NCO User Guide

A suite of netCDF operators
Edition 4.4.6, for NCO Version 4.4.6
October 2014

by Charlie Zender
Department of Earth System Science
University of California, Irvine

Copyright (© 1995-2014 Charlie Zender.

This is the first edition of the NCO User Guide,
and is consistent with version 2 of texinfo.tex.

Published by Charlie Zender
Department of Earth System Science
3200 Croul Hall

University of California, Irvine
Irvine, CA 92697-3100 USA

Permission is granted to copy, distribute and/or modify this document under the terms of
the GNU Free Documentation License, Version 1.3 or any later version published by the Free
Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover
Texts. The license is available online at http://www.gnu.org/copyleft/fdl.html

The original author of this software, Charlie Zender, wants to improve it with the help of
your suggestions, improvements, bug-reports, and patches.

Charlie Zender <surname at uci dot edu> (yes, my surname is zender)

Department of Earth System Science

3200 Croul Hall

University of California, Irvine

Irvine, CA 92697-3100

http://www.gnu.org/copyleft/fdl.html

Table of Contents

Foreword 1
SUMMATY 3
1 Introduction................... 5
1.1 Availabilityo 5

1.2 Howto Use This Guide ... 5
1.3 Operating systems compatible with NCO 6
1.3.1 Compiling NCO for Microsoft Windows OS................. 7

1.4 Symbolic Links. 8
1.5 Libraries. 9
1.6 netCDF2/3/4 and HDF4/5 Supportc.ooooiiii.... 9
1.7 Help Requests and Bug Reports.............. ...t 13

2 Operator Strategies........................... 15
2.1 Philosophyooo 15
2.2 Climate Model Paradigm............. ..o, 15
2.3 Temporary Output Fileso i 15
2.4 Appending Variables.............o i 17
2.5 Simple Arithmetic and Interpolation........................... 17
2.6 Statistics vs. Concatenation................oviiiiiiineennn.... 18
2.6.1 Concatenators ncrcat and ncecat.................ooonun. 18

2.6.2 Averagers nces, ncra, and NCWaovvrrrennnrnnn.n. 19

2.6.3 Interpolator ncflint.......... ..o 19

2.7 Large Numbers of Files......... ... o i, 19
2.8 Large Datasets..........uuuiiiiiiiiiiii 21
2.9 Memory Requirements ..., 22
2.9.1 Single and Multi-file Operators........................... 22

2.9.2 Memory for ncap2 ... 23

2.10 Performance............o i e 24

3 NCO Features..........................ooun.. 25
3.1 Internationalization i i 25
3.2 Metadata Optimizationcoiiiiiiiiiiii... 25
3.3 OpenMP Threading...........cooiuiiiiiiiiiiiiiii .. 25
3.4 Command Line Options..........cooiiiiiiiiiiiiii ... 27
3.5 Specifying Input Files......... .o i 28
3.6 Specifying Output Files............oo i 30
3.7 Accessing Remote Files i 30
371 OPeNDAP .ttt 32

3.8 Retaining Retrieved Files o il 35

3.9 File Formats and Conversionuuiiieiininnennn... 35

ii

NCO 4.4.6 User Guide

3.91 File Formats ... 36
3.9.2 Determining File Format 37
3.9.3 File Conversionuuuiitiiiii i 38
3.9.4 Autoconversion.iiiiiiii 39
3.10 Large File Support...... ..o 40
3.11 Subsetting Files. 40
3.12 Subsetting Coordinate Variables.............................. 45
3.13 Group Path Editing........ ..o i 46
3.13.1 Deletion, Truncation, and Flattening of Groups.......... 46
3.13.2 Moving GIoupscovnutit it 48
3.13.3 Dismembering Files......... ... o i 49
3.13.4 Checking CF-compliance, 51
3.14 C and Fortran Index conventions............................. 54
3.15 Hyperslabs.o 55
316 Stride. . ..o 57
3.17 Record Appendingot 58
318 Subcycle. ... 59
3.19 Multislabso 60
3.20 Wrapped Coordinates...........cocoouuiiiiiiiiiiiinne... 63
3.21 Auxiliary Coordinates.c.oooiiiii .. 64
3.22 UDUnRits SUPPOIt . ot 66
3.23 Rebasing Time Coordinate.............. 69
3.24 Multiple Record Dimensions ..., 70
3.25 Missing values ... 71
3.26 Chunking.........oooiiii i 72
3.27 Deflation . ..o 7
3.28 MD5S digests . ..ot 78
3.29 Buffer sizeso 79
3.30 RAM disks . .ovnt 79
3.31 Packed datao 81
Packing Algorithm 81
Unpacking Algorithm i 82
Default Handling of Packed Data.............. 82
Default Handling of Packed Data.................. 83
3.32 Operation Types. ...oouri i 83
3.33 Type Conversionouueiueintii e 88
3.33.1 Automatic type conversion 89
3.33.2 Promoting Single-precision to Double.................... 91
3.33.3 Manual type conversion oo, 97
3.34 Batch Modeo 97
3.35 History Attribute......... ... i 97
3.36 File List Attributes...... ... 98
3.37 CF Conventionsuuunuuttennie e, 98
3.38 ARM Conventions.ouuuueimiteeiniie e, 100

3.39 Operator Versionouiuuieeiiite i, 101

4 Operator Reference Manual 103
4.1 ncap2 netCDF Arithmetic Processor 104
4.1.1 Syntax of ncap2 statements oL 105
4.1.2 EXPressionSoooiiiiiii i 105
4.1.3 Dimensionseeiieieeaiiiiiiiiiii i 109
4.1.4 Left hand casting, 110
4.1.5 Arrays and hyperslabs........... 110
4.1.6 Attributes ... 113
4.1.7 Number literals 114
4.1.8 if statement.......... .. 115
4.1.9 oprint statement ... 117
4.1.10 Missing values ncap2.........coouiiiiiniieennieann. 117
4.1.11 Methods and functions..................oo i 119
4.1.12 RAM variables........ ..o 121
4.1.13 Where statement............ i 122
4114 LOODS .t et 124
4.1.15 Include files.o 125
4.1.16 sort methods......... ... i 125
4.1.17 Irregular Grids........ccoviiiii i 130
4.1.18 Bilinear interpolation L 132
4.1.19 GSL special functions............... .. 134
4.1.20 GSL interpolation.......... ..o 142
4.1.21 GSL least-squares fittingco it 143
4.1.22 GSL statistics. . ..o 145
4.1.23 GSL random number generation........................ 146
4.1.24 Examples ncap2oouiii 149
4.1.25 Intrinsic mathematical methods................. 151
4.1.26 Operator precedence and associativity.................. 153
4.1.27 ID QUOtINGot 153
4.2 ncatted netCDF Attribute Editor 156
4.3 ncbo netCDF Binary Operator..............cooooiiiiiia... 162
4.4 nces netCDF Ensemble Statistics................ ..., 167
4.5 ncecat netCDF Ensemble Concatenator...................... 170
4.6 ncflint netCDF File Interpolator 173
4.7 ncks netCDF Kitchen Sink..........., 176
Options specific t0 DCKS. . ..ot e 177
4.7.2 Filters for ncksot 184
4.8 ncpdq netCDF Permute Dimensions Quickly 190
Packing and Unpacking Functions.................., 190
Dimension Permutation................... L 193
4.9 ncra netCDF Record Averager................coiiiiiiiii... 198
4.10 ncrcat netCDF Record Concatenator....................... 200
4.11 ncrename netCDF Renamer................ ...t 202
4.12 ncwa netCDF Weighted Averager 206
4.12.1 Mask condition oo 207

4.12.2 Normalization and Integration.......................... 208

iii

iv NCO 4.4.6 User Guide

5 Contributing.............. 211
5.1 Contributors.o 211
5.2 CItationoou 213
5.3 Proposals for Institutional Funding........................... 213

6 Quick Start............... 215
6.1 Daily datainonefile......... ... i 215
6.2 Monthly datainone file............ L. 215
6.3 One time point one file......... i 216
6.4 Multiple files with multiple time points....................... 216

7 CMIP5 Example..................oooiiiii... 217
7.1 Combine Files ... 217
7.2 Global Distribution of Long-term Average.................... 223
7.3 Annual Average over Regions, 226
7.4 Monthly Cycle. ... e 233
7.5 Regrid MODIS Data.......c.ooiiiiiiii i 236
7.6 Add Coordinates to MODIS Data...............cooeiiiin... 239
7.7 Permute MODIS Coordinates............cooiiuiieiiiieeann... 240

8 Parallel............... 243

9 CCSM Example.............................. 245

10 References.................. 253

General Index ... 255

Foreword 1

Foreword

NCO is the result of software needs that arose while I worked on projects funded by NCAR,
NASA, and ARM. Thinking they might prove useful as tools or templates to others, it
is my pleasure to provide them freely to the scientific community. Many users (most of
whom I have never met) have encouraged the development of NCO. Thanks espcially to Jan
Polcher, Keith Lindsay, Arlindo da Silva, John Sheldon, and William Weibel for stimulating
suggestions and correspondence. Your encouragment motivated me to complete the NCO
User Guide. So if you like NCO, send me a note! I should mention that NCO is not connected
to or officially endorsed by Unidata, ACD, ASP, CGD, or Nike.

Charlie Zender
May 1997
Boulder, Colorado

Major feature improvements entitle me to write another Foreword. In the last five years
a lot of work has been done to refine NCO. NCO is now an open source project and appears
to be much healthier for it. The list of illustrious institutions that do not endorse NCO
continues to grow, and now includes UCI.

Charlie Zender
October 2000
Irvine, California

The most remarkable advances in NCO capabilities in the last few years are due to con-
tributions from the Open Source community. Especially noteworthy are the contributions
of Henry Butowsky and Rorik Peterson.

Charlie Zender
January 2003
Irvine, California

NCO was generously supported from 2004-2008 by US National Science Foundation
(NSF) grant 11S-0431203. This support allowed me to maintain and extend core NCO code,
and others to advance NCO in new directions: Gayathri Venkitachalam helped implement

http://www.nsf.gov/awardsearch/showAward.do?AwardNumber=0431203

2 NCO 4.4.6 User Guide

MPI; Harry Mangalam improved regression testing and benchmarking; Daniel Wang de-
veloped the server-side capability, SWAMP; and Henry Butowsky, a long-time contributor,
developed ncap2. This support also led NCO to debut in professional journals and meetings.
The personal and professional contacts made during this evolution have been immensely
rewarding.

Charlie Zender
March 2008
Grenoble, France

The end of the NSF SEI grant in August, 2008 curtailed NCO development. Fortunately
we could justify supporting Henry Butowsky on other research grants until May, 2010 while
he developed the key ncap2 features used in our climate research. And recently the NASA
ACCESS program commenced funding us to support netCDF4 group functionality. Thus
NCO will grow and evade bit-rot for the foreseeable future.

I continue to receive with gratitude the thanks of NCO users at nearly every scientific
meeting [attend. People introduce themselves, shake my hand and extol NCO, often effu-
sively, while I grin in stupid embarassment. These exchanges lighten me like anti-gravity.
Sometimes [daydream how many hours NCO has turned from grunt work to productive
research for researchers world-wide, or from research into early happy-hours. It’s a cool
feeling.

Charlie Zender
April, 2012
Irvine, California

Summary 3

Summary

This manual describes NCO, which stands for netCDF Operators. NCO is a suite of programs
known as operators. Each operator is a standalone, command line program executed at
the shell-level like, e.g., 1s or mkdir. The operators take netCDF files (including HDF5
files constructed using the netCDF API) as input, perform an operation (e.g., averaging or
hyperslabbing), and produce a netCDF file as output. The operators are primarily designed
to ald manipulation and analysis of data. The examples in this documentation are typical
applications of the operators for processing climate model output. This stems from their
origin, though the operators are as general as netCDF itself.

Chapter 1: Introduction 5

1 Introduction

1.1 Availability

The complete NCO source distribution is currently distributed as a compressed tarfile from
http://sf .net/projects/nco and from http://dust.ess.uci.edu/nco/nco.tar.
gz. The compressed tarfile must be uncompressed and untarred before building NCO.
Uncompress the file with ‘gunzip nco.tar.gz’. Extract the source files from the resulting
tarfile with ‘tar -xvf nco.tar’. GNU tar lets you perform both operations in one step
with ‘tar -xvzf nco.tar.gz’.

The documentation for NCO is called the NCO User Guide. The User Guide is available
in PDF, Postscript, HTML, DVI, TEXinfo, and Info formats. These formats are included
in the source distribution in the files nco.pdf, nco.ps, nco.html, nco.dvi, nco.texi,
and nco.infox*, respectively. All the documentation descends from a single source file,
nco.texi!. Hence the documentation in every format is very similar. However, some of the
complex mathematical expressions needed to describe ncwa can only be displayed in DVI,
Postscript, and PDF formats.

A complete list of papers and publications on/about NCO is available on the NCO home-
page. Most of these are freely available. The primary refereed publications are ZeM06 and
Zen08. These contain copyright restrictions which limit their redistribution, but they are
freely available in preprint form from the NCO.

If you want to quickly see what the latest improvements in NCO are (without downloading
the entire source distribution), visit the NCO homepage at http://nco.sf.net. The HTML
version of the User Guide is also available online through the World Wide Web at URL
http://nco.sf.net/nco.html. To build and use NCO, you must have netCDF installed.
The netCDF homepage is http://www.unidata.ucar.edu/packages/netcdf.

New NCO releases are announced on the netCDF list and on the nco-announce mailing
list http://lists.sf.net/mailman/listinfo/nco-announce.

1.2 How to Use This Guide

Detailed instructions about how to download the newest version, and how to complie source
code, as well as a FAQ and descriptions of Known Problems etc. are on our homepage
(http://nco.sf.net/).

There are twelve operators in the current version (4.4.6). The function of each is ex-
plained in Chapter 4 [Operator Reference Manual], page 103. Many of the tasks that
NCO can accomplish are described during the explanation of common NCO Features (see
Chapter 3 [Common features|, page 25). More specific use examples for each operator can
be seen by visiting the operator-specific examples in the Chapter 4 [Operator Reference
Manual], page 103. These can be found directly by prepending the operator name with

1 To produce these formats, nco.texi was simply run through the freely available programs texi2dvi,

dvips, texi2html, and makeinfo. Due to a bug in TEX, the resulting Postscript file, nco.ps, contains
the Table of Contents as the final pages. Thus if you print nco.ps, remember to insert the Table of
Contents after the cover sheet before you staple the manual.

http://sf.net/projects/nco
http://dust.ess.uci.edu/nco/nco.tar.gz
http://dust.ess.uci.edu/nco/nco.tar.gz
http://nco.sf.net
http://nco.sf.net/nco.html
http://www.unidata.ucar.edu/packages/netcdf
http://lists.sf.net/mailman/listinfo/nco-announce
http://nco.sf.net/#Source
http://nco.sf.net/#bld
http://nco.sf.net/#bld
http://nco.sf.net/#FAQ
http://nco.sf.net/#bug
http://nco.sf.net/

6 NCO 4.4.6 User Guide

the xmp_ tag, e.g., http://nco.sf.net/nco.html#xmp_ncks. Also, users can type the
operator name on the shell command line to see all the available options, or type, e.g., ‘man
ncks’ to see a help man-page.

NCO is a command-line language. You can either use an operator after the prompt (e.g.,
‘$’ here), like,

$ operator [options] input [output]

or write all commands lines into a shell script, as in the CMIP5 Example (see Chapter 7
[CMIP5 Example], page 217).

If you are new to NCO, the Quick Start (see Chapter 6 [Quick Start], page 215) shows
simple examples about how to use NCO on different kinds of data files. More detailed “real-
world” examples are in the Chapter 7 [CMIP5 Example|, page 217. The [General Index],
page 255 is presents multiple keyword entries for the same subject. If these resources do
not help enough, please see Section 1.7 [Help Requests and Bug Reports|, page 13.

1.3 Operating systems compatible with NCO

NCO has been successfully ported and tested and is known to work on the following 32- and
64-bit platforms: IBM AIX 4.x, 5.x, FreeBSD 4.x, GNU/Linux 2.x, LinuxPPC, LinuxAlpha,
LinuxARM, LinuxSparc64, SGI IRIX 5.x and 6.x, MacOS X 10.x, NEC Super-UX 10.x, DEC
OSF, Sun SunOS 4.1.x, Solaris 2.x, Cray UNICOS 8.x—10.x, and MS Windows95 and all later
versions. If you port the code to a new operating system, please send me a note and any
patches you required.

The major prerequisite for installing NCO on a particular platform is the successful,
prior installation of the netCDF library (and, as of 2003, the UDUnits library). Unidata
has shown a commitment to maintaining netCDF and UDUnits on all popular UNIX plat-
forms, and is moving towards full support for the Microsoft Windows operating system (OS).
Given this, the only difficulty in implementing NCO on a particular platform is standard-
ization of various C-language API system calls. NCO code is tested for ANSI compliance
by compiling with C99 compilers including those from GNU (‘gcc -std=c99 -pedantic
-D_BSD_SOURCE -D_POSIX_SOURCE’ -Wall)?, Comeau Computing (‘como --c99’), Cray
(‘cc’), HP/Compaq/DEC (‘cc’), IBM (‘xlc -c -qlanglvl=extc99’), Intel (‘icc -std=c99’),
LLVM (‘clang’), NEC (‘cc’), PathScale (QLogic) (‘pathcc -std=c99’), PGI (‘pgcc -c9x’),
SGI (‘cc -c99’), and Sun (‘cc’). NCO (all commands and the libnco library) and
the C++ interface to netCDF (called libnco_c++) comply with the ISO C++ stan-
dards as implemented by Comeau Computing (‘como’), Cray (‘CC’), GNU (‘g++ -Wall’),
HP/Compaq/DEC (‘cxx’), IBM (‘x1C’), Intel (‘icc’), Microsoft (‘MVS’), NEC (‘c++’), Path-
Scale (Qlogic) (‘pathCC’), PGI (‘pgCC’), SGI (‘CC -LANG:std’), and Sun (‘CC -LANG:std’).
See nco/bld/Makefile and nco/src/nco_c++/Makefile.old for more details and exact
settings.

Until recently (and not even yet), ANSI-compliant has meant compliance with the 1989
ISO C-standard, usually called C89 (with minor revisions made in 1994 and 1995). C89 lacks
variable-size arrays, restricted pointers, some useful printf formats, and many mathemat-

2 The ‘_BSD_SOURCE’ token is required on some Linux platforms where gcc dislikes the network header
files like netinet/in.h).

http://nco.sf.net/nco.html#xmp_ncks

Chapter 1: Introduction 7

ical special functions. These are valuable features of C99, the 1999 ISO C-standard. NCO
is C99-compliant where possible and C89-compliant where necessary. Certain branches in
the code are required to satisfy the native SGI and SunOS C compilers, which are strictly
ANST C89 compliant, and cannot benefit from C99 features. However, C99 features are fully
supported by modern AIX, GNU, Intel, NEC, Solaris, and UNICOS compilers. NCO requires
a C99-compliant compiler as of NCO version 2.9.8, released in August, 2004.

The most time-intensive portion of NCO execution is spent in arithmetic operations,
e.g., multiplication, averaging, subtraction. These operations were performed in Fortran
by default until August, 1999. This was a design decision based on the relative speed of
Fortran-based object code vs. C-based object code in late 1994. C compiler vectorization ca-
pabilities have dramatically improved since 1994. We have accordingly replaced all Fortran
subroutines with C functions. This greatly simplifies the task of building NCO on nominally
unsupported platforms. As of August 1999, NCO built entirely in C by default. This al-
lowed NCO to compile on any machine with an ANSI C compiler. In August 2004, the first
C99 feature, the restrict type qualifier, entered NCO in version 2.9.8. C compilers can
obtain better performance with C99 restricted pointers since they inform the compiler when
it may make Fortran-like assumptions regarding pointer contents alteration. Subsequently,
NCO requires a C99 compiler to build correctly?.

In January 2009, NCO version 3.9.6 was the first to link to the GNU Scientific Library
(GSL). GSL must be version 1.4 or later. NCO, in particular ncap2, uses the GSL spe-
cial function library to evaluate geoscience-relevant mathematics such as Bessel functions,
Legendre polynomials, and incomplete gamma functions (see Section 4.1.19 [GSL special
functions], page 134).

In June 2005, NCO version 3.0.1 began to take advantage of C99 mathematical spe-
cial functions. These include the standarized gamma function (called tgamma() for “true
gamma”). NCO automagically takes advantage of some GNU Compiler Collection (GCC)
extensions to ANSI C.

As of July 2000 and NCO version 1.2, NCO no longer performs arithmetic operations
in Fortran. We decided to sacrifice executable speed for code maintainability. Since no
objective statistics were ever performed to quantify the difference in speed between the
Fortran and C code, the performance penalty incurred by this decision is unknown. Sup-
porting Fortran involves maintaining two sets of routines for every arithmetic operation.
The USE_FORTRAN_ARITHMETIC flag is still retained in the Makefile. The file containing
the Fortran code, nco_fortran.F, has been deprecated but a volunteer (Dr. Frankenstein?)
could resurrect it. If you would like to volunteer to maintain nco_fortran.F please contact
me.

1.3.1 Compiling NCO for Microsoft Windows 0S

NCO has been successfully ported and tested on most Microsoft Windows operating systems
including: XP SP2/Vista/7. Support is provided for compiling either native Windows
executables, using the Microsoft Visual Studio 2010 Compiler, or with Cygwin, the UNIX-

3 NCO may still build with an ANSI or ISO C89 or C94/95-compliant compiler if the C pre-processor
undefines the restrict type qualifier, e.g., by invoking the compiler with ‘-Drestrict=""".

8 NCO 4.4.6 User Guide

emulating compatibility layer with the GNU toolchain. The switches necessary to accomplish
both are included in the standard distribution of NCO.

Using Microsoft Visual Studio (MVS), one must build NCO with the C++ compiler since
MVS does not support C99. Qt, a convenient integrated development environment, was
used to convert the project files to MVS format. The Qt files themselves are distributed in
the nco/qt directory.

Using the freely available Cygwin (formerly gnu-win32) development environment?, the
compilation process is very similar to installing NCO on a UNIX system. Set the PVM_ARCH
preprocessor token to WIN32. Note that defining WIN32 has the side effect of disabling
Internet features of NCO (see below). NCO should now build like it does on UNIX.

The least portable section of the code is the use of standard UNIX and Internet protocols
(e.g., ftp, rcp, scp, sftp, getuid, gethostname, and header files <arpa/nameser.h> and
<resolv.h>). Fortunately, these UNIX-y calls are only invoked by the single NCO subroutine
which is responsible for retrieving files stored on remote systems (see Section 3.7 [Remote
storage|, page 30). In order to support NCO on the Microsoft Windows platforms, this
single feature was disabled (on Windows OS only). This was required by Cygwin 18.x—
newer versions of Cygwin may support these protocols (let me know if this is the case).
The NCO operators should behave identically on Windows and UNIX platforms in all other
respects.

1.4 Symbolic Links

NCO relies on a common set of underlying algorithms. To minimize duplication of source
code, multiple operators sometimes share the same underlying source. This is accomplished
by symbolic links from a single underlying executable program to one or more invoked
executable names. For example, nces and ncrcat are symbolically linked to the ncra
executable. The ncra executable behaves slightly differently based on its invocation name
(i.e., ‘argv[0]’), which can be nces, ncra, or ncrcat. Logically, these are three different
operators that happen to share the same executable.

For historical reasons, and to be more user friendly, multiple synonyms (or pseudonyms)
may refer to the same operator invoked with different switches. For example, ncdiff is
the same as ncbo and ncpack is the same as ncpdg. We implement the symbolic links and
synonyms by the executing the following UNIX commands in the directory where the NCO
executables are installed.

In -s -f ncbo ncdiff # ncbo --op_typ="+’

In -s -f ncra nces # ncra --pseudonym=’nces’
In -s -f ncra ncrcat # ncra --pseudonym=’ncrcat’
In -s -f ncbo ncadd # ncbo --op_typ=’+’

In -s -f ncbo ncsubtract # ncbo --op_typ=’-’

In -s -f ncbo ncmultiply # ncbo --op_typ=’%*’

1n -s -f ncbo ncdivide # ncbo --op_typ=’/’

4 The Cygwin package is available from
http://sourceware.redhat.com/cygwin
Currently, Cygwin 20.x comes with the GNU C/C++ compilers (gcc, g++. These GNU compilers may be
used to build the netCDF distribution itself.

Chapter 1: Introduction 9

In -s -f ncpdq ncpack # ncpdq

In -s -f ncpdq ncunpack # ncpdqg —--unpack

NB: Windows/Cygwin executable/link names have ’.exe’ suffix, e.g.,
In -s -f ncbo.exe ncdiff.exe

The imputed command called by the link is given after the comment. As can be seen,
some these links impute the passing of a command line argument to further modify the
behavior of the underlying executable. For example, ncdivide is a pseudonym for ncbo
—-op_typ="/".

1.5 Libraries

Like all executables, the NCO operators can be built using dynamic linking. This reduces
the size of the executable and can result in significant performance enhancements on mul-
tiuser systems. Unfortunately, if your library search path (usually the LD_LIBRARY_PATH
environment variable) is not set correctly, or if the system libraries have been moved, re-
named, or deleted since NCO was installed, it is possible NCO operators will fail with a
message that they cannot find a dynamically loaded (aka shared object or ¢.so’) library.
This will produce a distinctive error message, such as ‘1d.so.1: /usr/local/bin/nces:
fatal: libsunmath.so.1: can’t open file: errno=2’. If you received an error message
like this, ask your system administrator to diagnose whether the library is truly missing®,
or whether you simply need to alter your library search path. As a final remedy, you may
re-compile and install NCO with all operators statically linked.

1.6 netCDF2/3/4 and HDF4/5 Support

netCDF version 2 was released in 1993. NCO (specifically ncks) began soon after this
in 1994. netCDF 3.0 was released in 1996, and we were not exactly eager to convert all
code to the newer, less tested netCDF implementation. One netCDF3 interface call (nc_
ing_libvers) was added to NCO in January, 1998, to aid in maintainance and debugging.
In March, 2001, the final NCO conversion to netCDF3 was completed (coincidentally on
the same day netCDF 3.5 was released). NCO versions 2.0 and higher are built with the
-DNO_NETCDF_2 flag to ensure no netCDF2 interface calls are used.

However, the ability to compile NCO with only netCDF2 calls is worth maintaining
because HDF version 4, aka HDF4 or simply HDF,® (available from HDF) supports only
the netCDF2 library calls (see http://hdfgroup.org/UG41r3_html/SDS_SD.fm12.html#
47784). There are two versions of HDF. Currently HDF version 4.x supports the full
netCDF2 API and thus NCO version 1.2.x. If NCO version 1.2.x (or earlier) is built with
only netCDF2 calls then all NCO operators should work with HDF4 files as well as netCDF

5 The 1dd command, if it is available on your system, will tell you where the executable is looking for each
dynamically loaded library. Use, e.g., 1dd ‘which nces‘.

6 The Hierarchical Data Format, or HDF, is another self-describing data format similar to, but more
elaborate than, netCDF. HDF comes in two flavors, HDF4 and HDF5. Often people use the shorthand
HDF to refer to the older format HDF4. People almost always use HDF5 to refer to HDF5.

http://hdfgroup.org
http://hdfgroup.org/UG41r3_html/SDS_SD.fm12.html#47784
http://hdfgroup.org/UG41r3_html/SDS_SD.fm12.html#47784

10 NCO 4.4.6 User Guide

files”. The preprocessor token NETCDF2_ONLY exists in NCO version 1.2.x to eliminate all
netCDF3 calls. Only versions of NCO numbered 1.2.x and earlier have this capability.

HDF version 5 became available in 1999, but did not support netCDF (or, for that matter,
Fortran) as of December 1999. By early 2001, HDF5 did support Fortran90. Thanks to an
NSF-funded “harmonization” partnership, HDF began to fully support the netCDF3 read
interface (which is employed by NCO 2.x and later). In 2004, Unidata and THG began a
project to implement the HDF5 features necessary to support the netCDF API. NCO version
3.0.3 added support for reading/writing netCDF4-formatted HDF5 files in October, 2005.
See Section 3.9 [File Formats and Conversion|, page 35 for more details.

HDF support for netCDF was completed with HDF5 version version 1.8 in 2007. The
netCDF front-end that uses this HDF5 back-end was completed and released soon after as
netCDF version 4. Download it from the netCDF4 website.

NCO version 3.9.0, released in May, 2007, added support for all netCDF4 atomic data
types except NC_STRING. Support for NC_STRING, including ragged arrays of strings, was
finally added in version 3.9.9, released in June, 2009. Support for additional netCDF4
features has been incremental. We add one netCDF4 feature at a time. You must build
NCO with netCDF4 to obtain this support.

NCO supports many netCDF4 features including atomic data types, Lempel-Ziv com-
pression (deflation), chunking, and groups. The new atomic data types are NC_UBYTE,
NC_USHORT, NC_UINT, NC_INT64, and NC_UINT64. Eight-byte integer support is an espe-
cially useful improvement from netCDF3. All NCO operators support these types, e.g.,
ncks copies and prints them, ncra averages them, and ncap2 processes algebraic scripts
with them. ncks prints compression information, if any, to screen.

NCO version 3.9.1 (June, 2007) added support for netCDF4 Lempel-Ziv deflation.
Lempel-Ziv deflation is a lossless compression technique. See Section 3.27 [Deflation],
page 77 for more details.

NCO version 3.9.9 (June, 2009) added support for netCDF4 chunking in ncks and
ncecat. NCO version 4.0.4 (September, 2010) completed support for netCDF4 chunking in
the remaining operators. See Section 3.26 [Chunking], page 72 for more details.

NCO version 4.2.2 (October, 2012) added support for netCDF4 groups in ncks and
ncecat. Group support for these operators was complete (e.g., regular expressions to select
groups and Group Path Editing) as of NCO version 4.2.6 (March, 2013). See Section 3.13
[Group Path Editing], page 46 for more details. Group support for all other operators was
finished in the NCO version 4.3.x series completed in December, 2013.

Support for netCDF4 in the first arithmetic operator, ncbo, was introduced in NCO
version 4.3.0 (March, 2013). NCO version 4.3.1 (May, 2013) completed this support and
introduced the first example of automatic group broadcasting. See Section 4.3 [ncbo netCDF
Binary Operator]|, page 162 for more details.

" One must link the NCO code to the HDF4 MFHDF library instead of the usual netCDF library. Apparently
‘MF’ stands for Multi-file not for Mike Folk. In any case, until about 2007 the MFHDF library only
supported netCDF2 calls. Most people will never again install NCO 1.2.x and so will never use NCO to
write HDF4 files. It is simply too much trouble.

http://my.unidata.ucar.edu/content/software/netcdf/netcdf-4

Chapter 1: Introduction 11

netCDF4-enabled NCO handles netCDF3 files without change. In addition, it automag-
ically handles netCDF4 (HDF5) files: If you feed NCO netCDF3 files, it produces netCDF3
output. If you feed NCO netCDF4 files, it produces netCDF4 output. Use the handy-dandy
‘-4’ switch to request netCDF4 output from netCDF3 input, i.e., to convert netCDF3 to
netCDF4. See Section 3.9 [File Formats and Conversion], page 35 for more details.

When linked to a netCDF library that was built with HDF4 support®, NCO automatically
supports reading HDF4 files and writing them as netCDF3/netCDF4/HDF5 files. NCO can
only write through the netCDF API, which can only write netCDF3/netCDF4/HDFS5 files.
So NCO can read HDF4 files, perform manipulations and calculations, and then it must
write the results in netCDF format.

NCO support for HDF4 has been quite functional since December, 2013. For best results
install NCO versions 4.4.0 or later on top of netCDF versions 4.3.1 or later. Getting to this
point has been an iterative effort where Unidata improved netCDF library capabilities in
response to our requests. NCO versions 4.3.6 and earlier do not explicitly support HDF4,
yet should work with HDF4 if compiled with a version of netCDF (4.3.2 or later?) that
does not unexpectedly die when probing HDF4 files with standard netCDF calls. NCO
versions 4.3.7-4.3.9 (October—December, 2013) use a special flag to workaround netCDF
HDF4 issues. The user must tell these versions of NCO that an input file is HDF4 format by
using the ‘--hdf4’ switch.

When compiled with netCDF version 4.3.1 (20140116) or later, NCO versions 4.4.0 (Jan-
uary, 2014) and later more gracefully handle HDF4 files. In particular, the ‘--hdf4’ switch is
obsolete. Current versions of NCO use netCDF to determine automatically whether the un-
derlying file is HDF4, and then take appropriate precautions to avoid netCDF4 API calls that
fail when applied to HDF4 files (e.g., nc_inq_var_chunking(), nc_inq_var_deflate()).
When compiled with netCDF version 4.3.2 (20140423) or earlier, NCO will report that
chunking and deflation properties of HDF4 files as HDF4_UNKNOWN, because determining
those properties was impossible. When compiled with netCDF version 4.3.3-rc2 (20140925)
or later, NCO versions 4.4.6 (October, 2014) and later fully support chunking and deflation
features of HDF4 files. The ‘--hdf4’ switch is supported (for backwards compatibility) yet
redundant (i.e., does no harm) with current versions of NCO and netCDF.

Converting HDF4 files to netCDF: Since NCO reads HDF4 files natively, it is now easy
to convert HDF4 files to netCDF files directly, e.g.,

ncks fl.hdf fl.nc # Convert HDF4->netCDF4 (NCO 4.4.0+, netCDF 4.3.1+4)
ncks —--hdf4 f1.hdf fl.nc # Convert HDF4->netCDF4 (NCO 4.3.7-4.3.9)

The most efficient and accurate way to convert HDF4 data to netCDF format is to
convert to netCDF4 using NCO as above. Many HDF4 producers (NASA!) love to use
netCDF4 types, e.g., unsigned bytes, so this procedure is the most typical. Conversion of
HDF4 to netCDF4 as above suffices when the data will only be processed by NCO and other
netCDF4-aware tools.

However, many tools are not fully netCDF4-aware, and so conversion to netCDF3 may
be desirable. Obtaining a netCDF3 file from an HDF4 is now easy:

8 The procedure for doing this is documented at http://www.unidata.ucar.edu/software/netcdf/docs/
build_hdf4.html.

http://www.unidata.ucar.edu/software/netcdf/docs/build_hdf4.html
http://www.unidata.ucar.edu/software/netcdf/docs/build_hdf4.html

12 NCO 4.4.6 User Guide

ncks -3 f1.hdf fl.nc # HDF4->netCDF3 (NCO 4.4.0+, netCDF 4.3.1+)
ncks -4 f1l.hdf fl.nc # HDF4->netCDF4 (NCO 4.4.0+, netCDF 4.3.1+)
ncks -6 fl.hdf f1l.nc # HDF4->netCDF3 64-bit (NCO 4.4.0+, ...)
ncks -7 -L 1 fl.hdf fl.nc # HDF4->netCDF4 classic (NCO 4.4.0+, ...)

ncks --hdf4 -3 f1l.hdf fl.nc # HDF4->netCDF3 (netCDF 4.3.0-)
ncks —-hdf4 -4 f1.hdf fl.nc # HDF4->netCDF4 (netCDF 4.3.0-)
ncks —--hdf4 -6 fl.hdf fl.nc # HDF4->netCDF3 64-bit (netCDF 4.3.0-)
ncks --hdf4 -7 f1l.hdf fl.nc # HDF4->netCDF4 classic (netCDF 4.3.0-)

As of NCO version 4.4.0 (January, 2014), these commands work even when the HDF4
file contains netCDF4 atomic types (e.g., unsigned bytes, 64-bit integers) because NCO can
autoconvert everything to atomic types supported by netCDF3°.

As of NCO version 4.4.4 (May, 2014) both ncl_convert2nc and NCO have built-in,
automatic workarounds to handle element names that contain characters that are legal in
HDF though are illegal in netCDF. For example, slashes and leading special characters
are are legal in HDF and illegal in netCDF element (i.e., group, variable, dimension, and
attribute) names. NCO converts these forbidden characters to underscores, and retains the
original names of variables in automatically produced attributes named hdf_name!°.

Finally, in February 2014, we learned that the HDF group has a project called H4CF
(described here) whose goal is to make HDF4 files accessible to CF tools and conventions.
Their project includes a tool named h4tonccf that converts HDF4 files to netCDF3 or
netCDF4 files. We are not yet sure what advantages or features hdtonccf has that are not
in NCO, though we suspect both methods have their own advantages. Corrections welcome.

As of 2012, netCDF4 is relatively stable software. Problems with netCDF4 and HDF
libraries have mainly been fixed. Binary NCO distributions shipped as RPMs and as debs
have used the netCDF4 library since 2010 and 2011, respectively.

One must often build NCO from source to obtain netCDF4 support. Typically, one
specifies the root of the netCDF4 installation directory. Do this with the NETCDF4_ROOT
variable. Then use your preferred NCO build mechanism, e.g.,

export NETCDF4_RO0T=/usr/local/netcdf4 # Set netCDF4 location
cd "/nco;./configure --enable-netcdf4 # Configure mechanism -or-
cd “/nco/bld;./make NETCDF4=Y allinone # 01d Makefile mechanism

9 Prior to NCO version 4.4.0 (January, 2014), we recommended the ncl_convert2nc tool to convert HDF to
netCDF3 when both these are true: 1. You must have netCDF3 and 2. the HDF file contains netCDF4
atomic types. More recent versions of NCO handle this problem fine, so we no longer recommend
ncl_convert2nc because ncks is faster and more space-efficient. Both automatically convert netCDF4
types to netCDF3 types, yet ncl_convert2nc cannot produce full netCDF4 files. In contrast, ncks will
happily convert HDF straight to netCDF4 files with netCDF4 types. Hence ncks can and does preserve
the variable types. Unsigned bytes stay unsigned bytes. 64-bit integers stay 64-bit integers. Strings stay
strings. Hence, ncks conversions often result in smaller files than ncl_convert2nc conversions.

Two real-world examples: NCO translates the NASA CERES dimension (FOV) Footprints to _FOV_
Footprints, and Cloud & Aerosol, Cloud Only, Clear Sky w/Aerosol, and Clear Sky (yes, the dimen-
sion name includes whitespace and special characters) to Cloud & Aerosol, Cloud Only, Clear Sky w_
Aerosol, and Clear Sky ncl_convert2nc makes the element name netCDF-safe in a slightly different
manner, and also stores the original name in the hdf_name attribute.

10

http://hdfeos.org/software/h4cflib.php

Chapter 1: Introduction 13

We carefully track the netCDF4 releases, and keep the netCDF4 atomic type support
and other features working. Our long term goal is to utilize more of the extensive new
netCDF4 feature set. The next major netCDF4 feature we are likely to utilize is parallel
I/O. We will enable this in the MPI netCDF operators.

1.7 Help Requests and Bug Reports

We generally receive three categories of mail from users: help requests, bug reports, and
feature requests. Notes saying the equivalent of “Hey, NCO continues to work great and it
saves me more time everyday than it took to write this note” are a distant fourth.

There is a different protocol for each type of request. The preferred etiquette for all
communications is via NCO Project Forums. Do not contact project members via personal
e-mail unless your request comes with money or you have damaging information about our
personal lives. Please use the Forums—they preserve a record of the questions and answers
so that others can learn from our exchange. Also, since NCO is government-funded, this
record helps us provide program officers with information they need to evaluate our project.

Before posting to the NCO forums described below, you might first register your name
and email address with SourceForge.net or else all of your postings will be attributed to
nobody. Once registered you may choose to monitor any forum and to receive (or not) email
when there are any postings including responses to your questions. We usually reply to the
forum message, not to the original poster.

If you want us to include a new feature in NCO, check first to see if that feature is already
on the TODO list. If it is, why not implement that feature yourself and send us the patch?
If the feature is not yet on the list, then send a note to the NCO Discussion forum.

Read the manual before reporting a bug or posting a help request. Sending questions
whose answers are not in the manual is the best way to motivate us to write more docu-
mentation. We would also like to accentuate the contrapositive of this statement. If you
think you have found a real bug the most helpful thing you can do is simplify the problem to
a manageable size and then report it. The first thing to do is to make sure you are running
the latest publicly released version of NCO.

Once you have read the manual, if you are still unable to get NCO to perform a docu-
mented function, submit a help request. Follow the same procedure as described below for
reporting bugs (after all, it might be a bug). That is, describe what you are trying to do,
and include the complete commands (run with ‘-D 5’), error messages, and version of NCO
(with ‘-r’). Post your help request to the NCO Help forum.

If you think you used the right command when NCO misbehaves, then you might have
found a bug. Incorrect numerical answers are the highest priority. We usually fix those
within one or two days. Core dumps and sementation violations receive lower priority.
They are always fixed, eventually.

How do you simplify a problem that reveal a bug? Cut out extraneous variables, di-
mensions, and metadata from the offending files and re-run the command until it no longer
breaks. Then back up one step and report the problem. Usually the file(s) will be very
small, i.e., one variable with one or two small dimensions ought to suffice. Run the operator
with ‘-r’ and then run the command with ‘-D 5’ to increase the verbosity of the debugging

https://sf.net/account/register.php
file:./TODO
http://sf.net/projects/nco/forums/forum/9829
http://sf.net/projects/nco/forums/forum/9830

14 NCO 4.4.6 User Guide

output. It is very important that your report contain the exact error messages and compile-
time environment. Include a copy of your sample input file, or place one on a publically
accessible location, of the file(s). Post the full bug report to the NCO Project buglist.

Build failures count as bugs. Our limited machine access means we cannot fix all build
failures. The information we need to diagnose, and often fix, build failures are the three files
output by GNU build tools, nco.config.log.${GNU_TRP}.foo, nco.configure.${GNU_
TRP}.foo, and nco.make.${GNU_TRP}.foo. The file configure.eg shows how to produce
these files. Here ${GNU_TRP} is the “GNU architecture triplet”, the chip-vendor-OS string
returned by config.guess. Please send us your improvements to the examples supplied in
configure.eg. The regressions archive at http://dust.ess.uci.edu/nco/rgr contains
the build output from our standard test systems. You may find you can solve the build
problem yourself by examining the differences between these files and your own.

http://sf.net/bugs/?group_id=3331
http://dust.ess.uci.edu/nco/rgr

Chapter 2: Operator Strategies 15

2 Operator Strategies

2.1 Philosophy

The main design goal is command line operators which perform useful, scriptable operations
on netCDF files. Many scientists work with models and observations which produce too
much data to analyze in tabular format. Thus, it is often natural to reduce and massage
this raw or primary level data into summary, or second level data, e.g., temporal or spatial
averages. These second level data may become the inputs to graphical and statistical pack-
ages, and are often more suitable for archival and dissemination to the scientific community.
NCO performs a suite of operations useful in manipulating data from the primary to the
second level state. Higher level interpretive languages (e.g., IDL, Yorick, Matlab, NCL, Perl,
Python), and lower level compiled languages (e.g., C, Fortran) can always perform any task
performed by NCO, but often with more overhead. NCO, on the other hand, is limited to
a much smaller set of arithmetic and metadata operations than these full blown languages.

Another goal has been to implement enough command line switches so that frequently
used sequences of these operators can be executed from a shell script or batch file. Finally,
NCO was written to consume the absolute minimum amount of system memory required to
perform a given job. The arithmetic operators are extremely efficient; their exact memory

/]

usage is detailed in Section 2.9 [Memory Requirements|, page 22.

2.2 Climate Model Paradigm

NCO was developed at NCAR to aid analysis and manipulation of datasets produced by
General Circulation Models (GCMs). GCM datasets share many features with other gridded
scientific datasets and so provide a useful paradigm for the explication of the NCO operator
set. Examples in this manual use a GCM paradigm because latitude, longitude, time,
temperature and other fields related to our natural environment are as easy to visualize for
the layman as the expert.

2.3 Temporary Output Files

NCO operators are designed to be reasonably fault tolerant, so that a system failure or user-
abort of the operation (e.g., with C-c) does not cause loss of data. The user-specified output-
file is only created upon successful completion of the operation!. This is accomplished by
performing all operations in a temporary copy of output-file. The name of the temporary
output file is constructed by appending .pid<process ID>.<operator name>.tmp to the
user-specified output-file name. When the operator completes its task with no fatal errors,
the temporary output file is moved to the user-specified output-file. This imbues the pro-
cess with fault-tolerance since fatal error (e.g., disk space fills up) affect only the temporary
output file, leaving the final output file not created if it did not already exist. Note the con-
struction of a temporary output file uses more disk space than just overwriting existing files
“in place” (because there may be two copies of the same file on disk until the NCO operation
successfully concludes and the temporary output file overwrites the existing output-file).

! The ncrename and ncatted operators are exceptions to this rule. See Section 4.11 [ncrename netCDF
Renamer], page 202.

16 NCO 4.4.6 User Guide

Also, note this feature increases the execution time of the operator by approximately the
time it takes to copy the output-file?>. Finally, note this fault-tolerant feature allows the
output-file to be the same as the input-file without any danger of “overlap”.

Over time many “power users” have requested a way to turn-off the fault-tolerance safety
feature of automatically creating a temporary file. Often these users build and execute
production data analysis scripts that are repeated frequently on large datasets. Obviating
an extra file write can then conserve significant disk space and time. For this purpose NCO
has, since version 4.2.1 in August, 2012, made configurable the controls over temporary
file creation. The ‘--wrt_tmp_f1’ and equivalent ‘--write_tmp_f1’ switches ensure NCO
writes output to an intermediate temporary file. This is and has always been the default
behavior so there is currently no need to specify these switches. However, the default
may change some day, especially since writing to RAM disks (see Section 3.30 [RAM disks],
page 79) may some day become the default. The ‘~-no_tmp_£f1’ switch causes NCO to write
directly to the final output file instead of to an intermediate temporary file. “Power users”
may wish to invoke this switch to increase performance (i.e., reduce wallclock time) when
manipulating large files. When eschewing temporary files, users may forsake the ability
to have the same name for both output-file and input-file since, as described above, the
temporary file prevented overlap issues. However, if the user creates the output file in RAM
(see Section 3.30 [RAM disks|, page 79) then it is still possible to have the same name for
both output-file and input-file.

ncks in.nc out.nc # Default: create out.pid.tmp.nc then move to out.nc
ncks —--wrt_tmp_fl in.nc out.nc # Same as default

ncks --no_tmp_fl in.nc out.nc # Create out.nc directly on disk

ncks --no_tmp_fl in.nc in.nc # ERROR-prone! Overwrite in.nc with itself
ncks --create_ram --no_tmp_fl in.nc in.nc # Create in RAM, write to disk
ncks --open_ram --no_tmp_fl in.nc in.nc # Read into RAM, write to disk

There is no reason to expect the fourth example to work. The behavior of overwriting a
file while reading from the same file is undefined, much as is the shell command ‘cat foo
> foo’. Although it may “work” in some cases, it is unreliable. One way around this is
to use ‘--create_ram’ so that the output file is not written to disk until the input file is
closed, See Section 3.30 [RAM disks|, page 79. However, as of 20130328, the behavior of
the ‘--create_ram’ and ‘--open_ram’ examples has not been thoroughly tested.

The NCO authors have seen compelling use cases for utilizing the RAM switches, though
not (yet) for combining them with ‘~-no_tmp_£f1’. NCO implements both options because
they are largely independent of eachother. It is up to “power users” to discover which best
fit their needs. We welcome accounts of your experiences posted to the forums.

Other safeguards exist to protect the user from inadvertently overwriting data. If the
output-file specified for a command is a pre-existing file, then the operator will prompt
the user whether to overwrite (erase) the existing output-file, attempt to append to it, or
abort the operation. However, in processing large amounts of data, too many interactive
questions slows productivity. Therefore NCO also implements two ways to override its own
safety features, the ‘-0’ and ‘-A’ switches. Specifying ‘-0’ tells the operator to overwrite
any existing output-file without prompting the user interactively. Specifying ‘-A’ tells the

2 The OS-specific system move command is used. This is mv for UNIX, and move for Windows.

Chapter 2: Operator Strategies 17

operator to attempt to append to any existing output-file without prompting the user inter-
actively. These switches are useful in batch environments because they suppress interactive
keyboard input.

2.4 Appending Variables

Adding variables from one file to another is often desirable. This is referred to as appending,
although some prefer the terminology merging® or pasting. Appending is often confused
with what NCO calls concatenation. In NCO, concatenation refers to splicing a variable
along the record dimension. The length along the record dimension of the output is the
sum of the lengths of the input files. Appending, on the other hand, refers to copying a
variable from one file to another file which may or may not already contain the variable?.
NCO can append or concatenate just one variable, or all the variables in a file at the same
time.

In this sense, ncks can append variables from one file to another file. This capability is
invoked by naming two files on the command line, input-file and output-file. When output-
file already exists, the user is prompted whether to overwrite, append/replace, or exit from
the command. Selecting overwrite tells the operator to erase the existing output-file and
replace it with the results of the operation. Selecting exit causes the operator to exit—the
output-file will not be touched in this case. Selecting append/replace causes the operator
to attempt to place the results of the operation in the existing output-file, See Section 4.7
[ncks netCDF Kitchen Sink], page 176.

The simplest way to create the union of two files is
ncks -A f1_1.nc f1_2.nc

This puts the contents of £1_1.nc into £1_2.nc. The ‘-A’ is optional. On output,
f1_2.nc is the union of the input files, regardless of whether they share dimensions and
variables, or are completely disjoint. The append fails if the input files have differently
named record dimensions (since netCDF supports only one), or have dimensions of the
same name but different sizes.

2.5 Simple Arithmetic and Interpolation

Users comfortable with NCO semantics may find it easier to perform some simple mathe-
matical operations in NCO rather than higher level languages. ncbo (see Section 4.3 [ncho
netCDF Binary Operator|, page 162) does file addition, subtraction, multiplication, divi-
sion, and broadcasting. It even does group broadcasting. ncflint (see Section 4.6 [ncflint
netCDF File Interpolator], page 173) does file addition, subtraction, multiplication and in-
terpolation. Sequences of these commands can accomplish simple yet powerful operations
from the command line.

3 The terminology merging is reserved for an (unwritten) operator which replaces hyperslabs of a variable
in one file with hyperslabs of the same variable from another file

4 Yes, the terminology is confusing. By all means mail me if you think of a better nomenclature. Should
NCO use paste instead of append?

18 NCO 4.4.6 User Guide

2.6 Statistics vs. Concatenation

The most frequently used operators of NCO are probably the statisticians (i.e., tools that do
statistics) and concatenators. Because there are so many types of statistics like averaging
(e.g., across files, within a file, over the record dimension, over other dimensions, with or
without weights and masks) and of concatenating (across files, along the record dimension,
along other dimensions), there are currently no fewer than five operators which tackle these
two purposes: ncra, nces, ncwa, ncrcat, and ncecat. These operators do share many
capabilities®, though each has its unique specialty. Two of these operators, ncrcat and
ncecat, concatenate hyperslabs across files. The other two operators, ncra and nces,
compute statistics across (and/or within) files®. First, let’s describe the concatenators,
then the statistics tools.

2.6.1 Concatenators ncrcat and ncecat

Joining together independent files along a common record dimension is called concatena-
tion. ncrcat is designed for concatenating record variables, while ncecat is designed for
concatenating fixed length variables. Consider five files, 85.nc, 86.nc, ... 89.nc each con-
taining a year’s worth of data. Say you wish to create from them a single file, 85689.nc
containing all the data, i.e., spanning all five years. If the annual files make use of the
same record variable, then ncrcat will do the job nicely with, e.g., ncrcat 87.nc 8589.nc.
The number of records in the input files is arbitrary and can vary from file to file. See
Section 4.10 [ncrcat netCDF Record Concatenator], page 200, for a complete description of
ncrcat.

However, suppose the annual files have no record variable, and thus their data are all
fixed length. For example, the files may not be conceptually sequential, but rather members
of the same group, or ensemble. Members of an ensemble may have no reason to contain
a record dimension. ncecat will create a new record dimension (named record by default)
with which to glue together the individual files into the single ensemble file. If ncecat is
used on files which contain an existing record dimension, that record dimension is converted
to a fixed-length dimension of the same name and a new record dimension (named record)
is created. Consider five realizations, 85a.nc, 85b.nc, ... 85e.nc of 1985 predictions from
the same climate model. Then ncecat 857.nc 85_ens.nc glues together the individual
realizations into the single file, 85_ens.nc. If an input variable was dimensioned [lat,lon],
it will have dimensions [record,lat,lon] in the output file. A restriction of ncecat is that
the hyperslabs of the processed variables must be the same from file to file. Normally this
means all the input files are the same size, and contain data on different realizations of the
same variables. See Section 4.5 [ncecat netCDF Ensemble Concatenator|, page 170, for a
complete description of ncecat.

ncpdq makes it possible to concatenate files along any dimension, not just the record
dimension. First, use ncpdq to convert the dimension to be concatenated (i.e., extended

5 Currently nces and ncrcat are symbolically linked to the ncra executable, which behaves slightly differ-
ently based on its invocation name (i.e., ‘argv[0]’). These three operators share the same source code,
and merely have different inner loops.

The third averaging operator, ncwa, is the most sophisticated averager in NCO. However, ncwa is in
a different class than ncra and nces because it operates on a single file per invocation (as opposed to
multiple files). On that single file, however, ncwa provides a richer set of averaging options—including
weighting, masking, and broadcasting.

Chapter 2: Operator Strategies 19

with data from other files) into the record dimension. Second, use ncrcat to concatenate
these files. Finally, if desirable, use ncpdq to revert to the original dimensionality. As
a concrete example, say that files x_01.nc, x_02.nc, ... x_10.nc contain time-evolving
datasets from spatially adjacent regions. The time and spatial coordinates are time and x,
respectively. Initially the record dimension is time. Our goal is to create a single file that
contains joins all the spatially adjacent regions into one single time-evolving dataset.

for idx in 01 02 03 04 05 06 07 08 09 10; do # Bourne Shell
ncpdg -a x,time x_${idx}.nc foo_${idx}.nc # Make x record dimension
done
ncrcat foo_77.nc out.nc # Concatenate along x
ncpdq -a time,x out.nc out.nc # Revert to time as record dimension

Note that ncrcat will not concatenate fixed-length variables, whereas ncecat concate-
nates both fixed-length and record variables along a new record variable. To conserve system
memory, use ncrcat where possible.

2.6.2 Averagers nces, ncra, and ncwa

The differences between the averagers ncra and nces are analogous to the differences be-
tween the concatenators. ncra is designed for averaging record variables from at least one
file, while nces is designed for averaging fixed length variables from multiple files. ncra per-
forms a simple arithmetic average over the record dimension of all the input files, with each
record having an equal weight in the average. nces performs a simple arithmetic average
of all the input files, with each file having an equal weight in the average. Note that ncra
cannot average fixed-length variables, but nces can average both fixed-length and record
variables. To conserve system memory, use ncra rather than nces where possible (e.g., if
each input-file is one record long). The file output from nces will have the same dimensions
(meaning dimension names as well as sizes) as the input hyperslabs (see Section 4.4 [nces
netCDF Ensemble Statistics|, page 167, for a complete description of nces). The file out-
put from ncra will have the same dimensions as the input hyperslabs except for the record
dimension, which will have a size of 1 (see Section 4.9 [ncra netCDF Record Averager]
page 198, for a complete description of ncra).

9

2.6.3 Interpolator ncflint

ncflint can interpolate data between or two files. Since no other operators have this ability,
the description of interpolation is given fully on the ncflint reference page (see Section 4.6
[ncflint netCDF File Interpolator|, page 173). Note that this capability also allows ncflint
to linearly rescale any data in a netCDF file, e.g., to convert between differing units.

2.7 Large Numbers of Files

Occasionally one desires to digest (i.e., concatenate or average) hundreds or thousands of
input files. Unfortunately, data archives (e.g., NASA EOSDIS) may not name netCDF files
in a format understood by the ‘-n Ioop’ switch (see Section 3.5 [Specifying Input Files],
page 28) that automagically generates arbitrary numbers of input filenames. The ‘-n loop’
switch has the virtue of being concise, and of minimizing the command line. This helps keeps
output file small since the command line is stored as metadata in the history attribute (see
Section 3.35 [History Attribute], page 97). However, the ‘-n Ioop’ switch is useless when

20 NCO 4.4.6 User Guide

there is no simple, arithmetic pattern to the input filenames (e.g., h00001.nc, h00002.nc,
... h90210.nc). Moreover, filename globbing does not work when the input files are too
numerous or their names are too lengthy (when strung together as a single argument) to be
passed by the calling shell to the NCO operator’. When this occurs, the ANSI C-standard
argc-argv method of passing arguments from the calling shell to a C-program (i.e., an
NCO operator) breaks down. There are (at least) three alternative methods of specifying
the input filenames to NCO in environment-limited situations.

The recommended method for sending very large numbers (hundreds or more, typically)
of input filenames to the multi-file operators is to pass the filenames with the UNIX standard
input feature, aka stdin:

Pipe large numbers of filenames to stdin
/bin/ls | grep ${CASEID}_ ’...... ’.nc | ncecat -o foo.nc

This method avoids all constraints on command line size imposed by the operating
system. A drawback to this method is that the history attribute (see Section 3.35 [History
Attribute], page 97) does not record the name of any input files since the names were not
passed on the command line. This makes determining the data provenance at a later date
difficult. To remedy this situation, multi-file operators store the number of input files in the
nco_input_file_number global attribute and the input file list itself in the nco_input_
file_list global attribute (see Section 3.36 [File List Attributes|, page 98). Although
this does not preserve the exact command used to generate the file, it does retains all the
information required to reconstruct the command and determine the data provenance.

A second option is to use the UNIX xargs command. This simple example selects as
input to xargs all the filenames in the current directory that match a given pattern. For
illustration, consider a user trying to average millions of files which each have a six character
filename. If the shell buffer cannot hold the results of the corresponding globbing operator,

pattern as an extended regular expression, \.nc (see Section 3.11 [Subsetting Files],
page 40). We use grep to filter the directory listing for this pattern and to pipe the results
to xargs which, in turn, passes the matching filenames to an NCO multi-file operator, e.g.,
ncecat.

Use xargs to transfer filenames on the command line
/bin/1ls | grep ${CASEID}_’...... >.nc | xargs -x ncecat -o foo.nc

The single quotes protect the only sensitive parts of the extended regular expression
(the grep argument), and allow shell interpolation (the ${CASEID} variable substitution)
to proceed unhindered on the rest of the command. xargs uses the UNIX pipe feature
to append the suitably filtered input file list to the end of the ncecat command options.
The -o foo.nc switch ensures that the input files supplied by xargs are not confused with
the output file name. xargs does, unfortunately, have its own limit (usually about 20,000
characters) on the size of command lines it can pass. Give xargs the ‘-x’ switch to ensure it

" The exact length which exceeds the operating system internal limit for command line lengths varies
from OS to OS and from shell to shell. GNU bash may not have any arbitrary fixed limits to the size of
command line arguments. Many OSs cannot handle command line arguments (including results of file
globbing) exceeding 4096 characters.

Chapter 2: Operator Strategies 21

dies if it reaches this internal limit. When this occurs, use either the stdin method above,
or the symbolic link presented next.

Even when its internal limits have not been reached, the xargs technique may not
be sophisticated enough to handle all situations. A full scripting language like Perl can
handle any level of complexity of filtering input filenames, and any number of filenames.
The technique of last resort is to write a script that creates symbolic links between the
irregular input filenames and a set of regular, arithmetic filenames that the ‘-n Ioop’ switch
understands. For example, the following Perl script creates a monotonically enumerated
symbolic link to up to one million .nc files in a directory. If there are 999,999 netCDF files
present, the links are named 000001 .nc to 999999 .nc:

Create enumerated symbolic links

/bin/1ls | grep \.nc | perl -e \

’$idx=1;while (<STDIN>){chop;symlink $_,sprintf("%06d.nc",$idx++);}’
ncecat -n 999999,6,1 000001.nc foo.nc

Remove symbolic links when finished

The ‘-n loop’ option tells the NCO operator to automatically generate the filnames of
the symbolic links. This circumvents any OS and shell limits on command line size. The
symbolic links are easily removed once NCO is finished. One drawback to this method is that
the history attribute (see Section 3.35 [History Attribute], page 97) retains the filename
list of the symbolic links, rather than the data files themselves. This makes it difficult to
determine the data provenance at a later date.

2.8 Large Datasets

Large datasets are those files that are comparable in size to the amount of random access
memory (RAM) in your computer. Many users of NCO work with files larger than 100 MB.
Files this large not only push the current edge of storage technology, they present special
problems for programs which attempt to access the entire file at once, such as nces and
ncecat. If you work with a 300 MB files on a machine with only 32 MB of memory then you
will need large amounts of swap space (virtual memory on disk) and NCO will work slowly,
or even fail. There is no easy solution for this. The best strategy is to work on a machine
with sufficient amounts of memory and swap space. Since about 2004, many users have
begun to produce or analyze files exceeding 2 GB in size. These users should familiarize
themselves with NCO’s Large File Support (LFS) capabilities (see Section 3.10 [Large File
Support|, page 40). The next section will increase your familiarity with NCO’s memory
requirements. With this knowledge you may re-design your data reduction approach to
divide the problem into pieces solvable in memory-limited situations.

If your local machine has problems working with large files, try running NCO from a
more powerful machine, such as a network server. If you get a memory-related core dump
(e.g., ‘Error exit (core dumped)’) on a GNU/Linux system, or the operation ends before
the entire output file is written, try increasing the process-available memory with ulimit:

ulimit -f unlimited

22 NCO 4.4.6 User Guide

This may solve constraints on clusters where sufficient hardware resources exist yet where
system administrators felt it wise to prevent any individual user from consuming too much
of resource. Certain machine architectures, e.g., Cray UNICOS, have special commands
which allow one to increase the amount of interactive memory. On Cray systems, try to
increase the available memory with the ilimit command.

The speed of the NCO operators also depends on file size. When processing large files
the operators may appear to hang, or do nothing, for large periods of time. In order to see
what the operator is actually doing, it is useful to activate a more verbose output mode.
This is accomplished by supplying a number greater than 0 to the ‘-D debug-level’ (or
‘~-debug-level’, or ‘--dbg_1lvl’) switch. When the debug-level is nonzero