,res,info)
Tfeast YFevx ({List-A},fpm,epsout,loop,{List-I},M0,E,X,M,res,info,Zne,Wne)

where the series of arguments in each {List-A}, {List-B}, and {List-I}, are specific to the values of T,
Y and F, and are given in Table 7. The definition of the arguments in {List-A} and {List-B} is given
in Table 8. The definitions for the dense, banded and CSR matrix data structures are also provided in the
next section.

T Y F List-A List-B List-I

Dense

z,c s y { UPLO, N, A, LDA } { B, LDB } { Emid, r }
z,c h e { UPLO, N, A, LDA } { B, LDB } { Emin, Emax }
z,c g e { N, A, LDA } { B, LDB } { Emid, r }
d,s s y { UPLO, N, A, LDA } { B, LDB } { Emin, Emax }
d,s g e { N, A, LDA } { B, LDB } { Emid, r }

Banded

z,c s b { UPLO, N, kla, A, LDA } { klb, B, LDB } { Emid, r }
z,c h b { UPLO, N, kla, A, LDA } { klb, B, LDB } { Emin, Emax }
z,c g b { N, kla, kua, A, LDA } { klb, kub, B, LDB } { Emid, r }
d,s s b { UPLO, N, kla, A, LDA } { klb, B, LDB } { Emin, Emax }
d,s g b { N, kla, A, LDA } { klb, kub, B, LDB } { Emid, r }

Sparse

z,c s csr { UPLO, N, A, IA, JA } { B, IB, JB } { Emid, r }
z,c h csr { UPLO, N, A, IA, JA } { B, IB, JB } { Emin, Emax }
z,c g csr { N, A, IA, JA } { B, IB, JB } { Emid, r }
d,s s csr { UPLO, N, A, IA, JA } { B, IB, JB } { Emin, Emax }
d,s g csr { N, A, IA, JA } { B, IB, JB } { Emid, r }

Table 7: List of arguments specific for the Tfeast YF{ev,gv}{x} interfaces.

Type (Fortran) Input/ Description
Output

UPLO character(len=1) in Matrix Storage (’F’,’L’,’U’)

’F’: Full; ’L’: Lower; ’U’: Upper

N integer in Size of the system

kla integer in The number of subdiagonals
within the band of A.

klu integer in The number of superdiagonals
within the band of A.

klb integer in The number of subdiagonals
within the band of B.

kub integer in The number of superdiagonals
within the band of B.

A Same type as T in Eigenvalue system (Stiffness) matrix
with 2D dimension: (LDA,N) if Dense
with 2D dimension: (LDA,N) if Banded
with 1D dimension: (IA(N+1)-1) if Sparse

B Same type as T in Eigenvalue system (Mass) matrix
with 2D dimension: (LDB,N) if Dense
with 2D dimension: (LDB,N) if Banded
with 1D dimension: (IB(N+1)-1) if Sparse

LDA integer in Leading dimension of A;
LDA>=N if Dense
LDA>=2kla+1 if Banded; UPLO=’F’
LDA>=kla+1 if Banded; UPLO/=’F’

LDB integer in Leading dimension of B;
LDB>=N if Dense
LDB>=2klb+1 if Banded; UPLO=’F’
LDB>=klb+1 if Banded; UPLO/=’F’

IA integer(N+1) in Sparse CSR Row array of A.

JA integer(IA(N+1)-1) in Sparse CSR Column array of A.

IB integer(N+1) in Sparse CSR Row array of B.

JB integer(IB(N+1)-1) in Sparse CSR Column array of B.

Table 8: Definition of arguments specific for the Tfeast YF{ev,gv}{x} interfaces.

3.3.2 Matrix storage

Let us consider a standard eigenvalue problem and the following (stiffness) matrix A:

A =

a11 a12 0 0
a21 a22 a23 0
0 a32 a33 a34
0 0 a43 a44

 (2)

where aij = a∗ji for i 6= j (i.e. aij = aji if the matrix is real). Using the FEAST predefined interfaces, this
matrix could be stored in dense, banded or sparse format as follows:

• Using the dense format, A is stored in a two dimensional array in a straightforward fashion. Using
the options UPLO=’L’ or UPLO=’U’, the lower triangular and upper triangular part respectively, do not
need to be referenced.

• Using the banded format, A is also stored in a two dimensional array following the banded LAPACK-
type storage:

A =

 ∗ a12 a23 a34
a11 a22 a33 a44
a21 a32 a43 ∗

In contrast to LAPACK, no extra-storage space is necessary since LDA>=2*kla+1 if UPLO=’F’ (LA-
PACK banded storage would require LDA>=3*kla+1). For this example, the number of subdiagonals
or superdiagonals is kla=1. Using the option UPLO=’L’ or UPLO=’U’, the kla rows respectively above
or below the diagonal elements row, do not need to be referenced (or stored).

• Using the sparse storage, the non-zero elements of A are stored using a set of one dimensional arrays
(A,IA,JA) following the definition of the CSR (Compressed Sparse Row) format

A = (a11, a12, a21, a22, a23, a32, a33, a34, a43, a44)
IA = (1, 3, 6, 9, 11)
JA = (1, 2, 1, 2, 3, 2, 3, 4, 3, 4)

Using the option UPLO=’L’ or UPLO=’U’, one would get respectively

A = (a11, a21, a22, a32, a33, a43, a44)
IA = (1, 2, 4, 6, 8)
JA = (1, 1, 2, 2, 3, 3, 4)

and
A = (a11, a12, a22, a23, a33, a34, a44)

IA = (1, 3, 5, 7, 8)
JA = (1, 2, 2, 3, 3, 4, 4)

Finally, the (mass) matrix B that appears in generalized eigenvalue systems, should use the same family
of storage format than the matrix A. It should be noted, however, that the bandwidth can be different for
the banded format (klb can be different than kla), and the position of the non-zero elements can also be
different for the sparse format (CSR coordinates IB,JB can be different than IA,JA).

4 FEAST Parameters and Search Contour

4.1 Input FEAST parameters

In the common argument list, the input parameters for the FEAST algorithm are contained into an integer
array of size 64 named here fpm. Prior calling the FEAST interfaces, this array needs to be initialized using
the routine feastinit as follows (Fortran notation):

call feastinit(fpm)

All input FEAST parameters are then set to their default values. The detailed list of these parameters
is given in Table 9.

fpm(i) Fortran Description Default value
fpm[i-1] C

i=1 Print runtime comments on screen (0: No; 1: Yes) 0
i=2 # of contour points for Hermitian FEAST (half-contour) 8

if fpm(16)=0,2, values permitted (1 to 20, 24, 32, 40, 48, 56)
if fpm(16)=1, all values permitted

i=3 Stopping convergence criteria for double precision (ε = 10−fpm(3)) 12
i=4 Maximum number of FEAST refinement loop allowed (≥ 0) 20
i=5 Provide initial guess subspace (0: No; 1: Yes) 0
i=6 Convergence criteria (for the eigenpairs in the search interval) 1

0: Using relative error on the trace epsout i.e. epsout< ε
1: Using relative residual res i.e. maxi res(i) < ε

i=7 Stopping convergence criteria for single precision (ε = 10−fpm(7)) 5
i=8 # of contour points for non-Hermitian FEAST (full-contour) 16

if fpm(17)=0, values permitted (2 to 40, 48, 64, 80, 96, 112)
if fpm(17)=1, all values permitted (>2)

i=9 User defined MPI communicator for a given search interval MPI COMM WORLD
i=10 Store factorizations with the predefined interfaces (0: No; 1: Yes). 0
i=14 1: FEAST normal execution; 1: Return subspace Q after 1 contour; 0

2: Estimate #eigenvalues inside search interval
i=16 Integration type for Hermitian (0: Gauss; 1: Trapezoidal; 2: Zolotarev) 0
i=17 Integration type for non-Hermitian (0: Gauss, 1: Trapezoidal) 1
i=18 Ellipse contour ratio - fpm(18)/100 = ratio ’vertical axis’/’horizontal axis’ 100
i=19 Rotation angle in degree [-180:180] for ellipse using non-Hermitian FEAST 0

Origin of the rotation is the vertical axis.
i=40-63 unused

All Others Reserved value N/A

Table 9: List of input FEAST parameters and default values obtained with the routine feastinit.
Remark: Using the C language, the components of the fpm array starts at 0 and stops at 63. Therefore, the
components fpm[j] in C (j=0-63) must correspond to the components fpm(i) in Fortran (i=1-64) specified
above (i.e. fpm[i-1]=fpm(i)).

4.2 Defining a search contour

Figure 8 summarizes the different search contour options possible for both the Hermitian and non-Hermitian
FEAST algorithms.

For the Hermitian case, the user must then specify a 1-dimensional real-valued search interval [Emin, Emax].
These two points are used to define a circular or ellipsoid contour C centered on the real axis, and along
which the complex integration nodes are generated. The choice of a particular quadrature rule will lead to
a different set of relative positions for the nodes and associated quadrature weights. Since the eigenvalues
are real, it is convenient to select a symmetric contour with the real axis (C = C∗) since it only requires to
operate the quadrature on the half-contour (e.g. upper half).

With a non-Hermitian problem, it is necessary to specify a 2-dimensional search interval that surrounds
the wanted complex eigenvalues. Circular or ellipsoid contours can also be used and they can be generated
using standard options included into FEAST v3.0. These are defined by a complex midpoint Emid and a
radius r for a circle (for an ellipse the ratio between the horizontal axis 2r and vertical axis can also be
specified, as well as an angle of rotation). in some applications where the eigenvalues of interest belong to a
particular subset in the complex plane, A “Custom Contour” feature is also supported in FEAST v3.0 that
allows to account for arbitrary quadrature nodes and weights.

0 1 2 3 4 5 6

Tall Ellipse - 70
o

angle

-2

-1

0

1

2

0 1 2 3 4 5

Custom

-2

-1

0

1

2

1 2 3 4

Flat Ellipse

-2

-1

0

1

2

1 2 3 4

Circle

-2

-1

0

1

2

IM
G

1 2 3 4

Custom

-2

-1

0

1

2

0 1 2 3 4 5

Circle

-2

-1

0

1

2

REAL

Non-Hermitian

Hermitian

Figure 8: Various search contour examples for the Hermitian and the non-Hermitian FEAST algorithms.
Both algorithms feature standard ellipsoid contour options and the possibility to define custom arbitrary
shapes. In the Hermitian case, the contour is symmetric with the real axis and only the nodes in the upper-
half may be generated. In the non-Hermitian case, a full contour is needed to enclose the wanted complex
eigenvalues. Some data used to generate these plots:
Hermitian case: fpm(2)=5 for all, [Emin, Emax] = [1, 4], r = 1.5 for all; fpm(18)=50 for the flat ellipse;
expert routine for the custom contour
Non-Hermitian case: fpm(8)=10 for all; Emid = 3.5+ i and r = 1.5 for circle; Emid = 3.4+1.3i, r = 0.75,
fpm(18)=200, fpm(19)=70 for tall rotated ellipse; expert routine for the custom contour

4.3 Output FEAST info details

Errors and warnings encountered during a run of the FEAST package are stored in an integer variable, info.
If the value of the output info parameter is different than “0”, either an error or warning was encountered.
The possible return values for the info parameter along with the error code descriptions, are given in
Table 10.

info Classification Description

202 Error Problem with size of the system N

201 Error Problem with size of subspace M0

200 Error Problem with Emin,Emax or Emid, r

(100 + i) Error Problem with ith value of the input FEAST parameter (i.e fpm(i))
6 Warning FEAST converges but subspace is not bi-orthonormal
5 Warning Only stochastic estimation of #eigenvalues returned fpm(14)=2

4 Warning Only the subspace has been returned using fpm(14)=1

3 Warning Size of the subspace M0 is too small (M0<=M)
2 Warning No Convergence (#iteration loops>fpm(4))
1 Warning No Eigenvalue found in the search interval

0 Successful exit

−1 Error Internal error for allocation memory
−2 Error Internal error of the inner system solver in FEAST predefined interfaces
−3 Error Internal error of the reduced eigenvalue solver

Possible cause for Hermitian problem: matrix B may not be positive definite

−(100 + i) Error Problem with the ith argument of the FEAST interface

Table 10: Return code descriptions for the parameter info.
Remark: In some extreme cases the return value info=1 may indicate that FEAST has failed to find the
eigenvalues in the search interval. This situation would appear only if a very large search interval is used to
locate a small and isolated cluster of eigenvalues (i.e. in case the dimension of the search interval is many
orders of magnitude off-scaling). For this case, it is then either recommended to increase the number of
contour points fpm(2) or simply rescale more appropriately the search interval.

5 FEAST: General use

This section briefly presents to the FEAST users a list of specifications (i.e. what is needed from users),
expectations (i.e. what users should expect from FEAST), and directions for achieving performances (i.e.
including parallel scalability and current limitations).

5.1 Single search interval and FEAST-SMP

Specifications:

• the search interval and the size of the subspace M0 (overestimation of the number of eigenvalues M
within); If needed, once a search interval is defined, the user can take advantage of fast stochastic
estimates for M presented in Section 7.1 (tools for FEAST).

• the system matrix in dense, banded or sparse-CSR format if FEAST predefined interfaces are used, or
a high-performance complex direct or iterative system solver and matrix-vector multiplication routine
if FEAST RCI interfaces are used instead.

Expectations:

• robust and systematic convergence to very high accuracy seeking up to 1000’s eigenpairs (no known
failed case for the Hermitian problem);

• the convergence rate depends on a trade-off between the choice of the search subspace size M0 and
the number of contour points (and nature of the quadrature)3. For most applications FEAST Her-
mitian will convergence to machine precision in 3 iterations, using a Gauss-Legendre quadrature with
M0 ≥ 1.5M and fpm(2) = 8. If the convergence is too slow, you can: (i) keep on increasing M0 or/and
fpm(2) (fpm(8) for non-Hermitian) for the Gauss-Legendre or Trapezoidal quadrature; (ii) decrease
the ellipse ratio fpm(18) for the Hermitian problem; (iii) choose a more robust approach consisting
of using the Zolotarev quadrature for the Hermitian problem with fpm(16)=2 (the subspace does not
need to be large M0 ∼ M).

Directions for achieving performances:

• M0 should be much smaller than the size of the eigenvalue problem, then the arithmetic complexity
should mainly depend on the inner system solver (i.e. O(NM0) for narrow banded or sparse system);

• storing the factorizations with option fpm(10)=1 for the predefined interfaces, will significantly improve
the performances (for FEAST DENSE in particular), but can significantly increase the memory usage
(∼ ×fpm(2) or fpm(8) for non-Hermitian);

• parallel scalability performances at the third level of parallelism depends on the shared memory capa-
bilities of the inner system solver i.e. via the shell variable MKL NUM THREADS if a Intel-MKL solver is
used (LAPACK or MKL-PARDISO) or the the shell variable OMP NUM THREADS if SPIKE-SMP is used
for the banded interfaces;

• if M0 increases significantly for a given search interval, the complexity O(M3
0) for solving the reduced

system could become significant (typically, if M0 > 2000). In this case it is recommended to consider
multiple search intervals to be solved in parallel. For example, if 104 eigenpairs of a very large system
are needed, many search intervals could be used simultaneously to decrease the size of the reduced
dense generalized eigenproblem (e.g. if 10 intervals are selected the size of each reduced problem would
then be ∼ 103);

• For very large general sparse and challenging systems, it is strongly recommended for expert application
users to make use of FEAST-RCI with customized highly-efficient system solvers such as: domain
decompositions, or iterative solvers with/without preconditioners;

3P. Tang, E. Polizzi, SIMAX 35(2), 354390 - (2014)

5.2 Single search interval and FEAST-MPI

Specifications:

• Same general specification than for the FEAST-SMP;

• MPI environment application code and link to the FEAST-MPI library.

Expectations:

• same general expectation than for FEAST-SMP;

• ideally, linear scalability performances with the number of MPI processes up to the number of linear
systems (i.e. Factorization stage) Ne to perform by contour. If the number of MPI processes is exactly
(optimally) equal to Ne which is equal to either fpm(2) for FEAST Hermitian or fpm(8) for FEAST
non-Hermitian, the factorization of the system matrices is kept in memory along the FEAST iterations
and “superlinear scalability” can then be expected. We note one particular case: if the system matrix
is real non-symmetric with Img{Emid}=0, and with fpm(8) even number, the number of factorizations
becomes fpm(8)/2.

Directions for achieving performances:

• same general directions than for FEAST-SMP;

• for a given search interval, the second and third level of parallelism is then easily achieved by MPI
(along the contour points) calling OpenMP (i.e shared memory linear system solver). Among the two
levels of parallelism offered here, there is a trade-off between the choice of the number of MPI processes
and threads by MPI process. For example let us consider: (i) the use of FEAST-SPARSE interface,
(ii) 8 contour points (i.e. 8 linear systems to solve), and (iii) a cluster of 4 physical nodes with 8
cores/threads by nodes; the two following options (among many others) should be considered to run
the MPI code myprog:

> mpirun− genv MKL NUM THREADS 8− ppn 1− n 4 ./myprog

where 8 threads can be used on each node, and where each physical node ends up solving consecutively
two linear systems using 8 threads. This option saves memory.

> mpirun− genv MKL NUM THREADS 4− ppn 2− n 8 ./myprog

where 4 threads can be used on each node, and where the MPI processes end up solving simultaneously
the 8 linear systems using 4 threads. This option should provide better performance but it is more
demanding in memory (two linear systems are stored on each node).

In contrast if 8 physical nodes are available, the best possible option for 8 contour points becomes:

> mpirun− genv MKL NUM THREADS 8− ppn 1− n 8 ./myprog

where all the 64 cores are then used.

• If more physical nodes than contour points are available, scalability cannot be achieved at the second
level parallelism anymore, but multiple search intervals could then be considered (i.e. first level of
parallelism).

5.3 Multiple search intervals and FEAST-MPI

Specifications:

• same general specification than for the FEAST-MPI using a single search interval;

• a new flag fpm(9) can easily by defined by the user to set up a local MPI communicator associated
to different cluster of nodes for each search interval (which is set to MPI COMM WORLD by default). An
example on how one can proceed for two search intervals is given in Figure 9. This can easily be
generalized to any numbers of search intervals.

Expectations:

• same general expectation than for FEAST-MPI using a single search interval;

• perfect parallelism using multiple neighboring search intervals without overlap (overall orthogonality
should also be preserved).

Directions for achieving performances:

• same general directions than for FEAST-MPI using a single search interval;

• in practical applications, the users should have a good apriori estimates of the distribution of the
overall eigenvalue spectrum in order to make an efficient use of the first level of parallelism (i.e. in
order to specified the search intervals). Users can currently take advantage of fast stochastic estimates
presented in Section 7.1. Future developments of FEAST will include runtime automatic strategies to
partition the search intervals.

Figure 9: A simple MPI-F90 example procedure using two search intervals and the flag fpm(9). In this
example, if the code is executed using n MPI-processes, the first search interval would be using n/2 pro-
cesses while n-n/2 will be used by the second search interval. Driver examples that include three levels of
parallelism can be found in all subdirectories of <FEAST directory> /example/Fortran-MPI/ and <FEAST

directory> /example/C-MPI/ (see FEAST application section for more details).

6 FEAST in action

6.1 Examples: Hermitian/Non-Hermitian; Fortran/C/MPI; Dense/Banded/Sparse

The $FEASTROOT/example directory provides Fortran, Fortran-MPI, C and MPI-C examples for using the
FEAST predefined interfaces. The Fortran examples are written in F90 but it should be straightforward for
the user to transform then into F77 if needed (since FEAST uses F77 argument-type interfaces). Examples
include four particular types of eigenvalue problems:

Example 1 a “real symmetric” generalized eigenvalue problem Ax = λBx , where A is real symmetric
and B is symmetric positive definite. A and B are of the size N = 1671 and have the same sparsity
pattern with number of non-zero elements NNZ = 11435.

Example 2 a “complex Hermitian” standard eigenvalue problem Ax = λx, where A is complex Hermitian.
A is of size N = 600 with number of non-zero elements NNZ = 2988.

Example 3 a “real non-symmetric” generalized eigenvalue problem Ax = λBx , where A and B are
considered real non-symmetric. A and B are of the size N = 1671 and have the same sparsity pattern
with number of non-zero elements NNZ = 13011.

Example 4 a “complex symmetric” standard eigenvalue problem Ax = λx, where A is complex symmetric.
A is of size N = 801 with number of non-zero elements NNZ = 24591.

Examples are solved in double precision arithmetic (Example 1 and 2 also include single precision drivers)
and either a dense, banded or sparse storage for the matrices.

The $FEASTROOT/example/{Hermitian,non-Hermitian} directories contain the subdirectories Fortran,
C, Fortran-MPI, C-MPI which, in turn, contain similar subdirectories 1 dense, 2 banded, 3 sparse with
source code drivers for the above four examples in single and double precisions.

In order to compile and run the examples of the FEAST package, please follow the following steps:

1. Go to the directory $FEASTROOT/example

2. Edit the make.inc file and follow the directions to customize appropriately: (i) the name/path of
your F90, C and MPI compilers (if you wish to compile and run the F90 examples alone, it is not
necessary to specify the C compiler as well as MPI and vice-versa); (ii) the path LOCLIBS for the
FEAST libraries and both paths and names in LIBS of the MKL-PARDISO, LAPACK and BLAS
libraries (if you do not wish to compile the sparse examples there is no need to specify the path and
name of the MKL-PARDISO library).

By default, all the options in the make.inc assumes calling the FEAST library compiled with no-
runtime dependency (add the appropriate flags -lifcoremt, -lgfortran, etc. otherwise). Addi-
tionally, LIBS in make.inc uses by default the Intel-MKL (v10.x or later) to link the required libraries.

3. By executing make, all the different Makefile options will be printed out including compiling alone,
compiling and running, and cleaning. For example,

>make allF

compiles all Fortran examples, while

>make rallF

compiles and then run all Fortran examples.

4. If you wish to compile and/or run a given example, for a particular language and with a particular
storage format, just go to one the corresponding subdirectories 1 dense, 2 banded, 3 sparse of the
directories Fortran, C, Fortran-MPI, C-MPI. You will find a local Makefile (using the same options
defined above in the make.inc file) as well as the source codes covering the examples above. The
Hermitian 1 dense directories include also the “helloworld” source code examples presented in Section
2.4. The Hermitian Fortran-MPI and Fortran-C directories contain one additional example using all
three levels of parallelism for FEAST. The non-Hermitian directories contain one additional example
for generating a custom complex contour for the system matrix in example 4 above.

6.2 FEAST utility sparse drivers

If a sparse matrix can be provided by the user in coordinate/matrix market format, the $FEASTROOT/utility
directory offers a quick way to test all the FEAST parameter options and the efficiency/reliability of the
FEAST SPARSE predefined interfaces using the MKL-PARDISO solver. Two general drivers are provided for
FEAST-SMP and FEAST-MPI, named driver feast sparse or pdriver feast sparse in the respective
subdirectories.

You will also find a local make.inc file where compiler and libraries paths/names need to be edited and
changed appropriately (the MKL-PARDISO solver is needed). The command “>make all” should compile
the drivers.

If we denote mytest a generic name for the user’s eigenvalue system test Ax = λx or Ax = λBx. You
will need to create the following three files:

• mytest A.mtx should contain the matrix A in coordinate format; As a reminder, the coordinate format
is defined row by row as

N N NNz
: : : :
i j r e a l (v a l j) img (v a l j)
: : : :
: : : :
: : : :

iNNZ jNNZ r e a l (valNNZ) img (valNNZ)

with N: size of matrix, and NNZ: number of non-zero elements.

• mytest B.mtx should contain the matrix B (if any) in coordinate format;

• mytest.in should contain the search interval, selected FEAST parameters, etc. The following .in file
is given as a template example (here for solving a standard eigenvalue problem in double precision):

s ! s : symmetric , h : hermit ian , g : g ene ra l
g ! e=standard or g=g e n e r a l i z e d e i g enva lue problem
d ! (s , d , c , z) p r e c i s i o n i . e (s i n g l e r ea l , double r ea l , complex , double complex)
F ! UPLO (L : lower , U: upper , F : f u l l) f o r the coord ina te format o f matr i ce s
0 .18 d0 ! Emin
1 .00 d0 ! Emax
25 ! M0 search subspace (M0>=M)
2 ! ! ! ! ! ! ! ! ! ! How many changes from d e f a u l t fpm [1 , 6 4] (use 1−64 index ing)
1 1 ! fpm (1) [0]=1 ! example comments on/ o f f (0 , 1)
10 1 ! fpm (10) − f a c t o r i z a t i o n s saving− on/ o f f (0 , 1)

You may change any of the above options to fit your needs. For example, you could add as many fpm
FEAST parameters as you wish. It should be noted that the UPLO L or U options give you the possibility
to provide only the lower or upper triangular part of the matrices mytest A.mtx and mytest B.mtx in
coordinate format.

Finally results and timing can be obtained by running the FEAST-SMP sparse driver:

>$FEASTROOT/utility/Fortran/driver feast sparse <PATH TO MYTEST>/mytest

For the FEAST-MPI sparse drivers, a run would look like (other options could be applied including
Ethernet fabric, etc.):

mpirun -genv MKL NUM THREADS <y> -ppn 1 -n <x> \
$FEASTROOT/utility/Fortran/pdriver feast sparse <PATH TO MYTEST>/mytest

where < x > represents the number of nodes at the second level of parallelism (along the contour). As
a reminder, the third level of parallelism for MKL-PARDISO (for the linear system solver) is activated by
the setting shell variable MKL NUM THREADS equal to the desired number of threads. In the example above
for MPI, if the MKL NUM THREADS is set with value <y>, i.e. FEAST would run on <x> separate nodes, each
one using <y> threads. Several combinations of <x> and <y> are possible depending also on the value of the
-ppn directive.

Real Complex Symmetric Hermitian General Standard Generalized

helloworld X X X

system1 X X X

system2 X X X

system3 X X X

system4 X X X

cnt X X X

co X X X

c6h6 X X X

Na5 X X X

grcar X X X

qc324 X X X

bcsstk11 X X X

Table 11: List of system matrices provided in the $FEASTROOT/utility/data directory. System 1 to 4
corresponds to the matrices used in the example directory.

In order to illustrate a direct use of the utility drivers, several examples are provided in the directory
$FEASTROOT/utility/data summarized in Table 11.

To run a specific test, you can execute (using the Fortran driver for example):

>$FEASTROOT/utility/Fortran/driver feast sparse ../data/cnt

7 Additional Tools for FEAST

7.1 Stochastic estimate

To make use of FEAST, the user must (i) select a search interval or contour in the complex plane, (ii)
provide a search subspace size that should overestimate the number of eigenvalue M that are inside the search
contour. FEAST provides options to obtain a stochastic estimate for M 4. If the flag fpm(14) is set to 2,
FEAST will perform a single contour and return the estimated value of M. In turn, the value in res(1:M0)

will return the running average of the estimation (i.e. M≡ res(M0)). For this FEAST run, a good estimate
can be obtained even if the search subspace size M0 is chosen rather small ∼ 10. In addition, the whole
operation does not require a lot of accuracy to succeed, for example: (i) the flag fpm(2) (i.e. number of
linear systems to solve) could be set to ∼ 3; (ii) if iterative solvers such as GMRES are used in the RCI
interface, the stopping criteria could be chosen very modest (∼ 10−2); (iii) the single precision routines could
be used as well.

7.2 Custom contours

Only eigenvalues inside of the user defined interval are calculated with FEAST. Since eigenvalues of Hermitian
(and real-symmetric) matrices are real this interval can be defined by [λmin, λmax]. Non-Hermitian matrices
possess a complex eigenspectrum and require a 2-dimensional interval. The Custom Contour feature grants
the flexibility to target specific eigenvalues. This feature is available for both Hermitian and non-Hermitian
codes and must be used with “Expert” routines that take two additional arguments containing the complex
integration nodes and weights. Custom contours can be employed by following three simple steps:

1. Define a contour (half-contour that encloses [λmin, λmax] for the Hermitian problem, or full contour
for the non-Hermitian problem),

2. Calculate corresponding integration nodes and weights, and

3. Call “Expert” FEAST routine (either predefined or RCI interfaces).

FEAST provides a routine {C,Z}FEAST customcontour that can assist the user to extract nodes and weights
from a custom design arbitrary geometry in the complex plane. This routine is only useful for the non-
Hermitian FEAST (full-contour).

7.2.1 Defining a Custom Contour using {C,Z}FEAST customcontour

Users must only define the geometry of their contour. The contour can be comprised of line segments and
half ellipses. Two important points to note: the actual contour will end up being a polygon defined
by the integration points along the path - and - only convex contours may be used. A geometry that
contains P contour parts/pieces is defined using three arrays Zedge, Tedge, and Nedge. The interface is
defined below and the description of the arguments list is given in Table 12.

{C,Z}FEAST customcontour(Nc,P,Nedge,Tedge,Zedge,Zne,Wne)

As an example, the following code will generate the complex contour in Figure 10.

P = 3 ! number o f p i e c e s that make up the contour
a l l o c a t e (Zedge (1 :P) , Nedge (1 :P) , Tedge (1 :P))
Zedge = (/ (0 . 0 d0 , 0 . 0 d0) , (0 . 0 d0 , 1 . 0 d0) , (6 . 0 d0 , 1 . 0 d0)/)
Tedge (:) = (/0 ,0 ,50/) ! (l i n e)−−(l i n e)−−(ha l f−c i r c l e)
Nedge (:) = (/8 ,8 , 8/) ! 8 i n t e g r a t i o n i n t e r v a l s f o r each p i e c e
Nc = sum(Nedge (1 :P)) ! ! User ente r # o f contour po in t s (here 24)
a l l o c a t e (Zne (1 : Nc) , Wne(1 : Nc))
c a l l z f ea s t cus tomcontour (Nc ,P, Nedge , Tedge , Zedge , Zne ,Wne)

4Efficient Estimation of Eigenvalue Counts in an Interval,
E. Di Napoli , E. Polizzi, Y. Saad,http://arxiv.org/abs/1308.4275

http://arxiv.org/abs/1308.4275

Type Input/Output Description

Nc integer in The total number of integration nodes, should be equal to
SUM(Nedge(1:P))
to be used for fpm(2) when calling FEAST

P integer in Number of contour parts/pieces that make up the contour
Zedge integer(P) in Complex endpoints of each contour piece

Remark: * endpoints positioned in clockwise direction
* the kth piece is [Zedge(k),Zedge(k + 1)]
* last piece is [Zedge(P),Zedge(1)]

Tedge integer(P) in The type of each contour piece:
*If Tedge(k)=0, kth piece is a line
*If Tedge(k)>0, kth piece is a (convex) half-ellipse

with Tedge(k)/100 = ratio a/b
and a primary radius from the endpoints
Remark: 100 is a half-circle

Nedge integer(P) in # integration interval to consider for each piece
define the accuracy of the trapezoidal rule by piece for FEAST

Zne Type(Z)(Nc) if T=Z out Custom integration nodes for FEAST
Type(C)(Nc) if T=C

Wne Type(Z)(Nc) if T=Z out Custom integration weights for FEAST
Type(C)(Nc) if T=C

Table 12: List of arguments for {T}FEAST customcontour.

1

2

3

Figure 10: Example contour containing
two line segments (pieces 1 and 2) and a
half ellipse (piece 3). The secondary ra-
dius is half of the primary radius defined
by nodes a and c. All the Nc (24) gener-
ated Zne points are represented.

7.2.2 Calling the Expert FEAST Routines

There exists an expert version of each FEAST driver and RCI routine. They are signified by an appending
“X” and accept the two additional arguments Zne and Wne containing the integration nodes and weights.
Below is an example F90 code calling the dense general complex FEAST driver with a custom contour.

program f e a s t c c
complex (kind=kind (1 . 0 d0)) , dimension (: , :) , a l l o c a t a b l e : : A, B, X
complex (kind=kind (1 . 0 d0)) , dimension (:) , a l l o c a t a b l e : : E, Zne , Wne, Zedge
complex (kind=kind (1 . 0 d0)) : : Emid
double p r e c i s i o n : : r , epsout
i n t e g e r : : M0, P, in fo , M, N, LDA, LDB
intege r , dimension (64) : : fpm
double p r e c i s i o n , dimension (:) , a l l o c a t a b l e : : r e s
in t ege r , dimension (:) , a l l o c a t a b l e : : Nedge , Tedge

a l l o c a t e (A(1 :N, 1 :N) , B(1 :N, 1 :N) , E(1 :M0) , X(1 :N, 1 : 2 ∗M0) , r e s (1 : 2∗M0))
. . . Load A,B
c a l l f e a s t i n i t (fpm)
. . . Def ine Custom Contour − F i l l up the P elements o f Zedge , Tegde , Nedge
fpm (2) = sum(Nedge (1 :P))
a l l o c a t e (Zne (1 : fpm (2)) , Wne(1 : fpm (2)))
c a l l z f ea s t cus tomcontour (fpm (2) ,P, Nedge , Tedge , Zedge , Zne ,Wne) ! generate Zne ,Wne
c a l l z f e a s t g e g v x (N,A,LDA,B,LDA, fpm , epsout , loop , Emid , r ,M0,E,X,M, res , in fo , Zne ,Wne)

end program f e a s t c c

7.3 List of all FEAST tool routines

- [cz]feast contour

call zfeast contour(Emin, Emax, fpm2, fpm16, fpm18, Zne, Wne)

Inputs:
Emin: Scalar Type(S,D) Lower bound of search interval
Emax: Scalar Type(S,D) Upper bound of search interval
fpm2: Scalar Type(I) Number of contour points for integration (half-contour)
fpm16: Scalar Type(I) Integration type
fpm18: Scalar Type(I) Ellipse definition

Ouputs:
Zne: Dim(fpm2) Type(C,Z) Integration Nodes (half-contour)
Wne: Dim(fpm2) Type(C,Z) Integration Weights (half-contour)

• Returns FEAST integration nodes and weights for a contour defined by Emin and Emax. To be used
with complex Hermitian and real symmetric FEAST.

- [cz]feast gcontour

call zfeast gcontour(Emid , r , fpm8 , fpm17 , fpm18 , fpm19, Zne , Wne)

Inputs:
Emid: Scalar Type(C,Z) Midpoint of search interval

r: Scalar Type(S,D) Radius of search interval
fpm8: Scalar Type(I) Number of contour points for integration (full contour)
fpm17: Scalar Type(I) Integration type
fpm18: Scalar Type(I) Ellipse definition
fpm19: Scalar Type(I) Ellipse rotation angle

Ouputs:
Zne: Dim(fpm8) Type(C,Z) Integration Nodes (full contour)
Wne: Dim(fpm8) Type(C,Z) Integration Weights (full contour)

• Returns FEAST integration nodes and weights for a contour defined by Emid and r. To be used with
non-Hermitian FEAST (complex-symmetric, real non-symmetric, general-complex).

- [cz]feast customcontour

call zfeast customcontour(fpm8 , ccN , Nedge , Tedge , Zedge , Zne , Wne)

Inputs:
fpm8: Scalar Type(I) Number of contour points: sum(Nedge(1:ccN))
ccN : Scalar Type(I) Number of segments that comprise contour

Nedge: Dim(ccN) Type(I) Number of contour points for each segment
Tedge: Dim(ccN) Type(I) Type of each segment
Zedge: Dim(ccN) Type(C,Z) Start node of each segment

Outputs:
Zne: Dim(fpm8) Type(C,Z) Integration Nodes
Wne: Dim(fpm8) Type(C,Z) Integration Weights

• Returns FEAST integration nodes and weights for a user defined contour. To be used with FEAST
expert routines.

- [sd]feast rational

call dfeast rational(Emin , Emax , fpm2 , fpm16 , fpm18 , Eig , M0 , f)

Inputs:
Emin: Scalar Type(S,D) Lower bound of search interval
Emax: Scalar Type(S,D) Upper bound of search interval
fpm2: Scalar Type(I) Number of contour points for integration (half-

contour)
fpm16: Scalar Type(I) Integration type
fpm18: Scalar Type(I) Ellipse definition

Eig: Dim(M0) Type(S,D) Set of points to evaluate rational function
M0: Scalar Type(I) Size of Eig/f

Outputs:
f : Dim(M0) Type(S,D) Value of rational function at each point in Eig

• Evaluates rational/selection function for contour defined by Emin and Emax at a set of real values
stored in Eig.

- [sd]feast rationalx

call dfeast rationalx(Zne , Wne ,fpm2 , Eig , M0 , f)

Inputs:
Zne: Dim(fpm2) Type(C,Z) Integration nodes of search interval
Wne: Dim(fpm2) Type(C,Z) Integration Weights of search interval
fpm2: Scalar Type(I) Number of contour points for integration (half-

contour)
Eig: Dim(M0) Type(S,D) Set of points to evaluate rational function
M0: Scalar Type(I) Size of Eig/f

Outputs:
f : Dim(M0) Type(S,D) Value of rational function at each point in Eig

• Evaluates rational/selection function for contour defined by Zne and Wne at a set of real values stored
in Eig.

- [cz]feast grational

call zfeast grational(Emid , r , fpm8 , fpm17 , fpm18, fpm19 , Eig , M0 , f)

Inputs:
Emid: Scalar Type(C,Z) Midpoint of search interval

r: Scalar Type(S,D) Radius of search interval
fpm8: Scalar Type(I) Number of contour points for integration (full-

contour)
fpm17: Scalar Type(I) Integration type
fpm18: Scalar Type(I) Ellipse definition
fpm19: Scalar Type(I) Ellipse rotation angle

Eig: Dim(M0) Type(C,D) Set of points to evaluate rational function
M0: Scalar Type(I) Size of Eig/f

Outputs:
f : Dim(M0) Type(C,Z) Value of rational function at each point in Eig

• Evaluates rational/selection function for contour defined by Emid and r at a set of complex values
stored in Eig.

- [cz]feast grationalx

call zfeast grationalx(Zne , Wne , fpm8 , Eig , M0 , f)

Inputs:
Zne: Dim(fpm8) Type(C,Z) Integration nodes of search interval
Wne: Dim(fpm8) Type(C,Z) Integration Weights of search interval
fpm8: Scalar Type(I) Number of contour points for integration (full con-

tour)
Eig: Dim(M0) Type(C,Z) Set of points to evaluate rational function
M0: Scalar Type(I) Size of Eig/f

Outputs:
f : Dim(M0) Type(C,Z) Value of rational function at each point in Eig

• Evaluates rational/selection function for contour defined by Zne and Wne at a set of complex values
stored in Eig.

	Table of Contents
	Updates/Upgrades Summary
	From v2.1 to v3.0

	Preliminary
	The FEAST Algorithm
	The FEAST Solver Package version v3.0
	Using the FEAST-SMP version
	Using the FEAST-MPI version

	Installation and Setup: A Step by Step Procedure
	Installation- Compilation
	Linking FEAST

	A simple ``Hello World'' Example (F90, C, MPI-F90, MPI-C)

	FEAST Interfaces
	Basics
	Definition
	Common Declarations

	FEAST_RCI interfaces
	Specific declarations
	RCI Mechanism

	FEAST predefined interfaces
	Specific declarations
	Matrix storage

	FEAST Parameters and Search Contour
	Input FEAST parameters
	Defining a search contour
	Output FEAST info details

	FEAST: General use
	Single search interval and FEAST-SMP
	Single search interval and FEAST-MPI
	Multiple search intervals and FEAST-MPI

	FEAST in action
	Examples: Hermitian/Non-Hermitian; Fortran/C/MPI; Dense/Banded/Sparse
	FEAST utility sparse drivers

	Additional Tools for FEAST
	Stochastic estimate
	Custom contours
	Defining a Custom Contour using {C,Z}FEAST_customcontour
	Calling the Expert FEAST Routines

	List of all FEAST tool routines

