The|Cl Programming Language

Tim Long

© 1992-2003 Tim Long
Regular expression portions © 1997-1999 University of Cambridge
Permission granted to reproduce provided copyright notices are preserved.

The ICI Programming Language 1

Chapter 1:

2 ThelCl Programming Language

CHAPTER 1 Introduction 11

CHAPTER 2 A brief tutorial for C programmers 13

Helloworld 13

Program structure 14

Variables and arithmetic 14

Lexicon, syntax and flow control statements 15

Aggregate data types and the nature of objects 15
Making and manipulating aggregates 17
Literal dataitems 17

Other operations and core functions 18
Regular expressions 18

CHAPTER 3 Some sample programs 21

Ackermann’sfunction 21
Array access 22

Count lines/words/characters 22
Echo client/server 23
Exception mechanisms 24
Fibonacci numbers 25

Hash (associative array) access 25
Hashes, part Il 25

Heapsort 26

Helloworld 27

List operations 27

Matrix multiplication 28
Method calls 29

Nested loops 31
Producer/consumer threads 31
Random number generator 32
Regular expression matching 33
Reverse afile 34

Sieve of Eratosthenes 34

Spell checker 35

Statistical moments 35

String concatenation 36

Sum a column of integers 37
Word frequency count 37

The ICl Programming Language 3

Chapter 2:

CHAPTER 4 ICI Language Reference 39

Thelexical analyser 39
An introduction to variables, modules and scope 40
Theparser 41
Expressions 43
Factors 43
An introduction to arrays, setsand structs 44
Built-in literal factors 45
User defined literal factors 47
Primary operators 48
Terms 49
Prefix operators 50
Postfix operators 50
Binary operators 51
Binary operator summary 53

Statements 54
Smple expression statements 54
Compound statements 54
The if statement 55
The while statement 55
The do-while statement 55
The for statement 56
Theforall statement 56
The switch, case, and default statements 57
The break and continue statements 58
Thereturn statement 59
Thetry statement 59
The critsect statement 60
The waitfor statement 60
The null statement 61
Declaration statements 61
Abbreviated function declarations 63
Functions 63

Objects 66
Equality 68
Sructure and set keys 70
Sructure super types 71
An aside on variables and scope 73

Basetypes 73
array - An ordered sequence of objects 74
exec - Athread execution context 74
file- An open filereference 75
float - A double precision floating point number 75
func - Afunction 76
int - Asigned 32 bit integer 76
mem - A reference to raw machine memory 76
method - A binding of a function and a subject object 77
ptr - A reference to a storage location 77
regexp - A compiled regular expression 78
set - An unordered collection of objects 78
string - An ordered sequence of 8 bit characters 79

4 ThelCl Programming Language

CHAPTER 5

CHAPTER 6

struct - An unordered set of mappings 79

Operators 79

Automatic library loading 84

Object-oriented programming in ICl 87

Sub-classes 89

Global methods 92

Taking advantage of dynamic binding 92
Sandard global methods 93

Core language functions and variables 95

Core function summary 95
Core language functions 98

float|int = abs(float|int) 98

angl e = acos(x) 98

mem = all oc(nwords [, wordz]) 98

string = argv[] 98

array = array(any...) 98

float = asin(x) 98

val ue = assign(struct, key, value) 98
angle = atan(x) 99

angle = atan2(y, x) 99

array|struct = build(dims... [, options, content...]) 99
float|struct = cal endar(struct|float) 100
return = call (func [, any...], array| NULL)
float = ceil (x) 101

Change the current working directory to the specified path. 101
close(file) 101

int = cnmp(a, b) 101

any = copy(any) 101

any = any:copy() 101

x = cos(angle) 101

float = cputime([float]) 101

file = currentfile(["raw']) 101

int = debug([int]) 102

del (aggr, key) 102

array = dir([path,] [regexp,] [format]) 103
int = eq(obj1, obj2) 103

int = eof([file]) 103

event| oop() 103

exit([string|lint|NULL]) 104

float = exp(x) 104

array = expl ode(string) 104

fail(string) 104

val ue = fetch(struct, key) 104

value = float(x) 104

float = floor(x) 104

flush([file]) 104

float = frmod(x, y) 104

The ICI Programming Language 5

100

Chapter 2:

file = fopen(nane [, node]) 105
string = getchar([file]) 105

string = getcwd() 105

string = getenv(string) 105

string = getfile([file]) 105

string = getline([file]) 105

string = gettoken([file [, seps]]) 105

array = gettokens([file [, seps [, terms,
[delins]]]]) 106

string = gsub(string, string|regexp,
string) 107

string = inplode(array) 107

struct = include(string [, scope]) 107
value = int(any [, base]) 107

subpart = interval (str_or_array, start [,
I ength]) 107

int = inst|class:isa(any) 108

int = isatom(any) 108

array = keys(struct) 108

any = load(string) 108

fl oat | og(x) 108

float = 0ogl0(x) 108

mem = nen(start, nwords [, wordz]) 108
file = mopen(mem [, node]) 109

int = nels(any) 109

inst = class:new() 109

float = now() 109

nunber = num(x [, base]) 109

scope = parse(source [, scope]) 109
string = parsetoken(file) 110

any = parsevalue(file) 111

string = path[] 111

any = pop(array) 112

file = popen(string, [node]) 112
float = powm(x, y) 112
printf([file,] fm, args...) 112
profile(filenane) 112

any = push(array, any) 113
put(string [, file]) 113
putenv(string) 113

int = rand([seed]) 114

reclaim() 114

re = regexp(string [, int]) 114

re = regexpi(string [, int]) 114
rejectchar(file, str) 114
rejecttoken(file) 114
renove(string) 115

any = rpop(array) 115

any = rpush(array, any) 115
current = scope([replacenent]) 115
int = seek(file, int, int) 115

set = set(any...) 115

func = signal (string|int [, string|func])

116

6 ThelCl Programming Language

CHAPTER 7

string = signan(int)
x = sin(angle) 116
sl eep(num 116

116

array = smash(string [, regexp [, replace...]

[, include_renainder
file = sopen(string
array = sort(array [
string = sprintf(fnt
x = sqgrt(float) 118
string = strbuf([str
string = strcat(stri
string...) 118

string = string(any)

1) 116

[, node]) 117

, func [, arg]]) 117
, args...) 118

ing]) 118
ng [, int] ,
119

struct = struct([super,] key, value...) 119

string = sub(string,
string) 119

string| regexp,

current = super(struct [, replacenent]) 119

int = systen(string)
x = tan(angle) 120

120

exec = thread(callable, args...) 120

string = tochar(int)
int = toint(string)
any = tokenobj (file)
any top(array [,
int = trace(string)
string = typeof (any)
string = version()
array = vstack([int]
wakeup(any) 121
struct = which(key [

Regular expressions

120
120
120
nt]) 120
120
121
121
) 121

, struct]) 122

123

Regular expression syntax 123

Backslash 124
Circumflex and dollar 126
Full stop (period,dot) 127
Square brackets 127
Vertical bar 128

Internal option settings 129
Subpatterns 130
Repetition 130

Back references 132
Assertions 133
Once-only subpatterns 135
Conditional subpatterns 136
Comments 137
Performance 137

Author 138

The ICl Programming Language 7

Chapter 2:

CHAPTER 8 Interfacing with Cand C++ 139

Universal rules and conventions 139
Includefilesand libraries 139
The nature of ICI objects 140
Garbage collection, ici_incref() and ici_decref() 140
The error return convention 140
ICl'sallocation functions 142

Commontasks 142
Writing a simple function that can be called fromICI 142
Calling an ICI function or method fromC 144
Making new ICI primitivetypes 144
Using ICI handle types to interfaceto C/C++ objects 146
Writing and compiling a dynamically loading extension module 149
Referring to ICI stringsfrom C code 150
Accessing ICI array objectsfromC 151
Using ICI independently from multiple threads 152

Summary of ICI’'sCAPI 152

Detailed description of ICI'sC APl 158
ARG 158
ARGS 158
CF_ARG1 158
ICI_BACK_COMPAT VER 159
ICI_DIR SEP 159
ICI_DLL_EXT 159
ICI_NO_OLD_NAMES 159
ICI_OBJ SET_TFNZ 159
ICI_PATH_SEP 160
ICI_VER 160
NARGS 160
hassuper 160
ici_alimit 160
ici_alloc 160
ici_anext 161
ici_argcount 161
ici_argerror 161
ici_array_find_dlot 162
ici_array_gather 162
ici_array_get 162
ici_array_nels 162
ici_array_new 162
ici_array_pop 163
ici_array push 163
ici_array rpop 163
ici_array _rpush 163
ici_assign 163
ici_assign_base 163
ici_assign_cfuncs 164
ici_assign fail 164
ici_assign_super 164
ici_astart 164
ici_atexit 165

8 ThelCl Programming Language

ici_atom 165
ici_atom probe 165
ici_call 165
ici_callv 165
ici_cfunc_ t 166
ici_chkbuf 166
ici_class new 166
ici_cmp_unique 167
ici_copy_simple 167
ici_debug t 167
ici_decref 168
ici_def_cfuncs 168
ici_dont_record_line_nums 168
ici_enter 168
ici_error 169
ici_eval 169
ici_fetch 169
ici_fetch base 169
ici_fetch fail 169
ici_fetch_super 170
ici_file close 170
ici_file new 170
ici_float new 170
ici_float_ret 171
ici_float t 171
ici_free 171
ici_ftype t 171
ici_func 172
ici_funcv 172

ici_get last_errno 172
ici_get last win32_error 173
ici_handle method check 173
ici_handle new 173
ici_handle probe 174
ici_handle t 175
ici_hash_unique 176
ici_incref 176
ici_init 176

ici_int new 177
ici_int ret 177
ici_int t 2177
ici_interface check 177
ici_leave 178
ici_main 178
ici_make_handle member_map 178
ici_mem new 179
ici_method 179
ici_method_check 179
ici_method_new 179
ici_module new 180
ici_nalloc 180
ici_need stdin 180
ici_need stdout 180

The ICl Programming Language 9

Chapter 2:

CHAPTER 9

ici_nfree 180
ici_null 180
ici_null_ret 181
ici_obj_t 181
ici_objname 181
ici_objwsup_t 182
ici_parse 182
ici_parse file 182
ici_parse fname 182
ici_ptr_new 182
ici_register_type 183
ici_rego 183
ici_ret_no_decref 183
ici_ret_with_decref 183
ici_set new 184
ici_sopen 184
ici_srct 184
ici_str_alloc 184
ici_str_buf new 184
ici_str_get_nul_term 185
ici_str need size 185
ici_str new 185
ici_str new _nul_term 185
ici_str ret 185
ici_struct new 186
ici_struct_unassign 186
ici_talloc 186
ici_tfree 186
ici_type t 186
ici_typecheck 189
ici_typeof 190
ici_uninit 190
ici_waitfor 190
ici_wakeup 191
ici_yield 191
Building ICI on various platforms 191
Windows 191
UNIX-like systems 191

How it works 192

Obsol ete features and mistakes

OBSOLETE: Method Calls### 193
event = waitfor(event...) 194
argc 194

Mistakes 194

193

10 ThelCl Programming Language

CHAPTER 1 I ntrOdUCU On

ICl isageneral purpose interpretive programming language that has dynamic typing and flexi-
ble data types with the basic syntax, flow control constructs and operators of C. It isdesigned
for use in many environments, including embedded systems, as an adjunct to other programs, as
atext-based interface to compiled libraries, and as a cross-platform scripting language with
good string-handling capabilities.

The ICI language and source is free for any use but without warranties of any kind.

This document isthe basic reference for the core language and functions. Thereis also an exten-
sive man page that includes details of command line invocation not described here. Additional

documentation is provided in the I Cl source releases. The ICl web site is maintained by Andy
Newman at http://ici.sf.net/

ICI source code is maintained publicly at Sourceforge (http://sf.net/) under the project nameici.
Releases are available there.

This document relates to ICI version 4.1.

Thefollowing people are due much thanksfor their contributions. Andy Newman, Chris Amies,
Luke Kendall, Giordano Pezzali, Philip Hazel, Henry Spencer, Yiorgos Adamopoulos, Gary
Gendel, Alexander Demenshin, Oliver Bock, and Tim Vernum.

The ICI Programming Language 11

http://ici.sf.net/
http://sf.net/

Chapter 1: Introduction

12 ThelCl Programming Language

CHAPTER 2 A brief tutorial for C
programmer's

This chapter isintended as a quick tutorial introduction to ICI for programmers familiar with C
or C++, It does not dwell on formal definitions and exceptions. For precise definitions, see the
next chapter: 1Cl Language Reference. Because ICl’s syntax and flow control constructs are
based on those of C, a C programmer has a particular advantage in learning to use ICI. This
tutorial will take advantage of that and move quickly through areas that are unsuprising to C
programmers.

Thistutorial will also occasionally allude to how things work inside the interpreter as, to a pro-
grammer, this can aid comprehension and give an idea of the implications of using certain con-
structs.

Hello world

The ICI hello world program is simply:
printf("Hello world.\n");

ICI's printf isthe same as C's. You can verify your ICl execution environment by placing that
singlelinein afile (often with a.ici suffix) and running it with:

ici hello.ici

And of course on UNIX like systems you can place:

#!'/usr/ 1 ocal / bin/ici

inthefirst lineto alow direct execution of the file (provided ICl isinstalled in /usr/local).

The ICl Programming Language 13

Chapter 2: A brief tutorial for C programmers

Program structure

AnICI program fileis a sequence of statements. These statements include both executabl e state-
ments as you would expect to find within C functions, and declaration statements as you would
expect to find at the file level of a C program. Thus.

printf("Let's define a function.\n");

static
func()

{
}

printf("Hello fromfunc.\n");

printf("Now let's call it.\n");
func();

Will produce:

Let's define a function.
Now let's call it.
Hello from func.

Variables and arithmetic

Because ICl isadynamically typed language, the nature of avariableis of course different from
those of C. But for typical arithmetic the differencesare invisible. All ICI variables refer to stor-
age that records both the type and data of the variable’s current value . Thus we can say:

X = 1;

which makes x refer to the integer one. Then

X = 1.0;

which updates x to refer to the float one. Then

X = "one’;

which updates x to refer to the string "one".

AsaC programmer, you can consider all ICl variables to be typless pointers to objects that
record both type and value. But because I Cl’s built in operators know thisis the case, they read
and generate the pointed-to values automatically. Thus ordinary arithmetic is unsurprising:

fahr = 100. 0;
celsius = (5.0/ 9.0) * (fahr - 32.0);
printf("% deg. Fis % deg. Qn", fahr, celsius);

works as one would expect. So most of the time you don’t need to consider this at all. All
objectsin ICl are subject to automatic garbage collection, so no explicit freeing is required.

Because ICl variable are dynamically typed, you don’t need to declare them. But ICI supports
hierarchical modularisation and it is often desirable to declare at what scope avariable lives.
Thus we have:

14 ThelCl Programming Language

Lexicon, syntax and flow control statements:

extern xxx; /* xxx is visible to other files. */
static sss; /* sss is visible in this file. */
aut o aaa; /* aaa is visible in the | ocal scope. */

The word static is used in the C sense of the value being persistent. This variable will exist with
persistent value as long as functions in this module are still callable. Extern variables are al'so
persistent, they just have more global scope. Consider:

static
func(arg)

auto |ocal;

| ocal = 10;
for (i =0; i < local; ++i)
printf("%l\n", i * arg);

}

Thisfunction (which is declared static) has an auto variable. Auto variables are, asin C, the var-
iables that spring into existence (on the stack) for the duration of a single execution of afunc-
tion. The function also usesthe variablei. If an undeclared variableis assigned to, it is
implicitly declared auto. That can be dangerous in large programs with many variables of more
global scope that may already exist, so asastylerule, implicit autos are normally kept to one or
two characters, and more global variables should not be.

Auto variables, and their implicit declaration, also work at the filelevel. They have asimilar (in
a sense) semantics. While the fileis being parsed, they exist. But they evaporate afterwards.
They are not visible to functions defined within the file. We used implicit auto variablesin our
fahrenheit to celsius conversion above.

Lexicon, syntax and flow control statements

ICI'slexiconis (basically) the same as C's. Same tokens, comments (including //) and literal
data values. Sorry, no preprocessor.

ICI’s syntax is, wherever possible, the same as C's. Naturally differences arise due to the differ-
ent nature of the environment, as we have seen above.

Aswe have seen, expressionsare asin C. There are of course additional datatypes, literals, and
operators, but these build from the initial C compatible set.

The flow control constructs if-else, while, for, do-while, switch (including case and default),
continue, break and return all have the same basic syntax and semantics as C. But thereisno
goto.

In addition to these classic C statements forms, I Cl has forall, try-onerror, waitfor, and critsect.
But before considering these, we will look at aggregate data types and the nature of objects,
which is the one aspect a C programmer needs to understand before writing effective ICl code.

Aggregate data types and the nature of objects

ICl supports a number of “aggregate” datatypes. Principly:

The ICI Programming Language 15

Chapter 2: A brief tutorial for C programmers

array Simpleordered collections of valuesthat can beindexed by integers.
Thefirst item isat index 0. They can be efficiently pushed and
popped at either end.

struct Mappings from an index (any object) to avalue. Also known as as-

sociative arrays, dictionaries, maps, hashes, etc in other languages.
Adding entries, lookup and deletion are al efficient operationsirre-
spective of the complexity of the objectsinvolved.

set Simple unordered collections of values.

Each of these hold a collection of references to other objects. Thereis a significant distinction
between these aggergate types and the simple types such as int, float, and string. These simple
types have no modifiable internal structure. They are read-only. In fact, when an object of one of
these typesis required (say asthe result of some arithmetic operation) it islooked for in a hash
table of all such objects, and the entry found thereis used. It is created and added if it does not
exist.

Thus we can see that all strings “xyz” in an ICl program are just pointers to the same single
object in memory. The same s true for integers (which are 32 bit signed values) and floats
(which are double precision values). An object that has been resolved to its single unique (read-

only) version is said to be atomi ct
Aggregates, on the other hand, are internally modifiable in-place.

InICl, “indexing” an aggregate is the most primitive way of accessing internal elements. But
we use the term indexing in a more general sense than simple array indexing. For example,
array indexing is unsurprising, so:

a[0] = 3;

setsthe first element of an array a to 3. With a sruct s we might say:

s.val ue = 3;

which setsthe valuefield of the struct to 3. But thisisjust an “indexing” operation on the struct.
In fact it isjust a syntactic variation on:

s["value"] = 3;

Arrays, structs and setsare all objects that support indexing to refer to internal values (i.e. object
references) for read or write. Each varies only in how they are structured internally, and how
they interpret the “key”, or index, applied to them.

» Arraysare growable circular buffers of object references that can only be indexed by inte-
gers, which are interpreted as an offset from the first element.

» Structs are hash tables that map one object reference to another. Theindex referenceitself is
the basisfor indexing, not the details of the index object (that is, the indexing operation only
looks at the index as a pointer, not at what it pointsto). But because ints, strings, floats, etc
are aready resolved to unique pointers based on their values, this behaviour isindistinguish-
able from full value hashing and comparison for simple (atomic) types.

1. Thistype of mechanismistypical for dynamically typed interpretive langauges such as I Cl. Although it
is less common to apply it to uniformly for all data types of the language, even numbers.

16 ThelCl Programming Language

Literal data items: Making and manipulating aggregates

» Setsare hash tablesthat merely record the presence or absence of an object in the same man-
ner as structs, but they have no associated value. Although they have an “implicit” value of 1
if the object isin the set.

Arrays, structs and sets all return the special object NULL if the key is not in their current
domain.

M aking and manipulating aggregates
The simplest ways to make aggregates are the functions array(), set() and struct(). For example:
array(1, 2.5, "hello");

set ("bye", 5.5, 9);

a
b
c struct("a", 12, "b", 13);

The struct() function interpretsits arguments pair-wise as key-value pairs. If, after executing the
above code, we do:

printf("a[2] = %\n", a[2]);
if (b[9])

printf("The set b contains 9.\n");
printf("c.a = %\n", c.a);

we will see:

a[2] = hello
The set b contains 9.
c.a =12

Itisequally common to see these functions used to make empty aggregates that are then added
to through further code. For example:

things = array();
while ((thing = get_next_thing()) != NULL)
push(t hings, thing);

Or:

node = struct();
node. nane = nane;
node. left = a;
node. right = b;

Literal data items

ICI supportsin-line literal aggregates. That is, like an initialised structurein C, but instead of
being tied to a variable declaration, they are self-describing, and can be used anywhere. For
example:

[array 1, 2, 3]

isatermin an expression. Just like aliteral string in C:
"Hello world.\n"

The ICl Programming Language 17

Chapter 2: A brief tutorial for C programmers

the compiler builds the data structure in memory somewhere and the term evaluates to a refer-
ence to it. Examples of array, set, and struct literals are:

a = [array 1, 2.5, "hello"];
b = [set "bye", 5.5, 9];
C = [struct a =12, b = 13];

Arrays and sets have syntax almost identical to the run-time functions that create the same
types. But structs have a more convinient syntax for the commonest activity; associating values
with named keys.

Be careful not to confuse literals with the run-time functions of the same name. Confusion often
arises because at the file level where a statement is parsed, then immediately executed, there
isn't much effective difference. But in aloop or function there is a very big difference.

Other operations and core functions

Common to all dynamically typed interpreted languages, execution speed is very different from
fully compiled statically typed languages. Achieving useful performance relies heavily on the
use of operations and functions that perform the “inner loops” of a program, but are fully com-
piled and carefully optimised.

ICl isno exception to this principle. So it iswiseto be aware of the full repertoire of operations,
core functions, and extension modules available. However, in this brief tutorial we won't
attempt to enumerate all such features. They are listed in subsegquent chapters, and a skim
through Operatorsin the ICI Language Reference chapter, the Core language functions, chap-
ter, and Some extension modules is recommended. Having said that, afew of the commonest
non-C features and idioms are worth illustrating here.

Regular expressions

Regular expressions are “simple” (atomic) typesinICl, just likeints, floats and strings. A literal
regular expression is delimited by # characters (like astring is delimited by " characters). For

example:
while ((line = getline()) != NULL)
{
if (line ~ #Mabc#)
printf("%\n", line);
}

will print all lines starting with abc. The ~ operator isread as“ matches” and !~isread as

“ doesn't match” . Other operators exist which extract sub-matches. Regular expressions can be
very useful for avoiding character-by-character operations on text. They are avery efficient way
of matching and breaking up text.

For example, one of my first resorts in dealing with some new regular text fileisto load the
entire file, use afunction called smash() to break it up into lexical units based on regular expres-
sions, then rearrange the result into the data | want. Consider doing thisto load a“CSV” file
(Comma Separated Fields - each line is comma separated fields, each field optionally sur-
rounded by double quotes).

/*
* Smash the file into fields and separators. Each

18 ThelCl Programming Language

Other operations and core functions: Regular expressions

* seperator is either a"," or a "\n". Fields are
* either plain or quoted, but the quotes
* are renoved. Notice the regular expression is
* broken into two parts for clarity.
*/
csv = smash
(
getfile(f), [* The file. */
LN "\n])" ([~\n]*)")# [* ... or ",]
#([,\n])#, /[* then , or \n */
"\ 20\ 3, /* For each.. */
"\\ 4" /* ..push these*/
)
/*
*

Re-build the linear array into an array of arrays
* based on the "\n" seperators.

*/

a = array(aa = array());

while (nels(csv) > 0)

{
push(aa, rpop(csv));
if (rpop(csv) == "\n")
push(a, (aa = array()));
}

The ICl Programming Language 19

Chapter 2: A brief tutorial for C programmers

20 ThelCl Programming Language

CHAPTER 3 Some sanple programs

This chapter contains a small collection of very simple sample programs. These programs are
not random. They are based on the set of simple language benchmark tests used in The Great
Computer Language Shootout by Doug Bagley (http://www.bagley.org/~doug/shootout/) and
The Great Win32 Computer Language Shootout by Aldo Calpini (http://dada.perl.it/shootout/).
These programs have been chosen because at those sites you can view programs written to
exactly the same specification in aimost any programming language you are likely to know.

The specification of this benchmark suite demands that some of the programs are implemented
the same way as they are implemented in the other languages. Others are merely required to do
the same thing.

Many of the tests take a single optional command-line argument being the integer number of
times some loop is to be repeated. Thisistypically obtained in each program with aline like:

n =argv[l] ? int(argv[l1]) : 1;
Some tests expect input data, which is generally read from standard input. See the sites men-
tioned above for further details.

No comment will be made on code that should be unsurprising to someone who knows C.

Ackermann’s function

Thistest must be implemented in the same recursive manner in al languages. It is designed to
stress recursion by computing Ack(3, N) for various (small) N.

static
Ack(M N)
{

}

return M? (Ack(M- 1, N? Ack(M N- 1) : 1)) : N+ 1;

n:=argv[1l] ? int(argv[1]) : 1;

The ICI Programming Language 21

http://www.bagley.org/~doug/shootout/
http://dada.perl.it/shootout/

Chapter 3: Some sample programs

printf("Ack(3,%): %\n", n, Ack(3, n));

Array access

Thistest must be implemented in the same way in al languages. It must first build an array full
of integers, then repeatedly add them to a second array, with each loop running backwards
through the array.

Notice the use of the build() function to make the first array. The "i" argument to build() causes
the content to be auto-incrementing integers, the 1 is the start value.

The second call to build() makes an array of size n with each element initialised to 0. The "c"
argument means “apply the initialiser(s) cyclicaly to leaf elements of the built data’.

n =argv[l] ? int(argv[l1]) : 1;
X = build(n, "i", 1);
y = build(n, "c", 0);
for (k = 0; k < 1000; ++k)
{

for (i =n- 1; i >=0; --i)
} y[i] += x[i];

printf("%l %\n", y[O0], y[n - 1]);

Count lines’'words/characters

Thistest must count lines, words and characters from standard input and must do the same thing
asthe versionsin other languages. However, it is not allowed to read the whole input at once,
but must limit its read to no more than 4K bytes. Thereis no easy way to do this ICI except by
reading lines.

Notice the use of the smash() function to get the words of each line. smash() is the most com-
mon method of breaking up strings. The \S+ pattern matches one or more non-whitespace char-
acters. If we really wanted the words, the last argument to the smash() call would have been
"\\&" (meaning append the matched portion to the array being built). However, we only want to
count the words, so we just push empty strings. This saves the cost of actually extracting and
creating the string.

The nels() function returns the number of elementsin an array or string (or anything else).

nl = nw=nc = 0;
while (I = getline())
{
++nl ;
nc += nels(l) + 1;
nw += nel s(smash(l, # S+#, ""));

}
printf("%l % %\n", nl, nw, nc);

22 ThelCl Programming Language

Echo client/server:

Echo client/server

For this test, each language is required to do the same thing. The specification says it should
fork achild process that repeatedly sends a message to the parent (server), which echoesit back
to the child (client), which checksit is correct. Because fork() is only available in versions of
ICI running on UNIX-like systems (in the sys module), we actually use athread here.

Thistest uses the ICI net module, which provides sockets-based networking primitives (it is
documented separately).

Notice the use of waitfor to wait for the child thread to finish. The status field of the child thread
will be "active" until the echo_client function returns (or fails). The thread object istself is
waited on. A wakeup is automatically done on any thread object on thread termnation.

Notice also that the iteration count n isimplicitly created by simple assignment, but data is
explicitly declared static. Implicit variable are always created in the innermost scope. At thefile
parse level thereisalocal “auto” scope which exists and isvisible only at the file parse level,
just asthe “auto” variables of afunction only exist and are visible within an invocation of a
function. The nisn’t visible to the running function echo_client and doesn’t need to be. How-
ever data does need to be. The static declaration of data givesit a sufficiently outer scope to be
visible inside the running function echo_client. (The function is also running in a separate
thread, but that doesn’t change the scoping at all.)

Finally, notice the use of the := operator to assign to sock in echo_client. Thisisthe commonest
way of introducing new local (auto) variablesin afunction. The := operator forces the assign-
ment to be in the most-local scope, even if avariable of the same name already existed in an
outer scope.

n =argv[l1l] ? int(argv[1l]) : 1;

static data = "Hello there sailor\n";

static

echo_client(n, port)

{
sock := net.connect(net.socket("tcp/ip"), port);
for (i :=0; i <n; ++i)
{

net . send(sock, data);
if ((ans := net.recv(sock, nels(data))) != data)
fail(sprintf("received \"%\", expected \"%\"",
ans, data));

}

net . cl ose(sock);

}

ssock = net.listen(net.bind(net.socket("tcp/ip"), 0));
client = thread(echo_client, n, net.getportno(ssock));
csock = net.accept (ssock);

t =0;
while (str = net.recv(csock, nels(data)))
{

net. send(csock, str);
t += nel s(str);

}

wai tfor(client.status != "active"; client)

printf("server processed % bytes\n", t);

The ICl Programming Language 23

Chapter 3: Some sample programs

Exception mechanisms

For this test, each language is required to implement it the same way. The outer loop calls
hi_function() which callslo_function() which calls blowup(). The blowup() function throwstwo

types of exceptions, one of which must be caught by lo_function() and the other by

hi_function().

ICI cannot selectively catch exceptions, so inlo_function() we must catch and re-throw the
exception that is not for us. ICl exceptions are very simple, just being astring. They really are
intended just for errors, not as a general programming mechanism. (Although they are reasona-

bly efficient.)

N =argv[1l] ? int(argv[l]) : 1;

static H
static LO

0;
0;

static
bl owmup(n)

fail(n &1 2 "low : "hi");:
}

static
| o_function(n)
{
try
bl owup(n);
onerror
{
if (error !~ #l ow#)
fail (error);

++LQ
}
}
static
hi _function(n)
{
try
| o_function(n);
onerror
++Hl ;
}
static
some_functi on(n)
{
try
hi _function(n);
onerror
fail (error + " -- we shouldn't get
}

here");

24 ThelCl Programming Language

Fibonaccinumbers:

while (N
some_function(N--);

printf("Exceptions: H =% / LO=%\n", H, LO;

Fibonacci numbers

In this test each language is required to compute a fibonacci number by the same recursive
method.

static
fib(n)
{

}
printf("%l\n", fib(argv[1l] ? int(argv[l]) : 1));

returnn<2?1: fib(n- 2) +fib(n - 1);

Hash (associative array) access

All languages must implement this test the same way. We store the integers from 1..N in an
array indexed by the hex string of the integer, then access it with decimal strings. Only some of
the decimal strings will strike values we stored under the hex string keys, we must print how

many.
Notice that the “struct” is | Cl’s associative array type (a.k.a. hash, map, dict, etc).
n =argv[l] ? int(argv[l1]) : 1;
X = struct();

for (i =1, i <= n; ++i)
X[sprintf("w", i)] =1i;
c =0
for (i =n; i >0; --i)
c += x[string(i)] !'= NULL;

printf("%l\n", c);

Hashes, part |1

Thisislikethe above, but isn’'t swamped by the time to make strings. The strings are made first,
then used repeatedly.

Notice the use of the forall statement in the main loop. This could have been a for loop with
some variable stepping from 0 to 10000. However, when looping over all the elements of an
aggregate, aforall loop is generally clearer and faster. Notice that in this case there are two loop
variables, v, the values in the aggregate, and k, the key (i.e. index) you would use to find that
value.

The ICI Programming Language 25

Chapter 3: Some sample programs

n =argv[l] ? int(argv[l1]) : 1;

hl = struct();
for (i = 0; i < 10000; ++i)
hi[sprintf("foo_ %", i)] =1i;

h2 = struct();
for (i =0; i < n; ++i)
{

forall (v, k in hl)

if (h2[k] == NULL)
h2[k] = O;
h2[k] += v;

}

printf("% % % 9%\ n", hi["foo_1"], hi["foo_9999"],
h2["foo_1"], h2["foo_9999"]):

Heapsort

In thistest each language is required to implement an in-place heapsort in the same way. Notice
again the explicit declaration of some variables static to make them visible inside functions.
Also notice the declaration of last as static inside the gen_random() function. Thisis almost
completely pointless, asit gets exactly the same visibility as the ones declared outside the func-

tion.
static | M= 139968;
static | A = 3877;
static | C = 29573;
static
gen_r andon{ max)
{

static last = 42;

return max * (last = (last * 1A+ 10 %IM / IM;

}
static
heapsort(n, ra)
{
ir =n;
I =(n > 1) + 1;
for (;;)
if (I > 1)
{

rra =ra[--1];

}

26 ThelCl Programming Language

Helloworld:

el se

{
rra =rafir];
rafir] = ra[1];
if (--ir == 1)

{
ra[1l] = rra;
return;
}
}
i =1;
j =1 << 1
while (j <=1ir)
{
if (j <ir & ra[j] < ra[j+1])
++j ;
if (rra<ralj])
{
raf[i] =ra[j];
j += (| :j);
}
el se
{
j =ir + 1;
}
}
raf[i] = rra;

N =argv[1l] ? int(argv[1l]) : 1;

ary = array();

for (i =0; i <= N ++i)
ary[i] = gen_randon(1l.0);

heapsort (N, ary);

printf("% 10f\n", ary[N]);

Hello world

Couldn’t get much simpler than this. We use put() which is raw unformatted output, unlike
printf() (which would have worked just as well).

put ("hello world\n");

List operations

All languages must implement this test the same way. In short, using a native data structure,
make alist of integers from 1 through 10000, then copy it, then item by item transfer the head

The ICI Programming Language 27

Chapter 3: Some sample programs

item to the end of anew list, then item by item transfer the end item of that list to the end of a
new list, then reverse the new list.

For this test we use arrays, which can be efficiently pushed and popped at both ends. Notice the
use of build() again to make the array of integers. Thereis no built-in reverse functionin ICl, so
it is done manually. Notice the use of the swap operator, <=>, in the reversal code.

NUM = argv[1l] ? int(argv[1]) : 1;

static SIZE = 10000;

static

test_lists()

{
il := build(Slzg, "i", 1);
li2 := copy(lil);
113 := array();

whil e(nel s(1i2))
push(li3, rpop(li?2));

while (nels(li3))
push(li2, pop(li3));

n:=SIZE/ 2,

for (i :=0; i < n; ++i)
lid[i] <=>1lil[SIZE - i - 1];
if (1i1[0] '=SIZE || lil!=1i2)
return O;

return nels(lil);

}

for (i =0; i < NUM ++i)
result = test _lists();
printf("%l\n", result);

Matrix multiplication

In this test each language is required to multiply two 30 x 30 matrices.

Asit happens, the required data in the matricies are the numbers from 1 to 30 in row-column
order. We can use the build() function to easily make these. Thisisagood illustration of the way
the build function separates the structure being built, from the generation of the content used to
fill leaf elements. Thisisasimple two-dimensional array, but more complex data structures can
be built, also including nested structures.

Note that there are no true multi-dimensional arraysin ICl. Each matrix is asingle 30 element
array of 30 element sub-arrays.

The actual matrix multiplication might be most naturally done by three nested for loops over the
array dimensions. However, forall loops have been used here because they turned out to be
dlightly faster. The two outer forall loops loop over the sub-arrays (columns) and the leaf values
within them of the output matrix. Thisis abit artificial in the middle loop because the loop var-
iable val is not used. The inner-most loop foralls over one of the columns of the first input
matrix, while it steps along the rows of the second matrix.

static

28 ThelCl Programming Language

Method calls:

mmul t (rows, cols, nil, n2, nB)

forall (col, i in nmB)
{
mli = nl[i];
forall (val, j in col)
{
val = 0;

forall (mlik, k in nili)
val += mlik * n2[K][j];
col[j] = val;

}

}
}
S| ZE : = 30;
n:=argv[1l] ? int(argv[1]) : 1;
mL := build(SIzE, SIZE, "i", 1);
n2 := build(SIzE, SIZE, "i", 1);
mm : = bui l d(SI ZE, Sl ZE);
for (i =0; i < n; ++i)

mmul t (Sl ZE, SIZE, ml, m2, m;
printf("% % % %\ n", mio0][0], mi{2][3], m{3][2],
m{ 4] [4]);

Method calls

Each language is required to implement thistest in the same way. In short, we must make aclass
Toggle with a state member, and a sub-class NthToggle with additional count and count_max
members. Toggle has an acivate() method that flips the state. But NthToggl€e's overridden acti-
vate() does an extraflip every count_max calls.

Instances of classes, and classes themselves, are just structs. They are in scope when executing
methods. So note below in the activate() methods we can simply refer to state, count, and
count_max, rather than this.state (which would also work). However, the only way to call a
method is with the : or :* operators, and they require an object on the left, so you have to use
this when you call another method in your own class, even though the function itself is directly
visiblein your current scope.

An imporant thing to note here is the explicit calls to super-class functions with, for example,
this:new(). In general, the : operator is used to reference afunction of an object and make a cal-
lable method, asin toggle: activate(). The :* operator is used (in methods) to reference a func-
tionin asuper class, as opposed to calling yourself again (or even worse, a sub-class function of
the same name).

Notice that new() isa*“class’ method, while activate() is an “instance” method. There is no dis-
tinction in their declaration, it isjust what they do that makesit so.

static Toggle = [class

new(start_state)

{
t :=this:*new);

The ICl Programming Language 29

Chapter 3: Some sample programs

t.state := start_state;
return t;
}
activate()
{
state = Istate;
return this;
}
val ue()
{
return state;
}

1
static NthToggle = [class: Toggl e,

new(start_state, count_nax)

{
t := this:*new(start_state);
t.count _max := count_max;
t.counter := 0;
return t;
}
activate()
{
this:Mactivate();
i f (++counter >= count_nmax)
{
state = !state;
counter = 0O;
}
return this;
}

1
n:=argv[1l] ? int(argv[1]) : 1;

toggl e : = Toggl e: new(1);

for (i =0; i < n; ++i)

val = toggle:activate():value();
printf(val ? "true\n" : "false\n");
ntoggl e : = Nt hToggl e: new(val, 3);
for (i =0; i < n; ++i)

val = ntoggl e:activate():value();
printf(val ? "true\n" : "false\n");

30 ThelCl Programming Language

Nested loops:

Nested |oops

Each language is required to implement this the same way. Thisisavery simple test, but here
are two methods. Thefirst is dightly faster.

n:=argv[1l] ? int(argv[1]) : 1;
X .= 0;
z := build(n, "i");

forall (a in z)
forall (b in z)
forall (c in z)
forall (din z)
forall (e in z)
forall (f in z)
++X:

printf("%l\n", x);

The following is probably more natural.

n:=argv[1l] ? int(argv[1]) : 1;

X .= 0;

for (a=n; a--;)

for (b =n; b--;)
for (¢ =n; c--;)
for (d =n; d--;)
for (e = n; e--;)
for (f = n; f--;)
+4X;

printf("%l\n", x);

Producer/consumer threads

Each language must implement this test in the same way. In this test two threads share the com-
mon data variable, which the producer uses to pass successive integers to the consumer. Access
to the shared data variable is gated with aflag count.

Thistest illustrates the use of waitfor and wakeup(). Notice that waitfor has an expression that it
waitsto betrue, and a second arbitrary object that is“waited” on. That is, if the expressionis not
true, it suspends execution until that object is “woken up”, then it re-eval uates the expression.
We have used the string "count change" as the object to wait on because it is clear, and, as
strings are atomic, it will be the same string object wherever it is written. Everything in await-
for statement isindivisible except the wait it does on the object. This includes the compound
statement that it executes at completion when the condition is finally met.

Finally, note the method of waiting for each thread to finish. The thread object returned by
thread() is woken up automatically when athe thread finishes. The status field of the thread
object revealsits state.

static n = argv[1] ? int(argv[l1]) : 1,
static count = O;

static consuned
static produced
static data = 0;

0;
0;

The ICl Programming Language 31

Chapter 3: Some sample programs

static
producer ()
{
for (i :=1; i <= n; ++i)
{
wai tfor (count == 0; "count change")
{
data = i;
count = 1;
wakeup("count change");
}
++pr oduced,;
}
}
static
consurer ()
{
do
{
wai tfor (count !'= 0; "count change")
{
i = data;
count = 0;
wakeup("count change");
}
++consuned;
} while (i = n);
}
p := thread(producer);
¢ := thread(consuner);
wai tfor (p.status !'= "active"; p)
waitfor (c.status !'= "active"; c)
printf("%l %\ n", produced, consumned);

Random number generator

Each language is required to implement this test the same way. The random number generator is
exactly specified and is the same one used in the heapsort test above. The specification says we
should use symbolic constants (and have maximum performance).

Notice the use of the $ pseudo-operator which we use to evaluate the symbolic names at parse-
time (i.e. compile time). This gives the same run-time behaviour asif the numbers had been
typed in directly, for aslight performance improvement. The $ operator can be used to evaluate
any expression at “compiletime”. Like $sgrt(2.0).

static | M= 139968;

32 ThelCl Programming Language

Regular expression matching:

static | A = 3877;
static | C = 29573;
static |last = 42;

static
gen_r andon{ max)
{
return max * (last := (last * $IA + $I1C) %$IM / $IM
}
n =argv[l] ? int(argv[l]) : 1;
while (--n)

gen_r andon{100. 0) ;
printf("%9f\n", gen_randon(100.0));

Regular expression matching

Each language is required to implement this test the same way. A file of lines, some of which
contain phone numbers, isloaded into an array of strings. Then they are repeatedly matched
against aregular expression and the components of any phone number extracted. Matching
numbers are printed in anormalised form on the last iteration.

Notice the use of gettokens() to read al the input as an array of lines. The functions gettokens()
and gettoken() are one of the commonest and most efficient waysto read text files. The other is
to read the entire file with getfile() and then break it up with smash(). Thisis also reasonably
efficient as long as you don’'t mind reading the file all at once.

Notice both the operator ~~~ and the literal compiled regular expression enclosed in # charac-
ters. The ~~~ operator matches and extracts the matched sub-expressions. Notice that the regu-
lar expression was too long for one line, and so was broken in two. Both strings and regular
expression literals can be broken up in thisway (like string literalsin C).

n:=argv[1l] ? int(argv[1]) : 1;

|ines = gettokens(stdin, "\n', "");
j =0;
while (n--)
{
forall (I in lines)
{
a =1 ~—~#[MNd(]*(2:\((\d\vdvd)\) | (\didid)) #
#(\d\d\d)[-]1(\d\d\id\d)(?:\D 9$)#;
if (n ==0 & a)
printf("%: (%%) %-%\n", ++, a[0], a[l],
a[2], a[3]);
}
}

The ICl Programming Language 33

Chapter 3: Some sample programs

Reverse afile

In this test, each language is required to do the same thing — reverse lines from standard input
to standard output.

Notice the use of smash() to break the whole fileinto an array of lines. The call to smash()
repeatedly matches the regular expression against the input file. The string "\\&" instructs it to
push each matched portion onto the new array it will return. The smash() function is often the
first step in text parsing. Its tokenising ability is limited only by the complexity of the regular
expression you need to write.

f = smash(getfile(), #["\n]*\n#, "\\&");

whil e (nels(f))

put (pop(f));

Below isan alternative version that is slightly faster because it avoi ds the many oneline callsto
put(). Instead it builds a new array with the elementsin reverse, then uses implode() to concate-
nate all the stringsin that array into asingle string for output.

f = smash(getfile(), #["\n]*\n# "\\&");

r array();
forall (I in f)
rpush(r, 1);

put (i npl ode(r));

Seve of Eratosthenes

Each languageis required to implement thistest the same way. Notice again the use of build() to
build theinitial sieve flags as an array of 1s.

n:=argv[1l] ? int(argv[1]) : 1;

while (n--)
{
count := O;
flags := buil d(8193, "c", 1);
for (i :=2; i <= 8192; ++i)
{
if (flags[i])
{
for (k :=1i +i; k <=8192; k +=1i)
flags[k] = O;
++count ;
}
}
}

printf("Count: %\ n", count);

34 ThelCl Programming Language

Spellchecker:

Soell checker

Each language is required to implement this test the same way. In short, load a dictionary of
words, then read words, one per line, from stdin, and print the ones that aren’t in the dictionary.

Notice the use of a set to storethewordsin. A set issimply an unordered collection (hash table)
of objects where the only thing you are interested in is whether an object isin the set or not.
Compared with, say, a struct where there is also an associated value.

dict := set();
forall (win gettokens(fopen("Usr.Dict.Wrds"), "\n", ""))
dict[w =1,
while (w = getline())
{
if (!dict[w)
printf("%\n", w;
}

Satistical moments

For this test, each language is required to do the same thing. In short, we must read numbers
from standard input, then compute a bunch of statistics on them in double precision.

ICI's“float” typeis always double precision. Overal this code is unremarkable. Note the use of
sort() to sort thelist and find the median. Here it is used with adefault comparison function, but
an explicit comparison function can be given.

sum : = 0.0;
nunms = array();
forall (f in gettokens(stdin, "\n", ""))
{
push(nums, f = float(f));
sum += f;

}

n := nel s(nuns);
nean := sum/ n;

deviation := 0.0;
average_deviation := 0.0;
standard_devi ation := 0.0;
variance := 0.0;

skew : = 0.
kurtosis :

noi

0. 0;

forall (numin nuns)

{
devi ation = num - nean;
aver age_devi ati on += abs(devi ation);
variance += (t := deviation * deviation);
skew += (t *= devi ation);
kurtosis += (t *= deviation);

The ICI Programming Language 35

Chapter 3: Some sample programs

}

average_deviation /= n;

variance /= (n - 1);

standard_devi ati on = sqrt(variance);

if (variance > 0.0)

{

skew /= n * variance * standard_devi ati on;
kurtosis = kurtosis / (n * variance * variance) - 3.0;

}

sort (nuns);
md:=n/ 2

if (n %2 == 0)

median = (nums[m d] + nums[mid - 1])/2;
el se

medi an = nuns[md];
printf("n: %\ n", n);
printf("medi an: % \n", median);
printf("mean: % \n", mean);

printf("average _deviation: %\n", average_deviation);
printf("standard_deviation: %\n", standard_deviation);

printf("variance: % \n", variance);
printf("skew %\n", skew);
printf("kurtosis: %\n", kurtosis);

Sring concatenation

Each language is required to implement this test the same way. In short, start with an empty
string, then, n times, append the string "hello\n".

Thisillustrates the use of non-atomic (mutable) stringsin ICI. Strings are amost invariably
atomic (immutable) objectsin ICI. Their use as variable namesis based on this. However muta-
ble strings can be created with the strbuf() function. These can be modified by assigning to indi-
vidual characters and grown by appending, asis done here, with the strcat() function. (Note that
anon-atomic string will not access the same element of a struct as an atomic string of the same
value. They must be eq to access the same element, not just equal asin the == operator.)

n:=argv[1l] ? int(argv[1]) : 1;
s := strbuf();
for (i =0; i <n; ++i)

strcat(s, "hello\n");
printf("%l\n", nels(s));

Non-atomic (mutable) strings are important for the efficiency of operations like this. The fol-

lowing implementation of this test uses ordinary atomic strings. But this method will be O(n?),
and given thisis normally run with 40,000 iterations, the performance will be very bad:

n:=argv[1l] ? int(argv[1]) : 1;
s =""
for (i =0; i <n; ++i)

36 ThelCl Programming Language

Sum acolumn of integers:

s += "hello\n"; /* Don't do this for large n */
printf("%l\n", nels(s));

In the above version, each time the += is done, a new string is formed.

Sum a column of integers

Each language is required to implement this test the same way. In short, use built-in line-ori-
ented 1/0 to sum a column of integersin constant space.

The only aspect of note hereisthe int() function to convert the string to an integer. The float()
and string() functions allow similar simple conversions.

count := 0;

while (I = getline())
count +=int(l);

printf("%l\n", count);

Word frequency count

For this test, each language is required to do the same thing. In short, from standard input,
extract all the words, convert them to lowercase, and count their frequency. The program should
run in constant space (i.e. not read the whole file at once). The output is lines of counts and
words sorted in descending order.

This test shows that | Cl has no built-in transliteration function.

The main loop is unremarkable. The smash() function is used to get words from each line. We
only call our tolower () function when there are upper-case letters in the word for efficiency.

The tolower () function itself shows the commonest way of dealing with a string at the character
level. That is, first of all explode() it into an array of integers, then manipulate the array or make
anew one (which can be a mixture of integer character codes and strings) then implode() the
array back into an atomic string. Notice the use of $ to evaluate the sub-expression once only
when the statement is parsed.

The program finishes by pushing the output lines onto an array. The forall over the counts struct
will produce output in (pseudo) random order. The array is then sorted with sort(). However the
default comparison function won't do because the result must be descending. We don’t bother to
declare a separate named function for this, but just put an unnamed function literal in-line as an
argument. We could have declared anamed function in the normal manner and placed it's name
as the second argument to sort() with the same effect.

static counts = struct()

static

t ol owner (s)

{
s = expl ode(s);
forall (c, i in s)
{

if (c >>'A & c <='27")

The ICl Programming Language 37

Chapter 3: Some sample programs

s[i] +=$("a - "A);

}
return inplode(s);
}
while (I = getline())
{
forall (win smash(l, # w+#, "\\&"))
{
if (w~ #AZ]#)
w = tol owner (w);
if (counts[w] == NULL)
counts[w = 1;
el se
++count s[w ;
}
}

out = array();
forall (c, win counts)

push(out, sprintf("%d\t%\n", c, w);
sort(out, [func(a, b){returna >b ? -1: a < b;}]);
put (i npl ode(out));

38 ThelCl Programming Language

CHAPTER 4 |Cl Language Reference

The ICl interpreter's execution engine calls on the parser to read and compile a statement from
an input stream. The parser in turns calls on the lexical analyser to read tokens. Upon return
from the parser the execution engine executes the compiled statement. When the statement has
finished execution, the execution engine repeats the sequence.

Thelexical analyser

The ICl lexical analyser breaks the input stream into tokens, optionally separated by white-
space (which includes comments as described below). The next token is always the longest
string of following characters which could possibly be atoken. The following are tokens:

/ I= 3 @ () { }

, ~ ~~ ~~= = [] .

* *= % % n N= + +=
++ - -= -- -> > >= >>
>>= < <= <=> << <<= = ==
! = 1~ & && &= I
| = ; ? : D= A

The following are also tokens:

e The character ' (single quote) followed by a single character (other than anewline) or asin-
gle backslash character sequence (described below), followed by another single quote. This
token isacharacter-code. A single quote followed by other than the above sequence will
result in an error.

» The character " (double quote) followed by any sequence of characters (other than a
newline) and backslash character sequences, up to another double quote character. This
token isastring.

The ICl Programming Language 39

Chapter 4: ICl Language Reference

A backslash character sequence is any of the following:

\n newline (ASCII Ox0A)

\ t tab (ASCII 0x09)

\v vertical tab (ASCII 0x0B)
\b back space (ASCII 0x08)

\r carriage return (ASCI1 0x0D)
\ f form feed (ASCII 0x0C)

\a audible bell (ASCII 0x07)
\e escape (ASCII 0x1B)

\\ backslash (ASCII 0x5C)

\’ single quote (ASCII 0x27)

\ double quote (ASCII 0x22)
\? question mark (ASCII 0x3F)
\cx control-x

\ xx. . the character with hex code x...

\n the character with octal code n. (1, 2 or 3 octal
digits)

Consecutive string-literal s, separated only by white-space, are concatenated to form asingle
string-literal.

» The character '# followed by any sequence of characters except a newline, then another '#:.
Thistoken isaregular-expression literal. A first regular-expression literal followed by con-
secutive regular-expression literals and/or string literal s separated only by white space are
concatendated to form a single regular-expression literal.

» Any upper or lower case letter, any digit, or '_' (underscore) followed by any number of the
same (or other characters which may be involved in afloating point number while that isa
valid interpretation). A token of thisform may be one of three things:

If it can be interpreted as an integer, it is an integer-number.
Otherwise, if it can be interpreted as a floating point number, it is a floating-point-number.
Otherwise, it isan identifier.

Notice that keywords are not recognised directly by the lexical analyser. Instead, certain identi-
fiers are recognised in context by the parser as described below.

There are two forms of comments (which are white-space). One starts with the characters/ *
and continue until the next */ . The other starts with the characters/ / and continues until the
next end of line. Also, lines which start with a# character are ignored (thisis not regarded as a
comment, but asaprovision for preprocessors). Lines may be terminated with linefeed, carriage
return or carrage return plus linefeed.

An introduction to variables, modules and scope

Variables are simple identifiers which have a value associated with them. They arein them-
selves typel ess, depending on the type of the value currently assigned to them.

Theterm modulein ICl refersto acollection of functions, declarations and code which share the
same variables. Typically each sourcefileisamodule, but not necessarily.

40 ThelCl Programming Language

: The parser

In ICI, modules may be nested in a hierarchical fashion. Within a module, variables can be
declared as either static or extern. When avariable is declared as static it is visible to code
defined in the module of its definition, and to code defined in sub-modules of that one. Thisis
termed the scope of the variable.

When avariable is defined as extern it is declared static in the parent module. Thus the parent
module and all sub-modules of the parent module have that variable in their scope. Variables of
this type, whether originally declared extern or static, will be henceforward referred to as static
variables.

Static variables are persistent variables. That isthey remain in existence even when execution
completely leaves their scope, despite not being visible to any executing code. They are visible
again when code flow again enters their scope.

The scoping of static variablesis strictly governed by the nesting of the modules, not by the
flow of execution. For example. Suppose two neighbouring modules (call them module A and
modul e B) each define avariable called theVariable. When some codein module A callsa
function defined in module B and that function refersto theVariable; it is referring to the ver-
sion of theVariable defined in module B, not the one defined in module A.

Variablesin sub scopes hide variables of the same name defined in outer scopes.

The second type of variable in ICI is the automatic, or auto, variable. Automatic variables are
not persistent. They last only aslong as amodule is being parsed or afunction is being exe-
cuted. For instance, each time afunction is entered a copy is made of the auto variables which
were declared in the function. This group of variables generally only persists during the execu-
tion of the function; once the function returns they are discarded.

The par ser

The parser uses the lexical analyser to read a source input stream. The parser also has reference
to the variable-scope within which this source is being parsed, so that it may define variables.

When encountering a variable definition, the parser will define variables within the current
scope. When encountering normal executable code at the outermost level, the parser returns its
compiled form to the execution engine for execution.

For some constructs the parser will in turn recursively call upon the execution engine to evalu-
ate a sub-construct within a statement.

The following sections will work through the syntax of ICl with explanations and examples.
Occasionaly constructs will be used ahead of their full explanation. Their intent should be
obvious.

The following notation is used in the syntax in these sections.

bold The bold text isliteral ASCII text.

italic Theitalic text is a construct further described el sewhere.
[xxx] The xxx is optionally present.

XXX... The xxx may be present zero or more times.

(xxx | yyy) Either xxx or yyy may be present.

As noted previously there are no reserved words recoginsed by the lexical anaylyser, but certain
identifierswill be recognised by the parser in certain syntactic positions (as seen below). While

The ICl Programming Language 41

Chapter 4: ICl Language Reference

theseidentifiers are not otherwise restricted, special action may need to be taken if they are used
as simple variable names. They probably should be avoided. The completelistis:

NULL auto break case
continue critsect default do

ese extern for forall

if in onerror return
static switch try waitfor
while

We now turn our attention to the syntax itself.

Firstly consider the basic statement which isthe unit of operation of the parser. As stated earlier
the execution engine will call on the parser to parse one top-level statement at atime. We split
the syntax of a statement into two categories (purely for semantic clarity):

statement executable-statement
declaration

That is, astatement is either an executable-statement or adeclaration. Wewill first consider the
executable-statement.

These are statements that, at the top-level of parsing, can be translated into code which can be
returned to the execution engine. Thisis by far the largest category of statements:

executabl e-statement
expression ;
compound-statement
if (expression) statement
if (expression) statement else statement
while (expression) statement
do statement while (expression) ;
for ([expression] ; [expression] ; [expression]) statement
forall (expression|[, expression] in expression) statement
switch (expression) compound-statement
case parser-eval uated-expression :
default :
break ;
continue;
return [expression] ;
try statement onerror statement
waitfor (expression ; expressiion) statement
critsect statement

These are the basic executable statement types. Many of these involve expressions, so before
examining each statement in turn we will examine the expression.

42 ThelCl Programming Language

Expressions: Factors

Expressions

We will examine expressions by starting with the most primitive elements of expressions and
working back up to thetop level.

Factors

The lowest level building block of an expressions is the factor:

factor integer-number
character-code
floating-point-number

string
regular-expression
identifier

NULL

(‘expression)

[array expression-list]

[set expression-list]

[struct[(:|=) expression,] assignment-list]
[class[(: | =) expression,] assignment-list]
[func function-body]

[module[(: | =) expression,] statement...]

[identifier user-data...]

The constructs integer-number, character-code, floating-point-number, string, and regular-
expression are primitive lexical elements (described above). Each is converted to itsinternal
form and is an object of typeint, int, float, string, or regexp respectively.

A factor which is an identifier isavariable reference. But its exact meaning depends upon its
context within the whole expression. Variablesin expressions can either be placed so that their
value is being looked up, such asin:

a+1

Or they can be placed so that their value is being set, such asin:

a=1

Or they can be placed so that their value is being both looked up and set, asin:

a+=1

Only certain types of expression elements can have their value set. A variable isthe simplest
example of these. Any expression element which can have its value set istermed an Ivalue
because it can appear on the left hand side of an assignment (which is the simplest expression
construct which requires an Ivalue). Consider the following two expressions:

1 /* VARONG */
a

2
2 [* K */

The ICI Programming Language 43

Chapter 4: ICl Language Reference

Thefirst isillegal because an integer is not an lvalue, the second is legal because a variable ref-
erenceis an Ivalue. Certain expression elements, such as assignment, require an operand to be
an lvalue. The parser checksthis.

The next factor in thelist aboveisNULL. The keyword NULL stands for the value NULL
which isthe general undefined value. It hasits own type, NULL. Variableswhich have no
explicit initialisation have an initial value of NULL. Itsother useswill become obvious later in
this document.

Next isthe construct (expression). The brackets serve merely to make the expression within the
bracket act as a simple factor and are used for grouping, as in ordinary mathematics.

Finally we have the constructs surrounded by square brackets. These are textual descriptions of
other dataitems; typically known as literals. For example the factor:

[array 5, 6, 7]

isan array of three items, that is, theintegers 5, 6 and 7. Each of these square bracketed con-

structsis atextual description of adatatype named by thefirst identifier after the starting square
bracket. Six data types are built-in, with other cases handled by user defined code. An explana-
tion most of the built-in literal forms first requires an explanation of the fundamental aggregate

types.

An introduction to arrays, sets and structs

There are three fundamental aggregate typesin ICl: arrays, sets, and structs. Certain properties
are shared by all of these (and other types aswill be seen later). The most basic property is that
they are each collections of other values. The next isthat they may be "indexed" to reference
values within them. For example, consider the code fragment:

[array 5, 6, 7];
a[0];

a =
i =
Thefirst line assigns the variable aan array of three elements. The second line assigns the vari-
ablei the value currently stored at the first element of the array. The suffixing of an expression
element by an expression in square brackets is the operation of "indexing", or referring to a sub-
element of an aggregate, and will be explained in more detail below.

Notice that the first element of the array hasindex zero. Thisisafundamental property of ICl
arrays.

The next ICI aggregate we will examineisthe set. Setsare unordered collections of values. Ele-
ments "in" the set are used as indicies when working with the set, and the values looked up and
assigned are interpreted as a booleans. Consider the following code fragment:

s = [set 200, 300, "a string"];
if (s[200])
printf("200 is in the set\n");
if (s[400])
printf("400 is in the set\n");
if (s["a string"])
printf("\"a string\" is in the set\n");
s[200] = O;
if (s[200])
printf("200 is in the set\n");

When run, thiswill print:

44 ThelCl Programming Language

Expressions: Built-in literal factors

200 is in the set
"a string" is in the set

Notice that there was no second printing of 200 isin the set" because it was removed from the
set on the third last line by assigning zero to it.

Now consider structs. Structs are unordered collections of values indexed by any values. Other
properties of structs will be discussed later. Thetypical indicies of structs are strings. For this
reason notational shortcuts exist for indexing structures by simple strings. Also, because each
element of astruct isactually an index and value pair, the syntax of a struct literal is dightly dif-
ferent from the arrays and sets seen above. Consider the following code fragment:

S = [struct a = 123, b = 456, xxx = "a string"];
printf("s[\"a\"] = %\n", s["a"]);

printf("s.a = %\n", s.a);

printf("s.xxx =\"%\"\n", s.xxX);

Will print:
s["a"] = 123
s.a = 123
S.Xxx = "a string"

Notice that on the second line the structure was indexed by the string "a", but that the assign-
ment on line 1 in the struct literal did not have quotes around the a. Thisis part of the notational
shortcut which will be discussed further, below. Also notice the use of s.ain place of §"a"] on
line 3. Thisisasimilar shortcut, also discussed below.

Built-in literal factors

The built-in literals factors, which in summary are:

[array expression-list]

[set expression-list]

[struct[(:|=) expression,] assignment-list]
[class[(: | =) expression,] assignment-list]
[module[(:|=) expression,] statement...]

[func function-body]

involve three further constructs, the expression-list, which is a comma separated list of expres-
sions; the assignment-list, which is a comma separated list of assignments; and the function-
body, which is the argument list and code body of afunction. The syntax of the first of theseis:

expression-list empty
expression| ,]
expression , expression-list

The expression-list isfairly simple. The construct empty is used to indicate that the whole list
may be absent. Noticethe optional comma after the last expression. Thisisdesignedto alow a
more consistent formatting when the elements are line based, and simpler output from program-
matically produced code. For example:

[array

The ICI Programming Language 45

Chapter 4: ICl Language Reference

"This is the first elenent",
"This is the second el ement",
"This is the third elenent",

]

The assignment list has similar features:

assignment-list empty
assignment [,]
assignment , assignment-list

assignment struct-key
struct-key = expression
struct-key function-body

struct-key identifier
(‘expression)

Each assignment is either an assignment to a simpleidentifier or an assignment to afull expres-
sionin brackets. The assignment to an identifier is merely a notational abbreviation for an
assignment to astring. The following two struct literals are equivalent:

[struct abc = 4]
[struct ("abc") = 4]

The syntax of a function-body is:

function-body (identifier-list) compound-statement
identifier-list empty
identifier [,]

identifier , identifier-list

That is, anidentifier-list is an optional comma separated list of identifiers with an optional trail-
ing comma. Literal functions are rare in most programs; functions are normally named and
defined with a special declaration form which will be seen in more detail below. The following
two code fragments are equivalent; the first is the abbreviated notation:

static fred(a, b){return a + b;}

and:

static fred = [func (a, b){return a + b;}];

The meaning of functions will be discussed in more detail below.
Aggregatesin general, and literal aggregatesin particular, are fully nestable:

[array
[struct a =1, ¢ = 2],
[set "a", 1.2, 3],
"a string",

46 ThelCl Programming Language

Expressions: User defined literal factors

Note that aggregate literals are entirely evaluated by the parser. That is, each expressioniseval-
uated and reduced to a particular value, these values are then used to build an object of the
required type. For example:

[struct a = sin(0.5), b = cos(0.5)]

Causes the functions sin and cos to be called during the parsing process and the result assigned
to the keysa and b in the struct being constructed. It ispossible to refer to variables which may

bein existence while such aliteral isbeing parsedl.

This ends our consideration of the lowest level element of an expression, the factor.

User defined literal factors

User defined litera factors, which have the form:
[identifier user-data]

provide a mechanism for user supplied code to gain control of the parse-stream in order to inter-
pret acustom syntax and return, presumably, a custom dataitem. Theidentifier isinterpreted as
avariable and its value determined (auto-loading extension modules as necessary). The valueis
used to determine a parser function. If the valueis callable, it is the parser function, elseit is
indexed by the string parser to find the parser function.

In any case, the parser function is called with a single argument, being a special file object
layerd on top of the interpreter’sinternal parser. Any normal file reading functions may be used
to read thisfile (such as getchar (), gettoken() and others), as well as a set of special functions
that use the interpretersinternal lexical analyser and parser. These functions are par setoken(),
and parservalue(), and the associated functions rejecttoken(), rejectchar () and tokenobj(). They
are described in detail in the chapter on core language functions. After reading the user data, the
user parser function must leave the parse stream ready to read the closing square bracket token,
and return the object that represents the literal value.

By using either raw character-level reading (with getchar and ilk), token oriented reading (with
parsetoken), or whole expression level reading (with parsevalue) the user code can interpret
either a completely custom syntax, a sytax built from the pre-exiting token types, a syntax that
includes arbitrary expressions, or some combination thereof.

For example, consider a function to interpret a complex number literal:

static

crpl x(f)

{
c := struct();
c.r := parseval ue(f);
if (parsetoken(f) !'=",")

fail ("comma expected");

c.i := parseval ue(f);
return c;

1. Literal aggregates are analogousto literal stringsin K&R C. And likewise they have the property that
modifications to the literal during program execution are persistent. If the flow of control returnsto the
original use of the literal after it has been modified, it does not magically restoreto its original value.

The ICl Programming Language 47

Chapter 4: ICl Language Reference

After defining this function we can use literals such as:

x =[cnplx 3.0 + 1, 2];

Primary operators
A simple factor may be adorned with a sequence of primary-operations to form a primary-
expression. That is:

primary-expression factor primary-operation...

primary-operation [expression |
index-operator identifier
index-operator (expression)

index-operator Any of:
>N

Thefirst primary-operation (above) we have already seen. It isthe operation of "indexing"
which can be applied to aggregate types. For example, if xxxis an array:

xxx[10]

refers to the element of xxx at index 10. The parser does not impose any type restrictions
(because typing is dynamic), although numerous type restrictions apply at execution time (for
instance, arrays may only be indexed by integers, and floating point numbers are not able to be
indexed at all).

Of the other index operators, . identifier, isanotational abbreviation of [" identifier"], asseen
previously. The bracketed form isagain just a notational variation. Thus the following are all
equivalent:

xxx["aaa"]

XXX. aaa

XxX. ("aaa")
And the following are also equivalent to each other:

xxx[1 + 2]

XxX. (1 + 2)
Note that factors may be suffixed by any number of primary-operations. The only restrictionis
that the types must be right during execution. Thus:

xxx[123] . aaa[10]

islegal.
The two constructs

-> jdentifier
-> (‘expression)

48 ThelCl Programming Language

Expressions: Terms

are again notational variations. In general, constructs of the form:

primary-expression -> identifier
primary-expression -> (expression)

are re-written as:

(* primary-expresion) . identifier
(* primary-expression) . (expression)
The unary operator * used here is the indirection operator, its meaning is discussed | ater.

Theindex operators: and :” index the primary expression to discover afunction — the result of
the operation is a callable method. These operators and methods are discussed in more detail
below.

The last of the primary-operations:
(‘expression-list)

isthe call operation. Although, as usual, no type checking is performed by the parser; at execu-
tiontime thething it is applied to must be callable (for example, a function or method object).
For example:

my_function(l, 2, "a string")

and

xxx. array_of funcs[10]()
are both function calls. Function calls will be discussed in more detail bel ow.

This concludes the examination of a primary-expression.

Terms

Primary-expressions are combined with prefix and postfix unary operators to make terms:

term [prefix-operator...] primary-expression [postfix-operator... |
prefix- Any of:
operator

*& -+l ~++--@ %

postfix-operator ~ Any of:
++ --

That is, atermis a primary-expression surrounded on both sides by any number of prefix and
postfix operators. Postfix operators bind more tightly than prefix operators. Both types bind
right-to-left when concatenated together. That is: -Ix isthe same as-(!x). Asinall expression
compilation, no type checking is performed by the parser, because types are an execution-time
consideration.

The ICl Programming Language 49

Chapter 4: ICl Language Reference

Some of these operators touch on subjects not yet explained and so will be dealt with in detail in
later sections. But in summary:

Prefix operators

* Indirection; applied to a pointer, givestarget of the pointer.
& Address of; applied to any Ivalue, gives a pointer to it.
- Negation; gives negative of any arithmetic value.
+ Positive; no real effect.
! Logical not; applied to 0 or NULL, gives 1, else givesO.
~ Bit-wise complement.
++ Pre-increment; increments an lvalue and gives new value.
-- Pre-decrement; decrements an lvalue and gives new value.
@ Atomic form of; gives the (unique) read-only version of any value.
$ Immediate evaluation; see below.

Postfix operators

++ Post-increment; increments an lvalue and gives old value.
-- Post-increment; decrements an lvalue and gives old value.

One of these operators, $, is only a pseudo-operator. It actually hasits effect entirely at parse
time. The $ operator causes its subject expression to be evaluated immediately by the parser
and the result of that eval uation substituted inits place. Thisis used to speed later execution, to
protect against later scope or variable changes, and to construct constant values which are better
made with running code than literal constants. For example, an expression involving the square
root of two could be written as:

X =y + 1.414213562373095;

Or it could be written more clearly, and with less chance of error, as:

X =y +sqrt(2.0);

But this construct will call the square root function each time the expression is evaluated. If the
expression iswritten as:

X =y + $sqrt(2.0);

The sguare root function will be called just once, by the parser, and will be equivalent to the first
form.

When the parser eval uates the subject of a$ operator it recursively invokes the execution engine
to perform the evaluation. Asaresult there is no restriction on the activity which can be per-
formed by the subject expression. It may reference variables, call functions or even read files.
But it isimportant to remember that it iscalled at parsetime. Any variables referenced will be
immediately interrogated for their current value. Automatic variables of any expression which
is contained in afunction will not be available, because the function itself has not yet been
invoked; in fact it is clearly not yet even fully parsed.

50 ThelClI Programming Language

Expressions: Binary operators

The $ operator as used above increased speed and readability. Another common useisto avoid
later re-definitions of avariable. For instance:

($printf)("Hello world\n");

Will use the printf function which was defined at the time the statement was parsed, eveniif itis
latter re-defined to be some other function. It isalso dightly faster, but the differenceis small
when only asimple variable look-up isinvolved. Notice the bracketing which has been used to
bind the $ to the word printf. Function calls are primary operations so the $ would have other-
wise referred to the whole function call asit did in the first example.

This concludes our examination of aterm (remember that the full meaning of other prefix and
postfix operators will be discussed in later sections).

Binary operators

We will now turn to the top level of expressions where terms are combined with binary opera-
tors:

expression term

expression infix-operator expression
infix- Any of:
operator

@
* | %

>> <<
< > <= >=

= = 4= = *= [= Op= >>= <<= &= N= = ~= <=>

That is, an expression can be asimple term, or two expressions separated by an infix-operator.
The ambiguity amongst expressions built from several binary-operator separated expressionsis
resolved by assigning each operator a precedence and also applying rules for order of binding

amongst equal precedence level 32. The lines of binary operators in the syntax rules above sum-
marise their precedence. Operators on higher lines have higher precedence than those on lower
lines. Thus 1+2*3isthe same as 1+(2* 3). Operators which share a line have the same prece-
dence. All operators except those on the second last line group left-to-right. Those on the sec-
ond last line (the assignment operators) group right-to-left. Thus

2. The precedences and rules are identical to those of C.

The ICI Programming Language 51

Chapter 4: ICl Language Reference

a*bl/ c
is the same as:

(a* b))/ c
But:

a=b+=c
is the same as:

a (b += ¢)

Aswith unary operators, the full meaning of each will be discussed in alater section. Butin
summary:

52 ThelCl Programming Language

Expressions: Binary operator summary

Binary operator summary

@ Form pointer

* Multiplication, Set intersection

/ Division
% Modulus

+ Addition, Set union

- Subtraction, Set difference
>> Right shift (shift to lower significance)
<< Left shift (shift to higher significance)

< Logical test for less than, Proper subset

> Logical test for greater than, Proper superset
<= Logical test for less than or equal to, Subset
>= Logical test for greater than or equal to, Superset
== Logical test for equality

I= Logical test for inequality

~ Logical test for regular expression match

I~ Logical test for regular expression non-match
~~ Regular expression sub-string extraction

~~~ Regular expression multiple sub-string extraction

& Bit-wiseand

A Bit-wise exclusive or

| Bit-wiseor

& & Logical and

|| Logical or

. Choice separator (must be right hand subject of ? operator)
?  Choice (right hand expression must use : operator)

= Assignment
:= Assignment to most local scope or context
+= Addto
-= Subtract from
*=  Multiply by
/= Divide by

%= Modulus by
>>= Right shift by
<<= Léft shift by
= And by

A= Exclusive or by

|= Orby
~~= Replace by regular expression extraction
<=> Swap values

,  Multiple expression separator

This concludes our consideration of expressions.

The ICI Programming Language 53



Chapter 4: ICl Language Reference

Satements

We will now move on to each of the executable statement typesin turn.

Simple expression statements

The simple expression statement:
expression ;

Isjust an expression followed by a semicolon. Actually, the semicolon is optional where the
expression is followed by either aclosing curly brace or end-of-file.

The parser trandates the expression to its executable form. Upon execution the expression is
evaluated and the result discarded. Typically the expression will have some side-effect such as
assignment, or make a function call which has a side-effect, but there is no explicit requirement
that it do so. Typical expression statements are:

printf("Hello world.\n");
X =y + z,;
++i ;
Note that an expression statement which could have no side-effects other than producing an
error may be completely discarded and have no code generated for it.

Compound statements

The compound statement has the form:

{ statement... }

That is, a compound statement is a series of any number of statements surrounded by curly
braces. Apart from causing all the sub-statements within the compound statement to be treated
as a syntactic unit, it has no effect. Thus:

printf("Line 1\n");
{
printf("Line 2\n");
printf("Line 3\n");
}
printf("Line 4\n");

When run, will produce:

Line 1
Line 2
Line 3
Line 4

Note that the parser will not return control to the execution engine until all of atop-level com-
pound statement has been parsed. Thisistruein genera for all other statement types.

54 TheIClI Programming Language



Statements: The if statement

Theif statement

The if statement has two forms:

if (expression) statement
if (expression) statement else statement

The parser converts both to an internal form. Upon execution, the expression is evaluated. If
the expression evaluates to anything other than O (integer zero) or NULL, the following state-
ment is executed; otherwiseitisnot. Inthefirst form thisis all that happens, in the second
form, if the expression evaluated to 0 or NULL the statement following the else is executed,;
otherwise it is not.

Theinterpretation of both 0 and NULL asfalse, and anything else astrue, is common to all log-
ical operationsin ICl. Thereis no specia boolean type.

The ambiguity introduced by multiple if statements with an lesser number of else clausesis
resolved by binding else clauses with their closest possibleif. Thus:

if (a) if (b) dox(); else doy();

If equivalent to:
if (a)
if (b)
dox();
el se
doy();
}

Thewhile statement

The while statement has the form:
while ( expression ) statement

The parser convertsit to an internal form. Upon execution aloop is established. Within the
loop the expression is evaluated, and if it isfalse (O or NULL) the loop isterminated and flow of
control continues after the while statement. But if the expression evaluatesto true (not 0 and not
NULL) the statement is executed and then flow of control moves back to the start of the loop
where the test is performed again (although other statements, as seen below, can be used to
modify this natural flow of control).

The do-while statement

The do-while statement has the following form:
do statement while ( expression) ;

The parser convertsit to an internal form. Upon execution aloop is established. Within the
loop the statement is executed. Then the expression is evaluated and if it evaluatesto true, flow
of control resumes at the start of the loop. Otherwise the loop isterminated and flow of control
resumes after the do-while statement.

The ICI Programming Language 55



Chapter 4: ICl Language Reference

Thefor statement
The for statement has the form:

for ([ expression]; [ expression]; [ expression] ) statement

The parser convertsit to an internal form. Upon execution the first expression is evaluated (if
present). Then, aloop isestablished. Within the loop: If the second expression is present, it is
evaluated and if it isfalsethe loop isterminated. Next the statement is executed. Finally, the
third expression isevaluated (if present) and flow of control resumes at the start of the loop. For
example:

for (i =0; i < 4; ++i)
printf("Line %\n", i);

When run will produce:

Line O
Line 1
Line 2
Line 3

Theforall statement
The forall statement has the form:

forall (expression[ ,expression] in expression ) statement

The parser convertsit to an internal form. In doing so the first and second expressions are
required to be lvalues (that is, capable of being assigned to). Upon execution the first expres-
sionisevaluated and that storage location is noted. If the second expression is present the same
isdonefor it. Thethird expression isthen evaluated and the result noted; it must evaluate to an
array, aset, astruct, astring, or NULL; we will call thisthe aggregate. If thisisNULL, the
forall statement isfinished and flow of control continues after the statement; otherwise, aloop
is established.

Within the loop, an element is selected from the noted aggregate. The value of that element is
assigned to the location given by the first expression. If the second expression was present, it is
assigned the key used to access that element. Then the statement is executed. Finally, flow of
control resumes at the start of the loop.

Each arrival at the start of the loop will select a different element from the aggregate. If no as
yet unselected elements are | eft, the loop terminates. The order of selection is predictable for
arrays and strings, namely first to last. But for structs and setsit is unpredictable. Also, while
changing the values of the structure members is acceptable, adding or deleting keys, or adding
or deleting set elements during the loop will have an unpredictable effect on the progress of the
loop.

Asan example:

forall (colour in [array "red", "green", "blue"])
printf("%\n", colour);

when run will produce:

red
green
bl ue

56 ThelCl Programming Language



Statements: The switch, case, and default statements

And:

forall (value, key in [struct a =1, b =2, ¢ = 3])
printf("% = %\ n", key, value);

when run will produce (possibly in some other order):

c =3
a=1
b =2

Note in particular the interpretation of the value and key for a set. For consistency with the
access method and the behavior of structs and arrays, the values are al 1 and the elements are
regarded as the keys, thus:

forall (value, key in [set "a", "b", "c"])
printf("% = %l\n", key, value);

when run will produce:

c =1
a=1
b=1

But asaspecial case, when the second expression is omitted, thefirst is set to each "key" in turn,
that is, the elements of the set. Thus:

forall (elenent in [set "a", "b", "c"])
printf("%\n", elenent);
when run will produce:

c

a

b
When aforall loop is applied to astring (which is not atrue aggregate), the " sub-elements” will
be successive one character sub-strings.

Note that although the sequence of choice of elementsfrom a set or struct is at first examination
unpredictable, it will be the same in a second forall loop applied without the structure or set
being modified in the interim.

The switch, case, and default statements
These statements have the forms;

switch (‘expression ) compound-statement
case expression :
default :

The parser converts the switch statement to an internal form. Asit is parsing the compound
statement, it notes any case and default statementsit finds at the top level of the compound
statement. When a case statement is parsed the expression is evaluated immediately by the
parser. Asnoted previoudly for parser evaluated expressions, it may perform arbitrary actions,
but it isimportant to be aware that it is resolved to a particular value just once by the parser. As

The ICI Programming Language 57



Chapter 4: ICl Language Reference

the case and default statements are seen their position and the associated expressions are noted
inatable.

Upon execution, the switch statement's expression is evaluated. This value islooked up in the
table created by the parser. If amatching case statement is found, flow of control immediately
moves to immediately after that case statement. |If there is a default statement, flow of control
immediately movesto just after that. If thereisno matching case and no default statement, flow
of control continues just after the entire switch statement.

For example:

switch ("a string")
{
case "another string":
printf("Not this one.\n");
case 2:
printf("Not this one either.\n");
case "a string":
printf("This one.\n");
defaul t:
printf("And this one too.\n");

}

When run will produce:

Thi s one.
And this one too.

Note that the case and default statements, apart from the part they play in the construction of the
look-up table, do not influence the executable code of the compound statement. Notice that
once flow of control had transferred to the third case statement above, it continued through the
default statement asif it had not been present. This behavior can be modified by the break state-
ment described bel ow.

It should be noted that the "match” used to look-up the switch expression against the case
expressions is the same as that used for structure element look-up. That is, to match, the switch
expression must evaluate to the same object as the case expression. The meaning of thiswill be
made clear in alater section.

The break and continue statements
The break and continue statements have the form:

break ;
continue;

The parser converts these to an internal form. Upon execution of a break statement the execu-
tion engine will cause the nearest enclosing loop (awhile, do, for or forall) or switch statement
within the same scope to terminate. Flow of control will resume immediately after the affected
statement. Note that a break statement without a surrounding loop or switch in the same func-
tion or moduleisillegal.

Upon execution of a continue statement the execution engine will cause the nearest enclosing
loop to move to the next iteration. For while and do loops this means the test. For for loopsit
means the step, then the test. For forall loops it means the next element of the aggregate.

58 ThelCl Programming Language



Statements: The return statement

Thereturn statement

The return statement has the form:
return [ expression] ;

The parser convertsthisto aninternal form. Upon execution, the execution engine evaluatesthe
expression if itis present. If it isnot, the value NULL is substituted. Then the current function
terminates with that value as its apparent value in any expression it isembedded in. Itisan
error for there to be no enclosing function.

Thetry statement
The try statement has the form:

try statement onerror statement

The parser convertsthisto aninternal form. Upon execution, the first statement is executed. If
this statement executes normally flow continues after the try statement; the second statement is
ignored. But if an error occurs during the execution of the first statement control is passed
immediately to the second statement.

Note that "during the execution” appliesto any depth of function calls, even to other modules or
the parsing of sub-modules. When an error occurs both the parser and execution engine unwind
as necessary until an error catcher (that is, atry statement) is found.

Errors can occur almost anywhere and for avariety of reasons. They can be explicitly generated
with the fail function (described below), they can be generated as a side-effect of execution
(such as division by zero), and they can be generated by the parser due to syntax or semantic
errorsin the parsed source. For whatever reason an error is generated, amessage (astring) is
always associated with it.

When any otherwise uncaught error occurs during the execution of the first statement, two
things are done;

» Firdtly, the string associated with the failure is assigned to the variable error. The assign-
ment is made asif by a simple assignment statement within the scope of the try statement.

» Secondly, flow of control is passed to the statement following the onerror keyword.

Once the second statement finishes execution, flow of control continues asif the whole try state-
ment had executed normally.

For example:

static
div(a, b)
{
try
return a / b;
onerror
return O;

printf(" 2

("4 / %\ n", div(4,
printf("4/ 0

%\ n", div(4, O

N
~— —

When run will print;

The ICl Programming Language 59



Chapter 4: ICl Language Reference

2

4 /
4 / 0

2
0
The handling of errors which are not caught by any try statement isimplementation dependent.

A typical action isto prepend the file and line number on which the error occurred to the error
string, print this, and exit.

The critsect statement
The critsect, or “critical section”, statement has the form:

critsect statement

The parser convertsthisto aninternal form. Upon execution, the statement is executed indivis-
ibly with respect to other threads. Thus:

critsect x = x + 1;

will increment x by 1, even if another thread is doing similar increments. Without the use of the
critsect statement we could encounter a situation where both threads read the current value of x
(say 2) at the same time, then both added 1 and stored the result 3, rather than one thread incre-
menting the value to 3, then the other to 4.

Theindivisibility bestowed by a critsect statement applies aslong as the code it dominatesis
executing, including all functions that code calls. Even operations that block (such as the wait-
for statement) will be affected. The indivisibility will be revoked once the critsect statement
completes, either through completing normally, or through an error being thrown by the code it
is dominating.

The waitfor statement
The waitfor statement has the form:

waitfor ( expression ; expression ) statement

The parser convertsthisto an internal form. Upon execution, a critical section is established
that extends for the entire scope of the waitfor statement (except for the special exception
explained below). Within the scope of this critical section, the waitfor statement repeatedly
evaluates the first expression until it istrue (that is, neither 0 nor NULL). Once the first expres-
sion evaluates to true, control passes to the statement (still within the scope of the critical sec-
tion). After executing statement the critical section isreleased and the waitfor statement is
finished.

However, each time the first expression evalutes to afalse value, the second expression is evalu-
ated and the object that it evaluates to is noted. Then, indivisibly, the current thread sleeps wait-
ing for that object to be signaled (by a call to the wakeup() function), and the critical section is
suppressed (thus allowing other thread to run). The thread will remain asleep until it is woken
up by acall to wakeup() with the given object as an argument. Each time this occurs, the critical
section is again enforced and the process repeats with the evaluation and testing of the first
expression. While the thread is asleep it consumes no significant CPU time.

The waitfor statement isthe basic method of inter-thread communication and control in ICI. Itis
typically used to gate control of some datathat is passing from one thread to another. For exam-
ple, suppose jobsisan array that is shared between two processes. In one thread we might write:

wai tfor (nels(jobs) > 0; jobs)
j ob = rpop(jobs);

60 ThelCl Programming Language



Statements: The null statement

/*
* Process job...
*/

While in a second thread that is generating jobs we might write:

push(j obs, new job);
wakeup(j obs);

In this example, the list object jobs is the object we are using to wait on and wakeup, but any
object can be used. One technique isto use acommonly agreed string (strings being intrinsically
atomic, will naturally be the same object without any explicit commonality between the
threads). In some circumstances it may be necessary to apply a critsect to the access to the
shared data (jobs in this example) in the thread doing the waking up.

It isvery important to only perform the call to wakeup() after the condition that allows rel ease of
the wait has been established. To illustrate, suppose we had written:

wakeup(j obs); /* WWRONG */
enqueue(j obs, new_j ob); /* WWRONG */

In this case the waiting thread may have run between the two statements, evaluated the test to
false, and gone to sleep again, possibly never to wake.

Similarly, the waitfor condition must be atrue reflection of a condition that implies a wakeup
will occur, at some stage, on the object being waited on. Do not assume that because the thread
has woken up, the wakeup has been for the expected reason. For example, it would be wrong to
write:

wait _once = 0;
wai tfor (wait_once++; jobs) /* WRONG */
j obs = dequeue(j obs);

Thenull statement

The null statement has the form:

The parser may convert thisto an internal form. Upon execution it will do nothing.

Declar ation statements

There are two types of declaration statements:

declaration storage-class declaration-list ;
storage-classidentifier function-body

storage-class extern
static
auto

Thefirst isthe general case while the second is an abbreviated form for function definitions.
Declaration statements are syntactically equal to any other statement, but their effect is made
entirely at parsetime. They act as null statementsto the execution engine. There are no restric-
tion on where they may occur, but their effect is a by-product of their parsing, not of any execu-
tion.

The ICl Programming Language 61



Chapter 4: ICl Language Reference

. . . 3
Declaration statements must start with one of the storage-class keywords listed above . Con-
sidering the general case first, we next have a declaration-list.

declaration-list identifier [ = expression |
declaration-list , identifier [ = expression |

That is, acomma separated list of identifiers, each with an optional initialisation, terminated by
asemicolon. For example:

static a, b =2, ¢ =Jarray 1, 2, 3];

The storage class keyword establishes which scope the variablesin the list are established in, as
discussed earlier. Notethat declaring the same identifier at different scope levelsis permissible
and that they are different variables.

A declaration with no initialisation first checksif the variable already exists at the given scope.
If it does, it isleft unmodified. In particular, any valueit currently hasisundisturbed. If it does
not exist it is established and is given the value NULL.

A declaration with an initialisation establishes the variable in the given scope and givesit the
given value even if it already exists and even if it has some other value.

Notethat initial values are parser evaluated expressions. That isthey are evaluated immediately
by the parser, but may take arbitrary actions apart from that. For example:

static
fi bonacci (n)
{
if (n<=1)

return 1,
return fibonacci(n - 1) + fibonacci(n - 2);

}

static fibl0 = fibonacci (10);
The declaration of fib10 callsafunction. But that function has already been defined so thiswill
work.

Note that the scope of a static variable is (normally) the entire moduleit is parsed in. For exam-
ple:

static
func()

{
}

printf("%\n", aStatic);

static aStatic = "The value of a static.";

when run will print:

The val ue of a static.

3. Notethat, unlike C, function definitions must be prefixed by a storage class. As executable code may
occur anywhere, thisis required to distinguish them from afunction call.

62 ThelCl Programming Language



Statements: Abbreviated function declarations

That is, despite being declared within afunction, the declaration of aatic has the same effect
asif it had been declared outside the function. Also notice that the function has not been called.
The act of parsing the function caused the declaration to take effect.

The behavior of extern variables has already been discussed, that is, they are declared as static
in the parent module. The behavior of auto variables, and in particular their initialisation, will
be discussed in alater section.

Abbreviated function declar ations
As seen above there are two forms of declaration. The second:

storage-classidentifier function-body

is a shorthand for:

storage-classidentifier = [ func function-body ] ;

and isthe normal way to declare ssimple functions. Examples of this have been seen above.

Functions

Aswith most ICI constructs there are two parts to understanding functions; how they are parsed
and how they execute.

When afunction is parsed four things are noted:

» the names and positions of the formal parameters;

» the names and initiaisation of auto variables;

» thestatic scope or classin which the function is declared;
» thecode generated by the statements in the function.

The formal parameters (that is, the identifiersin the bracket enclosed list just before the com-
pound statement) are actually implicit auto variable declarations. Each of the identifiersis
declared as an auto variable without an initialisation, but in addition, its name and position in
thelist is noted.

Upon execution (that is, upon afunction call), the following takes place:

» Theauto variables, as noted by the parser, along with any initialisations, are copied as a
group. This copy formsthe auto variables of thisinvocation.

» Any actual parameters (that is, expressions provided by the caller) are matched positionally
with the formal parameter names, and the val ue of those expressions are assigned to the auto
variables of those names.

» |If there were more actual parameters than formal parameters, and there is an auto variable
called vargs, the remaining argument values are formed into an array which is assigned to
vargs.

» If thisisamethod call (see below) the auto variable thisis set to the subject object of the
call, and the auto variable classis set to the class (if any).

» Thevariable-scope is set such that the auto variables are the inner-most scope.

» Successive outer scopes are set to the static scope, or, if thisis amethod call, the class noted
when the function was parsed.

» Theflow of control isdiverted to the code generated by parsing the function.

The ICl Programming Language 63



Chapter 4: ICl Language Reference

A return statement executed within the function will cause the function to return to the caller
and act as though its value were the expression given in the return statement. If no expression
was given in the return statement, or if execution fell through the bottom of the function, the
apparent return valueisNULL. Inany event, upon return the scope is restored to that of the
caler. All internal referencesto the group of automatic variables are lost (although as will be
seen later explicit program references may cause them to remain active).

Simple functions have been seen in earlier examples. We will now consider further issues.

It isvery important to note that the parser generates a prototype set of auto variables which are

copied, along with their initial values, when the functioniscalled. The value which an auto var-
iableisinitialised with isaparser evaluated expression just like any other initialisation. Itisnot
evaluated on function entry. But on function entry the value the parser determined is used to ini-
tialisethe variable. For example:

static nyvar = 100;

static

myFunc()
{

auto anAuto = nyVar;

printf("%l\n", anAuto);
anAuto = 500;

}

myFunc() ;
myVar = 200;

myFunc() ;

When run will print:

100
100

Notice that the initial value of anAuto was computed just once, changing myVar before the sec-
ond call did not affect it. Also note that changing anAuto during the function did not affect its
subsequent re-initialisation on the next invocation.

As stated above, formal parameters are actually uninitialised auto variables. Because of the
behaviour of variable declarationsit is possible to explicitly declare an auto variable aswell as
includeit in the formal parameter list. In addition, such an explicit declaration may have an ini-
tialisation. In thiscase, the explicit initialisation will be effective when there is no actual
parameter to overrideit. For example:

static
print(nmsg, file)
{

auto file = stdout; /* Default value. */

fprintf(file, "%\n", nsQ);
}

print("Hello world");
print("Hello world", stderr);

64 ThelCl Programming Language



Statements: Functions

In thefirst call to the function print there is no second actual parameter. In this case the explicit
initialisation of the auto variable file (which is the second formal parameter) will have its effect
unmolested. But in the second call to print a second argument isgiven. In this case thisvalue
will over-write the explicit initialisation given to the argument and cause the output to go to
stderr.

Asindicated above there is amechanism to capture additional actual parameterswhich were not
mentioned in the formal parameter list. Consider the following example:

static

sun()
{

aut o vargs;
auto total = O;
auto arg;

forall (arg in vargs)
total += arg;
return total;

}

printf("1+2+3 = %\ n", sum(1l, 2, 3));
printf("1+2+3+4 = %@\ n", sum(1l, 2, 3, 4));

Which when run will produce:

14243 = 6
1+2+43+4 = 10

In this example the unmatched actual parameters were formed into an array and assigned to the
auto variable vargs, aname which is recognised specialy by the function call mechanism.

And also consider the following example where a default initialisation to vargsis made. In the
following example the function call is used to invoke a function with an array of actual parame-
ters, the function array is used to form an array at run-time, and addition is used to concatenate
arrays, al these features will be further explained in later sections:

static
debug(fnt)

auto fm = "Reached here.\n";
auto vargs = [array];

call (fprintf, array(stderr, fmt) + vargs);
}

debug();
debug("Done that.\n");
debug("Result = %, total = %.\n", 123, 456);

When run will print:

Reached here.
Done t hat.
Result = 123, total = 456.

The ICI Programming Language 65



Chapter 4: ICl Language Reference

In the first call to debug no arguments are given and both explicit initialisations take effect. In
the second call the first argument is given, but the initialisation of vargs still takes effect. Butin
the third call there are unmatched actual parameters, so these are formed into an array and
assigned to vargs, overriding its explicit initialisation.

Objects

Up till now few exact statements about the nature of values and data have been made. We will
now examine values in more detail. Consider the following code fragment:

static x;
static vy;

X

[array 1, 2, 3, 4];
y .

X!

After execution of this code the variable x refersto an array. The assignment of x to y causesy
to refer to the same array. Diagrammatically:

X e| 1 2 3 4

If the assignment;
y[1] = 200;

is performed, theresult is:

X >| 1 200 3 4

We say that x and y refer to the same object. Now consider the following code fragment:
static x;
static vy;

X
y

[array 1, 2, 3, 4];
[array 1, 2, 3, 4];

Diagrammatically:

In this case, x and y refer to different objects, despite that fact they are equal.

66 ThelCl Programming Language



Objects: Functions

Now consider one of the unary operators which was only briefly mentioned in the sections
above. The @ operator returns aread-only version of the sub-expression it is applied to. Con-
sider the following statement:

y = @;

After this has been executed the result could be represented diagrammatically as:

1 2 3 4

1 2 3 4

-
\ ead-only
1 2 3 4

The middle array now has no reference to it and the memory associated with it will be collected
by the interpreter's standard garbage collection mechanism. Now consider the following state-
ment:

X = @,;

Thisissimilar to the previous statement, except that thistime x is replaced by aread-only ver-
sion of itsold value. But the result of this operationis:

— 1 2 3 4
md-nnly
1 2 3 4

Notice that x now refersto the same read-only array that y refersto. Thisisafundamental prop-
erty of the @ operator. It returns the unique read-only version of its argument value. Such read-
only objects are referred to as atomic objects. The array which x used to refer to was non-
atomic, but the array it refersto now isan atomic array. Aggregate types such asarrays, setsand
structs are generally non-atomic, but atomic versions can be obtained (as seen above). But most
other types, such asintegers, floats, and (normally) strings are intrinsically atomic. That is, no
matter how a number, say 10, is generated, it will be the same object as every other number 10
in the interpreter. For-instance, consider the following example:

X
y

"ab" + "cdefg";
"abcde" + "fg";

After thisis executed the situation can be represented diagrammatically as:

—_—

>>" abcdef g"

It isimportant to understand when objects are the same object, when they are different and the
effects this has.

The ICl Programming Language 67



Chapter 4: ICl Language Reference

Equality
We saw above how two apparently identical arrays were each distinct objects. But these two
arrays were equal in the sense of the equality testing operator ==. If two values are the same

object they are said to be eq4, and thereisafunction of that name to test for this condition. Two
objects are equal (that is==) if:

» they are the same object (i.e. eq); or
 they are both arithmetic (int and float) and have equivalent numeric values; or
» they are aggregates of the same type and all the sub-elements are the same objects (i.e. eq).

This definition of equality isthe basis for resolving the merging of aggregates into unique read-
only (atomic) versions. Two aggregates will resolve to the same atomic object if they are equal.
That is, they must contain exactly the same objects as sub-elements, not just equal objects. For

example:
static x = [array 1, [array 2, 3], 4, 5];
static y = [array 1, [array 2, 3], 4, 5];

Could be represented diagrammatically as:

X L 1

y > 1 4 5

Now, if the following statements were executed:

X = @,;
y = @,

4.Asin LISP.

68 ThelCl Programming Language



Objects: Equality

The result could be represented diagrammatically as:

d-onlv
0-0nty

X 1

_nn!y |
y >Feadl 4 5

That is, both x and y refer to new read-only objects, but they refer to different read-only objects
because they have an element which is not the same object. The simple integers are the same
objects because integers are intrinsically atomic objects. But the two sub-arrays are distinct
objects. Being equal was not sufficient. The top-level arrays needed to have exactly the same
objects as contents to make x and y end up referring to the same read-only array. In contrast to
this consider the following similar situation:;

static z = [array 2, 3];
static x = [array 1, z, 4, 5];
static y = [array 1, z, 4, 5];

This could be represented diagrammatically as:

X L 1

y > 1 4 5

Now, if the following statements were executed:

@;
@;

X
y

The result could be represented diagrammatically as:

X _—

md-nnly
>> 1 | 4 5
y —

The ICl Programming Language 69



Chapter 4: ICl Language Reference

In this case both x and y refer to the same read-only array because the original arrays where
equal, that is, all their elements were the same objects. Notice that one of the elementsis still a
writeable array. The read-only property isonly referring to the top level array. The sub-array
can be changed, but the reference to it from the top level array can not. Thus:

x[1][0] = 200;

will result in:

X ] ead-only
> 1 | 4 5
y

200 3

whereas the statement:
x[ 1] = 200;

will just result in an error.

Structure and set keys

Any object, not just a string, can be used as akey in a structure. For instance:

static x = [struct];
static z = [array 10, 11];
x["abc"] = 1;

X[ 56] = 2;

x[z] = 3;

Could be represented diagrammatically as:

/ 10 11

X — T ® "abc" 56

And the assignment:
x[z] = 300;
would replace the 3 in the above diagram with 300. But the assignment:

X[[array 10, 11]] = 300;

would result in anew element being added to the structure because the array given in the above
statement is a different object from the one which zrefersto.

Similarly, elements of sets may be any objects.

70 ThelCl Programming Language



Objects: Structure super types

Indexing structures by complex aggregatesis as efficient as indexing by intrinsically atomic
types such as strings and integers.

Sructure super types

Up till now structures have been described as simple lookup tables which map a key, or index,
toavalue. But astructure may have associated with it a super structure.

The function super can be used to discover the current super of a struct and to set a new super.
With just one argument it returns the current super of that struct, with a second argument it also
replaces the super by that value.

When akey isbeing looked-up in a structure for reading, and it is not found and there is a super
struct, the key is further looked for in the super struct, if it isfound there its value from that
struct isreturned. If it isnot found it will be looked for in the next super struct etc. If no struc-
turesin the super chain contain the key, the special value NULL isreturned.

When akey is being looked up in a structure for writing, it will similarly be searched for in the
super chain. If it isfound in awriteable structure the value in the structure in which it was
found will be set to the new value. If it was never found, it will be added along with the given
value to the very first struct, that is, the structure at the base, or root, of the super chain.

Consider the following example:

static theSuper = [struct a =1, b =2, ¢ = 3];
static theStruct = [struct x = 100, y = 200];

super (theStruct, theSuper);

After this statement the situation could be represented diagrammatically as:

"a" "b" "c"
3

2
A

t heSt r uct ——»> X
100 200

then if the following statements were executed:

theStruct.a = 123;
theStruct.x = 456;
theStruct.z = 789;

The ICl Programming Language 71



Chapter 4: ICl Language Reference

the situation could be diagrammatically represented as:

1] au n b" 1] 1]

123 2

A
t heSt ruct > X" "y" z”
456 200 789

If asuper struct is not writeable (that is, it is atomic) values will not be written in it and will
lodge in the base structure instead. Thus consider what happens if we replace the super struc-
ture in the previous example by its read-only version:

super (theStruct,

@ heSuper) ;

The situation could now be represented diagrammatically as:

Read-only
"a" " b" non
123 >
A
t heStruct > "X "y" man
456 200 789

If the assignment statement:

theStruct.a += 10;

were executed, the value of the element a will first be read from the super structure, this value
will then have ten added to it, and the result will be written back into the base structure; because
the super structureisread-only and cannot be modified. The finally situation can be represented
diagrammatically as:

Read-only
T b o
A
t heSt r uct — " a" " X" " y" " Zu
133 456 200 789

Note that many structs may share the same super struct. Thusasingle read-only super struct
can be used hold initial values; saving explicit initialisations and storage space.

72 ThelCl Programming Language



Base types: An aside on variables and scope

The function assigh may be used to set avalue in a struct explicitly, without reference to any
super structs; and the function fetch may be used to read a value from a struct explicitly, without
reference to any super structs.

Within a struct-literal a colon prefixed expression after the struct identifier is used as the super
struct. For example, the declarations used in the previous example could be written as:

static theSuper = [struct a =1, b =2, ¢ = 3];
static theStruct = [struct:theSuper, x = 100, y = 200];

An aside on variables and scope

Now that structs and their super have been described a more precise statement about variables
and scope can be made.

ICl variables are entriesin ordinary structs. At all times, the execution context holds areference
to a struct that is the current scope for the lookup of simple variables. An un-adorned identifier
in an expression isjust an implicit reference to an element of the current scope structure. The
inheritance and name hiding of the variable scope mechanism is a product of the super chain.

During both module parsing and function execution, the auto variables are the entriesin the base
structure. The super of thisis the struct containing the static variables. The next super struct
contains the externs, and successive super structs are successive outer Scopes.

Auto, static and extern declarations make explicit assignments to the appropriate structure.

The function scope can be used to obtain the current scope structure; and to set it (use with
care).

But there is adifference in the handling of undefined entries. Whereas normal 1ookup of unde-
fined entries in a structure produces a default value of NULL, the implicit lookup of undefined
variablestriggers an attempt to dynamically load alibrary to define the variable (see Undefined
variables and dynamic loading below), and failing that, produce an error (“%s undefined”).

Base types

ICl supports a base set of standard datatypes. Eachisidentified by asimple name. In summary
these are:

array An ordered sequence of objects.

exec A thread execution context.

file An open file reference.

float A double precision floating point number.
func A function.

int A signed 32 hit integer.

list An ordered set of objects.

mem References to raw machine memory.
method A binding of a function and a subject object.
ptr A reference to a storage location.

regexp A compiled regular expression.

The ICl Programming Language 73



Chapter 4: ICl Language Reference

set An unordered collection of objects.
string An ordered sequence of 8 bit characters.
struct An unordered set of mappings from one object to another.

Many of these base types have been alluded to in previous sections. The following sections
describe each type in more detail.

It should be noted that indexing and calling are the only operations that are an intrinsic property
of each base type. Other behaviours of base types are a product of operators and functions that
perform their various functions when supplied with operands of particular types. For this reason
the following descriptionstypically describe what data an instance of each base type holds, what
happens when it isindexed or called, and may briefly mention the functions and operators that
are highly relevant to the type. See following sections on operators and core functions for a
complete picture.

In the following text, the word “efficient” typically meansin constant time or memory, although
occasional internal housekeeping may occur.

array - An ordered sequence of objects

An array is acontiguous (in memory) block of object references. The first object is referred to
with index zero, subsequent elements of the block are referenced by successive integers. The
index must always be an integer, el se the indexing operation will fail. Reading at indicies not in
the block resultsin a NULL value. Writing at negative indicies fails, while writing at indicies
beyond the current end of the block silently extends the block, and NULL fillsthe span between
the old end and the newly written element. The function nels() can be used to reveal the number
of elements currently in the array (which is also theindex of thefirst element beyond the current
length of the array).

Arrays offer the most memory-efficient method of storing collections of objects.® The functions
push(), pop(), rpush(), rpop() and top() are of note. They allow arraysto be used as efficient

stacks and queues. They are al of constant order ti me®. Most other functions and operations on
arrays are O(n). For example, array additionis O(n + m) where n and m are the lengths of the
two arrays.

The rpush() and rpop() functions push and pop items from the front of the array (that is, near
index zero). But the first item is always considered to be at index zero. Pushing and popping
items on the front of an array effectively changes the index of al the itemsin the array.

See also the functions array() to create an array at run-time, and the parse-time in-line literal
form of arrays[array ...]. The function sort() can be used to sort the elements of an array.

ICl arrays form the fundamental basis for operand, execution and scope stacksin the ICl inter-
nal execution engine, aswell as the storage of compiled code. Although the latter is not visible
to the ICI programmer.

exec - A thread execution context

An exec object holds the execution context for athread of exection and isreturned by the
thread() function.

5. On 32 bit machines, the raw per-element overhead istypically 4 bytes; although there is often slop at
the end of the block to alow efficient growth.

6. Arraysareinternally implemented as growable circular buffers.

74 ThelCl Programming Language



Base types: file - An open file reference

Exec objects can be indexed by:
status Which yields a string, either "active", "finished" or "failed".

result Beforethethread hasfinished, thisfield readsasNULL. Once, or if,
the top level function returns, this field yields the value returned
from that function. If the thread failed with an uncaught error, ac-
cessing the result field will cause the thread accessing it to inherit
that error asif it had just occured.

file- An open filereference

A file object is areference and interface to some lower level file-like object. Most commonly a
real file supported by the operating system, but not necessarilly so. The actual file object holdsa
reference to the basic file object, and references to its primitive access methods and operations.
Those primitive methods are directly represented by the intrinsic ICI functions: close(), eof(),
flush(), getchar(), put(), and seek(). In addition, the functions getline(), getfile(), gettoken(), and
gettokens() efficiently build on these to read higher level constructs than simple bytes from a
file. These functions can greatly increase the efficiency of file parsing over explicit per-charac-
ter operations. The function printf() provides efficient formatted output to files.

File objects are generally created by “open” functions; such as the archetypal fopen() function
that opens or creates a host operating system file. Also note the sopen() function that allows an
ICI string object to be opened as afile. The variables stdin, stdout, and stderr are generally cre-
ated in the outer-most scope at interpreter startup and refer to the associated files of the current
process. Also, various functions, such as printf(), will, if no explicit file argument is supplied,
use the current val ue of the appropriate variable. These functions do this by looking up the name
in the current scope, so it is possible to locally override their default file usage.

Files can not be indexed or called.

Note that an unreferenced file object will, eventually, be collected by the ICl interpreter’s gar-
bage collector, at which point it will be closed (if it is not already closed). But the indeterminate
timming of garbage collections makes it inadvisable to rely on this mechanism to closefiles. In
general, files should be explicitly closed to release lower level resources at a deterministic time.
A fileobject is il avalid object after it has been closed, except no 1/0 operationswill work on
it any more.

File objects can be indexed for reading by some names to discover information for diagnostics.
Specifically:
name A name that was associated with the file object when it was created.
Generally the name of thefile.

line The current line number which parseing has reached. The file must
be one of the special fileslayered on top of ICI’s parser, asreturned
by currentfile() or passed to aparser function in auser-parsed literal
factor (See“ User defined literal factors’ on page 47).

(Thereis currently a paucity of functions to support reading and writing binary files. This will
be corrected in future revisions. The sys extension module does provide some support. TML)

float - A double precision floating point number

A float holds a double precision floating point number (in the local machine's native format).
Floats are intrinsically atomic, based on their value (that is, all floats with a particular value are

The ICI Programming Language 75



Chapter 4: ICl Language Reference

references to the same memory location). Floats can not be indexed or called and their utility is
entirely based on the operators and functions that accept and return them.

func - A function

A function holds a reference to executable code, and a name suitable for diagnostics. In reality
there are two types of function objects: functions that reference native machine code, and func-
tions that reference interpreted ICl code. But they are both called “func”.

Function objects that link to interpreted I Cl code also hold the names of the formal parameters
and a prototype of the local scope structure that will be copied and used each time the function
isinvoked.

Function objects are intrinsically atomic based on the identity of all their components. The ICl
parser also makes code atomic so in theory equal functionswill be identical objects, but in prac-
tice such items as source file line information embedded in executable code frustrate this.

Function objects can, of course, be called. The semantics of this operation has been described
above. Function objects are al so the basis of methods in classes, the difference merely existing
in their preparation by the parser, and the semantics of calling through a method.

Function objects can be indexed by some specific names to discover some of the internal ele-
ments. Specifically:

name Returns aname that has been assigned to the function. In the case of
the “abbreviated function declaration” described above, it will be
the identifier associated with the function. In the case of anin-line
function literal, it will be the name _funcname . In the case of a
function implemented in native machine code, it will be an author
assigned name.

autos Returnsthe (atomic) prototype auto scope struct of thisfunction, or
NULL for functionsimplemented in native machine code. The super
of thisstruct reveal sthe static scope of thisfunction (the parsed class
for a method).

args Returnsthe (atomic) array of formal parameter names, or NULL for
functions implemented in native machine code.

int - A signed 32 bit integer

Anint hold a32 bit signd integer (in the local machine's native format). Intsareintrinsically
atomic based on their value (that is, al ints with a particular value are references to the same
memory location). Ints can not be indexed or called and their utility is entirely based on the
operators and functions that accept and return them.

mem - A reference to raw machine memory

A mem object references byte- or word-structured native machine memory. The mem object
hol ds the base address of a region of raw machine memory, the word-size it is to be accessed
with (1, 2 or 4 bytes per word), and the number of words that can be accessed.

The base address identifies the first word, and this can be accessed (as an integer) at index zero.
Successive integers indicies reference successive words, up to the limit. Reading outside the
bounds returns NUL L, writing outside the bounds causes an error. Words are read and written in
the native machine format (endienessin particular). One and two byte words are read as
unsigned quantities. When writing, non-zero bits above the word size are simply discarded.

76 ThelCl Programming Language



Base types: method - A binding of a function and a subject object

Mem abjects can be used for simple, but dense, unstructured data storage. But they are most
commonly used in interfaces to native machine code or hardware. The functions mem() and
alloc() can be used to create mem objects. Although mem(), which allows access to arbitrary
native machine addresses, may be disallowed in some systems. The function alloc() allocates
memory for the mem object to refer to which is freed when the mem object is garbage collected.

Mem objects are intrinsically atomic, based on the address, word size and number of elements.

method - A binding of a function and a subject object

A method holds areference to a callable object, and a subject object. The subject object istypi-
cally astruct of some class (that is, its super is the class). The callable object istypically afunc-
tion of the class or one of its super classes.

Method objects can be called, the semantics of which are described above.

Method objects can be indexed to discover their internal elements. Specifically:

subject Returns the subject object of the method. Thisistypically a struct.
callable Returns the callable object of the method. Thisistypically afunc-
tion.

Method objects are created by the : operator, typically preparatory to the invocation of a class
function. But in most situations the parser will generate a special type of shortcut function invo-
cation to avoid the run-time creation of an ephemeral method object. So in practice method
objects are quiet rare.

ptr - A referenceto a storage location

Pointers are references to storage locations. Storage locations are the elements of anything
which can beindexed. That is, array elements, set elements, struct elements and others. Varia-
bles (which are just struct elements) can be pointed to.

Pointers hold two objects, one is the object pointed into, the other is the key used to access the
location in question.

The & operator is used to obtain a pointer to alocation. Thusif the following were executed:

static x;

static y = [array 1, 2, 3];
static pl = &x;

static p2 = &[1];

The variable p1 would be a pointer to x and the variable p2 would be a pointer to the second ele-
ment of y. Reference to the object a pointer points to can be obtained with the * operator. Thus
if the following were executed:

*pl = 123;

*p2 = 456;

printf("x = 9%, y[1] = %@\n", x, y[1]);
the output would be:

x = 123, y[1] = 456

The generation of apointer does not affect the location being pointed to. In fact the location
may not even exist yet. When a pointer is referenced the same operation takes place asif the

The ICl Programming Language 77



Chapter 4: ICl Language Reference

location was referenced explicitly. Thus a search down the super chain of a struct may occur, or
an array may be extended to include the index being written to, etc.

In addition to simple indirection (that isthe * operator), pointers may be indexed. But the index
values must be an integer, and the key stored as part of the pointer must also be an integer.
When a pointer isindexed, the index is added to the key which is stored as part of the pointer,
the sum forms the actual index to use when referencing the aggregate recorded by the pointer.
For instance, continuing the example above:

p2[1] = 789;
would set the last element of the array to 789, because the pointer currently references element

1, and thegivenindex is1, and 1 + 1 is 2 which isthe last element. Theindex arithmetic pro-
vided by pointers will work with any types, as long as the indicies are integers, thus:

static s = [struct (20) =1, (30) =2, (40) = 3];
static p = &s[30];

p[-10] = -1;

p[0] = -2

p[10] = -3;

Would replace each of the elements in the struct s by their negative value.

Pointers can be called, but thisis an obsolete facility and may be removed in future versions.

regexp - A compiled regular expression

A regexp object holds aregular expression and its compiled form. Regular expressions describe
text patterns against which actual text can be matched to discover if the actual text matches the
pattern. They can also be used to extract sub-strings of the actual text based on the pattern
matching. For more details on the syntax and semantics of regular expressions, see the chapter
on the subject below.

Regular expressions are created by the regexp() and regexpi() functions, and by the parser from
regular expression literals (that is, #...#). Text can be matched against regular expressions by the

operators ~, !~, ~~, and ~~~, and by the functions sub(), gsub() and smash().
Regular expressions can be indexed by two specific names:
pattern Returns the original pattern as a string.
option Returnsan integer bit mask of the options applied in making thereg-

ular expression.

Regular expressions are intrinsically atomic, based on the identity of the original pattern.

set - An unordered collection of objects

A setisan unordered collection of object references. Any single object can either bein agiven
set, or not in the set. It can not be in the set multiple times. Adding and removing objects from
setsis an efficient constant time operation, and each distinct object in the set imposes a small

fixed memory cost (both access speed and memory cost is dlightly higher than the per element
cost of an array). The type and complexity of an object being added or removed from a set has

no effect on the efficiency of the operation.’

Sets can be used in different ways. In some circumstances they are used simply as unordered
aggregates of other objects. In other circumstances they are used more as algebraic sets to

78 ThelCl Programming Language



Operators: string - An ordered sequence of 8 bit characters

record which objects have a certain property. In this regard they can be particularly useful
because objects can be noted as having a particular property without modifying the internal's of
the object at all.

string - An ordered sequence of 8 bit characters

A string holds an ordered sequence of 8 hit characters. Almost all string operations produce
atomic (read-only) strings (that is, al strings with a particular value are references to the same
memory location). Strings can be indexed by an int (read only) to reveal a one-character sub-
string, or an empty string if negative or beyond the end of the string. Most of the utility of
strings derive from the functions and operators that can be applied to them.

Strings are one of the commonest structure keys. Variables are identified by strings (thereis no
separate “name” or “variable” typein ICl).

Non-atomic (i.e. mutable) strings can be produced by the strbuf() function, and extended with
the strcat() function. Integer character codes can be assigned to particular characters of non-
atomic strings by integer (base 0) index. Assigning to a character beyond the end of the string
will extend the string as necessary with space filling. Note that a mutable string is a distinct
object from an atomic versions of equal value, and so doesn’t access the same element when
used as a struct index.

struct - An unordered set of mappings

A struct is an unordered set of mappings. That is, a struct records object references that are
regarded as keys and for each such key, a corresponding value, which is also an object refer-
ence.® A struct also records asuper struct, which is areference to a subsequent struct. The
details of structure indexing are described above. See “ Structure and set keys’ on page 70.
Structures form the fundamental basis for variables and scoping in ICI.

Adding, removing and looking up objectsin a struct is an efficient constant time operation
(although is O(n) with respect to searches up the super chain). The type and complexity of an
object being added or removed from a set has no effect on the efficiency of the operation.

Operators

The following table details each of the unary and binary operatorswith al of the types they may
be applied to. Within the first column the standard type names are used to stand for operands of
that type, along with any to mean any type and numto mean anint or afloat. In general, where
anint and afloat are combined in an arithmetic operation, theint isfirst converted to afloat and
then the operation is performed.

The following table isin precedence order.

* ptr

7. Setsareimplemented as hash tables of object references; object references are native machine pointers.
Actual memory requirementsis typically 4 bytes per entry, plus an additiona overall overhead of from
50% to 25%.

8. Structs are implemented as hash tables of object references, with each entry recording a val ue associ-
ated with the key. Actual memory requirementsistypically 8 bytes per entry, plus an additional overall
overhead of from 50% to 25%.

The ICl Programming Language 79



Chapter 4: ICl Language Reference

- hum

+any

I any

~int

++any

__any

$any

any++

any--

anyl @ any2

numl * num2

setl * set2

Indirection: the result references the thing the pointer pointsto. The
resultisan lvalue.

Addressof: theresult isapointer to any. If any isan Ivalue the point-
er references that storage location. If any isnot an Ivalue but isa
term other than a bracketed non-term, as described in the syntax
above, aone element array containing any will be fabricated and a
pointer to that storage location returned. For example:

p = &l;

setsp to beapointer to thefirst element of an un-named array, which
currently contains the number 1.

Negation: returns the negation of num. The result is the same type
as the argument. The result is not an Ivalue.

Has no effect except the result is not an Ivalue.

Logical negation: if any isO (integer) or NULL, 1isreturned, else0
is returned.

Bit-wise complement: the bit-wise complement of int is returned.

Pre-increment: equivalent to ( any += 1) . any must be an Ivalue
and obey the restrictions of the binary + operator. See + below.

Pre-decrement: equivalentto ( any - = 1) . any must bean Ivalue
and obey the restrictions of the binary - operator. See- below.

Atomic form of: returnsthe unique, read-only form of any. If any is
already atomic, it isreturned immediately. Otherwise an atomic
form of any isfound or generated and returned; thisis of execution
time order equal to the number of elementsin any. Seethe section
on objects above for more explanation.

Immediate evaluation: recognised by the parser. The sub-expres-
sionany isimmediately evaluated by invocation of the execution en-
gine. Theresult of the evaluation is substituted directly for this
expression term by the parser.

Post-increment: notesthe value of any, then performsthe equivalent
of (any += 1), except any isonly evaluated once, and finally returns
the original noted value. any must be an lvalue and obey the restric-
tions of the binary + operator. See + below.

Post-increment: notesthe value of any, then performsthe equivalent
of (any -= 1), except any isonly evaluated once, and finally returns
the original noted value. any must be an lvalue and obey the restric-
tions of the binary - operator. See - below.

Form pointer: returns a pointer object formed from itsoperandswith
the pointer’ s aggregate being set from any1 and the pointer’ s key
from any2.

Multiplication: returnsthe product of the two numbers, if both nums
areints, the result isint, else the result is float.

Set intersection: returns a set that contains all elements that appear
in both set1 and set2.

80 ThelClI Programming Language



Operators: struct - An unordered set of mappings

numl / num2

intl % int2

numl + num?2

ptr +int

int + ptr
stringl + string2

arrayl + array2

structl + struct2

satl + sat2

numl - num2

setl - set2

ptrl- ptr2

intl >> int2

Division: returnstheresult of dividing numl by num2. If both num-
bersareintstheresultisint, elsetheresult isfloat. If num2 iszero
the error division by O is generated, or division by 0.0 if the result
would have been afloat.

Modulus: returns the remainder of dividing intl by int2. If int2is
zero the error modulus by O is generated.

Addition: returns the sum of numl and num2. If both numbers are
ints theresult isint, else the result is float.

Pointer addition: ptr must point to an element of anindexabl e object
whose index isan int. Returns a new pointer which pointsto an el-
ement of the same aggregate which has the index which is the sum
of ptr'sindex and int. The arguments may be in any order.

As above.

String concatenation: returns the string which is the concatenation
of the characters of stringl then string2. The execution time order
is proportional to the total length of the result.

Array concatenation: returns anew array which isthe concatenation
of the elements from arrayl then array2. The execution time order
is proportional to the total length of the result. Note the difference
between the following:

a += [array 1];
push(a, 1);

Inthefirst case aisreplaced by a newly formed array which isthe
original array with one element added. But in the second case the
push function (see below) appends an element to the array a refers
to, without making anew array. The second caseis much faster, but
modifies an existing array.

Structure concatenation: returns a new struct which is a copy of
structl, with all the elements of struct2 assigned into it. Obeysthe
semantics of copying and assignment discussed in other sections
with regard to super structs. The execution time order isproportion-
al to the sum of the lengths of the two arguments.

Set union: returns anew set which contains al the elements from
both sets. The execution time order isproportional to the sum of the
lengths of the two arguments.

Subtraction: returns the result of subtracting num2 from numl. If
both numbers are ints the result isint, else the result isfloat.

Set subtraction: returns anew set which containsall the elements of
setl, less the elements of set2. The execution time order is propor-
tional to the sum of the lengths of the two arguments.

Pointer subtraction: ptr1 and ptr2 must point to elements of index-
ableobjectswhoseindexsareints. Returnsanint whichistheindex
of ptrllesstheindex of ptr2.

Right shift: returns the result of right shifting int1 by int2. Equiva-
lent to division by 2**int2. intl isinterpreted as a signed quantity.

The ICl Programming Language 81



Chapter 4: ICl Language Reference

intl << int2

numl < num2

setl < set2

stringl < string2

ptrl< ptr2

anyl == any
anyl!=any?
string ~ regexp
string !~ regexp
string ~~ regexp

string ~~~ regexp

intl & int2
intl” int2
intl | int2
anyl & & any2

Left shift: returnsthe result of left shifting int1 by int2. Equivalent
to multiplication by 2**int2.

Numeric test for less than: returns 1 if numl isless than num2, else
0.

Test for proper subset: returns 1 if setl contains only elements that
arein set2 but isnot equal toit, else 0.

Lexical test for lessthan: returns 1 if stringl islexically less than
string2, else 0.

Pointer test for less than: ptrl and ptr2 must point to elements of
indexable objectswhoseindiciesareints. Returns1if ptr1 pointsto
an element with alesser index than ptr2, else 0.

The >, <= and >= operators work in the same fashion as <, above.

For sets > tests for one set being a proper superset of the other (that
isone set can contain only those elements contained in the other set
but cannot be equal to the other set). The <= and >= operatorstest

for sub- or super-sets.

Equality test: returns 1if anyl isequal to any2, else 0. Two objects
are equal when: they arethe same object; or they are both arithmetic
(int and float) and have equivalent numeric values; or they are ag-
gregates of the same type and all the sub-elements are the same ob-
jects.

Inequality test: returns 1if anyl is not equal to any2, else 0. See
above.

Logical test for regular expression match: returns 1 if string can be
matched by regexp, else 0. The arguments may be in any order.

Logical test for regular expression non-match: returns 1if string can
not be matched by regexp, else 0. The arguments may bein any or-
der.

Regular expression sub-string extraction: returns the sub-string of
string which is matched by the first bracket enclosed portion of
regexp, or NULL if there is no match or regexp does not contain a
(...) portion. The arguments may bein any order. For example, a
"basename” operation can be performed with:

argv[ 0] ~~= #(["]*) $#;
Regular expression multiple sub-string extraction: returns an array
of the sub-strings of string which are matched by the (...) enclosed

portions of regexp, or NULL if there is no match. The arguments
may bein any order.

Bit-wise and: returns the bit-wise and of intl and int2.
Bit-exclusive or: returns the bit-wise exclusive or of intl and int2.

Bit-wise or: returns the bit-wise or of intl and int2.

82 ThelCl Programming Language



Operators: struct - An unordered set of mappings

Logical and: evaluatesthe expression which determinesanyl, if this
evaluatesto false (i.e. 0 or NUL L), that false valueisreturned, else
any? isevaluated and returned . Note that if any1 does not evaluate
to atrue value, the expression which determines any2 is never eval-
uated.

Thus, in a sequence of & & operations, such as:
X =this() & that() && the_other();

the first sub-expression that evaluatesto afalse value causes afalse
return and the remainder are not evaluated at all. If al are true, the
last sub-expression is returned.

anyl || any2 Logical or: evaluates the expression which determines anyl, if this
evaluatesto atruevalue (i.e. avalue other than 0 or NULL), that val-
ueisreturned, else any? is eval uated and returned. Note that if anyl
does not evaluate to a false value, the expression which determines
any? is never evaluated.

Thus, in a sequence of || operations, such as:
x =this() || that() || the_other();

the first element that evaluatesto atrue valueis returned and the re-
mainder are not evaluated at all.

anyl ? any2 : any3 Choice: if anyl isneither 0 or NULL (i.e. true), the expression
which determines any?2 is evaluated and returned, else the expres-
sion which determines any3 is evaluated and returned. Only one of
any?2 and any3 are evaluated. The result may be an Ivalueif the re-
turned expressionis. Thus:

flag ? a : b = value

isalegal expression and will assign valueto either a or b depending
on the state of flag.

anyl = any?2 Assignment: assigns any2 to anyl. anyl must be an lvalue. The be-
havior of assignment is a consequence of aggregate access asdis-
cussed in earlier sections. In short, an lvalue (in this case anyl) can
always be resolved into an aggregate and an index into the aggre-
gate. Assignment setsthe element of the aggregate identified by the
index to any2. The returned result of the whole assignment isany1,
after the assignment has been performed.

Theresult is an lvalue, thus:

++(a = b)

will assign b to a and then increment a by 1.

Note that assignment operators (this and following ones) associate
right to left, unlike all other binary operators, thus:

9. Notethat thisis different from C where the result is always completely resolved toaO or 1. Use!! to
force a0/1 value from a generic true/false. Note that in ICI versions 4.0.3 and before an early return
alwaysreduced to O or 1.

The ICl Programming Language 83



Chapter 4: ICl Language Reference

a=b+=c¢c -=4d

Will subtract d from c, then add the result to b, then assign the final

valueto a.

+= -= *= [ = U >>= <<= :/\:|:~~:
Compound assignments: All these operators are defined by the re-
writing rule:

anyl op= any2

isequivalent to:

anyl = anyl op any2

except that anyl isnot eval uated twice. Type restrictions and the be-
havior for op will follow the rules given with that binary operator
above. The result will be an Ivalue (as a consequence of = above).
There are no further restrictions. Thus:

a = "Hello";
a += " world.\n";

will result in the variable a referring to the string:

"Hell o world.\n".

anyl <=> any2 Swap: swaps the current values of anyl and any2. Both operands
must be Ivalues. Theresult is anyl after the swap, and is an Ivalue,
asin other assignment operators. Also like other assignment opera-
tors, associativity isright to left, thus:

a<=>b <=>c¢ <=>d

rotates the values of a, b and c towards d and bringsd's original val-
ue back to a.

anyl, any2 Sequential evaluation: evaluates anyl, then any2. Theresult isany2
and isan Ivalueif any? is. Note that in situations where comma has
meaning at the top level of parsing an expression (such as in func-
tion call arguments), expression parsing precedence starts at one
level below the comma, and a commawill not be recognised as an
operator. Surround the expression with bracketsto avoid thisif nec-
essary.

Automatic library loading

During execution, should the ICI execution engine fail to find avariable it is attempting to read
within the current scope, it will attempt to load alibrary based on the name of that variablein
attempt to get it defined. Such alibrary may be a host-specific dynamically loaded native
machine code library, an ICI module, or both.

In attempting to load an 1CI module, afile name of the form:

i cidvar.ici

84 ThelCl Programming Language



Operators: Automatic library loading

is considered, where var is the as yet undefined variable name. Thisfileis searched for on the
current search path, which isindicated by the current value of the path variablein the current
scope (an array of directory names). If found, a new extern, static and auto scope is established
and the new extern scope struct is assigned to var in the outermost writable scope available.
That outermost writable scope also forms the super of the new extern scope. The module isthen
parsed with the given scope, after which the variable lookup is repeated. In normal practice this
will mean that the loaded modul e has an outer scope holding all the normal ICI primitivesand a
new empty extern scope. The intent of this mechanism isthat the loaded modul e should define
all its published functions in its extern scope. References by an invoking program to functions
and other objects of the loaded module would always be made explicitly through the var which
references the module. For example, a program might contain the fragment:

query = cgi.decode_query();
cgi.start_page("Query results");

where “cgi” is undefined, but the file ici4cgi.ici exists on the search path and includes function
definitions such as:

extern
decode_query()

{
}

extern
start _page(title)
{

}

Upon first encountering the variable cgi in the code fragment the module ici4cgi.ici will be
parsed and its extern scope assigned to the new variable cgi in the outermost scope of the pro-
gram (that is, the most global scope). The lookup of the variable cgi is then repeated, thistime
finding the structure which contains the function decode_query. The second use, and all subse-
guent use, of the variable cgi will be satisfied immediately from the already |oaded module.

In attempting to load a host-specific dynamically loaded native machine code library, afile
name of the form:

i ci 4var . ext

is considered, where var isthe as yet undefined variable name and ext is the normal host exten-
sion for such libraries (typically .dIl for Windows and .so for UNIX like systems). The 4 isthe
major |Cl version number. Thisfileis searched for on the current host specific search path. If
found thefile is loaded into the ICI interpreter’s address space using the local host's dynamic
library loading mechanism. An initialisation function in the loaded library may return an ICl
object (see below). Should an object be returned, it is assigned to var in the outermost writable
scope available. Further, should the returned variable be a structure, additional loading of an ICI
coded module (that is, icidvar.ici as described above) is allowed and the returned struct forms
the structure for externsin that |oad.

The ICI Programming Language 85



Chapter 4: ICl Language Reference

86 ThelCl Programming Language



CHAPTER 5 ObJ &t'orl mtm
programming inICl

In object-oriented ICI programs, “objects’ are structs that have specific properties. Thisisabit
confusing because | have been using the term “ object” to refer to any ICl primitive type. Thisis
historical. To avoid further confusion | will use “class’ and “instance” explicitly instead of
“object” when talking about object-oriented techniques.

ICl supports object-oriented programming by building on the properties of structsto implement
scoping in the same way that vanilla function calls do. The principal feature that supports
object-oriented programming in ICl is calls to methods as opposed to calls to functions. Con-
trasting the two:

» acdl toafunction causes an implicit switch to the scope of the function for the duration of
the call, whereas

» acdl to amethod causes an implicit switch to the scope of the instance and its class for the
duration of the call.

A method isa primitive ICl object that is a pairing of a subject object (the instance), and afunc-
tion.

Consider the following simple fragment which creates a class:

extern an_extern = 1;
static a_static = 2;

static a_class =

[cl ass
a_func(arg)
{
this.value := arg + 1;
return value + 2;
}

The ICl Programming Language 87



Chapter 5: Object-oriented programming in ICI

After executing this code, a_class will refer to anew struct which is unremarkable except that
its super has been automatically set to the static scope. Diagramatically:

y

a_func . a_class |a_static an_extern
supe! 2 Sl-lpg 1
class statics externs

We can create an instance of the class by invoking the new method on the class. For example:

an_i nst

a_cl ass: new);

The new method is a class method that exists in the global scope, so all classes effectively

inherit it from there.

The new instance is, again, a struct that it unremarkable except that its super has been set to the
class. In this simple example there are, asyet, no instance variables. So the instance is an empty
struct. Diagramatically:

5

a_func

supg

instance

a_cl ass

an_i nst

a static

class

2

T8

We are now in a position to invoke the a_func method on our new instance with, say:

X = an_inst:a_func(3);

an_extern

1

externs

The transfer of control into the function creates a struct for auto variables as usual, but rather
than making the super of this struct the static scope the function was defined in, it is set to the

88 ThelClI Programming Language




. Sub-classes

instance that is the subject of this method call. Also, the local variables this and class are set
automatically. Diagramatically, just after the first line of code in the function is executed:

arg this cl ass
3 . .
autos
\ val ue
4
instance \\Q

a_func

class \
a_cl ass an_inst |a_static

2

statics \

an_extern

1

externs

After execution, x will be 6. Notice the use of the : = operator and the explicit use of thisto
force the creation of value in the instance. Otherwise it would have implicitly appeared asa
local variable. Thisis, of course, only required when the instance variable doesn't already exist.

Theinstance isanormal struct. Thus we can reference the value instance variable with:
an_inst.val ue

Note that the instance has the class and outer scopes in its super chain. Thus we can also refer

to:

an_inst.a func
an_inst.a static
an_inst.an_extern

Sub-classes

Sub-classes are class structs that have another class as their super. The following example illus-
trates a number of aspects of sub-classing:

static sub_class = [class:a_class
a_class _variable = 0,

new( hane)

{
0 = this:*new();
0. hane : = nane;

The ICl Programming Language 89



Chapter 5: Object-oriented programming in ICI

o.a_count := 0;
return o;

}

a_func()

{
this:”a _func();
++a_count;

}

l;

After parsing we have a variable sub_class whoes super isa_class. Diagramatically:

sub_cl ass a_cl ass
class class statics externs

To make a new instance of the sub-class we would execute:

subcl ass_inst = sub_class: new("a nane");

The new function was defined in the sub-class, overiding the global new function. In this case
new is aclass function that expects to be called on the class itself, not an instance of the class.
Thereis nothing that distinguishes class functions from ones that operate on an instance, except
their operation and documentation.

To complete its operation, the new function coded here needs to call the new of the super-class.
Todothisit usesthe: ~ operator which forms amethod, but using the super of the current value
of the class variable. There isn’t actually a new coded in the super-class, but it will find the glo-
bal new.

To work with sub-classes and overidden functionsit isimportant to understand how the thisand
class variables are set in method calls.

Consider the call:

subcl ass_inst:a_func();

90 ThelClI Programming Language



. Sub-classes

Before the first line of code is executed, the scope will ook like this:

cl ass this

subcl ass_i nst

' autos \ :
N

(AN sub_cl ass

instance :
LN
o =

a_cl ass
class \ V

class

statics

externs

The class variable has been set by the method call mechanism to the class of the function being
called. Functions being parsed within the scope of a class definition record their class, so it was
not the super of the instance that set the class variable, but the class recorded by the function.

Thefirst thing the sub-class a_func function doesis call the same function in its super-class.
Upon arrival in that function, the scope will look like:

cl ass this

subcl ass_i nst

autos :
R

RN sub_cl ass

instance :
Y

a_cl ass

class

statics

externs

In short, the class variable is always the class of the function, irrespective of any sub-classing

the instance may be derived from (or any funny business done by changing the super of the
instance).

The ICl Programming Language 91



Chapter 5: Object-oriented programming in ICI

Finally, note that class variables can simply be included in the class definition (as shown by
a class variablein the example). They exist in the class and have no effect on any instance.

Global methods

As has been seen, the static scope present when a class is defined forms the super for the class.
In effect, the outer scopes can be considered outer classes. Functions defined in those scopes
may, if appropriately coded, be class functions for these hypothetical top-level classes. For
example, we could define a default debug method that we expect some classes to override:

extern
dunp()
{
forall (k, v in this)
printf("%=%, ", string(k), v);
printf("\n");

}

This function would be available to all instances of al classes. The class of such afunctionis
the scope it was defined in.

Taking advantage of dynamic binding

All name binding is dynamic in ICl. Thisleadsto a number of common constructs that are wor-
thy of highlighting, because they are not seen in statically bound languages such as C++.

The commonest of these is polymorphic functions that work equally well with any object
instance that falls within the scope of their definition, irrespective of its class. We saw asimple
example of this above with the dump function. That function had no prerequisites on the object
it was applied to. But in real applicationsit is more common to define functions that state they
will do blah, providing the instance they are applied to has fields called whatever, that can be
interpreted in such-and-such away. For example:

/*
* Return the distance across the diagonal of the

* boundi g box for any object that support a boundi ng
* box recorded as xmn, xmax, ymn, ymax.

*/
extern
bbox_di agonal ()
{

dx = xmax - Xxmn;

dy = ymax - ymn;

return sqrt(dx * dx + dy * dy);
}
/*
* ow the boundi ng box of the object to ensure it
* will account for a r radian rotation of any object
* contained within the original bounding box. The
* boundi ng box is assuned to be recorded in xmn,
* xmax, ymin, ymx.
*/
extern

92 ThelCl Programming Language



: Standard global methods

bbox_grow for_rotation(r)

{
}

ICl does not support multiple inheritance as such. But it is common and useful to use composite
classes and/or global methods that provide the same effect.

Sandard global methods

The standard global methods availableto all ICl instances or classes are summarised below. See
the chapter on core language functions for detailed descriptions of each:

i nst: copy() Returnsacopy of inst as per the copy function. May be appliedto an
instance or aclass.

inst:isa(class) Returnslifinstisorisderivedfrom class, else 0. May be applied
to an instance or aclass.

cl ass: new() Returns a new instance of class.

i nst: respondst o( nane)
Returns 1 if inst supports afunction called name, else 0. May be ap-
plied to an instance or a class.

The ICI Programming Language 93



Chapter 5: Object-oriented programming in ICI

94 ThelClI Programming Language



CHAPTER 6

Corelanguagefunctions
and variables

Core function summary

The following list summarises the standard functions. Following thisis a detailed descriptions

of each of them.

float|int = abs(float]|int)

float = acos(nunber)
mem = alloc(int [, int])

string = argv[]

array = array(any...)

float = asi n(numnber)
any = assign(struct, any, any)

float = atan(nunber)

float = atan2(nunber, nunber)

array|struct = build(dims... [, options, content...])

float|struct

= cal endar (struct|fl oat)

any = call (func [, arg...], args)
float = ceil (nunber)
chdir(string)
close(file)
int = cnp(a, b)
any = copy(any)
any = any: copy()
float = cos(nunber)
float = cputine([foat])
file = currentfile([string])
int = debug([int])
del (aggr, any)
array = dir([path], [, regexp] [, format])
int = eof(file)

The ICI Programming Language 95



Chapter 6: Core language functions and variables

fl oat
array

any
fl oat
fl oat

i nt
fl oat

eq(any, any)
event | oop()
exit([int]string| NULL])
exp( nunmber)

expl ode(string)

fail (string)

fetch(struct, any)

= fl oat (any)
= fl oor (numnber)
= flush([file])

= fnmod( nunber,

file =
= getchar([file])
= getcwd()

= getenv(string)
= getfile([file])
= getline([file])

string
string
string
string
string
string
array
string
string
struct
i nt
string|array
i nt

i nt
array
any

f1 oat
fl oat
nmem
file

i nt

i nst
f1 oat
int]float
struct
string
any
string
any

fl oat

= gettoken([file|string [,string]])
= gettokens([file|string [,string [,string]]])
= gsub(string,

nunber)
fopen(string [, string])

regexp, string)

= i npl ode(array)

= include(string [,
= int(any [,
= interval (string|array,

struct])
int])
int [,

= inst|class:isa()
= i sat omany)

= keys(struct)

= | oad(string)

= | og( nunber)

= 1 0g10( number)

men(int, int [,int])
nmopen(string [, string])

= nel s(any)
= class:new...)

= now()

= nun(string|int|float [,
= parse(file|string [

int])
struct])

= parsetoken(file)
= parseval ue(file)
= path[]

= pop(array)

file =

popen(string [, string])
pow( nunber, numnber)
printf([file,] string |
profile(fil enane)

96 ThelCl Programming Language

any. ..



Corefunction summary:

any

i nt

regexp
regexp

i nt
any

struct

i nt

set

string| func
string

f1 oat

array
file
array
string
f1 oat
string
string
string
struct
string
struct
i nt

fl oat
exec
string
i nt
any
any

i nt
string
string
array

struct

push(array,
put (string [

putenv(string [,

rand([int])
reclai m)

any)
, file])
string])

regexp(string)

regexpi (stri
rej ect char (f
rejecttoken(

ng)
ile)
file)

renove(string)

renane(string
= inst|class:r
= rpop(array)

rpush(array,

string)
espondst o(string)

any)

= scope([struct])
= seek(file, i
= set(any...)
= signal (int]|string [,
= signam(int)
= si n(nunber)

nt, int)

func|string])

sl eep( nunber)

= smash(string [,
sopen(string [,
= sort(array,

= sprintf(stri
= sqrt (nunber)
= strbuf ([stri
= strcat(string [,
= string(any)

= struct (any,

= sub(string,

= super (struct
= systen(string)
= tan(nunber)
= thread(callable [,
= tochar (int)
= toint(string)
= t okenobj (fi

= top(array [,
= trace(string)
= typeof (any)

= version()

= vstack([int]

wakeup(any)
whi ch(key [,

regexp [, string...] [, int]]);
string])

func [, arg])
ng [, any...])

ng])

int] , string...)

any...)
regexp, string)
[, struct])

args...])

e)
int])

)

struct])

The ICl Programming Language 97



Chapter 6: Core language functions and variables

Core language functions

float|int = abs(float]|int)

Returns the absolute value of its argument. Theresult isan int if the argument isanint, afloat if
itisafloat.

angl e = acos(x)

Returns the arc cosine of xin the range 0 to pi.

mem = al l oc(nwords [, wordz])

Returns a new mem object referring to nwords (an int) of newly alocated and cleared memory.
Each word is either 1, 2, or 4 bytes as specified by wordz (an int, default 1). Indexing of mem
objects performs the obvious operations, and thus pointers work too.

string = argv[]

An array of strings containing the command line arguments set at interpreter start-up. The first
element is the name of the ICl program and subsequent elements are the arguments passed to
that program.

On Windows platforms ICI performs wildcard expansion in the traditional MS-DOS fashion.
Arguments containing wildcard meta-characters, ‘? and ‘*’, may be protected by enclosing
them in single or double quotes. On UNIX-like systems, the operating environment is expected
to handle this.

array = array(any...)
Returns an array formed from all the arguments. For example;

array()

will return a new empty array; and

array(1, 2, "a string")

will return anew array with three elements, 1, 2, and "the string".

Thisisthe run-time equivalent of the array literal. Thus the following two expressions are
equivalent:

$array(1, 2, "a string")

[array 1, 2, "a string"]

float = asin(x)

Returnsthe arc sine of x in the range -pi/2 to pi/2.

val ue = assign(struct, key, val ue)
Setsthe element of struct identified by key to value, ignoring any super struct. Returns value.

98 ThelCl Programming Language



Core language functions: angl e = at an(x)

angl e = atan(x)

Returns the arc tangent of x in the range -pi/2 to pi/2.

angle = atan2(y, Xx)

Returns the angle from the origin to the rectangular coordinates x, y (floats) in the range -pi to
pi.

array|struct = build(dins... [, options, content...])

Build allows construction of aregular data structure such as a multi-dimensional array or an
array of structures. dims... is a sequence of dimension specifications. For example:

bui | d(20, 10);

returnsa 20 x 10 array of NULLs (that is, an array of 20 arrays, each of size 10).
Each dimension specification is either:

anint causing an array of that many elementsto be made and have every
element set through recursive application on subsequent dimen-
sions, or

an array causing a struct with the elements of the array as keysto be made
and each value set through recursive application on subsequent di-
mensions.

So, for example:
build(10, [array "x", "y"], 2)

Returns an array of ten structures, each with fieldsx and y. Each field is set to an array of length
2.

If options and content... are supplied, they may be used to supply initialising data to the leaf
fields of the data structure rather than the default NULL. Optionsis a string, which may be:

c" Cyclical. The content is used and assigned cyclically to leaf items.

r Restart. The content is used and assigned cyclicly, but the content
list is also restarted from the first item on the commencement of
each bottom level aggregate.

Last repeats. The content is used and assigned in sequence to |eaf
items, but once it is exhausted, the last content item is used repeat-
edly for subsequent leaf items.

Arrays. Each of the content items must be an array. Content istaken
firstly from thefirst element of each array in turn, then from the sec-
ond element of each in turn etc. If any array istoo short, NULL is
used asthe vaue.

Integer increment. The content is incrementing integer values. The
first content value, if given isthe start value, default 0. The second
content value, if given, isthe step, default 1.

So, for example, supposing names_array is an array of names of some sort:

bui l d(names_array, [array "count", "sum'], "c", 0, 0.0)

The ICl Programming Language 99



Chapter 6: Core language functions and variables

will return a struct which, when indexed by a name in names_array reveals a struct with fields
count and sum initialised to 0 and 0.0 respectively.

Also:
build(50, "i", 1, 2)

will return an array filled with the odd integers from 1 to 99.
Finally, if namesisan array of names of some sort and valuesis a corresponding array of values:

bui I d(nel s(nanmes), [array "nane", "value"], "a", nanes, val ues)

will transpose them into an array of structs, each with a name and value field.

float|struct = calendar(struct]|float)

Converts between calendar time and arithmetic time. An arithmetic timeis expressed as a
signed float time in seconds since 0:00, 1st Jan 2000 UTC. The calendar time is expressed as a
structure with fields revealing the local (including current daylight saving adjustment) calendar
date and time. Fieldsin the calendar structure are;

second The float number of seconds after the minute.
minute The int number of minutes after the hour.
hour The int number of hours since midnight.

day The day of the month (1..31).

month The int month number, Janis 0.

year Theint year.

wday The day since Sunday (0..6)

yday Days since 1st Jan.

When converting from alocal calendar time to an arithmetic time, the fields second, minute,
hour, day, month, year are used. They need not be restricted to their nomal ranges.

return = call (func [, any...], array| NULL)

Calls the function func with the arguments any... plus arguments taken from the array. If array
isNULL itisignored, else it must be an array. Returns the return value of the function.

This s often used to pass on an unknown argument list. For example:

static
db()

{

aut o vargs;

i f (debug)
return call (printf, stderr, vargs);

100 ThelCl Programming Language



Core language functions: fl oat = ceil (x)

float = ceil (x)

Returns [x7] (the smallest integral value greater than or equal to X) as afloat, where xisa
number (int or float).

chdi r ( pat h)

Change the current working directory to the specified path.

close(file)

Close the given file, releasing low level system resources. After this operation thefile object is
still avalid object, but 1/0 operationson it will fail. (File object that are lost and collected by the
garbage collector will be closed. But due to the indeterminate timming of this, it is preferable to
close them explicitly.)

On some files and systems this may block, but will alow thread switching while blocked.

int = cmp(a, b)

Returns-1, 0 or 1 depending if a< b, a== b, or a> b. The operands may be any type for which
the < and > operators are defined. Thisis the default comparison function for sort().

any = copy(any)

Returns a copy of an object. That is, an object that is distinct (not eq) but of equal value (==),
unless the object is intrinsically atomic or unique (in which case the original object is returned).

any = any: copy()
The method form of copy(). Otherwise as above.

X = cos(angl e)

Returns the cosine of angle (afloat interpreted in radians).

float = cputime([float])

Returns the accumulated CPU time of the current process in seconds. The precision and accu-
racy is system dependent.

If float is supplied it specifies anew origin, relative to the value being returned, from which sub-
sequent calls are measured. Mostly commonly the value 0.0 is used here.

file = currentfile(["raw'])

Returns afile associated with the innermost parsing context, or NULL if there is no module
being parsed. By default currentfile() returns a new file object that gives“ cooked” access that
layers on top of the parser’s access to the file. This maintains line number tracking and normal-
ises differing newline conventions to single newline characters even for binary files. Such afile
issutiable to calls to parsetoken(). If the string " r aw' is given as an argument, the underlying
filethat is being parsed is returned directly, by-passing such operations.

The ICl Programming Language 101



Chapter 6: Core language functions and variables

This function can be used to include data in a program source file which is out-of-band with
respect to the normal parse stream. But to do thisit is necessary to know up to what character in
the file in question the parser has consumed.

In general: after having parsed any simple statement the parser will have consumed up to and
including the terminating semicolon, and no more. Also, after having parsed a compound state-
ment the parser will have consumed up to and including the terminating close brace and no
more. For example:

static help = gettokens(currentfile(), "", "!")[0]

;This is the text of the hel p message.

It follows exactly after the ; because
that is exactly up to where the parser

wi Il have consumed. We are using the
gettokens() function (as described bel ow)

to read the text.
!

static otherVariable = "etc...";

In the examples shown above, the default cooked mode is used so that line numbers are tracked
and stay in sync for subsequence diagnostics. If the raw mode was used the parser would never
see the data read out-of-band and would not realise how many lines have been skipped, thus
giving inaccurate reports of line numbers on errors later in the file.

This function can also be used to parse the rest of afile within an error catcher. For example:

try
parse(currentfile(), scope())
onerror
printf("That didn't work, but never mnd.\n");

static this = that;
etc();

The functions parse and scope are described below.

int = debug([int])
Returns the current debug status, and, if anint is supplied as an argument, set it to that value.
When debugging is enabled, certain events such as each new source line, each function call and

return, and errors, are passed to any active debugger. Debuggers are typically dynamically
loaded extension modules that register themselves with the interpreter through an internal API.

del (aggr, key)

Deletes an element of aggr, which must be a struct, a set or an array, as identified by key. Any
super structs areignored. For structs and setsthisis an efficient operation. For arraysit is O(n)
where n isthe length from the index key, to the nearest end of the array (that is, either the begin-
ning of the end). If key is not a current element of aggr there is no effect and no error. Returns
NULL.

For example:

102 ThelCl Programming Language



Core language functions: array = dir([path,] [regexp,] [format])

static s = [struct a =1, b =2, ¢ = 3];
static v, k;
forall (v, k in s)
printf("%=%\n", k, v);
del (s, "b");
printf("\n");
forall (v, k in s)
printf("%=%\n", k, v);

When run would produce (possibly in some other order):

array = dir([path,] [regexp,] [format])

Read directory named in path (a string, defaulting to ".", the current working directory) and
return the entries that match the regexp as an array of strings (or all namesif no regexp is
passed). The format string identifies what sort of entries should be returned. If the format string
is passed then a path MUST be passed (to avoid any ambiguity) but path may be NULL mean-

ing the current working directory (same as"."). The format string uses the following characters,

f Return file names.
d Return directory names.
a Return all names (which includes things other than files and direc-

tories, e.g., hidden or special files).
The default format specifier is"f".

Note that when using dir() to traverse directory hierarchiesthat the“.” and “..” names are
returned when listing the names of sub-directories, these will need to be avoided when travers-

ing.

int = eq(obj1, obj2)

Returns 1 (one) if obj1 and obj2 are the same object, else 0 (zero). Note that thisis more strict
than the == operator, which tests whether two objects have equal value.

int = eof ([file])

Returns non-zero if end of file has been read on file. If fileis not given the current value of stdin
in the current scope is used.

event | oop()

Enters an internal event loop and never returns. The exact nature of the event loop is system
specific. Some dynamically loaded modules require an event loop for their operation. Allows
thread switching while blocked.

The ICl Programming Language 103



Chapter 6: Core language functions and variables

exit([string|int|NULL])

Causes the interpreter to finish execution and exit. If no parameter, the empty string or NULL is
passed the exit status is zero. If an integer is passed that is the exit status. If a non-empty string
is passed then that string is printed to the interpreter’s standard error output and an exit status of
one used.

float = exp(x)

Returns the exponential function of x, that is €”.

array = expl ode(string)

Returns an array containing each of the integer character codes of the charactersin string.

fail (string)

Causes an error to be raised with the message string associated with it. See the section on error
handling in the try statement above. For example:

if (gqf > 255)
fail (sprintf("Q factor %l is too large", qf));

value = fetch(struct, key)

Returns the value from struct (which actually may be any type of object) associated with key,
ignoring any supers. Returns NULL if key is not an element of struct.

value = fl oat (x)

Returns afloating point interpretation of x, or 0.0 if no reasonable interpretation exists. x should
beanint, afloat, or astring, else 0.0 will be returned.

float = floor(x)

Returns | x] (thelargest integral value less than or equal to X) as afloat, where x is a number
(int or float).

flush([file])

Flush causes data that has been written to the file (or stdout if absent), but not yet delivered to
the low level host environment, to be deliverd immediately.

On some files and systems this may block, but will allow thread switching while blocked.

float = frmod(x, vy)

Returnsthe float remainder of x/y where x and y are numbers (int or float). That is, x—i x y for
some integer i such that the result has the same sign as x and magnitude less than y.

104 ThelCl Programming Language



Core language functions: fil e = fopen(nane [, node])

file = fopen(nane [, node])

Opens the named file for reading or writing according to mode and returns afile object that may
be used to perform I/O on the file. mode is the same asin C and is passed directly to the C

library f open function. If mode is not specified " r " is assumed.
On Windows, directory separators may be either / or \ characters.
On some files and systems this may block, but will alow thread switching while blocked.

Note that thisis one of many open functions. Different open functions open different types of
files, like astandard 1/O filein this case, and a string in the case of sopen. However, oncethefile
is open, the same I/O functions and close function are used for all types of files.

string = getchar([file])

Reads a single character from file and returns it as a string. Returns NULL upon end of file. If
fileis not given, the current value of stdin in the current scopeis used.

On some files and systems this may block, but will alow thread switching while blocked.

string = getcwd()

Returns the name of the current working directory.

string = getenv(string)

Returnsthe value of an environment variable. (Under Windows only, a case insensitive match is
done to work around some bugs in Windows.)

string = getfile([file])

Reads all remaining data from file and returnsit asastring. If fileis not given, the current value
of stdin in the current scope isused. If fileis astring, it istaken as afile name and opened and
closed using the current values of fopen and close in the current scope.

On some files and systems this may block, but will alow thread switching while blocked.

string = getline([file])

Reads aline of text from file and returnsit as a string. Any end-of-line marker is removed.
Returns NULL upon end of file. If fileis not given, the current value of stdin in the current scope
is used.

On some files and systems this may block, but will alow thread switching while blocked.

string = gettoken([file [, seps]])
Read atoken (that is, a string) from file (which may be afile or a string).

seps must beastring. Itisinterpreted asaset of characterswhich do not from part of the token.

Any leading sequence of these charactersisfirst skipped. Then a sequence of characters not in
sepsisgathered until end of file or acharacter from sepsisfound. Thisterminating character is
not consumed. The gathered string is returned, or NULL if end of file was encountered before

any token was gathered.

The ICl Programming Language 105



Chapter 6: Core language functions and variables

If fileis not given the current value of stdin in the current scope isused. If fileisastring, char-
acters are read from the string.

If sepsisnot given the string " \t\n" is assumed.

Currently, even if blocked while reading a file gettoken is indivisible with repect to other
threads. This may be corrected in future versions.

array = gettokens([file [, seps [, terns, [delins]]]])

Read tokens (that is, strings) from file. The tokens are character sequences separated by seps
and terminated by terms. Returns an array of strings, NULL on end of file.

If sepsisastring, it isinterpreted as a set of characters, any sequence of which will separate one
token from the next. In this case leading and trailing separatorsin the input stream are dis-
carded.

If sepsisan integer it isinterpreted as a character code. Tokens are taken to be sequences of
characters separated by exactly one of that character.

Terms must be astring. It isinterpreted as a set of characters, any one of which will terminate
the gathering of tokens. The character which terminated the gathering will be consumed.

delims must be a string. It isinterpreted as a set of self-delimiting single character tokens that
will be seperated out as single character strings in the resulting array.

If fileis not given the current value of stdin in the current scope will be used.
If sepsisnot given the string " \t" is assumed.
If termsis not given the string "\n" is assumed.

If delimsis not given the string " is assumed.

For example:

forall (token in gettokens(currentfile()))
printf("<%>", token)

; Thi s is my line of dat a.

printf("\n");

when run will print:

<Thi s><i s><ny><| i ne><of ><dat a. >

Whereas:

forall (token in gettokens(currentfile(), ':', "*", "$"))
printf("<%>", token)

; - abc: : def $: ghi: *

printf("\n");

when run will print:

<><abc><><def ><$><ghi ><>

Currently, even if blocked while reading afile gettokens is indivisible with respect to other
threads. This may be corrected in future versions.

106 ThelCl Programming Language



Core language functions: string = gsub(string, string|regexp, string)

string = gsub(string, string|regexp, string)

gsub performstext substitution using regular expressions. It takesthefirst parameter, matchesit
against the second parameter and then replaces the matched portion of the string with the third
parameter. If the second parameter isastring it is converted to aregular expression asif the
regexp() function had been called. gsub does the replacement multiple times to replace all
occurrances of the pattern. It returns the new string formed by the replacement. If thereis no
match thisis original string. The replacement string may contain the specia sequence “\&”
which isreplaced by the string that matched the regular expression. Parenthesized portions of
the regular expression may be matched by using \n where n is a decimal digit.

For example:

X = gsub("abc xbz xyz", #(.)b(.)#, "\\2b\\1");

will result is x having the value:

"cba zbx xyz"

Notice that double backslashes were needed in the replacement string to get the single backslash
required.

string = inpl ode(array)

Returns a string formed from the concatenation of el ements of array. Integersin the array will
be interpreted as character codes; strings in the array will be included in the concatenation
directly. Other types areignored.

struct = include(string [, scope])

Parses the code contained in the file named by the string into the scope. If scope is not passed
the current scope is used. include always returns the scope into which the code was parsed. The
fileis opened by calling the current definitions of the fopen and close in the current scope.

include first attempts to open the file exactly as named. If that failes, it looks for the file using
the directories named in the path variable in the current scope (see path above).

value = int(any [, base])

Returns an integer interpretation of any, or O if no reasonabl e interpretation exists. any should be
anint, afloat, or astring, else O will bereturned. If any isastring and baseis zero or absent, any
will be converted to an int depending on its appearance; applying octal and hex interpretations
according to the normal 1Cl source parsing conventions. (That is, if it startswith aOx it will be
interpreted as a hex number, elseif it startswith a0 it will be interpreted as an octal number,
elseit will beinterpreted as adecimal number). If baseis present and non-zero, it must be an int
in the range 2..36, and it will be used as the base for intepretation of the string.

subpart = interval (str_or_array, start [, |length])
Returns asub-interval of str_or_array, which may be either a string or an array.

If start (an integer) is positive the sub-interval starts at that offset (offset O isthe first element).
If start is negative the sub-interval starts that many elements from the end of the string (offset -
listhe last element, -2 the second last etc).

The ICl Programming Language 107



Chapter 6: Core language functions and variables

If length is absent, all the elements from the start are included in the interval. Otherwise, if
length is positive that many elements are included (or till the end, whichever is smaller). Other-
wise (i.e. length is negative) that much less than the number of elementsin the str_or_array is
used.

For example, the last character in a string can be accessed with:

last = interval (str, -1);

And the first three elements of an array with:

first3 = interval (ary, 0, 3);

And all except the last three elements of an array with:
first3 = interval (ary, 0, -3);

int = inst|class:isa(any)

Returns 1 if inst or class or any of their super classesisequal to any, else 0. That is, if inst or
classisa, or isasub-class of, any.

int = isatonmany)

Return 1 (one) if any isan atomic (read-only) object, else 0 (zero). Notethat integers, floats and
strings are always atomic.

array = keys(struct)

Returns an array of all the keys from struct. The order isnot predictable, but is repeatable if no
elements are added or deleted from the struct between calls and is the same order astaken by a
forall loop.

any = | oad(string)

Attempt to load a library named by string. Thisisthe explicit form of the automatic library
loading described in “ Automatic library loading” on page 84. Thelibrary isloaded in the same
way and the resulting object returned. (Actually, thisisthe real core mechanism. The automatic
mechanis calls the function load() in the current scope to load the module. Thus overiding
load() allows control to be gained over the automatic mechanism.)

float = I og(x)

Returns the natural logarithm of x (afloat or an int).

float = 10g10(x)
Returns the log base 10 of x (afloat or anint).

mem = nen(start, nwords [, wordz])

Returns amemory object which refersto a particular area of memory in the ICl interpreter's
address space. Notethat thisis a highly dangerous operation. Many implementations will not
include this function or restrict its use. It is designed for diagnostics, embedded systems and
controllers. See the alloc function above.

108 ThelCl Programming Language



Core language functions: fil e = nopen(nmem [, node])

file = nopen(nmem [, node])

Returns afile, which when read will fetch successive bytes from the given memory object. The
memory object must have an access size of one (see alloc and mem above). The fileisread-only

and the mode, if passed, must beoneof " r" or"rb".

int = nel s(any)

Returns the number of elementsin any. The exact meaning depends on the type of any. If any
isan:

array the length of the array isreturned; if itisa

struct the number of key/value pairsisreturned; if itisa

set the number of elementsisreturned; if itisa

string the number of charactersisreturned; and if itisa

mem the number of words (either 1, 2 or 4 byte quantities) is returned;

and if it isanything else, oneis returned.

inst = class: new)

Creates a new instance of the given class. In practice new is often also defined in sub-classes.
Thisisthe global new. The new inst will be afresh struct with class as its super.

float = now()

Returns the current time expressed as a signed float time in seconds since 0:00, 1st Jan 2000
UTC.

nunber = num(x [, base])

If xisanint or float, it isreturned directly. If xisastring and base is zero or absent, x will be
converted to an int or float depending on its appearance; applying octal and hex interpretations
according to the normal ICl source parsing conventions. (That is, if it startswith aOx it will be
interpreted as a hex number, elseif it startswith a0 it will be interpreted as an octal number,
elseit will beinterpreted as adecimal number.) If base is present and non-zero, it must be an int
in the range 2..36, and it will be used as the base for intepretation of the string.

If x can not be interpreted as a number the error %s is not a number is generated.

scope = parse(source [, scope])

Parses source in anew variable scope, or, if scope (a struct) is supplied, in that scope. Source
may either be afile or astring, and in either caseit isthe source of text for the parse. If the parse
is successful, the auto scope structure of the sub-module isreturned. If an explicit scope was
supplied this will be that structure.

If scopeisnot supplied a new struct is created for the auto variables. Thisstructureinturnis
given anew structure as its super struct for the static variables. Finally, this structure's super is
set to the current static variables. Thus the static variables of the current module form the
externs of the sub-module.

If scopeissupplied it isused directly as the scope for the sub-module. Thus the base structure
will be the struct for autos, its super will be the struct for statics etc.

The ICl Programming Language 109



Chapter 6: Core language functions and variables

For example:

static x = 123;
parse("static x = 456;", scope());
printf("x = %d\n", x);

When run will print:

X = 456

Whereas:

static x = 123;
parse("static x = 456;");
printf("x = %d\n", x);

When run will print:

x = 123

Note that while the following will work:

par se(fopen("my-nodule.ici"));

Itispreferablein alarge program to use:

parse(file = fopen("ny-nodule.ici"));
close(file);

In the first case the file will eventually be closed by garbage collection, but exactly when this
will happen is unpredictable. The underlying system may only alow alimited number of simul-
taneous open files. Thusif the program continues to open files in this fashion a system limit
may be reached before the unused files are garbage collected. See also include().

string = parsetoken(file)

parsetoken uses the interpreter’s internal lexical analyser to read the next language token (as
described in “Thelexical analyser” on page 39) from the given file. The file must be one of the
special fileslayered on top of ICl’s parser, as returned by currentfile() or passed to a parser
function in auser-parsed literal factor (See “User defined literal factors’ on page 47). parseto-
ken skips white-space; which includes comments and lines starting with a #.

parsetoken returns a string, or NULL on end-of-file. The string isthe literal text of the token for
the following simple self-delimiting tokens:

* / % + - >>
<< < > <= >= ==
| = ~ | ~ ~— ~—— &
&& [ ] ?
= T = += .= * = /=
(7= >>= <<= = A= | =
—= <= () )
[ ] . -> [ ++
-- : $ N @ ;

110 ThelCl Programming Language



Core language functions: any = parseval ue(file)

For identifiers, regular expressions, strings, ints and floats, the following strings are returned:

nane regexp string i nt fl oat

however the associated value must be obtained by calling tokenobj() to find the actual identifier
(astring), regular expression, string, int or float.

Onreturn, the next character available to be read from the input stream will bethe first character
that is not part of the returned token. See also rejecttoken().

any = parseval ue(file)

parseval ue parses and evaluates an expression from the given file. The file must be one of the
special fileslayered on top of ICl’s parser, as returned by currentfile() or passed to a parser
function in auser-parsed literal factor (See“User defined literal factors’ on page 47). parse-
val ue skips white-space; which includes comments and lines starting with a #.

On return, the next token (as readable by parsetoken()) will be the first token that is not part of
the expression. However, the next character (as readable by getchar()) may be somewherein
advance.

string = path[]

path isan array or directory names (strings) that is set by the ICI interpreter at startup, and may
be modified from time to time by the executing ICI program. The current value of the the path
variablein the current scopeis used by the automatic module loading mechanism and the
include() function as asearch path for files. Typically these mechanismswill end up referencing
this path variable which is defined in the outermost scope.

Theinitial value of the path array is set in a slightly system dependent manner:

UNIX-like systems Thefirst elements are taken from the ICIPATH environment vari-
able. Each directory name must be separated by a: (colon) in the
usual manner. Then, wherethey exist, “/usr/local/lib/ici4”, “/opt/lib/
ici4”, and “/sw/lib/ici4” are included.

Thereafter the PATH environment variable is considered and for
each element that endsin“/bin”, the*/bin” isreplaced by “/lib/ici4”
and if that directory is accessable, it isincluded. (The usual installa-
tion for ICI on UNIX like systems places the ici executablein /usr/
local/bin, and externsion modulesin /usr/local/lib/ici4).

Windows The first elements are taken from the | CIPATH environment vari-
able. Each directory name must be separated by a; (semicolon) in
the usual Windows manner.

Thereafter the following directories are included: the directory of
the current executing module, the“ici” subdirectory of that directory
(if any), “.” (i.e. the current directory), the Windows system direc-
tory, the “ici” subdirectory of the Windows system directory (if
any), the Windows directory, the “ici” subdirectory of the Windows
directory (if any).Thereafter, elementsfrom the PATH environment
variable. (Thissequence similar to the normal WindowsDLL search

order.)

In all cases, if adirectory has already been added in an earlier position, or if the directory can
not be accessed, it is not included.

The ICl Programming Language 111



Chapter 6: Core language functions and variables

any = pop(array)
Returnsthelast element of array and reduces the length of array by one. If the array was empty
to start with, NULL is returned.

file = popen(string, [node])

Executes a new process, specified as a shell command line as for the system function, and
returns afile that either reads or writes to the standard input or output of the process according
to mode. If modeis" r ", reading from the file reads from the standard output of the process. If
modeis" W' writing to the file writes to the standard input of the process. If mode is not spec-
ified it defaultsto ™ r " .

On some commands and systems this may block, but will allow thread switching while blocked.

(popen is not currently available on Windows. This may be corrected in a future version.)

float = powm(x, V)
Returns x*y where both x and y are floats.

printf([file,] fm, args...)

Formats a string based on fmt and args as per sprintf (below) and outputs the result to the file or
to the current value of the stdout variable in the current scope if the first parameter is not afile.
The current stdout must be afile. See sprintf.

On some files and systems this may block, but will alow thread switching while blocked.

profile(filenane)

Enables profiling within the scope of the current function (must be called within a function).
This profiler measures actual elapsed time so it's only very useful for quite coarse profiling
tasks. The filename specifies afile to write the profiling records to once it is complete. The pro-
filing completes when the function profile() was called from returns. The file contains are-pars-
able ICI data structue of the form:

auto profile = [struct
total = <tine in ms for this call>,
call _count = <nunber of call to this func>,
calls = [struct <nested profile structs...>],

1
For example, the following program:

static
count 10000()

{
j =0
for (i = 0; i < 10000; ++i)
AR

}

static
count 20000()

112 ThelCl Programming Language



Core language functions: any = push(array, any)

{ count 10000() ;
count 10000() ;

}

static

prof ()

{
profile("prof.txt");
count 10000() ;
count 20000() ;

}

prof ();

Would produce afile “ prof.txt” filelooking something like:

auto profile = [struct
total = 153,
call _count = 0,
calls = [struct
("count20000()") = [struct
total = 96,
call _count = 1,
calls = [struct
("count 10000()") = [struct
total = 96,
call _count = 2,
calls = [struct
1.
1.
1.
1.
("count 10000()") = [struct
total = 57,
call _count = 1,
calls = [struct
1.
1.
1

any = push(array, any)

Appends any to array, increasing its length in the process. Returns any.

put (string [, file])
Outputs string to file. If file is not passed the current value of stdout in the current scopeis used.

put env(string)

Sets an environment variable. string must be of the forms name=val ue.

The ICI Programming Language 113



Chapter 6: Core language functions and variables

int = rand([seed])

Returns a pseudo random integer in the range 0..0x7FFF. If seed (an int) is supplied the random
number generator isfirst seeded with that number. The sequenceis predictable based on agiven
seed.

reclai m)

Force a garbage collection to occur.

re = regexp(string [, int])

Returns a compiled regular expression derived from string Thisis the method of generating
regular expressions at run-time, as opposed to the direct lexical form. For example, the follow-
ing three expressions are similar:

str ~ #*\.c#
str ~ regexp("*\\.c")
str ~ $regexp("*\\.c")

except that the middle form computes the regular expression each timeit is executed. Note that
when aregular expression includes a # character the regexp function can be used, as the direct
lexical form has no method of escaping a#. (Although you can concatenate it with a string.)

The optional second parameter is a bit-set that controls various aspects of the compiled regular
expression’s behaviour. Thisvalueis passed directly to the PCRE package's regular expression
compilation function. Presently no symbolic names are defined for the possible values and
interested parties are directed to the PCRE documention included with the ICl source code.

Note that regular expressions are intrinsically atomic. Also note that non-equal strings may
sometimes compile to the same regular expression.

re = regexpi(string [, int])

Returns a compiled regular expression derived from string that is case-insensitive. |.e., the
regexp will match a string regardless of the case of alphabetic characters. Literal regular
expressions to perform case-insensitive matching may be constructed using the special PCRE
notation for such purposes, see the chapter on regular expressions for details.

rejectchar(file, str)

Wherefile is one of the specia fileslayered on top of theinterpreter’sinternal parser (as
returned by currentfile() or passed to aparser function in a user-parsed literal factor as described
in“User defined literal factors” on page 47), and str is the single character string read by an
immediately proceeding call to getchar() on thefile, rejectchar pushesthe character back on the
stream so it is available to be read by a subsequent call to getchar() or by the interpreter’s inter-
nal parser.

rejecttoken(file)

Causes the token read by a preceeding call to parsetoken() to be pushed back on the input
stream and thus be avail able for re-reading by a subsequent call to parsetoken() or by the inter-
preters own parser. The file must be one of the specia files layered on top of the interpreter’s
internal parser, and the last operation on the file must have been a call to parsetoken(). Note that

114 ThelCl Programming Language



Core language functions: renove(stri ng)

this operation does not effect the file read position with respect to direct character 1/0 by func-
tions such as getchar ().

int = inst|class:respondsto(nane)

Returns 1 if inst or class supports afunction called name, else 0.

remove(string)

Deletes the file whose name is given in string.

rename( ol dnanme, newnane)

Change the name of afile. Thefirst parameter is the name of an existing file and the second is
the new name that it isto be given.

any = rpop(array)

Returns the first element of array and removes that element from array, thus shortening it by
one. If the array was empty to start with, NULL isreturned. After thisthe item that was at index
1will beatindex 0. Thisisan efficient constant time operation (that is, no actual datacopyingis
done).

any = rpush(array, any)

Inserts any as the first element of the array, increasing the length of array in the process. After
thisthe item that was at index O will be at index 1. The passed any is returned unchanged. This
is an efficient constant time operation (that is, no actual data copying is done).

current = scope([replacenent])

Returns the current scope structure. Thisis a struct whose base element holds the auto varia-
bles, the super of that hold the statics, the super of that holds the externs etc. Note that thisisa
real reference to the current scope structure. Changing, adding and deleting elements of these
structures will affect the values and presence of variables in the current scope.

If areplacement is given, that struct replaces the current scope structure, with the obvious
implications. This should clearly be used with caution. Replacing the current scope with a
structure which has no reference to the standard functions a so has the obvious effect.

int = seek(file, int, int)

Set the input/output position for afile and returns the new 1/0 position. The arguments are the
same as for the C library’s fseek function. The second argument is the offset to seek to and the
third is0, 1 or 2 dependng if the seek should be relative to the beginning, current position, or
end of thefile. If the file object does not support setting the 1/O position, or the seek operation
fails.

set = set(any...)
Returns a set formed from all the arguments. For example:

set ()

The ICI Programming Language 115



Chapter 6: Core language functions and variables

will return a new empty set; and

set(1l, 2, "a string")

will return a new set with three elements, 1, 2, and "the string".

Thisisthe run-time equivalent of the set literal. Thus the following two expressions are equiva-
lent:

$set (1, 2, "a string")

[set 1, 2, "a string"]

func = signal (string|lint [, string|func])

Allows control of signal handling to the process running the ICI interpreter. The first argument
isthe name or number of asignal. Signal numbers are defined by the system whilst the function
signam() may be used to obtain signal names. If no second argument is given, the function
returns the current handler for the signal. Handlers are either functions or one of the strings
“default” or “ignore”. If asecond argument is given the signal handler’s state is set accordingly,
either being reset to its default state, ignored or calling the given function when the signal
occurs. The previous signal handler is returned in this case.

string = signan(int)

Returns the name of asignal given its number. If the signal number is not valid an error is
raised.

X = sin(angle)

Returns the sine of angle (afloat interpreted in radians).

sl eep(num

Suspends execution of the current thread for num seconds (afloat or int). The resolution of num
is system dependent.

array = smash(string [, regexp [, replace...] [,
i ncl ude_r emai nder])

Returns an array containing expanded replacement strings that are the result of repeatedly
applying the regular expression regexp to successive portions of string. This process stops as
soon as the regular expression fails to match or the string is exhausted.

Each time the regular expression is matched against the string, expanded copies of al the
replace strings are pushed onto the newly created array. The expansion is done by performing
the following substitutions:

\O Is substituted with any |eading unmatched portion between the end
of the last match (or the start of the string if thisis the first match)
and the first character that was matched by this match.

\& Issubstituted with the portion of the string that was matched by this
application of the regular expression.

\1\2\3 ...

116 ThelCl Programming Language



Core language functions: fil e = sopen(string [, node])

I's substituted with the portions of the string that were matched by
the successive bracketed sub-portions of the regular expression.

\\ Is substituted with asingle\ character.

If the final argument, include_remainder, is supplied and is a non-zero integer, any remaining
unmatched portion of the string is also added as afinal element of the array. Else any unmatched
remainder is discarded.

If regexp is not supplied, the regular expression #\ n# is used. If no replace arguments are sup-
plied, the single string *\ 0" isused. Thus by default smash will break the given string into its
newline delimited portions (although it will discard any final undelimited line unless
include_remainder is specified).

For example:

lines = smash(getfile(f), 1);

will result in an array of al the lines of the file, with newlines characters discarded. While:

smash("ab cd ef", #(.) #, "x\\0", 1);

will result in an array of the form:

[array "xa", "xc", "ef"]

Noticethat it is generally necessary to use two backslash charactersin literal strings to obtain
the single backslash required here.

file = sopen(string [, node])

Returns afile, which when read will fetch successive characters from the given string. Thefile
is read-only and the mode, if passed, must beoneof " r" or" r b" , which are equivalent.

array = sort(array [, func [, arg]])

Sort the content of the array in-place using the heap sort algorithm with func as the comparison
function. The comparison function is called with two elements of the array as parameters, a and
b, and the optional arg. If aisequal to b the function should return zero. If aislessthan b, -1,
and if aisgreater than b, 1.

For example,
static conpare(a, b, arg)
{
return a<b?-1: a>b;
}

static a = array(1, 3, 2);
sort(a, compare);

If argisnot provided, NULL is passed. If func is not provided, the current value of cmp in the
current scope is used. See cmp(). Returns the given array.

The ICI Programming Language 117



Chapter 6: Core language functions and variables

string = sprintf(fnt, args...)

Return aformatted string based on fmt (astring) and args.... Most of the usual % format escapes
of ANSI C printf are supported. In particular; the integer format letters diouxXc are supported,
but if afloat is provided it will be converted to an int. The floating point format letters feEgG
are supported, but if the argument isan int it will be converted to afloat. The string format let-
ter, sis supported and requires astring. The % format to get a single % works. In addition to
these standard formats, a format letter of a (any) is supported. This takes any object and con-
vertsit to a short human readable form of less than 30 characters length, and thereafter behaves
as an s specification. This representation of an object is suitable for diagnostics only.

Theflags, precision, and field width options are supported. The indirect field width and preci-
sion options with * also work and the corresponding argument must be an int.

For example:

sprintf("9%8X <%ls> <% 4s>", 123, "ab", "cd")

will produce the string:

0000007B < ab> <cd >

and

sprintf("9@*X", 4, 123)

will produce the string:
007B

sprintf does not currently handle nul charactersin the fmt string. This may be corrected in future
releases.

x = sqrt(float)

Returns the sgquare root of float.

string = strbuf([string])

Returns a new non-atomic string that is either zero length, or, if astring argument is given, is
initilised with characters copied from that string. Thisisthe only function that produces non-
atomic strings. All other operations that produce strings make atomic (immutable, read-only)
strings. Note that a non-atomic string will not reference the same element of a struct as an
atomic string of equal value. See also strcat().

string = strcat(string [, int] , string...)

Copies string(s) onto the end of (or to some integer offset in) a given non-atomic string, extend-
ing the non-atomic string as necessary. The first argument must be a non-atomic string (see
strbuf() above). If the optional int argument is given, that offset from the start of the non-atomic
string will be the starting point for the placement of the concatenated string data, €l se the end of
the string is used. All the remaining string arguments are used as a source of characters to be
copied into the non-atomic string. The (updated) non-atomic string is returned.

118 ThelCl Programming Language



Core language functions: stri ng = string(any)

string = string(any)

Returns a short textual representation of any. If any isanint or float it is converted asif by a %d
or %g format. If itisastring it isreturned directly. Any other type will returnsits type name
surrounded by angle brackets, asin <struct>.

struct = struct([super,] key, value...)

Returns anew structure. Thisisthe run-time equivalent of the struct literal. If there are an odd
number of arguments the first is used as the super of the new struct; it must be astruct. The
remaining pairs of arguments are treated as key and value pairsto initialise the structure with;
they may be of any type. For example:

struct ()

returns a new empty struct;

struct (anot her St ruct)

returns a new empty struct which has another Sruct as its super;

struct("a", 1, "b", 2)

returns a new struct which has two entries a and b with the values 1 and 2; and

a", 1, "b", 2)

struct (anot her St ruct,

returns a new struct which has two entries a and b with the values 1 and 2 and a super of anoth-
er3ruct.

Note that the super of the new struct is set after the assignments of the new elements have been
made. Thus theinitial elements given as arguments will not affect values in any super struct.

The following two expressions are equivalent:

$struct (another Struct, "a", 1, "b", 2)

[struct:anotherStruct, a =1, b = 2]

string = sub(string, string|regexp, string)

Sub performs text substitution using regular expressions. It takes the first parameter, matches it
against the second parameter and then replaces the matched portion of the string with the third
parameter. If the second parameter isastring it is converted to aregular expression asif the
regexp function had been called. Sub does the replacement once (unlike gsub). It returns the
new string formed by the replacement. If there is no match thisisthe original string. The
replacement string may contain the special sequence\& which is replaced by the string that
matched the regular expression. Parenthesized portions of the regular expression may be
matched by using \n where nisadecimal digit. (Remember to use an extrabackslashin aliteral
string to get a single backslash. For example "\&".

current = super(struct [, replacenent])

Returns the current super struct of struct, and, if replacement is supplied, setsit to anew value.
If replacement isNULL any current super struct referenceis cleared (that is, after this struct
will have no super).

The ICI Programming Language 119



Chapter 6: Core language functions and variables

int = systen(string)

Executes a new process, specified as a shell command line using the local system’s command
interpreter, and returns an integer result code once the process completes (usually zero indicates
normal successful completion).

Thiswill block while the process runs, but will allow thread switching while blocked.

x = tan(angl e)
Returns the tangent of angle (afloat interpreted in radians).

exec = thread(callable, args...)

Createsanew ICl thread and calls callable (typically afunction or method) with argsin the new
ICl execution context in that thead. Returns an execution context object (“exec”). When the
thread terminates (by returning from the called function) this object is woken up with wakeup().

string = tochar(int)

Returns a one character string made from the character code specified by int.

int = toint(string)

Returns the character code of the first character of string.

any = tokenobj (file)

tokenobyj returns the object associated with an immediately proceeding call to parsetoken() on
the given file where parsetoken() returned one of the values: name, int, float, regexp, or string
(in other casesit will return NULL). It can be called any number of times until some other I/O
operation is done on the file.

any = top(array [, int])

Returns the last element of array (that is, the top of stack). Or, if int is supplied, objects from
deeper in the stack found by adding int to the index of the last element. Thus:

top(a, 0)
and
top(a)
are equivalent, while
top(a, -1)
returns the second last element of the array. Returns NULL if the accessis beyond the limits of

the array.

int = trace(string)

Enables diagnostic tracing of internal interpreter activity or program flow. The string consists of
space separated option words. There isaglobal enable/disable flag for tracing, and if enabled, a

120 ThelCl Programming Language



Core language functions: stri ng = typeof (any)

number of sub-flagsindicating what should be traced. Trace output is printed to the interpreter’s
standard error output. The options are interpreted as follows:

lexer Flags tracing of every character read by the lexical analyser.
expr ### To be completed (and checked in source).
calls Hith

funcs Hit

all it

mem HiHH

src A

gc it

none A

off Hitt

on HiH

string = typeof (any)

Returns the type name (a string) of any. See the section on types above for the possible type
names.

string = version()
Returns aversion string of the form.

@#)I1Cl 4.0.0 config-file build-date config-str (opts...)

For example:

@#)1Cl 4.0.0, conf-w32.h, Feb 22 2002, Mcrosoft Wn32
platforns (math trace system pi pes sockets dir dl oad
startupfil e debugging )

array = vstack([int])

With no arguments, returns a copy of the call stack of the current program at the time of the call.
Thisisan array of the successive outer scope structures. The last element of the array isthe cur-
rent innermost scope structure, the second last is the innermost scope structure of the caller, etc.

With an integer argument, returns the scope structure from that many callers back. Zeroisthe
current scope, oneisthe caler etc. Thisis generally more efficient, asit avoidsthe array copy of
the first form.

This can be used both for stack tracebacks, and to discover the value of a particular variablein
the callers context (in the way that, say, getling() uses the value of stdin in the callers context).

wakeup(any)

Wakes up al ICI threads that are waiting for any (and thus allow them to re-evaluate their wait
expression).

The ICI Programming Language 121



Chapter 6: Core language functions and variables

struct = which(key [, struct])

Findsthefirst struct (or other abject) in a super chain that has the given key as an element. If the
argument struct is given (which is normally a struct, but may be any object that supports a
super), that object is used as the base of the search, else the current scope is used. Returns
NULL if keywas not an element of any object in the super chain.

122 ThelCl Programming Language



CHAPTER 7 Regular expressons

ICl uses Philip Hazel’s PCRE (Perl-compatible regular expressions) package. Thefollowingis
extracted from thefile pcr e. 3. t xt included with the PCRE distribution. This document is
intended to be used with the PCRE C functions and makes reference to a number of constants
that may be used as option specifiers to the C functions (all such constants are prefixed with the
string “PCRE_"). These constants are not available in the ICI interface at time of writing
although ther egexp() function does allow a numeric option specific to be passed.

The syntax and semantics of the regular expressions supported by PCRE are described bel ow.
Regular expressions are also described in the Perl documentation and in a number of other
books, some of which have copious examples. Jeffrey Friedl’s “ Mastering Regular Expres-
sions’, published by O'Reilly (ISBN 1-56592-257-3), covers them in great detail. The descrip-
tion hereis intended as reference documentation.

Regular expression syntax

A regular expression is a pattern that is matched against a subject string from left to right. Most
characters stand for themselves in a pattern, and match the corresponding charactersin the sub-
ject. Asatrivial example, the pattern

The qui ck brown fox

matches a portion of a subject string that isidentical to itself. The power of regular expressions
comes from the ability to include aternatives and repetitions in the pattern. These are encoded
in the pattern by the use of meta-characters, which do not stand for themselves but instead are
interpreted in some special way.

There are two different sets of meta-characters: those that are recognized anywhere in the pat-
tern except within square brackets, and those that are recognized in square brackets. Outside
square brackets, the meta-characters are as follows:

\ general escape character with several uses
A assert start of subject (or line, in multiline mode)
$ assert end of subject (or line, in multiline mode)

The ICl Programming Language 123



Chapter 7: Regular expressions

match any character except newline (by default)
start character class definition

start of alternative branch

start subpattern

end subpattern

N~ N =

extends the meaning of (
also 0 or 1 quantifier
also quantifier minimizer
* 0 or more quantifier

+1 or more quantifier
{ start min/max quantifier

Part of a pattern that isin square bracketsis called a*“ character class’. In acharacter class the
only meta-characters are:

\ general escape character

A negate the class, but only if the first character
- indicates character range

] terminates the character class

The following sections describe the use of each of the meta-characters.

Backslash

The backslash character has several uses. Firstly, if it isfollowed by a non-alphameric charac-
ter, it takesaway any special meaning that character may have. This use of backdash as an
escape character applies both inside and outside character classes.

For example, if you want to match a“*” character, you write “\*” in the pattern. This applies
whether or not the following character would otherwise be interpreted as a meta-character, so it
is always safe to precede a non-alphameric with “\” to specify that it stands for itself. In partic-
ular, if you want to match a backslash, you write “\\".

If apattern is compiled with the PCRE_EXTENDED option, whitespace in the pattern (other
than in a character class) and characters between a“#” outside a character class and the next
newline character are ignored. An escaping backslash can be used to include a whitespace or
“#" character as part of the pattern.

A second use of backslash provides away of encoding non-printing charactersin patternsin a

visible manner. There is no restriction on the appearance of non-printing characters, apart from
the binary zero that terminates a pattern, but when a pattern is being prepared by text editing, it
isusually easier to use one of the following escape sequences than the binary character it repre-

sents:
\a alarm, that is, the BEL character (hex 07)
\cx “control-x", where x is any character
\e escape (hex 1B)

124 ThelCl Programming Language



Backslash:

\f formfeed (hex OC)

\n newline (hex 0A)

\r carriage return (hex OD)

\t tab (hex 09)

\xhh character with hex code hh

\ddd character with octal code ddd, or backreference

The precise effect of “\cx” isasfollows: if “x” isalower case letter, it isconverted to upper
case. Then bit 6 of the character (hex 40) isinverted. Thus“\cz’ becomes hex 1A, but “\c{“
becomes hex 3B, while “\c;” becomes hex 7B.

After “\x”, up to two hexadecimal digitsare read (letters can bein upper or lower case).

After “\0” up to two further octal digitsareread. In both cases, if there are fewer than two dig-
its, just those that are present are used. Thus the sequence “\0\x\07" specifies two binary zeros
followed by aBEL character. Make sure you supply two digits after the initial zero if the
character that followsisitself an octal digit.

The handling of a backslash followed by adigit other than 0 is complicated. Outside a charac-
ter class, PCRE readsit and any following digits as a decimal number. If the number is less
than 10, or if there have been at least that many previous capturing left parenthesesin the
expression, theentire sequence istaken asaback reference. A description of how thisworksis
given later, following the discussion of parenthesized subpatterns.

Inside a character class, or if the decimal number is greater than 9 and there have not been that
many capturing subpatterns, PCRE re-reads up to three octal digits following the backslash, and
generates asingle byte from the least significant 8 bits of the value. Any subsequent digits stand
for themselves. For example:

\040 is another way of writing a space

\40 isthe same, provided there are fewer than 40 previous capturing subpatterns
\7 is aways a back reference

\11 might be a back reference, or another way of writing atab

\011 isawaysatab
\0113 isatab followed by the character “3”

\113 isthe character with octal code 113 (since there can be no more than 99 back ref-
erences)

\377 isabyte consisting entirely of 1 bits

\81 is either aback reference, or abinary zero followed by the two characters“8” and
" 1”

Note that octal values of 100 or greater must not be introduced by a leading zero, because no
more than three octal digits are ever read.

All the sequencesthat defineasingle byte value can be used both inside and outside character
classes. In addition, inside a character class, the sequence“\b” is interpreted as the backspace
character (hex 08). Outside a character classit has a different meaning (see below).

The third use of backslash isfor specifying generic character types:
\d any decimal digit

The ICl Programming Language 125



Chapter 7: Regular expressions

\D any character that is not adecimal digit

\s any whitespace character

\S any character that is not awhitespace character
\w any “word” character

\W any “non-word” character

Each pair of escape sequences partitions the complete set of characters into two disjoint sets.
Any given character matches one, and only one, of each pair.

A “word” character isany letter or digit or the underscore character, that is, any character which
can be part of a Perl “word”. The definition of letters and digits is controlled by PCRE's charac-
ter tables, and may vary if locale-specific matching is taking place (see “Locale support”
above). For example, inthe “fr” (French) locale, some character codes greater than 128 are used
for accented letters, and these are matched by \w.

These character type sequences can appear both inside and outside character classes. They
each match one character of the appropriate type. If the current matching point is at the end of
the subject string, all of them fail, since there is no character to match.

The fourth use of backslash isfor certain simple assertions. An assertion specifies a condition
that hasto be met at a particular point in amatch, without consuming any characters from the
subject string. The use of subpatterns for more complicated assertions is described below. The
backslashed assertions are

\b word boundary

\B not aword boundary

\A start of subject (independent of multiline mode)

\Z end of subject or newlineat end (independent of multiline mode)
\z end of subject (independent of multiline mode)

These assertions may not appear in character classes (but notethat “\b” has a different mean-
ing, namely the backspace character, inside a character class).

A word boundary isaposition in the subject string where the current character and the previ-
ous character do not both match \w or \W (i.e. one matches\w and the other matches\W), or
the start or end of the string if thefirst or last character matches \w, respectively.

The\A, \Z, and \z assertions differ from the traditional circumflex and dollar (described below)
in that they only ever match at the very start and end of the subject string, whatever options are
set. They are not affected by the PCRE_NOTBOL or PCRE_NOTEOL options. If the startoff-
set argument of pcre_exec() is non-zero, \A can never match. The difference between \Z and \z
isthat \Z matches before a newline that is the last character of the string aswell as at the end of
the string, whereas \z matches only at the end.

Circumflex and dollar

Outside a character class, in the default matching mode, the circumflex character is an assertion
whichistrue only if the current matching point is at the start of the subject string. If the startoff-
set argument of pcre_exec() is non-zero, circumflex can never match. Inside a character class,
circumflex has an entirely different meaning (see below).

126 ThelCl Programming Language



Full stop (period,dot):

Circumflex need not be the first character of the pattern if anumber of alternatives are involved,
but it should be the first thing in each alternative in which it appears if the pattern is ever to
match that branch. If all possible aternatives start with a circumflex, that is, if the pattern is
constrained to match only at the start of the subject, it issaid to be an “anchored” pattern. (There
are also other constructs that can cause a pattern to be anchored.)

A dollar character is an assertion which istrue only if the current matching point is at the end of
the subject string, or immediately before a newline character that is the last character in the
string (by default). Dollar need not be the last character of the pattern if a number of alterna-
tivesare involved, but it should be the last item in any branch in which it appears. Dollar has
no specia meaning in acharacter class.

The meaning of dollar can be changed so that it matchesonly at the very end of the
string, by setting the PCRE_DOLLAR_ENDONLY option at compile or matching time. This
does not affect the \Z assertion.

The meanings of the circumflex and dollar characters are changed if the PCRE_MULTILINE
option is set. When thisis the case, they match immediately after and immediately before an
internal “\n” character, respectively, in addition to matching at the start and end of the subject
string. For example, the pattern /~abc$ matches the subject string “ def\nabc” in multiline
mode, but not otherwise. Consequently, patterns that are anchored in single line mode because
all branches start with “~” are not anchored in multiline mode, and a match for circumflex is
possible when the startoffset argument of pcre_exec() is non-zero. The
PCRE_DOLLAR_ENDONLY optionisignored if PCRE_MULTILINE is set.

Note that the sequences\A, \Z, and \z can be used to match the start and end of the subject in
both modes, and if all branches of a pattern start with \A isit always anchored, whether
PCRE_MULTILINE is set or not.

Full stop (period,dot)

Outside acharacter class, adot in the pattern matches any one character in the subject, including
anon-printing character, but not (by default) newline. If the PCRE_DOTALL optionisset, then
dots match newlines as well. The handling of dot is entirely independent of the handling of cir-
cumflex and dollar, the only relationship being that they both involve newline characters. Dot
has no specia meaning in a character class.

Square brackets

An opening square bracket introduces a character class, terminated by a closing square bracket.
A closing square bracket on its own is not special. If aclosing square bracket isrequired as a
member of the class, it should be the first data character in the class (after an initial circumflex,
if present) or escaped with a backdash.

A character class matches a single character in the subject; the character must be in the set of
characters defined by the class, unless the first character in the classis a circumflex, in which
case the subject character must not be in the set defined by the class. If acircumflex is actually
required as a member of the class, ensureit is not the first character, or escape it with a back-
dash.

For exampl e, the character class [agiou] matches any lower case vowel, while [*agiou] matches
any character that is not alower case vowel. Note that a circumflex is just a convenient notation

The ICI Programming Language 127



Chapter 7: Regular expressions

for specifying the characters which are in the class by enumerating those that are not. It isnot an
assertion: it still consumes a character from the subject string, and failsif the current pointer is
at the end of the string.

When caseless matching is set, any lettersin a class represent both their upper case and lower
case versions, so for example, a caseless [aeiou] matches“A” aswell as“a’, and a caseless
[“aeiou] does not match “A”, whereas a caseful version would.

The newline character is never treated in any special way in character classes, whatever the set-
ting of the PCRE_DOTALL or PCRE_MULTILINE optionsis. A class such as ["a] will
always match a newline.

The minus (hyphen) character can be used to specify arange of charactersin a character class.
For example, [d-m] matches any letter between d and m, inclusive. If aminus character is
required in aclass, it must be escaped with a backslash or appear in a position where it cannot
be interpreted asindicating arange, typically asthefirst or last character in the class.

It isnot possible to have the literal character “]” asthe end character of arange. A pattern such
as[W-]46] isinterpreted as a class of two characters (“W” and “-") followed by aliteral string
“46]”, so it would match “W46]” or “-46]". However, if the“]” is escaped with abackdashitis
interpreted as the end of range, so [W-\]46] isinterpreted as a single class containing a range
followed by two separate characters. The octal or hexadecimal representation of “]” can also be
used to end arange.

Ranges operate in ASCII collating sequence. They can also be used for characters specified
numericaly, for example[\000-\037]. If arange that includes lettersis used when caseless
matching is set, it matchesthe letters in either case. For example, [W-c] is equivalent to
[1I\V™_“wxyzabc], matched caselessly, and if character tablesfor the “fr” locale arein use,
[\xc8-\xch] matches accented E characters in both cases.

The character types\d, \D, \s, \S, \w, and \W may also appear in a character class, and add the
characters that they match to the class. For example, [\dABCDEF] matches any hexadecimal
digit. A circumflex can conveniently be used with the upper case character types to specify a
more restricted set of characters than the matching lower case type. For example, the class
[MW_] matches any letter or digit, but not underscore.

All non-alphameric characters other than\, -, * (at the start) and the terminating ] are non-
special in character classes, but it does no harm if they are escaped.

Vertical bar

Vertical bar charactersare used to separate alternative patterns. For example, the pattern

gil bert|sullivan

matches either “gilbert” or “sullivan”. Any number of alternatives may appear, and an empty
alternative is permitted (matching the empty string). The matching process tries each alterna-
tivein turn, from left to right, and the first one that succeeds is used. If the alternatives are
within a subpattern (defined below), “succeeds’ means matching the rest of the main pattern as
well as the aternative in the subpattern.

128 ThelCl Programming Language



Internal option settings:

Internal option settings

The settings of PCRE_CASELESS, PCRE_MULTILINE, PCRE_DOTALL, and
PCRE_EXTENDED can be changed from within the pattern by a sequence of Perl option letters
enclosed between “(?” and “)”. The option letters are

i for PCRE_CASELESS

m for PCRE_MULTILINE
S for PCRE_DOTALL
X for PCRE_EXTENDED

For example, (7im) sets caseless, multiline matching. It is also possible to unset these options
by preceding the letter with a hyphen, and a combined setting and unsetting such as (72im-sx),
which sets PCRE_CASELESS and PCRE_MULTILINE while unsetting PCRE_DOTALL and
PCRE_EXTENDED, isalso permitted. If a letter appears both before and after the hyphen,
the option is unset.

The scope of these option changes depends on where in the pattern the setting occurs. For
settings that are outside any subpattern (defined below), the effect is the same as if the options
were set or unset at the start of matching. The following patterns all behave in exactly the same
way:

(?i)abc a(?i)bc ab(?i)c abc(?i)

which in turn is the same as compiling the pattern abc with PCRE_CASELESS set. In other
words, such “top level” settings apply to the whol e pattern (unlessthere are other changesinside
subpatterns). If there is more than one setting of the same option at top level, the rightmost set-
ting is used.

If an option change occurs inside a subpattern, the effectis different. Thisisachange of
behaviour in Perl 5.005. An option change inside a subpattern affects only that part of the sub-
pattern that followsiit, so

(a(?i)b)c

matches abc and aBc and no other strings (assuming PCRE_CASELESS is not used). By
this means, options can be made to have different settingsin different parts of the pattern.
Any changes made in one alternative do carry on into subsequent branches within the same
subpattern. For example,

(a(?i)b|c)

matches “ab”, “aB”, “c”, and “C”, even though when matching “C” thefirst branch is aban-
doned before the option setting. This is because the effects of option settings happen at com-
pile time. There would be some very weird behaviour otherwise.

The PCRE-specific options PCRE_UNGREEDY and PCRE_EXTRA can be changed in the
same way as the Perl-compatible options by using the characters U and X respectively. The

(?X) flag setting is specia in that it must always occur earlier in the pattern than any of the

additional featuresit turns on, even when it isat top level. It is best put at the start.

The ICl Programming Language 129



Chapter 7: Regular expressions

Subpatterns
Subpatterns are delimited by parentheses (round brackets), which can be nested. Marking part
of apattern as a subpattern does two things:

1. Itlocalizes aset of alternatives. For example, the pattern

cat(aract|erpillar])

matches one of thewords “cat”, “ cataract”, or “caterpillar”. Without the parentheses, it
would match “cataract”, “erpillar” or the empty string.

2. It sets up the subpattern as a capturing subpattern (as defined above). When the whole pat-
tern matches, that portion of the subject string that matched the subpattern is passed back to
the caller viathe ovector argument of pcre_exec(). Opening parentheses are counted from
left to right (starting from 1) to obtain the numbers of the capturing subpatterns.

For example, if the string “the red king” is matched against the pattern

the ((red|white) (king|queen))

the captured substrings are “red king”, “red”, and “king”, and are numbered 1, 2, and 3.

The fact that plain parentheses fulfil two functionsis not aways helpful. There are often times
when a grouping subpattern is required without a capturing requirement. 1f an opening paren-
thesisisfollowed by “?:", the subpattern does not do any capturing, and is not counted when
computing the number of any subsequent capturing subpatterns. For example, if the string “the
white queen” is matched against the pattern

the ((?:red|white) (king|queen))
the captured substrings are “white queen” and “queen”, and are numbered 1 and 2. The maxi-

mum number of captured substringsis 99, and the maximum number of all subpatterns, both
capturing and non-capturing, is 200.

Asa convenient shorthand, if any option settings arerequired at the start of anon-captur-
ing subpattern, the option letters may appear between the“?’ andthe “:”. Thus the two patterns

(?i : saturday| sunday)
(?: (?i)saturday| sunday)

match exactly the same set of strings. Because alternative branches are tried from left to right,
and options are not reset until the end of the subpattern isreached, an option setting in one
branch does affect subsequent branches, so the above patterns match “SUNDAY” as well as
“Saturday”.

Repetition
Repetition is specified by quantifiers, which can follow any of the following items:
» asingle character, possibly escaped

» the. metacharacter

130 ThelCl Programming Language



Repetition:

» acharacter class
» aback reference (see next section)
» aparenthesized subpattern (unlessit is an assertion - see below)

The general repetition quantifier specifies a minimum and maximum number of permitted
matches, by giving the two numbersin curly brackets (braces), separated by a comma. The
numbers must be less than 65536, and the first must be less than or equal to the second. For
example:

z{2, 4}

matches “zz", “zzz", or “zzzz". A closing brace on its own isnot aspecia character. If the sec-
ond number is omitted, but the commais present, thereisno upper limit; if the second number
and the comma are both omitted, the quantifier specifies an exact number of required matches.

Thus
[aeiou] {3,}

matches at |east 3 successive vowels, but may match many more, while
\ d{ 8}
matches exactly 8 digits. Anopening curly bracket that appearsin a position where a quantifier

isnot alowed, or one that does not match the syntax of a quantifier, istaken as aliteral charac-
ter. For example, {,6} isnot aquantifier, but aliteral string of four characters.

The quantifier {0} is permitted, causing the expression to behave as if the previousitem and
the quantifier were not present.

For convenience (and historical compatibility) the three most common quantifiers have sin-
gle-character abbreviations:

* isequivalent to {0,}
+ isequivalent to {1,}
? isequivalent to {0,1}

It is possible to construct infinite loops by following asubpattern that can match no charac-
terswith a quantifier that has no upper limit, for example:

(a?)*

Earlier versions of Perl and PCRE used to give an error at compile time for such patterns.
However, because there are cases where this can be useful, such patterns are now accepted,
but if any repetition of the subpattern doesin fact match no characters, the loop isforcibly bro-
ken.

By default, the quantifiers are “greedy”, that is, they match as much as possible (up to the max-
imum number of permitted times), without causing the rest of the pattern to fail. The classic
example of where this gives problemsisin trying to match commentsin C programs. These
appear between the sequences /* and */ and within the sequence, individual * and / characters
may appear. An attempt to match C comments by applying the pattern

AR

to the string

/* first conmmand */ not comment /* second coment */

The ICl Programming Language 131



Chapter 7: Regular expressions

fails, because it matches the entire string due to the greediness of the .* item.

However, if aquantifier isfollowed by a question mark, then it ceases to be greedy, and
instead matches the minimum number of times possible, so the pattern

IN* FN*]

does the right thing with the C comments. The meaning of the various quantifiersis not other-
wise changed, just the preferred number of matches. Do not confuse this use of question mark
with its use as a quantifier in its own right. Because it has two uses, it can sometimes appear
doubled, asin

\d??2\d

which matches one digit by preference, but can match two if that is the only way the rest of the
pattern matches.

If the PCRE_UNGREEDY option is set (an option which is not available in Perl) thenthe
guantifiers are not greedy by default, but individual ones can be made greedy by following them
with a question mark. In other words, it inverts the default behaviour.

When a parenthesized subpattern is quantified with a minimum repeat count that is greater than
1 or with alimited maximum, more store is required for the compiled pattern, in proportion to
the size of the minimum or maximum.

If apattern startswith .* or {0,} and the PCRE_DOTALL option (equivalent to Perl’s/s) is set,
thusallowing the.. to match newlines, then the pattern isimplicitly anchored, because whatever
followswill be tried against every character position in the subject string, so thereis no point in
retrying the overall match at any position after thefirst. PCRE treats such a pattern as though it
were preceded by \A. In cases whereit is known that the subject string contains no newlines, it
isworth setting PCRE_DOTALL when the pattern begins with .* in order to obtain this optimi-
zation, or alternatively using ~ to indicate anchoring explicitly.

When a capturing subpattern isrepeated, the value captured is the substring that matched the
final iteration. For example, after

(tweedl e[ dunme] {3}\s*) +
has matched “tweedledum tweedledee” the value of the captured substring is “tweedledee”.

However, if there are nested capturing subpatterns, the corresponding captured values may have
been set in previous iterations. For example, after

I (al (b)) +/

matches “aba’ the value of the second captured substring is“b”.

Back references

Outside a character class, a backslash followed by a digit greater than 0 (and possibly fur-
ther digits) isaback referenceto acapturing subpattern earlier (i.e. to itsleft) in the pattern,
provided there have been that many previous capturing left parentheses.

However, if the decimal number following the backdlash islessthan 10, it isawaystaken asa
back reference, and causes an error only if there are not that many capturing left parenthesesin
the entire pattern. In other words, the parentheses that are referenced need not be to the left of

132 ThelCl Programming Language



Assertions:

the reference for numbers less than 10. See the section entitled “ Backslash” above for further
details of the handling of digits following a backsl ash.

A back reference matches whatever actually matched the capturing subpattern in the current
subject string, rather than anything matching the subpattern itself. So the pattern

(sens|respons)e and \libility

matches “ sense and sensibility” and “response and responsibility”, but not “sense and responsi-
bility”. If caseful matching isin force at the time of the back reference, then the case of lettersis
relevant. For example,

((?i)rah)\s+ 1

matches “rah rah” and “RAH RAH”, but not “RAH rah”, eventhough the origina capturing
subpattern is matched caselesdly.

There may be more than one back reference to the same subpattern. If a subpattern has not actu-
ally been used in a particular match, then any back referencesto it always fail. For example, the
pattern

(al (bc))\2

awaysfailsif it startsto match “a" rather than “bc”. Because there may be up to 99 back
references, al digits following the backslash are taken as part of a potential back reference
number. If the pattern continues with a digit character, then some delimiter must be used to ter-
minate the back reference. If the PCRE_EXTENDED option is set, this can be whitespace. Oth-
erwise an empty comment can be used.

A back reference that occurs inside the parenthesesto which it refers failswhen the subpattern
isfirst used, so, for example, (a\1) never matches. However, such references can be useful
inside repeated subpatterns. For example, the pattern

(a] b\ 1) +

matches any number of “a’sand also “aba’, “ababaa’ etc. At each iteration of the subpattern,
the back reference matches the character string corresponding to the previousiteration. In order
for this to work, the pattern must be such that the first iteration does not need to match the back
reference. This can be done using alternation, asin the example above, or by a quantifier with a
minimum of zero.

Assertions

An assertion is atest on the characters following or preceding the current matching point that
does not actually consume any characters. The simple assertions coded as\b, \B, \A,\Z, \z, »
and $ are described above. More complicated assertions are coded as subpatterns. There are
two kinds: those that look ahead of the current position in the subject string, and those that ook
behind it.

An assertion subpattern is matched in the normal way, except that it does not cause the current
matching position to be changed. Lookahead assertions start with (?= for positive assertions
and (?! for negative assertions. For example,

\wH(?=7)

The ICl Programming Language 133



Chapter 7: Regular expressions

matches a word followed by a semicolon, but does not include the semicolon in the match, and

foo(?! bar)

matches any occurrence of “foo” that is not followed by “bar”. Note that the apparently sim-
ilar pattern

(?!foo)bar

does not find an occurrence of “bar” that is preceded by something other than “foo”; it finds
any occurrence of “bar” whatsoever, because the assertion (?foo) is always true when the
next three characters are “bar”. A lookbehind assertion is needed to achieve this effect.

L ook-behind assertions start with (?<= for positive assertions and (?<! for negative assertions.
For example,

(?<!foo)bar

doesfind an occurrence of “bar” that is not preceded by “foo”. The contents of alookbehind
assertion are restricted such that all the strings it matches must have a fixed length. How-
ever, if there are several alternatives, they do not al have to have the same fixed length. Thus

( ?<=bul | ock| donkey)

is permitted, but

(?<!dogs?| cats?)

causes an error at compile time. Branches that match different length strings are permitted only
at thetop level of alookbehind assertion. Thisis an extension compared with Perl 5.005, which
requires al branches to match the same length of string. An assertion such as

(?<=ab(c]| de))

is not permitted, because its single top-level branch can match two different lengths, but it is
acceptableif rewritten to use two top-level branches:

( ?<=abc| abde)

The implementation of lookbehind assertionsis, for each alternative, to temporarily move the
current position back by the fixed width and then try to match. If there are insufficient charac-
ters before the current position, the match is deemed to fail. Lookbehindsin conjunction with
once-only subpatterns can be particularly useful for matching at the ends of strings; an example
isgiven at the end of the section on once-only subpatterns.

Several assertions (of any sort) may occur in succession. For example,
(?<=\d{3}) (?<!999)foo

matches “foo” preceded by three digitsthat are not “999”. Notice that each of the assertionsis
applied independently at the same point in the subject string. First there is acheck that the
previous three characters are all digits, then there is a check that the same three characters are
not “999”. This pattern doesnot match “foo” preceded by six characters, thefirst of which are
digits and the last three of which are not “999”. For example, it doesn’t match “123abcfoo”.
A pattern to do that is

(?<=\d{3}...)(?<!1999)foo0

134 ThelCl Programming Language



Once-only subpatterns:

Thistimethe first assertion looks at the preceding six characters, checking that the first
three are digits, and then the second assertion checksthat the preceding three characters are
not “999".

Assertions can be nested in any combination. For example,

(?<=(?<!fo0)bar)baz
matches an occurrence of “baz” that is preceded by “bar” which in turnisnot preceded by
“foo”, while

(?<=\d{3}(?!999)...)foo
is another pattern which matches “foo” preceded by threedigitsand any three characters that
are not “999”.

Assertion subpatterns are not capturing subpatterns, and may not be repeated, because it
makes no sense to assert the same thing several times. If any kind of assertion contains captur-
ing subpatterns within it, these are counted for the purposes of numbering the capturing sub-
patterns in the whole pattern. However, substring capturing is carried out only for positive
assertions, because it does not make sense for negative assertions.

Assertions count towards the maximum of 200 parenthesized subpatterns.

Once-only subpatterns

With both maximizing and minimizing repetition, failure of what follows normally causes the
repeated item to be re-evaluated to see if a different number of repeats allows the rest of the pat-
tern to match. Sometimesit is useful to prevent this, either to change the nature of the match, or
to causeit fail earlier than it otherwise might, when the author of the pattern knows thereis no
point in carrying on.

Consider, for example, the pattern \d+foo when applied to the subject line
123456bar

After matching all 6 digits and then failing to match “foo”, the normal action of the matcher is
to try again with only 5 digits matching the \d+ item, and then with 4, and so on, before ulti-
mately failing. Once-only subpatterns provide the means for specifying that once a portion of
the pattern has matched, it is not to be re-evaluated in thisway, so the matcher would give up
immediately on failing to match “foo” the first time. The notation isanother kind of special
parenthesis, starting with (?> asin this example:

(?>\d+) bar

Thiskind of parenthesis “locks up” the part of the pattern it contains once it has matched, and a
failure further into the pattern is prevented from backtracking into it. Backtracking past it to
previous items, however, works as normal.

An alternative description is that a subpattern of this type matches the string of characters that
an identical standalone pattern would match, if anchored at the current point in the subject
string.

Once-only subpatterns are not capturing subpatterns. Simple cases such as the above example
can be thought of as a maximizing repeat that must swallow everything it can. So, while both

The ICl Programming Language 135



Chapter 7: Regular expressions

\d+ and \d+? are prepared to adjust the number of digits they match in order to make the rest of
the pattern match, (?>\d+) can only match an entire sequence of digits.

This construction can of course contain arbitrarily complicated subpatterns, and it can be nested.

Once-only subpatterns can be used in conjunction with look-behind assertions to specify effi-
cient matching at the end of the subject string. Consider a simple pattern such as

abcd$

when applied to along string which does not match it. Because matching proceeds from left
to right, PCRE will look for each “a” in the subject and then see if what follows matches the
rest of the pattern. If the pattern is specified as

N *abed$

then theinitial .* matches the entire string at first, but when thisfails, it backtracks to match all
but the last character, then all but the last two characters, and so on. Once again the search for

“a" coversthe entire string, from right to left, so we are no better off. However, if the patternis
written as

AN(?>.*) (?<=abcd)

then there can be no backtracking for the .* item; it can match only the entire string. The
subsequent lookbehind assertion does a single test on the last four characters. If it fails, the
match failsimmediately. For long strings, this approach makes a significant difference to the
processing time.

Conditional subpatterns

It is possible to cause the matching process to obey a subpattern conditionally or to choose
between two alternative subpatterns, depending on the result of an assertion, or whether a previ-
ous capturing subpattern matched or not. The two possible forms of conditional subpattern are

(?(condition)yes-pattern)
(?(condition)yes-pattern|no-pattern)

If the condition is satisfied, the yes-pattern is used; otherwise the no-pattern (if present) is used.
If there are more than two alternatives in the subpattern, a compile-time error occurs.

There are two kinds of condition. If the text between the parentheses consists of a sequence of
digits, then the condition is satisfied if the capturing subpattern of that number has previously
matched. Consider the following pattern, which contains non-significant white space to make it
more readabl e (assume the PCRE_EXTENDED option) and to divide it into three parts for ease
of discussion:

(\()? ["O1+ (?(1) \) )

Thefirst part matches an optional opening parenthesis, and if that character is present, setsit as
the first captured substring. The second part matches one or more charactersthat are not
parentheses. The third part is a conditional subpattern that tests whether the first set of paren-
theses matched or not. If they did, that is, if subject started with an opening parenthesis, the
condition istrue, and sothe yes-pattern is executed and aclosing parenthesisis required.

136 ThelCl Programming Language



Comments:

Otherwise, since no-patternis not present, the subpattern matches nothing. In other words,
this pattern matches a sequence of non-parentheses, optionally enclosed in parentheses.

If the condition is not a sequence of digits, it must be an assertion. This may be a positive or
negative lookahead or lookbehind assertion. Consider this pattern, again containing non-signifi-
cant white space, and with the two alternatives on the second line:

(?(?=["a-z] *[a-z])
\d{2}[a-z]{3}-\d{2} | \d{2}-\d{2}-\d{2} )

The condition is a positive lookahead assertion that matches an optiona sequence of non-letters
followed by aletter. In other words, it testsfor the presence of at least one letter inthe sub-
ject. If aletter isfound, the subject is matched against the first alternative; otherwise it is
matched against the second. This pattern matches strings in one of the two forms dd-aaa-dd or
dd-dd-dd, where aaa areletters and dd are digits.

Comments

The sequence (?# marks the start of acomment which continues up to the next closing parenthe-
sis. Nested parentheses are not permitted. The characters that make up a comment play no part
in the pattern matching at all.

If the PCRE_EXTENDED option is set, an unescaped # character outside a character class
introduces a comment that continues up to the next newline character in the pattern.

Performance

Certain items that may appear in patterns are more efficient than others. It is more efficient to
use a character classlike [agiou] than a set of alternatives such as (glejijoju). In general, the
simplest construction that provides the required behaviour is usually the most efficient. Jef-
frey Friedl’s book contains alot of discussion about optimizing regular expressionsfor efficient
performance.

When a pattern begins with .* and the PCRE_DOTALL option isset, the pattern isimplicitly
anchored by PCRE, since it can match only at the start of a subject string. However, if
PCRE_DOTALL isnot set, PCRE cannot make this optimization, because the . metacharacter
does not then match a newline, and if the subject string contains newlines, the pattern may
match from the character immediately following one of them instead of from the very start. For
example, the pattern

(.*) second

matches the subject “first\nand second” (where \n stands for a newline character) with the first
captured substring being “and”. In order to do this, PCRE has to retry the match starting after
every newline in the subject.

If you are using such a pattern with subject strings that do not contain newlines, the best per-
formance is obtained by setting PCRE_DOTALL, or starting the pattern with ~.* to indicate
explicit anchoring. That saves PCRE from having to scan along the subject looking for a
newline to restart at.

The ICl Programming Language 137



Chapter 7: Regular expressions

Beware of patternsthat contain nested indefinite repeats. These can take alongtimeto run
when applied to a string that does not match. Consider the pattern fragment

\ (a+)*

This can match “aaaa” in 33 different ways, and this number increases very rapidly asthe string
gets longer. (The * repeat can match 0, 1, 2, 3, or 4 times, and for each of those cases other than
0, the + repeats can match different numbers of times.) When the remainder of the patternis
such that the entire match is going to fail, PCRE hasin principleto try every possible variation,
and this can take an extremely long time.

An optimization catches some of the more simple cases such as
(at+)*b

where aliteral character follows. Before embarking on the standard matching procedure,
PCRE checksthat thereisa“b” later in the subject string, and if thereisnot, it failsthe match
immediately. However, when there is no following literal this optimization cannot be used. You
can see the difference by comparing the behaviour of

(a+)*\d
with the pattern above. The former gives a faillure almost instantly when applied to awhole

line of “@’ characters, whereas the latter takes an appreciable time with stringslonger than
about 20 characters.

Author

Philip Hazel <phl0@cam.ac.uk>

University Computing Service,

New Museums Site,

Cambridge CB2 3QG, England.

Phone: +44 1223 334714

Last updated: 29 July 1999

Copyright (c) 1997-1999 University of Cambridge.

138 ThelCl Programming Language



CHAPTER 8 I mafaa ng \Mth C and
C++

There are severa levels at which the ICl interpreter can interface with C and C++ code. This
chapter gives a collection of universal rules, then addresses common tasks. Each task can be
considered inisolation to alleviate the reader from details beyond their current needs. Finally,
both a summary and detailed description of IClI’'s C APl isgiven.

The reader is expected to be a C/C++ programmer.

Universal rules and conventions

Includefilesand libraries

On most systems ICl is built as adynamically loading library. It can be linked with statically if
required. However for this description | will assume the normal case of dynamic loading.

To compile and run with ICI you will need, as a minimum:

ici.h The IClI include file. Include this as necessary. Thisfileis built spe-
cifically for each platform from ICI’ sinternal include files.

icistr-setup.h A utility include file to assist in defining ICI strings. See Referring
to ICl strings from C below.

icid{a,lib} Thelibrary file containg the linkage to the dynamically loading li-
brary (or the static library if not using dynamic loading). (Suffixes
vary with OS.) Link against this when building your program.

ici4.{so,dll} The dynamic loading library. (Suffixes vary with OS.) Should be
somewhere where it will be found at run time.

icidcore.ici, icidcore{1,2,3}.ici
Core language features written in ICl. These need to be somewhere
ICl will find them at run time.

If you are writing modules that run from ICl, you will al'so want an ICI top level command:

ici, ici.exe, or wici.exe

The ICl Programming Language 139



Chapter 8: Interfacing with C and C++

ICl command level executable. These just do argument parsing and
invocation of the interpreter on supplied file arguments.

In broad terms ICl is either used as an adjunct to another application, or as the main program
with specific custom modules providing special functionality. Most of what is described in this
section is common to both.

Thenature of ICI objects

ICl objects are structures that have a common 32 bit header (since version 4; in previous ver-
sionsit was a 64 bit header). Pointers to objects are declared as either object_t *, whichisthe
type of the header, or a pointer to the particular structure (for example, string_t *), depending on
the circumstances of each piece of code, and depending whether the real type is known at that
point. The macro objof() is often used to demote to a generic object pointer -- it isjust a cast to
object_t *. Most types define a similar macro to promote to their specific type, aswell asa
macro such asisstring() or isstruct() to test if aparticular pointer points to an object of the given
type. However, there is no particular requirement to use these macros. They are just casts and
simple tests.

Garbage collection, ici_incref() and ici_decref()

ICl objects are garbage collected. Garbage collection can occur on any attempt to allocate mem-
ory using ICl’s alocation routines. Thisisfairly often. Garbage collection has the effect of free-
ing any objects that the garbage collector thinks are not being usefully referenced. Failing to
obey the rules associated with garbage collection can be disastrous and hard to debug. But the
rules are fairly simple.

The ICI object header includes a small reference count field. Thisis acount of additional refer-
ences to the object that would otherwise be invisible to the garbage collector. For example, if
your C code keeps aglobal static pointer to an object, the garbage collector would not be aware
of that reference, and might free the object leaving you with an invalid pointer. So you must
account for the reference by incrementing the reference count. However, references to the object
from other ICI objects are visible to the garbage collector, so you do not need to account for
these.

The macrosici_incref() and ici_decref() are used to increment and decrement reference counts.
Note that the range of reference countsis quite small. Their frequency of useisexpectedtobein
relationship to the number of actual instances of C variables that simultaneously refer to the
same object.

In practice, many callstoici_incref() andici_decref() can be avoided because objects are known
to be referenced by other things. For example, when coding a function called from ICl, the
objects that are passed as arguments are known to be referenced from the I Cl operand stack,
which isreferenced by the current execution context, which has areference count aslong asit is
running.

Theerror return convention

When coding functions that are called by the ICI interpreter, a simple mechanism is used for all
error returns. Each function will have some return value to indicate an error (commonly 0 is suc-
cess, Lisan error, or for functions that return a pointer, NULL will probably be the error indica-
tor). In any case, the return value will only imply a boolean indicating that an error has
occurred. The nature of the error must have been set before return by setting the global character
pointer ici_error to ashort human readable string revealing what happened.

140 ThelCl Programming Language



Universal rules and conventions: The error return convention

Note, however, that only the originator of an error condition should set ici_error. If you call
another function that uses the error return convention, and it returns a failure, you must simply
clean up your immediate situation (such as any required ici_decref() calls) and return your fail-
ure indication in turn. For example, theici_alloc() function obeys the convention. Thus we
might see the fragment:

if ((p =ici_alloc(sizeof(mtype)) == NULL)
return 1,

Now, in setting and returning an error, your code will be losing control and must be concerned
about the memory that you set theici_error variable to point to. Simple static strings are, of
course, of no concern. For example:

if (that_failed)

{
ici_error = "failed to do that";
return 1,

}

If you need to format a string (say with sprintf) you can avoid the necessity of a permanently
allocated buffer by using a generic growable buffer provided by ICl. The buffer is pointed to by
ici_buf and always has room for at least 120 characters. Thus me might see:

if (v > 256)

{
sprintf(ici_buf, "%l set but 256 is linmt", v);
ici_error = ici_buf;

}

If the size of the generated message is not so limited, the buffer can be checked (or forced) to
have alarger size with ici_chkbuf(). For example:

if (file == NULL)

{
if (ici_chkbuf(40 + strlen(fnane))
return 1;
sprintf(ici_buf, "could not open %", fnane);
ici_error = ici_buf;
return 1,
}

Noticeici_chkbuf() could fail, and if so, we return immediately (the error will inevitably be“ran
out of memory™”). The 40 above is some number clearly larger than the length of the format
string.

Onefinal point, which isnot specifically to do with error returns, but commonly associated with
them, is how to get a short human readabl e description of an ICl object suitable for diagnostics.
The function ici_objname() can be used to get a small (guaranteed to fit within a 30 character
buffer) diagnostic description of an object. For example:

{
char ni[ 30];

char n2[ 30];

sprintf(ici_buf, "attenpt to read % keyed by %",
i ci _objname(nl, o),

The ICl Programming Language 141



Chapter 8: Interfacing with C and C++

i ci _objname(n2, k));
ici_error = ici_buf;
return 1,

ICl’s allocation functions

In general I Cl uses the native malloc() and free() functions for its memory allocation. However,
because ICI dealsin many small objects, and because it needs to track memory usage to control
when to run its mark/sweep garbage collector, ICI has afew allocation functions that you may

wish to be aware of.

There are three pairs of matched alloc/free functions. Memory allocated with one must be freed
by the matching one. Common to all three is the property that they (try) to track the amount of
memory allocated so that they can trigger garbage collections, and they may run the garbage
collector before they return.

Two of them (ici_talloc /ici_tfreeand ici_nalloc / ici_nfree) are designed to handle small
objects efficiently (small meaning up to 64 bytes). They allocate small objects densely (no
boundary words) out of larger raw allocations from malloc() and maintain fast free lists so that
most allocations and frees can avoid function calls completely. However, in order to avoid
boundary words they both require that the caller tells the free routines how much memory was
asked for on theinitial aloc. Thisisfairly easy 95% of the time, but whereit can't be managed,
you must use the simpler ici_alloc / ici_free pair. These are completely malloc() equivalent,
except they handle the garbage collection and have the usual ICl error return convention.

The tracking of memory usage is only relevant to memory the garbage collector has some con-
trol over, meaning memory associated with I1CI objects (that would get freed if the object was
collected). So, technically, these routines should be used for memory associated with objects,
and not other allocations. But in practice the division is not strict.

Common tasks

Writing a simplefunction that can be called from I CI

Thisis sometimes done as part of a dynamically loaded extension module, and at other times
donein a program that uses ICl as a sub-module. By simple function we mean a function that
takes and returns values that are directly equivalent to simple C data types.

Transfer from the I Cl execution engineto an “intrinsic” function (asthey are called) is designed
to have extremely low overhead. Thus, on arrival at a function, the arguments are till ICI
objects on the ICl operand stack. If you are dealing with simple argument and return types, you
can then use the ici_typecheck() function to marshal your arguments into C variables, and a set
of similar functions to return simple values.

Intrinsic functions have areturn type of int, use C calling convention, follow the usua error
convention (1 isfailure) and in simple cases declare no arguments. For example, afunction that
expects to be called with an int and a float from ICl, print them, and return the int plus one,

would read:
static int
f _myfunc()
{

142 ThelCl Programming Language



Common tasks: Writing a simple function that can be called from ICI

| ong i
doubl e f

if (ici_typecheck("if", &, &f))
return 1,

printf("Got %d, %f.\n", i, f);

return int_ret(i + 1);

}
Note that ICI ints are C longs, and ICl floats are C doubles.
Theici_typecheck() function allows marshalling of:
» ICl intsto C longs, floats to doubles, and strings to char pointers;
* generic “numeric” (int or float) valuesto a C double;

» many other ICI types (structs, arrays, generic objects, etc) to generic object pointers (see
other tasks on how to deal with them after that);

» |ICI pointersto any of the above.

It also supports skipping argument and variable argument lists, but these features are typically
used in functions that use a mixture of ici_typecheck() calls and explicit argument processing.
Seeici_typecheck() in cfunc.c.

To return simple data types, the functionsici_int_ret(), ici_float_ret(), ici_str_ret(), and
ici_null_ret() can be used. These convert the value to the approriate ICI data object, and replace
the arguments on the operand stack with that object, then return O.

Take care never to simply “return 0;” from an intrinsic function. Although returning 1 on error
is correct, and the non-error return value is zero, before returning the arguments must be
replaced with the return value on the ICl operand stack. The functions above, and various oth-
ers, do this. They should always be used on successful return from any intrinsic function.

It ispossibleto write afunction that is passed pointersto values from ICl, and have those values
updated by the intrinsic function, by using acombination of theici_typecheck() function and the
ici_retcheck() function. For example:

static int
f _myot herfunc()

{
| ong i;
doubl e f;
if (ici_typecheck("fl", &, &))
return 1;
printf("Got %d, %f.\n", i, f);
if (ici_retcheck("-i", i + 1))
return 1,
return float_ret(f * 3.0);
}

This function takes a float, and a pointer to an int. It returns three times the passed float value,
and increments the pointed-to int. Notice the capitalisation in theici_typecheck() call to indicate
apointer to anintisrequired. Also notethe hyphenintheici_retcheck() call toindicateit should
ignore the first argument.

The ICl Programming Language 143



Chapter 8: Interfacing with C and C++

Calling an I CI function or method from C

To call an ICI function from C you can use any of the functions:

ici_call() To call by name.

ici_method() To invoke a named method of an instance.

ici_func() To call acallable object (e.g., function or method).

ici_callw() To call by namewith ava_list variable argument list.

ici_funcv() To call acallable object with ava_list variable argument list, or to
invoke a named method of an instance with ava_list variable argu-
ment list.

ici_funcv() isthe root universal method, but ici_call() and ici_method() are the most common
practical methods. Each accept actual parameters described by a short character string that
instructs how to trandlate each C argument into an I Cl type. The string may also specify that the
return valueis required. See theici_call() specification for details.

For example, to call the ICI nels() function on some object, we could say:
| ong result;
if (ici_call(ldS(nels), "i=0", &esult, obj))

[* Failure. ici_error is message.*/;
[* OK, result is nunber of elenents. */

The"i=" part of the string is optional and only used if the return value is needed. For example,
to call the ICI include function, and ignore the return value:

if (ici_call(1dS(include), "s", filenane))
/* Failure. */;
I* oK */

Making new ICI primitive types

In most circumstances you can use aici_handle_t to act asanew ICl primitive type. See
ici_handle_new for details. However, if you want to support indexing or calling of the type
where your C code handles these operations, you will want to define a new type.

To do this you must:

» Definethe C struct which isyour type. You must use either ici_obj_t or ici_objwsup_t asthe
first element of this struct (by convention, called o_head). After that, it's all yours.

» Define (typicaly statically) anici_type t and initiliase it with pointers to the functions that
characterise your type. The functions that you must supply intheici_type tinitialisation are
detailed under ici_type t.

* Regigter, beforefirst use, register your type with ICl and obtain a small integer type codein
return (seeici_register_type).

* You will probably also define a C function to make a new object of this type. Often you will
also define afunction that is called from ICI to make one too.

One thing you must consider is the atomic form of the object. Remeber that any object can be
reduced to a unique read-only atomic form with respect to its current value. The basic question
is: what aspect of this object is significant in an equality test (i.e. ==) against another object of
the same type? You can chose one of these answers:

144 ThelCl Programming Language



Common tasks: Making new ICI primitive types

Nothing. If | allocate two of these objects, they can never compare as equal.
We say the objects are “intrinsically unique”. Y ou would use the
standard functionsici_cmp_unique, ici_copy_simple, and
ici_hash_unique for the cmp, copy, and hash implementations of
thistype.

These field(s) are significant, and they can change over the life of the object.
Y ou should implement your own cmp, copy and hash functions.
Y ou must be careful to have your hash function only use aspects of
the object the cmp function considers significant. Also, when any of
these aspects might be modified, you must check the O_ATOM flag
in the object header and reject the attempt if it is set.

These field(s) are significant, but they can’t change over the life of the object.
Y ou may chose to make the object intrinsically atomic. In this case
your object creation must only return the atomic form. Y ou can use
ici_copy_simplefor your copy function, but you must still writecmp
and hash functions.

Two functions you always have to supply are the mark and free functions. (Well, unless your
objects are always statically allocated and not registerd with the garbage collector. In that case
you wouldn’t need the free function. But thisisrare.)

There are two basic forms a*“new” function for an object might take. Our first exampleisa
good template for an object that is not intrinsically atomic. We assume the type has been regis-
tered and the type codeisin my_ici_tcode.

my_ici_type *
my_ici_type_new(...stuff...)

{
my_ici_type *m
if ((m=ici_talloc(nmy_ici_type)) == NULL)
return NULL;
ICl _OBJ_SET_TFENZ(m my_ici_tcode, 0, 1, 0);
m> .. = ...stuff...
ici_rego(m;
return m
}

Our second example is a good template for an intrinsically atomic object. The can be done by
simple adding the line:

m= (ny_ici_type *)ici_atonm(objof(m, 1);

just before the return above. Thisisfineif you don’'t expect to be often called on to allocate
objectsthat exist as atoms. But if you want to avoid an extra object allocation and collection in
the case were an object of equal value already exsits, you can use the following template that
first probes the atom pool using a prototype form of the object.

my_ici_type *
my_ici_type_new(...stuff...)
{
my_ici_type *m
my_ici_type pr ot o;

The ICI Programming Language 145



Chapter 8: Interfacing with C and C++

I Cl _OBJ_SET_TFNZ(&proto, my_ici_tcode, 0, 1, 0);
proto... = ...stuff...
m= (ny_ici_type *)ici_atom probe(objof (&proto));
if (m!= NULL)
{

ici_incref(m;

return m

if ((m=ici_talloc(nmy_ici_type)) == NULL)
return NULL,;
*m = proto;

ici_rego(m;
m= (ny_ici_type *)ici_atonm(objof(m, 1);
return m

}

Mark functions often look like this:

unsi gned | ong
my_type_mark(ici_obj_t *o)
{
0->0_flags | = O _MARK;
return sizeof (nmy_ici_type);

}

But if the type has references to other ICI objects, it might look like this:

unsi gned | ong
my_type_mark(ici_obj_t *o)

{
0->0_flags | = O _MARK;
return sizeof (my_ici_type)
+ ici_mrk(((my_ici_type *)o)->an_obj)
+ ici_mrk(((my_ici_type *)o)->another);
}

Using ICl handletypesto interfaceto C/C++ objects

ICl handle types are generic objects that provide most of machinery one needs to expose a C or
C++ object to ICI. They are provided to avoid the coding overheads of defining anew primitve
ICI typesto reflect each datatype to be exposed. Each ICl handle object is associated with a
pointer, being the pointer to your primitive object, and a name, being the type name the object
will appear to have at the ICl script level.

In addition a handle may optionally have an interterface function to implement property access
and method invocation. Also, a handle may optionally support asuper pointer so it can be afirst
class ICl instance or class that can be sub-classed.

In this discussion we will consider the case of exposing a number of C++ objectsto ICI.

To simplify implementation code and improve efficiency, the ICI handle object supports a map-
ping from the member names that will be used in the script, to a set of integer IDs that can be
used more covieniently in each method. An application can use a single mapping, or several, at
its discretion, but in this example we will assume one global mapping table.

To make this table you must:

146 ThelCl Programming Language



Common tasks: Using ICI handle types to interface to C/C++ objects

1. Definetheinteger IDs. For example:
enum {P_Propertyl, P_Property2, M Methodl, M Method2, ...};
Notice the clear distinction in name between properties and methods. Thisis advisable,
because they must be handled differently in their implementation.
2. Define an array of member names and their corresponding IDs. For example:

static ici_name_id_t menber_nanes[] =

{
{"Propertyl", P_Propertyl},
{"Property2", P_Property2},
{" Met hod1", M Met hodl | H METHOD},
{" Met hod2", M Met hod2 | H METHOD},
{ NULL},

b

In this table, the IDs of methods must be flagged witht he flag H_METHOD (it isin the top
bit in the 32 bit word).

3. Make the mapping table. This mapping table will be used whenever you make a handle
object, so it isgenerally a global made on startup. For example:

ici_obj_t *menber _map;

menber _map = ici _make_handl e_nmenber _nmap(menber _nanes);
i f (menber _map == NULL)

Now, for each object to be exposed, we must write an interface function (see h_member_intf in
theici_handle_t documentation). Like all callbacksfrom ICI, function must have C linkage . As
we are connecting to C++ objects, this function will just transfer to a method of the object. For
example:

extern "C' int
Qbj 1From Cl (void *inst, int id, ici_obj_t *setv, ici_obj_t **retv)
{

}

return ((j1 *)inst)->From Cl (id, setv, retv);

The implementation of each of these functions in each class would look something like this:

int jl::FromdC(int id, ici_obj_t *setv, ici_obj_t **retv)
{
switch (id)
{
case P_Propertyl:
if (setv == NULL)
*retv = ...
break; // Propertyl is read-only, no setv case.

case P_Property2:
if (setv == NULL)
*retv = ...
el se

{
Property2 = ...

The ICl Programming Language 147



Chapter 8: Interfacing with C and C++

*retv = setv;

}

br eak;

case M Met hodl:

if (ici_typecheck("i", &))
return 1;
*retv = ici_null; // No special return val ue.
br eak;
}
return O;

}

We now have the machinery for C++ code to support ICl access to properties and methods of
C++ objects, once it has areference to those objects. We will now consider how to create the
handl e objects that can be passed to ICI code. In general, the functionici_handle_new isused to
find or create such an object, then assign the relevant member map and interface function to it.

If you don’t mind the memory overhead of apointer in each object, one of the safest and easiest
ways to manage the correspondance between the C objects and the ICI version isto add a
pointer to the ICI handle object that represents each C aobject to the type (say m _ICIObj) and a
method to retrieve it (say 1CIObj()). In the constructor, set m_ICIObj to NULL. The theimple-
menation of 1CIObj() would look like:

ici_obj _t *Qbj1::1Cl Obj()

{
if (mIC Obj == NULL)
{
ici_handle_t *h = ici_handle_new(this, 1ClS(0BJ1), NULL);
if (h == NULL)
return NULL;
obj of (h)->o0_fl ags & ~H CLCSED;
h->h_nmenber _map = nenber _nmap;
h->h_menber _intf = Obj 1From Cl ;
m_ | Cl Gbj = objof (h);
}
return mlCl Qoj;
}
In the destructor, we would include the code:
if (mICObj !'= NULL)
{

m | Cl Ohj ->0_flags | = H_CLCSED;
ici_decref(mlIC bj);
}

The manipulation of the H_CLOSED flag isincluded to prevent ICl code that hangs on to refer-
encesto C++ objectsthat have been deleted from causing trouble. WhiletheH_CL OSED flagis
set, the h_ptr field is assumed to be dead.

Keeping a counted reference to the ICI object in the C object like this saves us from most con-
sideration of reference counts when using the result of 1CIObj().

If it isnot practical to use exactly this method (perhaps because you can’t or don’t want to add
datato the class), ici_handle_new can still be used in the same manner to get a suitable object
reference. Note that if there is already a handle that refers to the object in existance,

148 ThelCl Programming Language



Common tasks: Writing and compiling a dynamically loading extension module

ici_handle_new will just return that. But you have no way of knowing if this was the case, so
you must always assume it is new and set the mapping and interface functions.

Writing and compiling a dynamically loading extension module
The loaded library must contain a function of the following name and declaration:

object _t *
ici_var_library_init()

{
}

where var isthe as yet undefined variable name. Thisisthe initialisation function which is
called when the library isloaded. This function should return an ICI object, or NULL on error,
in which case the ICI error variable must be set. The returned object will be assigned to var as
described above.

Thefollowing sample module, mbox.c, illistrates atypical form for asimple dynamically loaded
ICl module (it is a Windows exampl e, but should be clear anyway):

#i ncl ude <wi ndows. h>
#i ncl ude <ici.h>

* nbox_nsg => nbox. msg(string) fromlCl
* Pops up a nodal nessage box with the given string in it

* and waits for the user to hit OK Returns NULL.
*/

int
nmbox_nsg()
{
char *nMeQ;
if (typecheck("s", &nmsg))
return 1;
MessageBox(NULL, msg, (LPCTSTR)"ICI", MB_OK | MB_SETFOREGROUND) ;
return ici_null_ret();
}

/*
* (bject stubs for our intrinsic functions.

*/
ici_cfunc_t mbox_cfuncs[] =
{
{CF_OBJ, "nmsg", nbox_nsg},
{CF_0OBJ}
I
/*
* jci_nbox_library_init
*
* Initialisation routine called on load of this nodule into the |ICl
* interpreter’'s address space. Creates and returns a struct which wll
* be assigned to "nmbox". This struct contains references to our
* intrinsic functions.
*

/

ici_obj_t *
ici_mbox_library_init()
{

The ICl Programming Language 149



Chapter 8: Interfacing with C and C++

i ci _objwsup_t *s;

if (ici_interface_check(ICl _VER, |Cl_BACK COWAT_VAR, "mbox"))
return NULL;
if ((s = ici_mdul e_new mbox_cfuncs)) == NULL)
return NULL;
return objof (s);

}

The following simple Makefileillustrates forms suitable for compiling this moduleinto aDLL
under Windows. Note in particular the use of /export in the link line to make the function
ici_mbox_library_init externally visible.

CFLAGS=
OBJS = nbox. obj
LIBS = ici4.lib user32.1ib

i ci mbox. dl: $(OBIS)
link /dll /out:$@$(OBIS) /export:ici_nbox_library_init $(LIBS)

Note that thereis no direct supprt for the /export option in the MS Developer Studio link set-
tings panel, but it can be entered directly in the Project Options text box.
The following Makefile achieves an equivalent result under Solaris:

cC = gcc -pipe -g
CFLAGS= -fpic -1..

BJS = nbox.o

i ci thox.so : $(OBJS)
Id -0 $@-dc -dp $(0BIS)

Referring to I Cl stringsfrom C code

References to short strings that are known at compile time is common in ICI modules for field
names and such-like. But ICI strings need to be looked up in the ICl atom pool to find the
unique pointer for each particular one (and created if it does not already exist). To assist external
modules in obtaining the pointer to names they need (especially when there are | ots), some mac-
ros are defined in ici.h. The following procedure can be used:

1. Make an include file called icistr.h with your strings, and what you want to call them, for-
matted as in this example:

/*

* Any strings listed in this file may be referred to
* with 1 ClS(nane) for a (string_t *), and I Cl SQ nane)
* for an (object_t *).

*

* This file is included with varying definitions

*

of 1Cl_STR() to declare, define, and initialise
* the strings.

*/

ICl _STR(fred, "fred")

I Cl _STR(j ane, "jane")

I Cl _STR(anp, "&")

2. Next, in one (only) of your source files, after an include of ici.h, include the special include
fileicistr-setup.h. That is:

150 ThelCl Programming Language



Common tasks: Accessing ICl array objects from C

#i ncl ude <icistr-setup. h>

This include file both defines variables to hold pointer to the strings (based on the names
you gave inicistr.h) and defines a function called init_ici_str() which initialises those point-
ers. It does this by including your icistr.h file twice, but under the influence of special
definesfor ICI_STR().

3. Next, call init_ici_str() at startup (after ici_init()) or library load. It returns 1 on error, usual
conventions. For example:

object _t *
ici_XXX_library_init(void)
{
if (init_ici_str())
return NULL;

4. Includeyour icistr.h filein any source filesthat accesses the named I Cl strings. Accessthem
with either 1CIS(fred) or ICISO(fred) which return string_t * and object_t* pointers respec-
tively. For example:

#i nclude "ici.h"
#i ncl ude "icistr.h"

obj ect _t *0;
struct _t *s

o =ici_fetch(s, ICIS(fred));

Accessing I Cl array objectsfrom C

ICl array objectsare, in general, circular buffers of object pointersin asingle growable memory
allocation. Because the wrap point of the circular buffer may occur at any point, it is necessary
to use various functions and macros to access elements rather than simple indexing and/or
pointer arithmetic. The functions and macros that work in genera are:

ici_array_nels() To find the number of elements.
ici_array_get() To get an element at a given integer index.
ici_array_push() To push an object onto the end of the array.
ici_array_rpush() To push an object onto the start of the array.
ici_array_pop() To pop an object from the end of the array.
ici_array_rpop() To pop and object form the start of the array.

ici_array_gather() To copy apossibly wrapped run of object pointersto contigous
memory.

It isalso possible to progress a pointer along all the elements of an array in sequence with:

ici_array_t *a;
ici_obj_t **e;

The ICI Programming Language 151



Chapter 8: Interfacing with C and C++

for (e = ici_astart(a); el!=1ici_alimt(a); e = ici_anext(a, e))
. I* *e is the object */

However, arrays are implemented in amanner to allow them to be used as stacks even more €ffi-
ciently than through the functions listed above. They are used that way in the execution engine.
Basicly, until an rpop or rpush operation is done on an array, it can be assumed that the wrap
point of the circular buffer isjust before the first element, and therefore all elements are contig-
uoudly addressable relative to the bottom of the array. In the particular situation that some C
code has just made an array, and it has not yet been released to any ICI program or other code
that is not well understood, certain simplifying assumtions can be made, and certain more effi-
cient methods can be used. In comments, an array is said to be ‘still astack’ or ‘might bea
queue’.

The C structure that isan ICl array object contains the pointersa_base and a_limit that define
the limits of the allocated memory (a_limit points to the element just beyond the end of the allo-
cation), and the pointers a_bot and a_top that define the limits of the array’s current content
(a_top points to the elememt just beyond the current content). When an array is still a stack,

a bot isaways equal to a_base and all the elements are contiguously addressable from there.

Further, it is possible to ensure (force) the array all ocation to have any desired amount of room
for efficient growth with the macro:

ici_stk _push chk(a, n) Check (force) that the array a hasroom for n new elementsat a_top.

It isalso possible to request an allocation size when calling ici_array_new() to make a new
array. So, for example, to create an array of ten integers:

if ((a=1ici_array_new(10)) == NULL)
fail...

for (i =0; i < 10; ++i)
*a->a top++ = ici_zero;

Similarly, looping over the elements of an array that is still a stack is simpler than the for-loop
shown above.

Note that one must never take the atomic form of a stack, and assume the result is still a stack.
Also remember that the actual memory of the array is a growabl e buffer. Anything that could
ccause the stack to grow (any push or call toici_stk_push chk) may change the allocated buffer
to anew location. So don’t hang on to copies of the array buffer pointersin private variables.

Using I Cl independently from multiple threads

To be written.

Summary of ICl's C API

The following table summarises function and public data that form ICI’s C API. The use of
some of these functions has been illustrated above. The full specification of each is given below.
This summary is only intended to document the limits of the public interface, allow you to
select the relevant functions, and direct you to the source with the full description.

The fina column gives a hint about upgrading from ICI 3. If just a name is mentioned, that is
the old name of this function (many names have acquired an ici__ prefix). Other notes indicate
what constructs should be checked for possible upgrade to the given function. If it is blank,

152 ThelCl Programming Language



Summary of ICI's C API: Using ICl independently from multiple threads

there isno change. Thereisan ICl program, ici3check.ici, in the ICI source directory that will
grep your source for usage of changed constructs and print a note on upgrade action.

Name Synopsis Upgrade from ICI3
ici.h TheICl C APl includefile. Thisis gener-

ated specifically for each platform.
ici_alloc Allocate memory, in particular memory

subject to collection (possibly indirectly).
Must be freed withici_free. See also
ici_talloc and ici_nalloc which are both
preferable. See alloc.c.

ci _argcount

Generate an error message indicating that
thisintrinsic function was given the
wrong number of argument. See cfunc.c.

ci _argerror

Generate an errror message indicating
that this argument of thisintrinsic func-
tion iswrong. See cfunc.c.

ci __array_gat her

Copy a (possibly digoint) run of ele-
ments of an array into contiguous mem-
ory.

Use of a_top.

ci _array_get

Fetch an elemet of an array indexed by a
Cint. Seearray.c.

Use of a_top.

ici_array_nels Return the number of elementsin an Use of a_top.
array. See array.c.

i ci_array_new Allocate anew ICl array. See array.c. new_array
ici_array_pop Pop and return last element of an ICI Use of a_top.
array. See array.c.

i ci _array_push Push an object onto an array. See array.c.|Use of a_top.
ici_array_rpop Rpop an obect from an ICl array. See
array.c.
i ci_array_rpush Rpush an oject onto an ICI array. See
array.c.
ici_array_t The ICl array object type. Seearray.h. |array t
i ci _assign Assign to an ICl object (vectorsthrough |assign

type). See object.h.

ci _assign_cfuncs

Assign of bunch of intrinsic function pro-
totypes into the ICl namespace. See
cfunco.c.

ci _assign_fail

Generic function that can be used for
types that don’t support assignment. See
object.c.

assign_simple

ici_atexit Register afunction to be called at
ici_uninit. See uninit.c.

ici_atom Return the atomic form of an object. See |atom
object.c.

i ci _buf A general purpose growable character

buffer, typically used for error messages.
Seeici_chkbuf. See buf.c.

The ICl Programming Language 153




Chapter 8: Interfacing with C and C++

Name Synopsis Upgrade from ICI3

ici_call Call anIClI function from C by name. See | Prototype change.
call.c.

ici_callv Sameasici_call but takesava list. See |Prototype change.
cal.c.

ici_cfunc_t The ICl intrinsic function object types. | cfunc_t
See cfunc.h and cfunco.c (not cfunc.c).

i ci _chkbuf Verify or grow ici_buf to be big enough.
See buf.c.

i ci _cnp_uni que Generic function that can be used for cmp_unique
typesthat can’'t be merged through the
atom pool. See object.c.

i ci _copy_sinple Generic copy function that canbeused |copy_simple

for typesthat areintrinsically atomic. See
object.c.

ci _debug

A pointer to the current debug functions.
Seeidb2.c.

ci _debug_enabl ed

If compiled with debug, an int giving the
current status of debug callbacks. Else
defined to O by the preprocessor. See
fwd.h.

See cfunco.c.

i ci _debug_t A struct of function pointersfor debug | debug_t
functions (like break and watch). See
exec.h.

i ci _decref Decrement the reference count of an ICI | decref
object. See object.h.

i ci _def _cfunc Define C functionsin the current scope. | def cfuncs

ci _dont _record_|line_nuns

A global int which can be set to prevent
line number records (which will margin-
ally speed execution, but errors won't
reveal source location). See fwd.h.

ci _enter

Acquire the global ICI mutex, which is
required for access to ICI data and func-
tions. Seethread.c.

ci _error

A global char pointer to any current error
message.

Ci _exec

A pointer to the current ICI execution
context (NB: Don’t look at or touch x_os,
x_xsor x_vsfields). See exec.h.

ci _fetch

Fetch an element from an object. Vectors
by object type. See object.h.

fetch

ci _fetch fail

A generic function that can be used by
objects that don’t support fetching.

fetch_simple

ci_fetch_int

Fetch an int from an object into a C long.
See mkvar.c.

ci _fetch _num

Fetch anint or float from an object into a
C double. See mkvar.c.

154 ThelCl Programming Language




Summary of ICI's C API: Using ICl independently from multiple threads

Name Synopsis Upgrade from ICI3
ici_file_close Close the low-level file associated with  |file close
an ICI file object. Seefile.c.
ici_file_new Create anew ICI file object. Seefile.c. |new_file
ici_file_t TheIClI file object type. Seefile.h. file_t
ici_float_new Get an ICl float from a C double. See new_float
float.c.
ici_float _ret Return a C double from an intrinsic func- | float_ret
tion asan ICl float. See cfunc.c.
ici_float_t The ICl float object type. See float.h. float_t
ici_free Free memory allocated withici_alloc.
Seealsoici_tfreeandici_nfree. See
alloc.c.
ici_func Call an ICI function, given you havea |Prototype change.
func_t*. Seeici_call to call by name. See
call.c.
ici_func_t The ICI function object type. See func.h. |func_t
i ci_funcv Same asici_func except it takesava list. | Prototype change.
ici_get last_errno Setici_error (see) based onthelast failed |syserr (and seman-
system function (i.e. errno). See syserr.c. |tics change)

ci _get _last_win32 error

Windowsonly. Setici_error based on the
value of GetLastError(). See win32err.c.

ci _handl e_new

Make anew handle _t object.

ci _handle_t

The type of handle objects. See handle.c.

ci _hash_uni que

A generic function that can beusedin a
type _t struct for objects that can’t be
merged through the atom pool. See
object.c.

i ci _incref Increment reference to an |Cl object. incref
ici_init Initialise the ICI interpreter. Seeinit.c.
ici_int_new GetanICl int fromaClong. Seeint.c. |new_int
ici_int_ret Return aC long from an intrinsic func-  |int_ret
tion.See cfunc.c.
ici_int_t int_t
ici_leave Unlock the global ICl mutex to allow
thread switching. Seethread.c.
ici_min A wrapper roundici_init() that doesargc,
argv argument processing. Seeicimain.c.
ici_mark Mark an object as part of the garbage col-| mark
lection mark phase. See object.h.
i ci _mem new Allocate a new mem t object. See mem.c.|new_mem
ici_nmemt mem _t
i ci _nmethod Call an ICl method given an instance and

amethod name. See call.c.

ci _nmet hod_new

Allocate a new metnod_t object. See
method.c.

ici_new_method

ci _method_t

method_t

The ICI Programming Language 155




Chapter 8: Interfacing with C and C++

Name
ici_nalloc

Synopsis

Allocate memory, in particular memory
subject to collection (possibly indirectly).
Must be freed with ici_nfree. See also
ici_tallocandici_alloc. Seealloc.c.

Upgrade from ICI3

value of stdout.

ici_need_stdin Return IClI file object that isthe current | need_stdin
value of stdin.
i ci _need_stdout Return ICl file object that isthe current | need_stdout

ici_nfree Free memory allocated with ici_nalloc.
Seeasoici_tfreeandici_free. See
alloc.c.
ici_null A pointer to the ICI NULL object. objof(&o_null)
ici_null _ret Return an ICI NULL fromanintrinsic  |null_ret
function.See cfunc.c.
ici_null _t null_t
ici_obj t The generic ICl object type. All ICI object t
objects have this as their first element.
i ci _obj name Get a short human readable representa- | objname
tion of any object for diagnostics reports.
See cfunc.c.
i ci _objwsup_t objwsup _t
i ci_one A global pointer to the ICI int 1. 0_one
ici_os An ICl array which isthe operand stack
of the current execution context.
ici_parse file Parse afile asanew top-level module. |parse file
ici_ptr_new Allocate anew ICI ptr object. See ptr.c. |new_ptr
ici_ptr_t ptr_t
ici_reclaim Run the ICI garbage collector. See
object.c.
i ci _regexp_new Make anew ICI regexp object. new_regexp
i ci_regexp_t regexp_t

ci _register_type

Register anew type t structure with the
interpreter to obtain the small int type
code that must be placed in the header of
ICl objects.

0_type assignment

ici_rego Register a new object with the garbage  |rego
collector. See object.h (a macro).
ici_ret_no_decref Return an ICI object from anintrinsic C
function, without anici_decref. See
cfunc.c.
ici_ret_wth_decref Return an ICI object from anintrinsic C
function, but ici_decref it in the process.
See cfunc.c.
i ci _retcheck Check and update values returned
through pointers.
ici_set new Allocate anew ICI set object. See set.c. |new_set
ici_set t set t

156 ThelCl Programming Language




Summary of ICI's C API: Using ICl independently from multiple threads

Name Synopsis Upgrade from ICI3
i ci _set_unassign Remove an element from a set. See set.c. |unassign_set
ici_set_val Set aCint, long, double, FILE * or ICI
object into the inner-most scope of any
object that supports a super. See mkvar.c.
ici_skt t skt t
ici_stdio ftype A struct holding pointersto stdio func- | stdio_ftype
tionsto facilitate making stdio based ICl
files.
i ci _stk_push_chk Ensures there is a certain amount of con-
tiguous room at the end of an array for
direct push operationsthrough a top. See
array.h.
I Cl _STR Multi-purpose macro used by theicistr-
setup.h mechanism. See str.h.
ici_str_alloc Do half of the allocation of a string. Data | new_string
must be added and ici_atom called before
completion. See string.c.
ici_str_get nul _term Get the ICI form of a string of nul termi- |get_cname
nated chars without an extrareference
count. See string.c.
ici_str_new Get the ICI form of a string of chars, by |new_name
explicit length. See string.c.
ici_str_new nul _term Get the ICI form of a string of nul termi- |new_cname
nated chars. See string.c.
ici_str_ret Return anul terminated C string from an |str_ret
intrinsic function asan ICI string. See
cfunc.c.
ici_str_t string_t
i ci _struct_new Allocate anew ICI struct object. See new_struct
struct.c.
ici_struct _t struct_t

ci _struct_unassign

Remove an element from an |IClI struct.
See struct.c.

unassign_struct

ci _talloc

Allocate memory, in particular memory
subject to collection (possibly indirectly)
sufficient for agiven type. Must be freed
withici_tfree. Seeasoici_nalloc and
ici_alloc. Seealloc.c.

ici_aloc

ci _tfree

Freememory allocated withici_tfree. See
alloc.c.

ci _type_t

Thetypethat holds information about 1CI
primitive object types. You must declare,
initialise, and register one of these to
make anew ICl primitive type. See
ici_register_type. See object.h.

type t

ci _typecheck

Check and marshall ICl argumentsto an
intrinsic function into C variables. See
cfunc.c.

The ICI Programming Language 157




Chapter 8: Interfacing with C and C++

Name Synopsis Upgrade from ICI3
ici_uninit Shutdown and free resources associated

with the ICI interpreter. See uninit.c.
ici_vs The scope (“variable”) stack of the cur-

rent | Cl execution context.
i ci _wakeup Wake up any ICl threads waiting on a

given ICl object. Seethread.c.
ici_wap_t Struct to support ici_atexit. See uninit.c. |wrap_t
ici_xs The execution stack of the current ICI

execution engine. See exec.c.
ici_ XXX library_ init The entry point you must define for

dynamically loaded modules.
ici_zero ThelCl int 0. 0_zero
icistr.h Theinclude file you must make to get

initialised I Cl strings. See str.h.
icistr-setup.h Theinclude file you must include to ini-

tialised ICI strings. See str.h.
obj of Macro to cast an object to an (object_t *)

Detailed description of ICI's C API

ARG

#defi ne ARG n)
In acall from ICI to afunction coded in C, this macro returns the object passed asthe'i’th
actual parameter (thefirst parameter is ARG(0)). Thetype of theresultisan (ici_obj_t*). There

isno actual or implied incref associated with this. Parameters are known to be on the ICI oper-
and stack, and so can be assumed to be referenced and not garbage collected.

(Thismacro hasno ICI_ prefix for historical reasons.)

ARGS

#defi ne ARGS()
In acall from ICI to afunction coded in C, this macro returns a pointer to the first argument to
this function, with subsegquent arguments being available by * decrementing* the pointer.

(Thismacro hasno ICI_ prefix for historical reasons.)

CF_ARG1
#defi ne CF_ARGL()
In acall from ICI to afunction coded in C, this macro returnsthe cf_argl field of the current C

function. The macro CF_ARG2() can aso be used to obtain the cf_arg2 field. See the
ici_cfunc_t type.

They are both (void *) (Prior to ICI 4.0, CF_ARGI1() was afunction pointer.)

158 ThelCl Programming Language



Detailed description of ICI's C API: ICI_BACK_COMPAT_VER

ICI_BACK_COMPAT_VER

#defi ne | Cl _BACK_COWPAT_VER
The oldet version number for which the binary interface for seperately compiled modulesis
backwards compatible. Thisis updated whenever the exernal interface changes in away that

could break already compiled modules. We aim to never to do that again. See
ici_interface _check().

ICI_DIR_SEP
#define I Cl _DI R SEP

The character which seperates segmentsin a path on this architecture.

ICI_DLL_EXT
#define ICl _DLL _EXT

The string which is the extension of a dynamicly loaded library on this architecture.

ICI_NO_OLD_NAMES

#define | Cl _NO OLD_NAMES
This define may be made before an include of ici.h to suppress a group of old (backward com-
patible) names. These names have been upgraded to haveici_ prefixes since version 4.0.4.
These names don't effect the binary interface of the API; they are all type or macro names. But

you might want to suppress them if you get a clash with some other include file (for example,
file_t has been known to clash with definesin <file.h> on some systems).

If you just wasto get rid of one or two defines, you can #undef them after the include of ici.h.

The names this define supresses are:

array_t float t obj ect _t catch_t
slot t set t struct t exec_t
file_t func_t cfunc_t net hod_t
int t mar k_t nul | _t obj wsup_t
op_t pc_t ptr_t regexp_t
src_t string_t type_t wrap_t
ftype_t forall t parse_t nmem t
debug_t

ICI_OBJ_SET_TFNZ

#define ICl _OBJ_SET_TFNZ(o, tcode, flags, nrefs,
| eaf 2)

Set the basic fields of the object header of 0. 0 can be any struct declared with an object header
(this macro castsit). This macro is prefered to doing it by hand in case there is any future
changein the structure. See comments on each field of ici_obj_t. Thisis normally thefirst thing
done after allocating a new bit of memory to hold an ICI object.

The ICl Programming Language 159



Chapter 8: Interfacing with C and C++

ICI_PATH_SEP
#define | Ol _PATH SEP

The character which seperates directories in a path list on this architecture.
ICI_VER
#define I Cl _VER
The ICI version number composed into an 8.8.16 unsigned long for simple comparisons. The

components of this are also available as ICI_VER_MAJOR, IClI_VER_MINOR, and
ICI_VER_RELEASE.

NARGS
#def i ne NARGS()

In acall from ICI to afunction coded in C, this macro returns the count of actual arguments to
this C function.

(Thismacro hasno ICI__ prefix for historical reasons.)
hassuper
#def i ne hassuper (0)
Test if this object supports a super type. (It may or may not have a super at any particular time).
ici_alimit
#define ici_alimt(a)

A macro to assist in doing for loops over the elements of an array. Use as:

ici_array_t *a;

ici_obj_t **@;
for (e =ici_astart(a); el!=ici_alimt(a); e =1ici_anext(a,
e))

ici_alloc

void * ici_alloc(size_ t z)

Allocate ablock of size z. Thisjust mapsto araw malloc() but does garbage collection as neces-
sary and attempts to track memory usage to control when the garbage collector runs. Blocks
allocated with this must be freed with ici_free().

Itispreferableto useici_talloc(), or failing that, ici_nalloc(), instead of this function. But both
require that you can match the allocation by calling ici_tfree() or ici_nalloc() with the original
type/size you passed in the allocation call. Those functions use dense fast free lists for small
objects, and track memory usage better.

See also: IClIs allocation functions, ici_free(), ici_talloc(), ici_nalloc().

160 ThelCl Programming Language



Detailed description of ICI's C API: ici_anext

ici_anext

#define ici_anext(a, e)

A macro to assist in doing for loops over the elements of an array. Use as:

ici_array_t *a;

ici_obj_t **g;
for (e =ici_astart(a); el!=ici_alimt(a); e =ici_anext(a,
e))

ici_argcount

int ici_argcount(int n)

Generate a generic error message to indicate that the wrong number of arguments have been
supplied to an intrinsic function, and that it really (or most commonly) takes n. This function
sets the error descriptor (ici_error) to a message like:

%l argunments given to %, but it takes %l

and then returns 1.

This function may only be called from the implementation of an intrinsic function. It takes the
number of actual argument and the function name from the current operand stack, which there-
fore should not have been distured (which is normal for intrincic functions). It takes the number
of arguments the function should have been supplied with (or typically is) from n. Thisfunction
istypically used from C coded functions that are not using ici_typecheck() to process argu-
ments. For example, afunction that just takes a single object as an argument might start:

static int

myf unc()
{

ici_obj_t *o;

if (NARGS() !'= 1)
return ici_argcount (1);
0 = AR 0);

ici_argerror
int ici_argerror(int i)

Generate a generic error message to indicate that argument i of the current intrinsic function is

bad. Despite being generic, this message is generally pretty informative and useful. It has the
form:

argunent % of % incorrectly supplied as %

The argument number isbase 0. |.e. ici_argerror(0) indicates the 1st argument is bad.
The function returns 1, for use in a direct return from an intrinsic function.

This function may only be called from the implementation of an intrinsic function. It takes the
function name from the current operand stack, which therefore should not have been distured

The ICl Programming Language 161



Chapter 8: Interfacing with C and C++

(which isnormal for intrincic functions). Thisfunction is typically used from C coded functions
that are not using ici_typecheck() to process arguments. For example, afunction that just takesa
single mem object as an argument might start:

static int

myf unc()
{

ici_obj_t *o;

if (NARGS() !'= 1)
return ici_argcount (1);

if (!ismen(ARG0)))

return ici_argerror(0);

ici_array_find_slot
extern ici_obj_t ** ici_array find_ slot(ici_array t *a,
ptrdiff_t i)

Return a pointer to the slot in the array a that does, or should contain the index i. Thiswill grow
and ici_null fill the array as necessary (and fail if the array is atomic). Only positivei. Returns
NULL on error, usual conventions. Thiswill not fail if i islessthanici_array nels(a).

ici_array_gather
void ici_array_gather(ici_obj_t **b, ici_array_ t *a,
ptrdiff_t start, ptrdiff_t n)

Copy n object pointers from the given array, starting at index start, to b. The span must cover

existing elements of the array (that is, don't try to read from negative or excessive indexes).

This function is used to copy objects out of an array into a contiguous destination area. You
can't easily just memcpy, because the span of elements you want may wrap around the end. For
example, the implementaion of interval () uses this to copy the span of elements it wantsinto a
new array.

ici_array_get
ici_obj_t * ici_array get(ici_array_t *a, ptrdiff_t i)

Return the element or the array a from index i, or ici_null if out of range. No incref is done on
the object.

ici_array_nels
ptrdiff_t ici_array_nels(ici_array_t *a)
Return the number of elementsin the array a.

ici_array_new

ici_array_t * ici_array_new(ptrdiff_t n)

162 ThelCl Programming Language



Detailed description of ICI's C API: ici_array_pop

Return anew array. It will have room for at least n elements to be pushed contigously (that is,
thereisno need to useici_stk_push_chk() for objects pushed immediately, up to that limit). If n
is0 an internal default will be used. The returned array has ref count 1. Returns NULL on fail-
ure, usua conventions.

ici_array_pop
ici_obj t * ici_array_pop(ici_array_ t *a)

Pop and return the top of the given array, or ici_null if it is empty. Returns NULL on error (for
example, attempting to pop and atomic array). Usual error conventions.

ici_array_push
int ici_array_push(ici_array_t *a, ici_obj_t *o)
Push the object o onto the end of the array a. Thisisthe general case that works for any array

whether it isa stack or a queue. On return, o_top[-1] is the object pushed. Returns 1 on error,
else 0, usual error conventions.

ici_array_rpop
ici_obj_t * ici_array_rpop(ici_array_t *a)

Pop and return the front of the given array, or ici_null if itisempty. ReturnsNULL on error (for
example, attempting to pop and atomic array). Usual error conventions.

ici_array_rpush
int ici_array_rpush(ici_array t *a, ici_obj_t *o)

Push the object o onto the front of the array a. Return 1 on failure, else O, usual error conven-
tions.

ici_assign
#define ici_assign(o,Kk, V)
Assign the value v to key k of the object 0. This macro just calls the particular object’s
t_assign() function.
Note that the argument o is subject to multiple expansions.

Returns non-zero on error, usual conventions.

ici_assign_base
#define ici_assign_base(o,k, V)
Assign the value v to key k of the object o, but only assign into the base object, even if thereisa
super chain. This may only be called on objects that support supers.
Note that the argument o is subject to multiple expansions.

Returns non-zero on error, usual conventions.

The ICl Programming Language 163



Chapter 8: Interfacing with C and C++

ici_assign_cfuncs
int ici_assign_cfuncs(ici_objwsup_t *s, ici_cfunc_t *cf)
Assign into the structure s all the intrinsic functions listed in the array of ici_cfunc _t structures

pointed to by cf. The array must be terminated by an entry with acf_name of NULL. Typically,
entries in the array are formated as:

{CF_08BJ, "func", f _func},
Where CF_OBJis a convenience macro to take care of the normal object header, "func" isthe

name your function will be assigned to in the given struct, and f_func isa C function obeying
therules of ICl intrinsic functions.

Returns non-zero on error, in which case error is set, €lse zero.

ici_assign_fail
int ici_assign_fail(ici_obj_t *o, ici_obj_t *k, ici_obj_t
*V)

Thisis a convenience function which can be used directly asthet_assign entry in atype's
ici_type t struction if the type doesn’t support asignment. It setsici_error to a message of the
form:

attenpt to set % keyed by % to %

and returns 1. Also, it can b called from within a custom assign function in cases where the par-
ticular assignment isillegal.

ici_assign_super

#defi ne ici_assign_super(o,Kk,v,Db)
Assign thevalue v at the key k of the object o, but only if the key kis already an element of o or
one of its supers. The object o *must* be one that supports supers (such as a struct or a handle).

This function is used internally in assignments up the super chain (thus the name). In this con-
text the argument b indicates the base struct of the assign and is used to maintain the internal
lookup |ook-aside mechanism. If not used in this manner, b should be supplied as NULL.

Return -1 on error, O if it was not found, and 1 if the assignment was compl eted.
ici_astart
#define ici_astart(a)

A macro to assist in doing for loops over the elements of an array. Use as:

ici_array_t *a;

ici_obj_t **@;
for (e =ici_astart(a); el!=ici_alimt(a); e =ici_anext(a,
e))

164 ThelCl Programming Language



Detailed description of ICI's C API: ici_atexit

ici_atexit
void ici_atexit(void (*func)(void), ici_wap_t *w)
Register the function func to be called at I Cl interpreter shutdown (i.e. ici_uninit() call).

The caller must supply aici_wrap_t struct, which is usually statically allocated. This structure
will be linked onto an internal list and be unavailable till after ici_uninit() is called.

ici_atom
ici_obj_t * ici_atom(ici_obj_t *o, int |one)
Return the atomic form of the given object 0. Thiswill be an object equal to the one given, but

read-only and possibly shared by others. (If the object it already the atomic form, it isjust
returned.)

Thisis achieved by looking for an object of equal value in the atom pool. The atom pool isa
hash table of all atoms. The object’st_hash and t_cmp functions will be used it thislookup proc-
ess (from this object’sici_type t struct).

If an existing atomic form of the object isfound in the atom poal, it is returned.

If theloneflag is 1, the object isfree’dif itisn't used. ("lone" because the caller hasthe lone ref-
erenceto it and will replace that with what atom returns anyway.) If the lone flag is zero, and the
object would be used (rather than returning an equal object already in the atom pool), a copy
will made and that copy stored in the atom pool and returned. Also note that if loneis 1 and the
object is not used, the nrefs of the passed object will be transfered to the object being returned.

Never fails, at worst it just returnsits argument (for historical reasons).

ici_atom_probe

ici_obj_t * ici_atom probe(ici_obj_t *o)
Probe the atom pool for an atomic form of o. If found, return that atomic form, else NULL. This
can beuse by *_new() routines of intrinsically atomic objects. These routines generally set up a

dummy version of the object being made which is passed to this probe. If it findsamatch, that is
returned, thus avoiding the allocation of an object that may be thrown away anyway.

ici_call

int ici_call(ici_str_t *func_nane, char *types, ...)
Call an ICI function by name from C with simple argument types and return value. The name
(func_name) islooked up in the current scope.

Seeici_func() for an explanation of types. Apart from taking a name, rather than an ICI function
object, this function behaves in the same manner asici_func().

There is some historical support for @ operators, but it is deprecated and may be removed in
future versions.

ici_callv

int ici_callv(ici_str_t *func_nane, char *types, va_list va)

The ICl Programming Language 165



Chapter 8: Interfacing with C and C++

Varient of ici_call() (see) taking a variable argument list.

There is some historical support for @ operators, but it is deprecated and may be removed in

future versions.
ici_cfunc_t
struct ici_cfunc
{
i ci_obj_t o_head;
char *cf _nane;
i nt (*cf_cfunc)();
voi d *cf _argil;
voi d *cf _arg2;
}

The C struct which isthe ICl intrinsic function type. That is, afunction that is coded in C.
(There are actually two types, this one, and a second for functionsthat are coded in ICl, that are
both called func.)

ici_cfunc_t objects are often declared staticly (in an array) when setting up a group of C func-
tionsto be called from ICl. When doing this, the macro CF_OBJ can be used astheinitialiser of
the o_head field (the standard ICI object heade).

The type has awell-known built-in type code of TC_CFUNC.
0_head The standard ICI object header.

cf_name A name for the function. Calls to functions such as
ici_assign_cfuncswill use this asthe name to use when assigning it
into an ICl struct. Apart from that, it isonly used in error messages.

cf_func() The implementation of the function. The formals are not mentioned
here deliberately as implementaions will vary in their use of them.

cf_argl, cf _arg2 Optional additional dataitems. Sometimesit is useful to writeasin-
gle C function that masquerades as sever! | Cl functions - driven by
distinguishing data from these two fields. See CF_ARG1().

ici_chkbuf

#defi ne ici _chkbuf (n)
Ensure that ici_buf points to enough memory to hold index n (plus room for anul char at the
end). Returns 0 on success, else 1 and setsici_error.

See dso: The error return convention.

ici_class_new

ici_objwsup_t * ici_class_new(ici_cfunc_t *cf, ici_objwsup_t
*super)

Create anew class struct and assign the given cfuncsintoit (asinici_assign _cfuncs()). If super
isNULL, the super of the new struct is set to the outer-most writeable struct in the current
scope. Thusthisisanew top-level class (not derived from anything). If super isnon-NULL, it is

166 ThelCl Programming Language



Detailed description of ICI's C API: ici_cmp_unique

presumably the parent class and is used directly as the super. Returns NULL on error, usua con-
ventions. The returned struct has an incref the caller owns.

ici_cmp_unique

int ici_cnp_unique(ici_obj_t *ol, ici_obj_t *o02)

Thisis a convenience function which can be used directly asthet_cmp entry in atype's
ici_type t struction if object of thistype areintrinsically unique. That is, the object is one-to-one
with the memory allocated to hold it. An abject type would be instrinsically uniqueif you didn’t
want to support comparison that considered the contents, and/or didn’t want to support copying.
If you use this function you should almost certainly also be using ici_hash_unique and
ici_copy_simple.

It returns O if the objects are the same object, else 1.

ici_copy_simple
ici_obj_t * ici_copy_sinple(ici_obj_t *o)

Thisis aconvenience function which can be used directly asthet_copy entry in atype's
ici_type t struction if object of thistype areintrinsically unique (i.e. are one-to-one with the
memory they occupy, and can’t be merged) or intrinsically atomic (i.e. are one-to-one with their
value, are are always merged). An object type would be instrinsically unique if you didn’t want
to support comparison that considered the contents, and/or didn’t want to support copying. An
intrinsically atomic object type would also use this function because, by definition, if you tried
to copy the object, you'd just end up with the same one anyway.

It increfs o, and returnsiit.

ici_debug_t
struct ici_debug
{
voi d (*idbg_error)(char *, ici_src_t *);

voi d (*idbg_fncall)(ici_obj_t *, ici_obj_t **, int);
voi d (*idbg _fnresult)(ici_obj_t *);
voi d (*idbg_src)(ici_src_t *);
voi d (*idbg_watch)(ici_obj t *, ici_obj_t *, ici_obj_t
*),
}

ICl debug interface. The interpreter has a global debug interface enable flag,
ici_debug_enabled, and a global pointer, ici_debug, to one of these structs. If theflag is set, the
interpreter calls these functions. Seeici_debug and ici_debug_enabled.

idbg_error() Called with the current value of ici_error (redundant, for historical
reasons) and a source line marker object (seeici_src_t) on an un-
caught error. Actually, thisis not so useful, because it is currently
called after the stack has been unwound. So auser would not be able
to see their stack traceback and local context. This behaviour may
changein future.

idbg_fncall()

The ICl Programming Language 167



Chapter 8: Interfacing with C and C++

Called with the object being called, the pointer to the first actual ar-
gument (see ARGS() and the number of actual argumentsjust before
control istransfered to a callable object (function, method or any-

thing else).
idbg_fnresult() Called with the object being returned from any call.
idbg_src() Called each time execution passes into the region of a new source

line marker. These typically occur before any of the code generated
by a particular line of source.

idbg_watch() In theory, called when assignments are made. However optimisa-
tionsin the interpreter have made this difficult to support without
performance penalties even when debugging is not enabled. Soitis
currently disabled. The function remains here pending discovery of
amethod of achieving it efficiently.

ici_decref

#define ici_decref(0)

Decrement the object ' 0's reference count. References from ordinary machine data objects (ie.
variables and stuff, not other objects) are invisible to the garbage collector. These refs must be
accounted for if there is a possibility of garbage collection. Note that most routines that make
objects (new_*(), copy() etc...) return objects with 1 ref. The caller is expected to ici_decref() it
when they attach it into wherever it is going.

ici_def cfuncs

int ici_def_cfuncs(ici_cfunc_t *cf)
Define the given intrinsic functions in the current static scope. Seeici_assign_cfuncs() for
details.

Returns non-zero on error, in which case error is set, €lse zero.

ici_dont_record_line_nums

i nt ici_dont _record_line_nuns;

Set this to non-zero to stop the recording of file and line number information as code is parsed.
Thereis nothing in the interpreter core that sets this. Setting this can both save memory and
increase execution speed (slightly). But diagnostics won't report line numbers and source line
debugging operations won't work.

ici_enter

void ici_enter(ici_exec_t *x)

Enter code that uses |Cl data. ICI datareferesto *any* ICl objects or static variables. You must
do this after having left ICI’s mutex domain, by calling ici_leave(), before you again access any
ICl data. Thiscall will re-acquire the global 1CI mutex that gates access to common ICl data.
You must pass in the ICI execution context pointer that you remembered from the previous
matching call toici_leave().

168 ThelCl Programming Language



Detailed description of ICI's C API: ici_error

If the thread wasin an ICl level critical section when theici_leave() call was made, then this
will have no effect (mirroring the no effect that happened when theici_leave() was done).

Note that even ICl implementations without thread support provide this function. In these impl-
emnetationsit has no effect.

ici_error
char *ici_error;
The global error message pointer. The ICl error return convention dictacts that the originator of

an error setsthisto point to a short human readable string, in addition to returning the functions
error condition. See The error return convention for more details.

ici_eval
ici_obj_t * ici_eval(ici_str_t *name)
Evaluate name asif it was avariable in a script in the currently prevailing scope, and return its

value. If the name is undefined, this will attempt to load extension modules in an attemot to get
it defined.

Thisis dlightly different from fetching the name from the top element of the scope stack (i.e.
ici_vs.a_top[-1]) because it will attempt to auto-load, and fail if the name is not defined.

The returned object has had it's reference count incremented.

Returns NULL on error, usua conventions.

ici_fetch

#define ici_fetch(o,k)
Fetch the value of the key k from the object 0. This macro just calls the particular object’s
t_fetch() function.

Note that the returned object does not have any extra reference count; however, in some circum-
stances it may not have any garbage collector visible referencesto it. That is, it may be vunera-
ble to agarbage collection if it is not either incref()ed or hooked into a referenced object
immediately. Callers are responsible for taking care.

Note that the argument o is subject to multiple expansions.

Returns NULL on failure, usua conventions.

ici_fetch_base
#define ici_fetch_base(o, k)
Fetch the value of the key k from the object o, but only consider the base object, even if thereis

asuper chain. See the notes on ici_fetch(), which also apply here. The object o * must* be one
that supports super types (such as astruct or a handle).

ici_fetch_fail

ici_obj_t * ici_fetch fail(ici_obj_t *o, ici_obj_t *k)

The ICl Programming Language 169



Chapter 8: Interfacing with C and C++

Thisis a convenience function which can be used directly asthet_fetch entry in atype's
ici_type_t struction if the type doesn’t support fetching. It setsici_error to a message of the
form:

attenpt to read % keyed by %

and returns 1. Also, it can b called from within a custom assign function in cases where the par-
ticular fetch isillegal.

ici_fetch_super

#define ici_fetch_super(o,k,v,b)

Fetch the value of the key k from o and store it through v, but only if theitem kis aready an ele-
ment of o or one of its supers. See the notes onici_fetch(), which also apply here. The object o
*must* be one that supports supers (such as a struct or ahandle).

Thisfunction is used internally in fetches up the super chain (thus the name). In this context the
argument b indicates the base struct of the fetch and is used to maintain the internal lookup
look-aside mechanism. If not used in this manner, b should be supplied as NULL.

Return -1 on error, O if it was not found, and 1 if it was found. If found, the value is stored in *v.

ici_file close

int ici_file_close(ici_file_t *f)

Close the given ICI file f by calling the lower-level close function given in theici_ftype t asso-
ciated with thefile. A guard flag is maintained in the file object to prevent multiple callsto the
lower level function (thisisreally so we can optionally close the file explicitly, and let the gar-
bage collector do it to). Returns non-zero on error, usual conventions.

ici_file_new

ici_file_t * ici _file_newm(void *fp, ici_ftype_t *ftype,
ici_str_t *name, ici_obj_t *ref)

Return afile object with the given ftype and afile type specific pointer fp which is often some-
things like a STREAM * or afile descriptor. The name is mostly for error messages and stuff.
The returned object has aref count of 1. Returns NULL on error.

The ftype is a pointer to a struct of stdio-like function pointers that will be used to do I/O opera-
tionsonthefile (seeici_ftype t). The given structure is assumed to exist aslong as necessary. (It
isnormally astatic srtucture, so thisis not a problem.) The core-supplied struct ici_stdio_ftype

can be used if fpisa STREAM *.

The ref argument isan object reference that the file object will keep in case the fp argument isan
implicit reference into some object (for example, thisisused for reading an ICl string as afile).
It may be NULL if not required.

ici_float_new

ici_float_t * ici_float_new double v)

170 ThelCl Programming Language



Detailed description of ICI's C API: ici_float_ret

Return an ICI float object corresponding to the given value v. Note that floats are intrinsically
atomic. The returned object will have had its reference count inceremented. Returns NULL on
error, usual conventions.

ici_float_ret
int ici_float_ret(double ret)

Usereturnici_float_ret(ret); to return afloat (i.e. a C double) from an intrinsic fuction. The
double will be converted to an ICI float.

ici_float_t
struct ici_float
{
i ci_obj_t o_head;
doubl e f _val ue;
}

The C struct that isthe ICl float object.
ici_free
void ici_free(void *p)

Free ablock allocated withici_alloc().
See also: IClIs allocation functions, ici_alloc(), ici_tfree(), ici_nfreg().

ici_ftype t

struct ici_ftype

{
i nt (*ft_getch)();
i nt (*ft_ungetch)();
i nt (*ft_putch)();
i nt (*ft_flush)();
i nt (*ft_close)();
| ong (*ft_seek)();
i nt (*ft_eof)();
i nt (*ft_wite)();

}

A set of function pointers for simple file abstraction. ICl file objects are implemented on top of
this simple file abstraction in order to allow several different types of file-like entities. Each dif-
ferent type of file uses one of these structures with specific functions. Each function is assumed
to be compatible with the stdio function of the same name. In the case were the fileisa stdio
stream, these *are* the stdio functions.

See also: ici_stdio_ftype.

The ICl Programming Language 171



Chapter 8: Interfacing with C and C++

ici_func

int ici_func(ici_obj_t *callable, char *types, ...)

Call acallable ICl object callable from C with simple argument marshalling and an optional
return value. The callable object istypically afunction (but not afunction name, seeici_call for
that case).

typesisastring that indicates what C values are being supplied as arguments. It can be of the
form".=..." or "..." where the dots represent type key letters as described below. In the first case
the 1st extra argument is used as a pointer to store the return value through. In the second case,

the return value of the ICI function is not provided.
Type key letters are:

i The corresponding argument should be a C long (a pointer to along in the case of
areturn value). It will be converted to an ICI int and passed to the function.

f The corresponding argument should be a C double. (a pointer to adoublein the
case of areturn value). It will be converted to an ICl float and passed to the func-
tion.

s The corresponding argument should be a nul terminated string (a pointer to a char

* in the case of areturn value). It will be converted to an ICl string and passed to
the function.

When astringisreturned it isapointer to the character dataof aninternal 1Cl string
object. It will only remain valid until the next call to any ICI function.

o] The corresponding argument should be a pointer to an ICl object (a pointer to an
object in the case of areturn value). It will be passed directly to the ICI function.

When an object isreturned it hasbeenici_incref()ed (that is, it is held against gar-
bage collection).

Returns 0 on success, else 1, in which caseici_error has been set.
See also: ici_callv(), ici_method(), ici_cal(), ici_funcv().

ici_funcv
int ici_funcv(ici_obj_t *subject, ici_obj_t *callable, char
*types, va_list va)
Thisfunction isavariation on ici_func(). See that function for details on the meaning of the
types argument.

vaisava list (variable argument list) passed from an outer var-args function.

If subjectisNULL, then callableis taken to be a callable abject (could be afunction, a method,
or something else) and is called directly. If subject isnon-NULL, it is taken to be an instance
object and callable should be the name of one of its methods (i.e. anici_str_t *).

ici_get last_errno
int ici_get_last_errno(char *dothis, char *tothis)

Convert the current errno (that is, the standard C global error code) into an ICI error message
based on the standard C strerror function. Returns 1 so it can be use directly in areturn from an

172 ThelCl Programming Language



Detailed description of ICI's C API: ici_get_last_win32_error

ICl ingtrinsic function or similar. If dothis and/or tothis are non-NULL, they are included in the
error message. dothis should be a short name like "open”. tothisis typically afile name. The
messages it sets are, depending on which of dothis and tothis are NULL, the message will be
one of:

strerror

failed to dothis: strerror

failed to dothis tothis: strerror
tothis: strerror

ici_get last win32_error

int ici_get_last_w n32 error(void)

Windows only. Convert the current Win32 error (that is, the value of GetLastError()) intoan ICl
error message and setsici_error to point to it. Returns 1 so it can be use directly in areturn from
an ICl instrinsic function.

ici_handle_method_check

int ici_handl e_nethod_check(ici_obj_t *inst, ici_str_t
*nane, ici_handle_t **h, void **p)

Verify that amethod on a handle has been invoked correctly. In particul ar, that inst isnot NULL
and is a handle with the given name. If OK and h is non-NULL, the handleis stored through it.
If pisnon-NULL, the associted pointer (h_ptr) is stored through it. Return 1 on error and sets
ici_error, else0.

For example, atypical method where the instance should be a handle of type XML _Parse might
look like this:

static int
ici_xm _SetBase(ici_obj_t *inst)

{
char *s;
XM__Par ser p;
i f (ici_handl e_method_check(inst, |Cl S(XM__Parser), NULL, &p))
return 1;
if (ici_typecheck("s", &s))
return 1;
if (!XM__SetBase(p, S))
return ici_xm _error(p);
return ici_null _ret();
}

ici_handle_new

ici_handle_t * ici_handle_new(void *ptr, ici_str_t *nane,
i ci _objwsup_t *super)

The ICl Programming Language 173



Chapter 8: Interfacing with C and C++

Return a handle object corresponding to the given C data ptr, with the ICI type name (which
may be NULL), and with the given super (which may be NULL).

The returned handle will have had its reference count inceremented.

ICl handle objects are generic wrapper/interface objects around some C data structure. They act,
on the ICI side, as objects with the type name. When you are passed a handle back from ICI
code, you can check this name to prevent the ICI program from giving you some other data
type's handle. (You can't make handles at the script level, so you are safe from al except other
native code mimicing your type name.)

Handles are intrinsicly atomic with respect to the ptr and name. So this function actually just
finds the existing handle of the given data object if that handle already exists.

Handle' s will, of course, be garbage collected as usual. If your C data is dependent on the han-
dle, you should store a pointer to a free function for your datain the h_pre freefield of the han-
dle. It will be called just before the gardbage collector frees the memory of the handle.

If, on the other hand, your C data structure is the master structure and it might be freed by some
other aspect of your code, you must consider that its handle object may still be referenced from
ICl code. You don't want to have it passed back to you and inadvertently try to access your freed
data. To prevent this you can set the H_CLOSED flag in the handle’s object header when you
freethe C data (seeici_handle_probe()). Note that in callbacks where you are passed the handle
object directly, you are reponsible to checking H_CLOSED. Also, once you use this mecha-
nism, you must *clear* the H_CLOSED field after areal new handle allocation (because you
might be reusing the old memory, and this function might be returning to you a zombie handl€).

Handles can support assignment to fields "just like a struct” by the automatic creation of a pri-
vate struct to store such values in upon first assignment. This mechanism is, by default, only
enabled if you supply anon-NULL super. But you can enable it even withaNULL super by set-
ting O_SUPER in the handl€e's object header at any time. (Actually, it isan historical accident
that super was ever an argument to this function.)

Handles can support an interface function that allows C code to implement fetch and assign
operations, as well as method invocation on fields of the handle. See the h_member_intf in the
ici_handle_t type description (and the Common tasks section of this chapter.)

Handles can a so be used asinstances of an ICl class. Typically the class will have the methods
that operate on the handle. In this case you will pass the classin super. Instance variableswill be
supported by the automatic creation of the private struct to hold them (which allows the class to
be extended in ICl with additional instance data that is not part of your C code). However, note
that these instance variables are not "magic". Your C code does not notice them getting fetched
or assigned to.

ici_handle probe

ici_handle_t * ici_handl e_probe(void*ptr, ici_str_t *nane)

If it exists, return a pointer to the handle corresponding to the C data structure ptr with the ICl
type name. If it doesn’t exist, return NULL. The handle (if returned) will have been increfed.

This function can be used to probeto see if there is an ICl handle associated with your C data
structure in existence, but avoids allocating it if does not exist already (asici_handle_new()
would do). This can be useful if you want to free your C data structure, and need to mark any
ICI reference to the data by setting H_CLOSED in the handl€’s object header.

174 ThelCl Programming Language



Detailed description of ICI's C API: ici_handle_t

i ci _objwsup_t o_head;

*h _ptr;

*h_nane;

(*h_pre_free)(ici_handle_t *h);

*h_menber _map;

(*h_menmber _intf)(void *ptr, int id,
v, ici_obj_t **retv);

(*h_general _intf)(ici_handle_t *h,
ici_obj_t *setv, ici_obj_t **retv);

ici_handle t
struct ici_handle
{
voi d
ici_str _t
voi d
ici_obj_t
i nt
ici_obj_t *set
i nt
ici_obj_t *k,
}

The C struct which isthe ICl handle object. A handleis ageneric object that can be used to refer
to some C data object. Handles support an (optional) super pointer. Handles are named with an
ICI string to give type checking, reporting, and diagnostic support. The handle object provides
most of the generic machinery of ICl objects. An optional pre-free function pointer can be sup-
plied to handle cleanup on final collection of the handle.

See alsoici_handle_new().
0 _head

h_ptr

h_name

h pre free

h_member_map

h_member_intf

The object header for objects that (can) support super pointers.

The pointer to the primitive data object that hishandle is associated
with.

The type name this handle will appear to have from I Cl script code,
and for type checking in interfacing with C.

Anoptional function that will be called just before this handle object
isfreed by the garbage collector. NULL if not needed.

An optional map (NULL if not needed) as made by
ici_make _handle_member_map() and used internally when the
h_member_intf function is used.

An optional function (NULL if not heeded) to implement property
access and method invocation on the object. ptr isthe h_ptr field of
the handle. Theimplementation must know which id values apply to
methods, and which to properties. When the id refers to a method,
the usual environment for intrinsic function invocations can be as-
sumed (e.g. ici_typecheck() is available) except the return value
should be stored through *retv without any extra reference count.

When the id refers to a property, if setvisnon-NULL, thisisan as-
signment of setv to the property. If the assignment is possible and
proceeds without error, setv should be assigned to *retv prior to re-
turn (else *retv should be unmodified).

When the id refers to a property and setvis NULL, thisis afetch,
and *retv should be set to the value, without any extrareference
count.

The ICI Programming Language 175



Chapter 8: Interfacing with C and C++

Inall cases, 0 indicatesasuccessful return (although if *retv has not
been updated, it will be assumed that the id was not actually amem-
ber of this object and an error may be raised by the calling code).
Non-zero on error, usua conventions.

h_general_intf An optional function (NULL if not needed) to implement general
fetch and assign processing on the handle, even when the keys are
not known in advance (as might happen, for example, if the object
could beindexed by integers). If h_member_intfisnon-NULL, and
satisfied afetch or assign firgt, this function is not called.

If setvisnon-NULL, thisis an assignment. If the assignment isto a
key (K) that is valid and the assignment is successful, * retv should
be updated with setv.

If setvisNULL, thisisafetch, and *retv should be set to the fetched
value.

In both cases, no extrareference should be given to the returned ob-
ject.

In both cases, 0 indicates a successful return (although if *retv has
not been updated, it will be assumed that the key was not actually a
member of this object and an error may be raised by the calling
code). Non-zero on error, usual conventions.

ici_hash_unique

unsi gned |l ong ici_hash_uni que(ici_obj_t *o)
Thisis aconvenience function which can be used directly asthe t_hash entry in atype’s
ici_type_t struction if object of thistype areintrinsically unique. That is, the object is one-to-one
with the memory allocated to hold it. An abject type would be instrinsically uniqueif you didn’t
want to support comparison that considered the contents, and/or didn’t want to support copying.

If you use this function you should almost certainly also be using ici_cmp_unique and
ici_copy_simple.

It returns hash based on the address o.

ici_incref

#define ici_incref(o)
Increment the object ' 0’s reference count. References from ordinary machine data objects (ie.
variables and stuff, not other objects) are invisible to the garbage collector. These refs must be
accounted for if there is a possibility of garbage collection. Note that most routines that make

objects (new_*(), copy() etc...) return objects with 1 ref. The caller is expected to ici_decref() it
when they attach it into wherever it is going.

ici_init
int ici_init(void)

Perform basic interpreter setup. Return non-zero on failure, usual conventions.

176 ThelCl Programming Language



Detailed description of ICI's C API: ici_int_new

After calling this the scope stack has a struct for autos on it, and the super of that isfor statics.
That struct for statics is where global definitionsthat are likely to be visible to all code tend to
get set. All the intrinsic functions for example. It forms the extern scope of any files parsed at
the top level.

In systems supporting threads, on exit, the global 1ClI mutex has been acquired (with
ici_enter()).

ici_int_new

ici_int_t * ici_int_new(long i)

Return the int object with the value v. The returned object has had its ref count incremented.
Returns NULL on error, usual convention. Note that ints are intrinsically atomic, so if the given
integer already exists, it will just incref it and return it.

Note, 0 and 1 are available directly asici_zero and ici_one.

ici_int_ret

int ici_int_ret(long ret)

Usereturnici_int_ret(ret); to return an integer (i.e. aC long) from an intrinsic fuction.

ici_int_t
struct ici_int
{
ici_obj_t o0_head;
| ong i _val ue;
}

The C struct that isthe ICI int object.

ici_interface check

int ici_interface_check(unsigned |ong mver, unsigned |ong
bver, char const *nane)

Check that the seperately compiled module that calls this function has been compiled against a
compatible versions of the ICl core that is now trying to load it. An external module should call
thislike:

if (ici_interface_check(lCl _VER, |C _BACK COVWPAT_VER,

"nyname"))
return NULL;

Assoonasitcanonload. ICI_ VER and ICI_ BACK_COMPAT_VER comefromici.h at the
time that module was compiled. This functions compares the values passed from the external
modul es with the values the core was compiled with, and fails (usual conventions) if thereis
any incompatibility.

The ICl Programming Language 177



Chapter 8: Interfacing with C and C++

ici_leave

ici_exec_t * ici_leave(void)

Leave codethat uses | Cl data. ICl datarefersto *any* ICl objects or static variables. You would
want to call this because you are about to do something that uses alot of CPU time or blocks for
any real time. But you must not even sniff any of ICI’sdatauntil after you call ici_enter() again.
ici_leave() releases the global ICl mutex that stops I Cl threads from simultaneous access to
common data. All ICI objects are "common data" because they are shared between threads.

Returns the pointer to the | Cl execution context of the current thread. This must be preserved (in
alocal variable on the stack or some other thread safe location) and passed back to the matching
call toici_enter() you will make some time in the future.

If the current thread isin an ICl level critical section (e.g. the test or body of awatifor) thiswill
have no effect (but should still be matched with acall toici_enter().

This function never fails.

Note that even ICl implementations without thread support provide this function. In these impl-
emnetationsit has no effect.

ici_main
int ici_main(int argc, char *argv[])

An optiona main entry point to the ICl interpreter. ici_main handles a complete interpreter life-
cycle based on the given arguments. A command line ICI interpreter is expected to simply pass
its given argc and argv on to ici_main then return its return value.

If ici_main2 fails (that is, returns non-zero) it will also setici_error in the usual |Cl manner.
However it will have already printed an error message on standard error, so no further action
need be taken.

ici_main handles all callstoici_init() and ici_uninit() within its scope. A program calling
ici_main should *not* call ici_init().

argc and argv are as standard for C main functions. For details on the interpretation of the argu-
ments, see documentation on normal command line invocation of the ICl interpreter.

ici_make handle_member_map

ici_obj_t * ici_make_handl e_nenmber _map(ici _name_id_t *ni)

Build the map that ici_handle_t objects use to map a member name (used in ICI code) to an
integer ID (used in the C code). The returned map is actually an ICI struct. It isreturned with 1
refernce count.

The argument ni should be a pointer to the first element of an arrary of ici_name id_t structs
that contain the names of members and the integer IDs that your code would like to refere to
them by. All members that are to be invoked as methods calls must include the flag
H_METHOD intheID. (Thisflag is removed from the ID when it is passed back to your code.
H_METHOD isthe most significant bit in the 32 bit ID.) Thelist isterminated by an entry with
aname of NULL.

For example:
enum{P_Propertyl, P _Property2, M Methodl, M Method2, ...};

178 ThelCl Programming Language



Detailed description of ICI's C API: ici_mem_new

static ici_nanme_id_t menber_nane_ids[] =

{
{"Propertyl", P_Propertyl},
{"Property2", P_Propertyl},
{" Met hod1", M Met hod1},
{" Met hod2", M Met hod2},
{ NULL},

}

ici_obj_t *ici _menber _map;

i ci _nmenber_map =
i ci _make_handl e_menber _nmap(rmenber _nane_i ds)
if (ici_menber_map == NULL)

ici_mem_new
ici_nmemt * ici_memnew(void *base, size_t length, int
accessz, void (*free_func)())

Return anew ICI mem object refering to the memory at address base with length length, which
ismeasured in units of accessz bytes. accessz must be either 1, 2 or 4. If free_func is provided it
will be called when the mem object is about to be freed with base as an argument.

Returns NULL on error, usua conventions.

ici_method
int ici_method(ici_obj_t *inst, ici_str_t *mane, char
*types, ...)

Call the method mname of the object inst with simple argument marshalling.

Seeici_func() for an explanation of types. Apart from calling a method, this function behavesin
the same manner asici_func().

ici_method_check
int ici_method_check(ici_obj_t *o, int tcode)
Return 0 if o (the subject object argument supplied to C implemented methods) is present (indi-

cating a method call was made) and is an object with a super and, (if tcode != TC_NONE) has
the given type code. Else return 1 and set error appropriately.

ici_method_new
ici_nmethod_t * ici_nethod_new(ici_obj_t *subject, ici_obj _t
*cal | abl e)

Returns anew I Cl method object that combines the given subject object (typically astruct) with
the given callable object (typically afunction). A method is also a callable object.

The ICl Programming Language 179



Chapter 8: Interfacing with C and C++

Returns NULL on error, usua conventions.

ici_module new
ici_objwsup_t * ici_nodule_new(ici_cfunc_t *cf)

Create a new module struct and assign the given cfuncsinto it (asinici_assign_cfuncs()).
Returns NULL on error, usual conventions. The returned struct has an incref the caller owns.

ici_nalloc
void * ici_nalloc(size_t 2z)
Allocate an object of the given size. Return NULL on failure, usual conventions. The resulting

object must be freed with ici_nfree() and only ici_nfree(). Note that ici_nfree() also requiresto
know the size of the object being freed.

Thisfunction is preferabletoici_alloc(). It should be used if you can know the size of the allo-
cation when the free happens so you can call ici_nfree(). If thisisn't the case you will have to
useici_alloc().

See also: IClIsallocation functions, ici_talloc(), ici_alloc(), ici_nfree().

ici_need_stdin
ici_file_t * ici_need_stdin(void)
Return the ICI file object that isthe current value of the stdin name in the current scope. Else

NULL, usual conventions. The file has not increfed (it is referenced from the current scope,
until that assumption is broken, it is known to be uncollectable).

ici_need_stdout
ici_file_t * ici_need_stdout(void)
Return the file object that is the current value of the stdout name in the current scope. Else

NULL, usual conventions. The file has not increfed (it is referenced from the current scope,
until that assumption is broken, it is known to be uncollectable).

ici_nfree
void ici_nfree(void *p, size_t z)
Free an object alocated with ici_nalloc(). The size passed here must be exactly the same size

passed to ici_nalloc() when the all ocation was made. If you don’'t know the size, you should
have calledici_alloc() in the first place.

See also: IClIs allocation functions, ici_nalloc().

ici_null

#define ici_null

ThisICI NULL object. It is of type (ici_obj_t *).

180 ThelCl Programming Language



Detailed description of ICI's C API: ici_null_ret

ici_null_ret

#define ici_null _ret()

Usereturnici_null_ret(); toreturn alCl NULL from an intrinsic fuction.

ici_obj _t
struct ici_obj
{
char o_tcode;
char o_fl ags;
char o_nrefs;
char o_l eaf z;
}

Thisisthe universal header of all objects. Each object includes this asits first element. In the
real structures associated with each object type the type specific stuff follows

0_tcode The small integer type code that characterises this object. Standard
core types have well known codes identified by the TC_* defines.
Other types are registered at run-time and are given the next avail-
able code.

This code can be used to index ici_typeq[] to discover a pointer to
the type structure.

o_flags Some boolean flags. Well known flags that apply to al objects oc-
cupy the lower 4 bits of this byte. The upper four bits are available
for object specific use. See O_* below.

0_nrefs A small integer count of the number of referencesto this object that
are *not* otherwise visible to the garbage collector.

0_leafz If (and only if) this object does not reference any other objects (i.e.
itst_mark() function just setsthe O_MARK flag), and its memory
cost fitsin this signed byte (< 127), then its size can be set here to
accel erate the marking phase of the garbage collector. Else it must
be zero.

The generic flags that may appear in the lower 4 bits of o_flags are:
O_MARK The garbage collection mark flag.

O_ATOM Indicates that this object is the read-only atomic form of all objects
of the same type with the same value. Any attempt to change an ob-
jectin away that would changeits value with respect to the t_cmp()
function (seeici_type t) must check for thisflag and fail the attempt
if itisset.

O_SUPER This object can support a super.

ici_objname
char * ici_objname(char p[1Cl_OBINAMEZ], ici_obj_t *o0)

Format a human readable version of the object o into the buffer p in less than 30 chars. Returns
p. See The error return convention for some examples.

The ICl Programming Language 181



Chapter 8: Interfacing with C and C++

ici_objwsup_t
struct ici_objwsup
{
i ci_obj_t o_head;
i ci _objwsup_t *o_super;
}

"Object with super." Thisis a specialised header for all objects that support a super pointer. All
such objects must have the O_SUPER flag set in o_flags and provide the t_fetch super() and
t_assign_super() functionsin their type structure. The actual o_super pointer will be NULL if
thereisno actual super, whichisdifferent from O_SUPER being clear (which would mean there
could not be a super, ever).

ici_parse

int ici_parse(ici_file_t *f, ici_objwsup_t *s)
Parse the given file f in the given scope s. It is common to call this function with s being
ici_vs.a_top[-1], that is, the current scope.

Returns non-zero on error, usual conventions.

ici_parse file
int ici_parse_file(char *mane, char *file, ici_ftype_t
*ftype)

Parse afile as a new top-level module. This function create new auto and static scopes, and
makes the current static scope the exern scope of the new module. This function takes a generic
file-like stream. The specific stream isidentified by file and the stdio-like access functions
required to read it are contained in the structure pointed to by ftype. A name for the module, for
usein error messages, is supplied in mname (typically the name of thefile).

This function can be used when the source of datato be parsed is hot areal file, but some other
source like aresource.

Thefileis closed prior to a successful return, but not a failure.

Return 0 if ok, else -1, usual conventions.

ici_parse fname

int ici_parse_fname(char *fname)
Parse afile as a new top-level module. This function create new auto and static scopes, and
makes the current static scope the exern scope of the new module. This function takes afile

name which it opens with fopen (as opposed to ici_parse file which can be used to parse more
generic data sources).

Return 0 if ok, else -1, usual conventions.

ici_ptr_new
ici_ptr_t * ici_ptr_new(ici_obj_t *a, ici_obj_t *k)

182 ThelCl Programming Language



Detailed description of ICI's C API: ici_register_type

Return anew ICl pointer object. The pointer will point to the element keyed by k in the object a.
The returned object has had it’ reference count incremented.

Returns NULL on error, usua conventions.

ici_register_type
int ici_register_type(ici_type_t *t)
Register anew ici_type t structure and return a new small int type code to use in the header of

objects of that type. The pointer t passed to this function is retained and assumed to remain valid
indefinetly (it is normally a statically initialised structure).

Returns the new type code, or zero on error in which caseici_error has been set.

ici_rego

#define ici_rego(0)
Register the object o with the garbage collector. Object that are registered with the garbage col-
lector can get collected. Thisistypically done after allocaton and initialisation of basic fields

when making anew object. Once an object has been registered with the garbage collector, it can
*only* be freed by the garbage collector.

(Not all objects are registered with the garabage collector. The main exception is staticly defined
objects. For example, theici_cfunt_t objectsthat are the ICI objects representing functions
coded in C are typically staticly defined and never registered. However there are problems with
unregistered objects that reference other objects, so this should be used with caution.)

ici_ret_no_decref
int ici_ret_no_decref(ici_obj_t *o)
General way out of an intrinsic function returning the object o where the given object has no
extra refernce count. Returns O indicating no error.
Thisissuitable for using as a return from an intrinsic function as say:
return ici_ret_no_decref(0);

If the object you are returning has an extra reference which must be decremented as part of the
return, useici_ret_with_decref() (above).

ici_ret_with_decref
int ici_ret_with decref(ici_obj_t *o)
General way out of an intrinsic function returning the object o, but the given object has arefer-

ence count which must be decref’ ed on the way out. Return 0 unlessthe given oisNULL, in
which case it returns 1 with no other action.

Thisissuitable for using as a return from an intrinsic function as say:

return ici_ret_with_decref(objof(ici_int_new2)));

The ICl Programming Language 183



Chapter 8: Interfacing with C and C++

(Although seeici_int_ret().) If the object you wish to return does not have an extrareference,
useici_ret_no_decref().

ici_set_new
ici_set_t * ici_set_new()

Return anew ICI set object. The returned set has been increfed. Returns NULL on error, usual
conventions.

ici_sopen

ici_file_t *ici_sopen(char *data, int size, ici_obj_t *ref)

Create an ICl file object that treats the given data (of length size) as aread-only file. If ref is
non-NULL it isassumed to be an object that must hang around for this datato stay valid, and
the datais used in-place (thisis used when reading an ICI string as afile). But if ref isSNULL, it
is assumed that the data must be copied into a private allocation first. The private allocation will
be freed when thefile is closed.

Returns NULL on error, usua conventions.

ici_srct
struct ici_src
{
ici_obj_t s_head;
i nt s_lineno;
ici_str_t *s fil enane;
}

The C struct which isthe ICl src object. These are never seen by ICl script code. They are
source line markers that are passed to debugger functionsto indicate source location.

s filename The name of the source file this source marker is associated with.
s lineno The linenumber.
ici_str_alloc

ici_str_t * ici_str_alloc(int nchars)

Allocate anew string object (single allocation) large enough to hold nchars characters, and reg-
ister it with the garbage collector. Note: This string is not yet an atom, but must become so as it
is*not* mutable.

WARINING: Thisis*not* the normal way to make a string object. Seeici_str_new().
ici_str_buf _new
ici_str_t * ici_str_buf_new(int n)

Return a new mutable string (i.e. one with a seperate growable allocation). The initially alo-
cated space isn, but the length is O until it has been set by the caller.

184 ThelCl Programming Language



Detailed description of ICI's C API: ici_str_get_nul_term

The returned string has areference count of 1 (whichis caller is expected to decrement, eventu-
aly).
Returns NULL on error, usual conventions.

ici_str_get_nul_term

ici_str_t * ici_str_get_nul _tern(char *p)

Make a new atomic immutable string from the given nul terminated string of characters.

The returned string has a reference count of O, unlikeici_str_new_nul_term() which is exactly
the same in other respects.

Returns NULL on error, usua conventions.

ici_str_need_size
int ici_str_need_size(ici_str_t *s, int n)
Ensure that the given string has enough allocated memory to hold a string of n characters (and a

guard 0 which this routine stores). Grows ths string as necessary. Returns 0 on success, 1 on
error, usual conventions. Checks that the string is mutable and not atomic.

ici_str_new

ici_str_t * ici_str_new(char *p, int nchars)

Make a new atomic immutable string from the given characters.

Note that the memory allocated to a string is always at least one byte larger than the listed size
and the extra byte contains a 0. For when a C string is needed.

The returned string has areference count of 1 (whichis caller is expected to decrement, eventu-
aly).
See also: ici_str_new_nul_term() andici_str_get nul_term().

Returns NULL on error, usua conventions.

ici_str_new_nul_term

ici_str_t * ici_str_new nul_tern{char *p)

Make a new atomic immutable string from the given nul terminated string of characters.

The returned string has areference count of 1 (which is caller is expected to decrement, eventu-
aly).
Returns NULL on error, usual conventions.

ici_str_ret
int ici_str_ret(char *str)

Usereturnici_str_ret(str); to return anul terminated string from an intrinsic fuction. The string
will be converted into an ICI string.

The ICl Programming Language 185



Chapter 8: Interfacing with C and C++

ici_struct_new

ici_struct_t * ici_struct_new(void)

Return anew ICI struct object. The returned struct has been increfed. Returns NULL on error,
usual conventions.

ici_struct_unassign

void ici_struct _unassign(ici_struct_t *s, ici_obj_t *k)
Remove the key k from the ICI struct object s, ignoring super-structs.
ici_talloc
#define ici_talloc(t)
Allocate an object of the given typet. Return NULL on failure, usual conventions. The resulting

object *must* befreed withici_tfree(). Notethat ici_tfree() also requiresto know the type of the
object being freed.

ici_tfree
#define ici _tfree(p, t)

Free the object o which was allocated by acall toici_talloc() with the type t. The object * must*
have been allocated with ici_talloc().

ici_type_t

struct ici_type
{

unsigned long (*t_mark) (ici_obj_t *);

voi d (*t _free)(ici_obj_t *);

unsi gned long (*t_hash)(ici_obj_t *);

i nt (*t_cnp)(ici_obj _t *, ici_obj_t *);

ici_obj_t *(*t _copy) (ici_obj_t *);

i nt (*t_assign)(ici_obj_t *, ici_obj_t *,
ici_obj_t *);

ici_obj_t *(*t _fetch)(ici_obj_t *, ici_obj_t *);

char *t _nane;

voi d (*t_objname) (ici_obj_t *, char
[1Cl_OBINAMEZ] ) ;

i nt (*t_call)(ici_obj_t *, ici_obj_t *);

ici_str _t *t _ici_name;

i nt (*t_assign_super)(ici_obj_t *, ici_obj_t *,
ici_obj_t *, ici_struct_t *);

i nt (*t _fetch_super)(ici_obj_t *, ici_obj_t *,
ici_obj_t ** ici_struct_t *);

i nt (*t_assign_base)(ici_obj_t *, ici_obj_t *,
ici_obj_t *);

ici_obj_t *(*t _fetch_base)(ici_obj_t *, ici_obj_t *);
ici_obj_t *(*t _fetch_nethod)(ici_obj_t *, ici_obj_t

186 ThelCl Programming Language



Detailed description of ICI's C API: ici_type_t

*);
voi d *t reserved?; /* Must be zero. */
voi d *t reserved3; /* Must be zero. */
voi d *t reserved4, /* Must be zero. */

}

Every object has a header. In the header the o_tcode (type code) field can be used to index the
ici_typeq[] array to discover the obejct’s type structure. Thisis the type structure.

Implemantations of new types typically declare one of these strutures statically and initialise its
members with the functions that determine the nature of the new type. (Actually, most of the
timeitisonly initialised as far asthet_name field. The remainder is mostly for intenal ICl use
and should be l€eft zero.)

t_mark(o) Must setsthe O_MARK flagin o->0_flags of this object and all ob-
jectsreferenced by thisonewhich don’t already have O_ MARK set.
Returns the approximate memory cost of thisand all other objectsit
setsthe O_MARK of. Typically recurses on all referenced objects
which don’'t already have O_ MARK set (thisrecursion isapotential
problem due to the uncontrolled stack depth it can create). Thisis
only used in the marking phase of garbage collection.

Themacroici_mark() callsthet_mark function of the object (based
on object type) if the O_MARK flag of the object isclear, elseit re-
turns 0. Thisis the usual interface to an object’s mark function.

The mark function implemantation of objects can assume the
O_MARK flag of the object they are being invoked on is clear.

t free(o) Must free the object o and all associated data, but not other objects
which are referenced from it. Thisis only called from garbage col-
lection. Care should be taken to remember that errors can occur dur-
ing object creation and that the free function might be asked to free
apartially alocated object.

t_cmp(ol, 02) Must compare 01 and 02 and return O if they are the same, else non
zero. This similarity isthe basis for merging objects into single
atomic objects and the implementation of the == operator.

Currently only zero versus non-zero results are significant. However
infuture versionsthet_cmp() function may be generalised to return
lessthan, equal to, or greater than zero depending if 0l islessthan,
equal to, or greater than 02. New implementations would be wise to
adopt this usage now.

Some objects are by nature both unique and intrinsically atomic (for
example, objects which are one-to-one with some other allocated
datawhich they alloc when the are created and free when they die).
For these objects the existing function ici_cmp_unique() can be
used as their implementation of this function.

It is very important in implementing this function not to miss any
fields which may otherwise distinguish two obejcts. The cmp, hash
and copy operations of an object are all related. It isuseful to check
that they all regard the same datafields as significant in performing
their operation.

t_copy(o)

The ICl Programming Language 187



Chapter 8: Interfacing with C and C++

t_hash(o)

t_assign(o, k, v)

t_fetch(o, k)

t_name

t_objname(o, p)

Must returns a copy of the given object. Thisisthe basisfor theim-
plementation of the copy() function. On failure, NULL isreturned
and error is set. The returned object has beenici_incref’ ed. The re-
turned object should cmp() as being equal, but be a distinct object
for objects that are not intrinsically atomic.

Intrinsically atomic objects may use the existing function
ici_copy_simple() as their implemenation of this function.

Return NULL on failure, usual conventions.

Must return an unsigned long hash which is sensitive to the val ue of
the object. Two objects which cmp() equal should return the same
hash.

The returned hash is used in a hash table shared by objects of all
types. So, somewhat problematically, it is desireable to generate
hashes which have good spread and seperation across all objects.

Some objects are by nature both unique and intrinsically atomic (for
example, objects which are one-to-one with some other allocated
datawhich they alloc when the are created and free when they die).
For these objects the existing function ici_hash_unique() can be
used as their implementation of this function.

Must assign to key k of the object o the value v. Return 1 on error,
else 0.

The existing function ici_assign_fail() may be used both asthe im-
plementation of this function for object types which do not support
any assignment, and as a simple method of generating an error for
particular assignments which break some rule of the object.

Not that it isnot necessarilly wrong for an intrinsically atomic object
to support some form of assignment. Only for the modified field to
besignificantinat_cmp() operation. Objectswhich areintrinsically
unique and atomic often support assignments.

Return non-zero on failure, usual conventions.
Fetch the value of key k of the object 0. Return NULL on error.

Note that the returned object does not have any extra reference
count; however, in some circumstancesit may not have any garbage
collector visible referencestoit. That is, it may be vunerableto a
garbage collection if it is not either incref()ed or hooked into a ref-
erenced object immediately. Callers are responsible for taking care.

Theexisting functionici_fetch fail() may be used both astheimple-
mentation of thisfunction for object typeswhich do not support any
assignment, and as a simple method of generating an error for par-
ticular fetches which break some rule of the object.

Return NULL on failure, usual conventions.

The name of thistype. Usefor theimplementation of typeof() andin
error messages. But apart from that, type names have no fundamen-
tal importance in the langauge and need not even be unique.

188 ThelCl Programming Language



Detailed description of ICI's C API: ici_typecheck

Must place a short (less than 30 chars) human readable representa-
tion of the object in the given buffer. Thisis not intended asabasis
for re-parsing or serialisation. It isjust for diagnostics and debug.
An implementation of t_objname() must not allocate memory or
otherwise allow the garbage collector to run. It is often used to gen-
erate formatted failure messages after an error has occured, but be-
fore cleanup has compl eted.

t call(o, s) Must call the object o. If the object does not support being called,
this should be NULL. If sisnon-NULL thisis amethod call and s
isthe subject object of the call. Return 1 on error, else 0. The envi-
ronment upon calling this function is the same as that for intrinsic
functions. Functions and techniques that can be used in intrinsic
function implementations can be used in the implementation of this
function. The object being called can be assumed to be on top of the
operand stack (i.e. ici_os.a top[-1])

t ici_name Aici_str_t copy of t_name. Thisisjust a cached version so that ty-
peof() doesn’'t keep re-computing the string.
t_fetch_method An optional aternative to the basic t_fetch() that will be called (if

supplied) when doing a fetch for the purpose of forming a method.
Thisisreally only a hack to support COM under Windows. COM
allows remote objects to have properties, like object.property, and
methods, like object:method(). But without this special hack, we
can't tell if afetch operation is supposed to perform the COM get/
set property operation, or return acallable object for afuture method
call. Most objects will leave thisNULL.

Return NULL on failure, usual conventions.

ici_typecheck

int ici_typecheck(char *types, ...)
Marshall function argumentsin a call from ICI to C. This function may only be called from the
implementation of an intrinsic function.

types is acharacter string. Each character corresponds to an actual argument in the ICI side of
the call. Each is checked according to the particular letter, and possibly converted and/or
assigned through a corresponing pointer to a C-side data item provided in the vargars argument
list to this function.

Any detected type mismatches result in a non-zero return. If all types match, al assignments
will be made and zero will be returned.

The key letters that may be used in types, and their meaning, are:

o] Any ICl object isrequired in the ICI actuals, the corresponding vararg must be a
pointer to an (ici_obj_t *); which will be set to the actual argument.

h An ICI handle object. The next available vararg must be an ICl string object. The
corresponding I Cl argument must be a handle with that name. The next (again)
available vararg after that is a pointer to store the (ici_handle t *) through.

An ICI ptr object isrequired in the actuals, then as for o.
d AnICI struct object isrequired in the actuals, then asfor o.

The ICl Programming Language 189



Chapter 8: Interfacing with C and C++

a AnIClI array object isrequired in the actuals, then asfor o.
u AnICI file object is required in the actuals, then asfor o.

r An IClI regexp object isrequired in the actuals, then asfor o.
m An ICI mem object is required in the actuals, then as for o.

i AnICl int object is required in the actua's, the value of thisint will be stored
through the corresponding pointer which must be a (long *).

f An ICI float object isrequired in the actuals, the value of this float will be stored
through the corresponding pointer which must be a (double *).

n An|Cl float or int object isrequired in the actuals, the value of thisfloat or int will
be stored through the corresponding pointer which must be a (double *).

s AnICI string object isrequired in the actuals, the corresponding pointer must be a
(char **). A pointer to the raw characters of the string will be stored through this
(thiswill be O terminated by virtue of all ICI strings having a gratuitous O just past
their real end). These characters can be assumed to remain available until control
isreturned back to | Cl because the string is still on the ICI operand stack and can’t
be collected. Once control has reurned to I Cl, they could be collected at any time.

- The acutal parameter at this position is skipped, but it must be present.
* All remaining actual parametes are ignored (even if there aren’t any).

The capitalisation of any of the alphabetic key |etters above changes their meaning. The acutal
must be an ICI ptr type. The value this pointer points to istaken to be the value which the above
descriptions concern themselves with (i.e. in place of the raw actual parameter).

There must be exactly as many actual arguments as key letters unless the last key letter isa*.

Error returns have the usual ICl error conventions.

ici_typeof
#define ici_typeof (0)

Return apointer to theici_type t struct of the given object.

ici_uninit
void ici_uninit(void)
Shut down the interpreter and clean up any allocations. This function isthe reverse of ici_init().
It'sfirst action isto call any wrap-up functions registered through ici_atexit()
Calling ici_init() again after calling this hasn’t been adequately tested.

This routine currently does not handle shutdown of other threads, either gracefully or ungrace-
fully. They are all left blocked on the global 1CI mutex without any help of recovery.

ici_waitfor

int ici_waitfor(ici_obj_t *o)

Wait for the given object to be signaled. Thisis the core primitive of the waitfor ICl language
construct. However this function only does the actual waiting part. When called, it will release

190 ThelCl Programming Language



Building ICl on various platforms: ici_wakeup

the ICI mutex, and wait for the object o to be signaled by an ici_wakeup call. It will the re-
aquire the mutex and return. It should always be assumed that any particular object could be
"woken up" for reasons that are not aparent to the waiter. In other words, always check that the
condition that necessitates you waiting has really finished.

The caller of this function would use aloop such as:
whil e (condition-not-nmet)
wai t f or (obj ect) ;

Returns non-zero on error. Usual conventions. Note that this function will alwaysfail in imple-
mentations without thread support.

ici_wakeup
int ici_wakeup(ici_obj_t *o)

Wake up al ICI threads that are waiting for the given object (and thus allow them re-evaluate
their wait expression).

ici_yield
void ici_yield(void)

Allow aswitch away from, and back to, this ICl thread, otherwise no effect. This allows other
ICl threads to run, but by the time this function returns, the ICl mutex has be re-acquired for the
current thread. Thisisthe same asasici_enter(ici_leave()), except it is more efficient when no
actual switching was required.

Note that even ICl implementations without thread support provide this function. In these impl-
emnetationsit has no effect.

Building ICI on various platforms

Windows

Coming soon.

Sometipsfor debugging extension modulesin Visual C: In order to make sure that the ICI
executable loads the debug version you have built (rather than an installed version of the exten-
sion module), do this: For Program arguments in the Settings/Debug/General tab, use:

-e "rpush(path, \"Debug\");" -f test.ici

for the Debug build, and:

-e "rpush(path, \"Release\");" -f test.ici

for the Release build.

UNIX-like systems

Coming soon.

The ICl Programming Language 191



Chapter 8: Interfacing with C and C++

How it works

These are notes for a new chapter. Cover:

» Implementation of parser/compiler and execution engine using the common data structures.
e Operation of the execution engine.

» Logic behind objects semantics - single pointer, no special cases.

e Garbage collector.

» Lookup-lookaside.

192 ThelCl Programming Language



CHAPTER 9 Obsolete featuresand
mistakes

OBSOLETE: Method Calls ###

In addition to the above ICl has a simple mechanism for calling methods — functions contained
within an object (typically a struct) that accept that object as their first parameter. The method
call mechanism is enabled viaamaodification to the call operator, "()", to add semantics for call-
ing a pointer object and through the addition of a new operator, binary-@, to form a pointer
object from an object and akey. ICl pointers, described below, consist of an object and akey. To
indirect though the pointer the object isindexed by the key and the resulting object used asthe
result. Thisisthe same operation used in dynamic dispatch in languages such as Smalltalk and
Objective-C.

The call operator now accepts apointer asits first operand (we may think of the call operator as
an n-ary operator that takes a function or pointer object as its first operand and the function
parameters as the remaining operands). When a pointer is"called”, the key is used to index the
pointer’s container object and the result, which must be a function object, is called. In addition
the container object within the pointer is passed as an implicit first parameter to the function
(thus passing the actual object used to invoke the method to the method). Apart from the calling
semanti cs the functions used to implemented methods are in al respects normal ICI functions.

Struct objects are typically used as the "container” for objects used with methods. The super
mechanism provides the hierarchial search needed to allow class objects to be shared by multi-
ple instances and provide a natural means of encapsulating information.

A typical way of using methodsis,

/*

* Define a "class" object representing our
* class and containing the class nethods.
*/

static Myd ass = [struct

doubl eX = [func (self)
{

}H

return self.x * 2;

The ICl Programming Language 193



Chapter 9: Obsolete features and mistakes

]

static a;
a = struct (@¥d ass);
a.x = 21;

printf("%l\n", a@oubleX());

We first define a class by using aliteral struct to contain our named methods. You could also
define classvariablesin this struct asit is shared by al instances of that class. In our classwe' ve
got a single method, doubleX, that doubles the value of an instance variable called x.

Later in the program we create an instance of a MyClass object by making a hew struct object
and setting its super struct to the class struct. The super is made atomic which ensures al
instances share the same object and makes it read-only for them. Then we create an "instance
variable" within the object by assigning 21 to ax and finally invoke the method. We do not pass
any parameters to doubleX. The call through the pointer object formed by the binary-@ opera-

tor passes "a" implicitly

event = waitfor(event...)

#Hwaitfor has the same name as the new waitfor statement. But | doubt anybody is using this
function. Can weretireit? TML

Blocks (waits) until an event indicated by any of its arguments occurs, then returns that argu-
ment. The interpretation of an event depends on the nature of each argument. A file argument
istriggered when input is available on thefile. A float argument waits for that many seconds to
expire, an int for that many millisecond (they then return O, not the argument given). Other
interpretations are implementation dependent. Where several events occur simultaneoudly, the
first aslisted in the arguments will be returned.

Note that in some implementations some file types may always appear ready for input, despite
the fact that they are not.

argc

The count of the number of elementsin argv. Initially equal to nels(argv).

Mistakes

All too often in language design you realise you made an early mistake and it'stoo late tofix it.
Thisisaplace | can write them down. There are alot more than are written here of course.

» Indexing astring should never have returned a one character sub-string. It should have
returned an integer character code.

» The gsub and smash functions shouldn’'t have used \ as their escape character.

194 ThelCl Programming Language



Symbols F

40 fail 104
at start of line 40 fetch 104
' 39 float 104, 112
" 39 floor 104
flush 104
A fmod 104
abs 98 fopen 105
acos 98 form feed 40
aloc 98
any 107 G
ARG, C APl macro 158 getchar 105
argc 194 getcwd 105
ARGS, C APl macro 158 getenv 105
argv 98 getfile 105
array 98 getline 105
asin 98 gettoken 105
assign 98 gettokens 106
atan 99 gsub 107
atan2 99
audible bell 40 H
auto variable 41 hassuper, C APl macro 160
hex, character code 40
B
back space 40 I
backslash 39, 40 ici_alimit, C APl macro 160
build 99 ici_alloc, C API function 160
ici_anext, C APl macro 161
C ici_argcount, C API function 161
calendar 100 ici_argerror, C API function 161
cal 100 ici_array_find_dlot, C API function 162
carriage return 40 ici_array_gather, C API function 162
ceil 101 ici_array_get, C AP function 162
CF_ARG1, CAPI macro 158 ici_array_nels, C API function 162
character-code 39 ici_array_new, C API function 162
chdir 101 ici_array_pop, C APl function 163
close 101 ici_array_push, C API function 163
cmp 101 ici_array_rpop, C API function 163
comments 40 ici_array_rpush, C API function 163
control character 40 ici_assign, C APl macro 163
copy 101 ici_assign_base, C APl macro 163
cos 101 ici_assign_cfuncs, C API function 164
cputime 101 ici_assign_fail, C API function 164
currentfile 101 ici_assign_super, C APl macro 164
ici_astart, C APl macro 164
D ici_atexit, C API function 165
debug 102 ici_atom, C API function 165
dd 102 ici_atom_probe, C API function 165
dir 103 ICI_BACK_COMPAT_VER, C APl macro 159
double quote 39, 40 ici_call, C API function 165
ici_callv, C API function 165
E ici_cfunc_t, C API struct 166
eof 103 ici_chkbuf, C APl macro 166
eq 103 ici_class new, C APl function 166
escap 40 ici_cmp_unique, C API function 167
eventioop 103 ici_copy_simple, C API function 167
execution engine 39 iCi_dd)Ug_t, C API struct 167
exit 104 ici_decref, C APl macro 168
exp 104 ici_def_cfuncs, C API function 168
explode 104 ICI_DIR_SEP, C APl macro 159
extern 41 ICI_DLL_EXT, C APl macro 159

ici_dont_record line_nums, C APl variable 168
ici_enter, C APl function 168

The ICl Programming Language 195



Chapter 1U:

ici_error, C API variable 169
ici_eval, C API function 169
ici_fetch, C APl macro 169
ici_fetch_base, C APl macro 169
ici_fetch_fail, C API function 169
ici_fetch_super, C APl macro 170
ici_file_close, C API function 170
ici_file_new, C API function 170
ici_float_new, C API function 170
ici_float_ret, C API function 171
ici_float_t, C API struct 171
ici_free, C API function 171
ici_ftype t, CAPI struct 171
ici_func, C API function 172
ici_funcv, C API function 172
ici_get last_errno, C API function 172
ici_get last win32_error, C API function 173
ici_handle_method_check, C API function 173
ici_handle_new, C API function 173
ici_handle_probe, C API function 174
ici_handle_t, C API struct 175
ici_hash_unique, C API function 176
ici_incref, C APl macro 176
ici_init, C API function 176
ici_int_new, C API function 177
ici_int_ret, C API function 177
ici_int_t, C API struct 177
ici_interface _check, C API function 177
ici_leave, C API function 178
ici_main, C API function 178
ici_make_handle_member_map, C APl
function 178
ici_mem_new, C API function 179
ici_method, C API function 179
ici_method_check, C API function 179
ici_method_new, C API function 179
ici_module_new, C API function 180
ici_nalloc, C API function 180
ici_need_stdin, C API function 180
ici_need_stdout, C API function 180
ici_nfree, C API function 180
ICI_NO_OLD_NAMES, C APl macro 159
ici_null, C APl macro 180
ici_null_ret, C APl macro 181
ICI_OBJ SET_TFNZ, C APl macro 159
ici_obj_t, CAPI struct 181
ici_objname, C API function 181
ici_objwsup_t, C API struct 182
ici_parse, C API function 182
ici_parse_file, C API function 182
ici_parse_fname, C API function 182
ICI_PATH_SEP, C APl macro 160
ici_ptr_new, C API function 182
ici_register_type, C API function 183
ici_rego, C APl macro 183
ici_ret_no_decref, C API function 183
ici_ret_with_decref, C API function 183
ici_set_new, C API function 184
ici_sopen, C API function 184
ici_src_t, CAPI struct 184
ici_str_alloc, C API function 184
ici_str_buf_new, C API function 184
ici_str_get_nul_term, C API function 185

ici_str_need size, C API function 185
ici_str_new, C API function 185
ici_str_ new_nul_term, C API function 185
ici_str_ret, C API function 185
ici_struct_new, C API function 186
ici_struct_unassign, C API function 186
ici_talloc, C APl macro 186

ici_tfree, C APl macro 186
ici_type_t, C API struct 186
ici_typecheck, C APl function 189
ici_typeof, C APl macro 190
ici_uninit, C API function 190
ICI_VER, C APl macro 160
ici_waitfor, C API function 190
ici_wakeup, C API function 191
ici_yield, C API function 191
identifier, lexicon 40

implode 107

include 107

integer, lexicon 40

interval 107

isa 108

isatom 108

K
keys 108
keywords 40

L

lexical analyser 39
load 108

log 108

logl0 108

M

mem 108
module 40
mopen 109

N

NARGS, C APl macro 160
nels 109

new 109

newline 40

now 109

num 109

(@]
octal, character code 40

P

parse 109
parser 39, 41
parsetoken 110
parsevalue 111
path 111

pop 112
popen 112
printf 112
profile 112
push 113

put 113
putenv 113

196 ThelCl Programming Language



Q
question mark 40

R

rand 114
reclaim 114
regexp 114
regexpi 114
regular-expression 40
rejectchar 114
rejecttoken 114
remove 115
rename 115
respondsto 115
rpop 115
rpush 115

S

scope 40, 115
seek 115

set 115
signal 116
signam 116
sin 116
single quote 39, 40
deep 116
smash 116
sopen 117
sort 117
sprintf 118
sort 118
static 41
strbuf 118

strcat 118

string 39, 119

string-literal 40

struct 119

sub 119

super 119

syntax 41
notation 41

system 120

T
tab 40

tan 120

thread 120
tochar 120
toint 120
tokenobj 120
tokens 39

top 120

typeof 120, 121

\%

variables 40
version 121
vertical tab 40
vstack 121

w

waitfor 194
wakeup 121
web site 11
which 122

The ICl Programming Language 197



Chapter 1U:

198 ThelCl Programming Language



	The ICI Programming Language
	CHAPTER 1 Introduction
	CHAPTER 2 A brief tutorial for C programmers
	Hello world
	Program structure
	Variables and arithmetic
	Lexicon, syntax and flow control statements
	Aggregate data types and the nature of objects
	Making and manipulating aggregates

	Literal data items
	Other operations and core functions
	Regular expressions


	CHAPTER 3 Some sample programs
	Ackermann’s function
	Array access
	Count lines/words/characters
	Echo client/server
	Exception mechanisms
	Fibonacci numbers
	Hash (associative array) access
	Hashes, part II
	Heapsort
	Hello world
	List operations
	Matrix multiplication
	Method calls
	Nested loops
	Producer/consumer threads
	Random number generator
	Regular expression matching
	Reverse a file
	Sieve of Eratosthenes
	Spell checker
	Statistical moments
	String concatenation
	Sum a column of integers
	Word frequency count

	CHAPTER 4 ICI Language Reference
	The lexical analyser
	An introduction to variables, modules and scope
	The parser
	Expressions
	Factors
	An introduction to arrays, sets and structs
	Built-in literal factors
	User defined literal factors
	Primary operators
	Terms
	Prefix operators
	Postfix operators
	Binary operators
	Binary operator summary

	Statements
	Simple expression statements
	Compound statements
	The if statement
	The while statement
	The do-while statement
	The for statement
	The forall statement
	The switch, case, and default statements
	The break and continue statements
	The return statement
	The try statement
	The critsect statement
	The waitfor statement
	The null statement
	Declaration statements
	Abbreviated function declarations
	Functions

	Objects
	Equality
	Structure and set keys
	Structure super types
	An aside on variables and scope

	Base types
	array - An ordered sequence of objects
	exec - A thread execution context
	file - An open file reference
	float - A double precision floating point number
	func - A function
	int - A signed 32 bit integer
	mem - A reference to raw machine memory
	method - A binding of a function and a subject object
	ptr - A reference to a storage location
	regexp - A compiled regular expression
	set - An unordered collection of objects
	string - An ordered sequence of 8 bit characters
	struct - An unordered set of mappings

	Operators
	Automatic library loading


	CHAPTER 5 Object-oriented programming in ICI
	Sub-classes
	Global methods
	Taking advantage of dynamic binding
	Standard global methods

	CHAPTER 6 Core language functions and variables
	Core function summary
	Core language functions
	float|int = abs(float|int)
	angle = acos(x)
	mem = alloc(nwords [, wordz])
	string = argv[]
	array = array(any...)
	float = asin(x)
	value = assign(struct, key, value)
	angle = atan(x)
	angle = atan2(y, x)
	array|struct = build(dims... [, options, content...])
	float|struct = calendar(struct|float)
	return = call(func [, any...], array|NULL)
	float = ceil(x)
	Change the current working directory to the specified path.
	close(file)
	int = cmp(a, b)
	any = copy(any)
	any = any:copy()
	x = cos(angle)
	float = cputime([float])
	file = currentfile(["raw"])
	int = debug([int])
	del(aggr, key)
	array = dir([path,] [regexp,] [format])
	int = eq(obj1, obj2)
	int = eof([file])
	eventloop()
	exit([string|int|NULL])
	float = exp(x)
	array = explode(string)
	fail(string)
	value = fetch(struct, key)
	value = float(x)
	float = floor(x)
	flush([file])
	float = fmod(x, y)
	file = fopen(name [, mode])
	string = getchar([file])
	string = getcwd()
	string = getenv(string)
	string = getfile([file])
	string = getline([file])
	string = gettoken([file [, seps]])
	array = gettokens([file [, seps [, terms, [delims]]]])
	string = gsub(string, string|regexp, string)
	string = implode(array)
	struct = include(string [, scope])
	value = int(any [, base])
	subpart = interval(str_or_array, start [, length])
	int = inst|class:isa(any)
	int = isatom(any)
	array = keys(struct)
	any = load(string)
	float = log(x)
	float = log10(x)
	mem = mem(start, nwords [, wordz])
	file = mopen(mem [, mode])
	int = nels(any)
	inst = class:new()
	float = now()
	number = num(x [, base])
	scope = parse(source [, scope])
	string = parsetoken(file)
	any = parsevalue(file)
	string = path[]
	any = pop(array)
	file = popen(string, [mode])
	float = pow(x, y)
	printf([file,] fmt, args...)
	profile(filename)
	any = push(array, any)
	put(string [, file])
	putenv(string)
	int = rand([seed])
	reclaim()
	re = regexp(string [, int])
	re = regexpi(string [, int])
	rejectchar(file, str)
	rejecttoken(file)
	remove(string)
	any = rpop(array)
	any = rpush(array, any)
	current = scope([replacement])
	int = seek(file, int, int)
	set = set(any...)
	func = signal(string|int [, string|func])
	string = signam(int)
	x = sin(angle)
	sleep(num)
	array = smash(string [, regexp [, replace...] [, include_remainder])
	file = sopen(string [, mode])
	array = sort(array [, func [, arg]])
	string = sprintf(fmt, args...)
	x = sqrt(float)
	string = strbuf([string])
	string = strcat(string [, int] , string...)
	string = string(any)
	struct = struct([super,] key, value...)
	string = sub(string, string|regexp, string)
	current = super(struct [, replacement])
	int = system(string)
	x = tan(angle)
	exec = thread(callable, args...)
	string = tochar(int)
	int = toint(string)
	any = tokenobj(file)
	any = top(array [, int])
	int = trace(string)
	string = typeof(any)
	string = version()
	array = vstack([int])
	wakeup(any)
	struct = which(key [, struct])


	CHAPTER 7 Regular expressions
	Regular expression syntax
	Backslash
	Circumflex and dollar
	Full stop (period,dot)
	Square brackets
	Vertical bar
	Internal option settings
	Subpatterns
	Repetition
	Back references
	Assertions
	Once-only subpatterns
	Conditional subpatterns
	Comments
	Performance
	Author

	CHAPTER 8 Interfacing with C and C++
	Universal rules and conventions
	Include files and libraries
	The nature of ICI objects
	Garbage collection, ici�_incref() and ici_decref()
	The error return convention
	ICI’s allocation functions

	Common tasks
	Writing a simple function that can be called from ICI
	Calling an ICI function or method from C
	Making new ICI primitive types
	Using ICI handle types to interface to C/C++ objects
	Writing and compiling a dynamically loading extension module
	Referring to ICI strings from C code
	Accessing ICI array objects from C
	Using ICI independently from multiple threads

	Summary of ICI’s C API
	Detailed description of ICI’s C API
	ARG
	ARGS
	CF_ARG1
	ICI_BACK_COMPAT_VER
	ICI_DIR_SEP
	ICI_DLL_EXT
	ICI_NO_OLD_NAMES
	ICI_OBJ_SET_TFNZ
	ICI_PATH_SEP
	ICI_VER
	NARGS
	hassuper
	ici_alimit
	ici_alloc
	ici_anext
	ici_argcount
	ici_argerror
	ici_array_find_slot
	ici_array_gather
	ici_array_get
	ici_array_nels
	ici_array_new
	ici_array_pop
	ici_array_push
	ici_array_rpop
	ici_array_rpush
	ici_assign
	ici_assign_base
	ici_assign_cfuncs
	ici_assign_fail
	ici_assign_super
	ici_astart
	ici_atexit
	ici_atom
	ici_atom_probe
	ici_call
	ici_callv
	ici_cfunc_t
	ici_chkbuf
	ici_class_new
	ici_cmp_unique
	ici_copy_simple
	ici_debug_t
	ici_decref
	ici_def_cfuncs
	ici_dont_record_line_nums
	ici_enter
	ici_error
	ici_eval
	ici_fetch
	ici_fetch_base
	ici_fetch_fail
	ici_fetch_super
	ici_file_close
	ici_file_new
	ici_float_new
	ici_float_ret
	ici_float_t
	ici_free
	ici_ftype_t
	ici_func
	ici_funcv
	ici_get_last_errno
	ici_get_last_win32_error
	ici_handle_method_check
	ici_handle_new
	ici_handle_probe
	ici_handle_t
	ici_hash_unique
	ici_incref
	ici_init
	ici_int_new
	ici_int_ret
	ici_int_t
	ici_interface_check
	ici_leave
	ici_main
	ici_make_handle_member_map
	ici_mem_new
	ici_method
	ici_method_check
	ici_method_new
	ici_module_new
	ici_nalloc
	ici_need_stdin
	ici_need_stdout
	ici_nfree
	ici_null
	ici_null_ret
	ici_obj_t
	ici_objname
	ici_objwsup_t
	ici_parse
	ici_parse_file
	ici_parse_fname
	ici_ptr_new
	ici_register_type
	ici_rego
	ici_ret_no_decref
	ici_ret_with_decref
	ici_set_new
	ici_sopen
	ici_src_t
	ici_str_alloc
	ici_str_buf_new
	ici_str_get_nul_term
	ici_str_need_size
	ici_str_new
	ici_str_new_nul_term
	ici_str_ret
	ici_struct_new
	ici_struct_unassign
	ici_talloc
	ici_tfree
	ici_type_t
	ici_typecheck
	ici_typeof
	ici_uninit
	ici_waitfor
	ici_wakeup
	ici_yield

	Building ICI on various platforms
	Windows
	Some tips for debugging extension modules in Visual C:

	UNIX-like systems

	How it works

	CHAPTER 9 Obsolete features and mistakes
	OBSOLETE: Method Calls ###
	event = waitfor(event...)
	argc
	Mistakes


