Skip to contents

This function will generate n random points from a exponential distribution with a user provided, .rate, and number of random simulations to be produced. The function returns a tibble with the simulation number column the x column which corresponds to the n randomly generated points, the d_, p_ and q_ data points as well.

The data is returned un-grouped.

The columns that are output are:

  • sim_number The current simulation number.

  • x The current value of n for the current simulation.

  • y The randomly generated data point.

  • dx The x value from the stats::density() function.

  • dy The y value from the stats::density() function.

  • p The values from the resulting p_ function of the distribution family.

  • q The values from the resulting q_ function of the distribution family.

Usage

tidy_exponential(.n = 50, .rate = 1, .num_sims = 1)

Arguments

.n

The number of randomly generated points you want.

.rate

A vector of rates

.num_sims

The number of randomly generated simulations you want.

Value

A tibble of randomly generated data.

Details

This function uses the underlying stats::rexp(), and its underlying p, d, and q functions. For more information please see stats::rexp()

Author

Steven P. Sanderson II, MPH

Examples

tidy_exponential()
#> # A tibble: 50 × 7
#>    sim_number     x      y       dx       dy      p      q
#>    <fct>      <int>  <dbl>    <dbl>    <dbl>  <dbl>  <dbl>
#>  1 1              1 1.05   -0.930   0.000941 0.651  1.05  
#>  2 1              2 0.483  -0.775   0.00412  0.383  0.483 
#>  3 1              3 2.42   -0.621   0.0146   0.911  2.42  
#>  4 1              4 1.08   -0.466   0.0423   0.659  1.08  
#>  5 1              5 1.71   -0.312   0.101    0.819  1.71  
#>  6 1              6 0.348  -0.157   0.200    0.294  0.348 
#>  7 1              7 0.421  -0.00282 0.333    0.343  0.421 
#>  8 1              8 1.17    0.152   0.470    0.688  1.17  
#>  9 1              9 0.821   0.306   0.568    0.560  0.821 
#> 10 1             10 0.0645  0.461   0.596    0.0625 0.0645
#> # ℹ 40 more rows