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This manual collects all of Pure’s online documentation: The Pure Manual which covers the
Pure language and the operation of the Pure interpreter; the Pure Library Manual which de-
scribes the standard library modules included in the distribution of the Pure interpreter;
all available documentation for the various addon modules which can be downloaded as
separate packages from the Pure website; and an appendix with installation instructions and
additional information for Windows users.

Most of the Pure documentation is distributed under the GNU Free Documentation License.
The authors of the current edition are listed below. (This just lists the primary section au-
thors in alphabetical order; please check the different parts of this manual for additional
authorship and licensing information.)

• Albert Gräf (The Pure Manual; Pure Library Manual; various addon manuals)

• Rob Hubbard (Pure-Rational - Rational number library for the Pure programming language)

• Kay-Uwe Kirstein (Gnuplot bindings)

• Eddie Rucker (Pure-CSV - Comma Separated Value Interface for the Pure Programming Lan-
guage; pure-gsl - GNU Scientific Library Interface for Pure)

• Jiri Spitz (Pure-GLPK - GLPK interface for the Pure programming language)

• Peter Summerland (Pure-Sql3, pure-stlmap, pure-stlvec)

The Pure programming system is free and open source software. The interpreter runtime,
the standard library and most of the addon modules are distributed under the GNU Lesser
General Public License or the 3-clause BSD License which allow for commercial applica-
tions. Some parts of the system also use the GNU General Public License (typically because
they interface to other GPL’ed software such as Gnumeric, GSL and Octave). Details about
authorship and license conditions can be found in the sources or in the various manual sec-
tions.

For more information, discussions, feedback, questions, suggestions etc. please see:

• Pure website: http://purelang.bitbucket.org

• Pure mailing list: http://groups.google.com/group/pure-lang
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Chapter 1
The Pure Manual

Version 0.62, September 17, 2014

Albert Gräf <aggraef@gmail.com>

Copyright (c) 2009-2014 by Albert Gräf. This document is available under the GNU Free
Documentation License. Also see the Copying section for licensing information of the soft-
ware.

This manual describes the Pure programming language and how to invoke the Pure inter-
preter program. To read the manual inside the interpreter, just type help at the command
prompt. See the Online Help section for details.

There is a companion to this manual, the Pure Library Manual which contains the description
of the standard library operations. More information about Pure and the latest sources can
be found under the following URLs:

• Pure website: http://purelang.bitbucket.org

• Pure mailing list: http://groups.google.com/group/pure-lang

Information about how to install Pure can be found in the document Installing Pure (and
LLVM).

1.1 Introduction

Pure is a functional programming language based on term rewriting. This means that all
your programs are essentially just collections of symbolic equations which the interpreter
uses to reduce expressions to their simplest (“normal”) form. This makes for a rather power-
ful and flexible programming model featuring dynamic typing and general polymorphism.
In addition, Pure programs are compiled to efficient native code on the fly, using the LLVM
compiler framework, so programs are executed reasonably fast and interfacing to C is very
easy. If you have the necessary 3rd party compilers installed then you can even inline func-
tions written in C and a number of other languages and call them just like any other Pure

3

mailto:aggraef@gmail.com
http://www.gnu.org/copyleft/fdl.html
http://www.gnu.org/copyleft/fdl.html
http://purelang.bitbucket.org
http://groups.google.com/group/pure-lang


Pure Language and Library Documentation, Release 0.62

function. The ease with which you can interface to 3rd party software makes Pure useful for
a wide range of applications from symbolic algebra and scientific programming to database,
web and multimedia applications.

The Pure language is implemented by the Pure interpreter program. Just like other pro-
gramming language interpreters, the Pure interpreter provides an interactive environment
in which you can type definitions and expressions, which are executed as you type them at
the interpreter’s command prompt. However, despite its name the Pure interpreter never
really “interprets” any Pure code. Rather, it acts as a frontend to the Pure compiler, which
takes care of incrementally compiling Pure code to native (machine) code. This has the bene-
fit that the compiled code runs much faster than the usual kinds of “bytecode” that you find
in traditional programming language interpreters.

You can use the interpreter interactively as a sophisticated kind of “desktop calculator” pro-
gram. Simply run the program from the shell as follows:

$ pure

__ \ | | __| _ \ Pure 0.62 (x86_64-unknown-linux-gnu)
| | | | | __/ Copyright (c) 2008-2014 by Albert Graef
.__/ \__,_|_| \___| (Type ’help’ for help, ’help copying’

_| for license information.)

Loaded prelude from /usr/lib/pure/prelude.pure.

>

The interpreter prints its sign-on message and leaves you at its “> ” command prompt, where
you can start typing definitions and expressions to be evaluated:

> 17/12+23;
24.4166666666667
> fact n = if n>0 then n*fact (n-1) else 1;
> map fact (1..10);
[1,2,6,24,120,720,5040,40320,362880,3628800]

Typing the quit command or the end-of-file character (Ctrl-d on Unix systems) at the be-
ginning of the command line exits the interpreter and takes you back to the shell.

The interpreter can actually be invoked in a number of different ways. Instead of typing
definitions and evaluating expressions in an interactive fashion as shown above, you can
also put the same code in an (ASCII or UTF-8) text file called a Pure program or script
which can then be executed by the interpreter in “batch mode”, or compiled to a standalone
executable which can be run directly from the command line. As an aid for writing script
files, a bunch of syntax highlighting files and programming modes for various popular text
editors are included in the Pure sources.

More information about invoking the Pure interpreter can be found in the Invoking Pure
section below. This is followed by a description of the Pure language in Pure Overview and
subsequent sections, including an extensive Examples section which can serve as a mini-
tutorial on Pure. The interactive facilities of the Pure interpreter are discussed in the Inter-
active Usage section, while the Batch Compilation section explains how to translate Pure
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programs to native executables and a number of other object file formats. The Caveats and
Notes section discusses useful tips and tricks, as well as various pitfalls and how to avoid
them. The manual concludes with some authorship and licensing information and pointers
to related software.

1.1.1 Further Reading

This manual is not intended as a general introduction to functional programming, so at least
some familiarity with this programming style is assumed. If Pure is your first functional
language then you might want to look at the Functional Programming wikipedia article to
see what it is all about and find pointers to current literature on the subject. In any case we
hope that you’ll find Pure helpful in exploring functional programming, as it is fairly easy
to learn but a very powerful language.

As already mentioned, Pure uses term rewriting as its underlying computational model,
which goes well beyond functional programming in some ways. Term rewriting has long
been used in computer algebra systems, and Michael O’Donnell pioneered its use as a pro-
gramming language already in the 1980s. But until recently implementations have not really
been efficient enough to be useful as general-purpose programming languages; Pure strives
to change that. A good introduction to the theory of the term rewriting calculus and its
applications is the book by Baader and Nipkow.

1.1.2 Typographical Conventions

Program examples are always set in typewriter font. Here’s how a typical code sample may
look like:

fact n = if n>0 then n*fact(n-1) else 1;

These can either be saved to a file and then loaded into the interpreter, or you can also just
type them directly in the interpreter. If some lines start with the interpreter prompt “> ”,
this indicates an example interaction with the interpreter. Everything following the prompt
(excluding the “> ” itself) is meant to be typed exactly as written. Lines lacking the “> ”
prefix show results printed by the interpreter. Example:

> fact n = if n>0 then n*fact(n-1) else 1;
> map fact (1..10);
[1,2,6,24,120,720,5040,40320,362880,3628800]

Similarly, lines starting with the “$ ” prompt indicate shell interactions. For instance,

$ pure

indicates that you should type the command pure on your system’s command line.

The grammar notation in this manual uses an extended form of BNF (Backus-Naur form),
which looks as follows:

1.1.1 Further Reading 5
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expression ::= “{” expr_list (”;” expr_list)* [”;”] “}”
expr_list ::= expression (‘,’ expression)*

Parentheses are used to group syntactical elements, while brackets denote optional elements.
We also use the regular expression operators * and + to denote repetitions (as usual, * de-
notes zero or more, + one or more repetitions of the preceding element). Terminals (literal
elements such as keywords and delimiters) are enclosed in double or single quotes.

These EBNF rules are used for both lexical and syntactical elements, but note that the former
are concerned with entities formed from single characters and thus tokens are meant to be
typed exactly as written, whereas the latter deal with larger syntactical structures where
whitespace between tokens is generally insignificant.

1.2 Invoking Pure

The Pure interpreter can be invoked from the shell in one of two different ways:

pure [options ...] [-x] script [args ...]
pure [options ...] [-b|-c|-i] [script ...] [-- args ...]

Use pure -h to get help about the command line options. Just the pure command without
any command line parameters invokes the interpreter in interactive mode, see Running
Interactively below for details.

The first form above is used if the interpreter is invoked on exactly one script file, which is
loaded and executed, after which the interpreter exits. Any arguments following the script
name are not processed by the interpreter, but are passed to the executing script by means
of the argv variable. This is also known as script mode, and is commonly used if a script
is to be run as a standalone program. Script mode can also be indicated explicitly with the
-x option, but this is optional unless you want to combine it with one of the -b, -c and
-i options discussed below. If the -x option is present, it must be followed by the name
of a script to be executed. Also note that in script mode, all interpreter options need to be
specified before the script name; all remaining arguments (including options) are simply
passed to the executing script.

The second form is used if there may be any number of scripts which are to be executed in
batch mode (-b, -c) or interactive mode (-i), respectively. In this case all options on the
command line will be processed by the interpreter, up to the -- option (if any), which stops
option processing and indicates that the remaining arguments should be passed in the argv
variable. Any non-option arguments (before the -- option, if any) are interpreted as scripts
which should be loaded by the interpreter. If no scripts are specified, or if the -i option
is present, the interpreter starts in interactive mode (after loading the given scripts, if any).
Otherwise, if one of the -b and -c options is specified, the given scripts are run in batch
mode, after which the interpreter exits. (In the case of -c, the interpreter then also dumps
the program as a native executable, performing batch compilation, see Compiling Scripts
below.)

6 1.2 Invoking Pure



Pure Language and Library Documentation, Release 0.62

Batch mode is also entered if the interpreter is invoked with one of the --ctags and --etags
options. However, in this case the given scripts are not executed at all, but only parsed in
order to produce a vi or emacs tags file, see Tagging Scripts below.

Here are some common ways to invoke the interpreter:

pure Runs the interpreter interactively, without any script. Only the prelude gets loaded.

pure -g Runs the interpreter interactively, with debugging support.

pure -b script ... Runs the given scripts in batch mode.

pure -i script ... Runs the given scripts in batch mode as above, but then enters the
interactive command loop. (Add -g to also get debugging support, and -q to suppress
the sign-on message.)

pure script [arg ...] Runs the given script with the given parameters. The script name
and command line arguments are available in the global argv variable.

pure -c script [-o prog] Batch compilation: Runs the given script, compiling it to a na-
tive executable prog (a.out by default).

pure --etags script ... [-T TAGS] Parses the given scripts and produces an emacs
tags file. (Use --ctags to create a vi tags file instead. In either case, the actual name of
the tags file can be set with the -T option.)

The following commands provide helpful information about the interpreter, after which the
interpreter exits immediately:

pure --help Print a short help message describing the command line syntax and available
options. This can also be abbreviated as pure -h.

pure --version Print version information.

Depending on your local setup, there may be additional ways to run the Pure interpreter. In
particular, if you have Emacs Pure mode installed, then you can just open a script in Emacs
and run it with the C-c C-k keyboard command. For Emacs aficionados, this is probably
the most convenient way to execute a Pure script interactively in the interpreter. Pure mode
actually turns Emacs into a full IDE (integrated development environment) for Pure, which
offers a lot of convenient features such as syntax highlighting, automatic indentation, online
help and different ways to interact with the Pure interpreter.

1.2.1 Options

The interpreter accepts various options which are described in more detail below.

-b
Batch mode (execute the given scripts and exit).

-c
Batch compilation (compile the given scripts to a native binary).

--ctags

1.2.1 Options 7
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--etags
Create a tags file in ctags (vi) or etags (emacs) format.

--disable optname
Disable source option (conditional compilation).

--eager-jit
Enable eager JIT compilation. This requires LLVM 2.7 or later, otherwise this flag will
be ignored.

--enable optname
Enable source option (conditional compilation).

--escape char
Interactive commands are prefixed with the specified character. Permitted prefixes are:
!$%&*,:<>@\|.

-fPIC
-fpic

Create position-independent code (batch compilation).

-g
Enable symbolic debugging.

-h
--help

Print help message and exit.

-i
Interactive mode (read commands from stdin after sourcing the given scripts, if any).

-I directory
Add a directory to be searched for included source scripts.

-L directory
Add a directory to be searched for dynamic libraries.

-l libname
Library to be linked in batch compilation.

-mopt=val
Add llc machine options in batch compilation.

--main name
Name of main entry point in batch compilation.

--noediting
Disable command-line editing.

-n
--noprelude

Do not load the prelude.

--norc
Do not run the interactive startup files.

8 1.2 Invoking Pure
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-o filename
Output filename for batch compilation.

-q
Quiet startup (suppresses sign-on message in interactive mode).

-T filename
Tags file to be written by --ctags or --etags.

--texmacs
Run Pure inside TeXmacs.

-u
Do not strip unused functions in batch compilation.

-v[level]
Set verbosity level.

--version
Print version information and exit.

-w
Enable compiler warnings.

-x
Script mode (execute a script with the given command line arguments).

--
Stop option processing and pass the remaining command line arguments in the argv
variable.

Besides these, the interpreter also understands a number of other command line switches
for setting various compilation options; please see Compilation Options below for details.

Note: Option parsing follows the usual (Unix) conventions, but is somewhat more rigid
than the GNU getopt conventions. In particular, it is not possible to combine short options,
and there are no abbreviations for “long” options. Mixing options and other command line
parameters is generally possible, but note that all option processing stops right after -x and
-- (or the first non-option parameter in script mode), passing the remaining parameters to
the executing script in the Pure argv variable.

As usual, if an option takes a required argument, the argument may be written either as a
separate command line parameter immediately following the option (as in -I directory or
--enable optname), or directly after the option (-Idirectory or --enable=optname; note the
equals sign in the case of a long option). Options with optional arguments work in the same
fashion, but in this case the argument, if present, must be written directly behind the option.

1.2.1 Options 9
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1.2.2 Overview of Operation

If any source scripts are specified on the command line, they are loaded and executed, after
which the interpreter exits. Otherwise the interpreter enters the interactive read-eval-print
loop, see Running Interactively below. You can also use the -i option to enter the interactive
loop (continue reading from stdin) even after processing some source scripts.

Options and source files are processed in the order in which they are given on the command
line. Processing of options and source files ends when either the -- or the -x option is
encountered, or after the first script (non-option) argument in script mode (i.e., if none of the
options -b, -i, --ctags and --etags is present). In either case, any remaining parameters
are passed to the executing script by means of the global argc and argv variables, denoting
the number of arguments and the list of the actual parameter strings, respectively. In script
mode this also includes the script name as argv!0.

Script mode is useful, in particular, to turn Pure scripts into executable programs by includ-
ing a “shebang” like the following as the first line in your main script. (This trick only works
with Unix shells, though.)

#!/usr/local/bin/pure

The following variables are always predefined by the interpreter:

variable argc
variable argv

The number of extra command line arguments and the arguments themselves as a list
of strings; see above. These are useful if a script is usually run non-interactively and
takes its input from the command line.

variable compiling
A flag indicating whether the program is executed in a batch compilation (-c option),
see Compiling Scripts below.

variable version
variable sysinfo

The version string of the Pure interpreter and a string identifying the host system.
These are useful if parts of your script depend on the particular version of the inter-
preter and the system it runs on. (An alternative way to deal with version and system
dependencies is to use conditional compilation; see Conditional Compilation.)

If available, the prelude script prelude.pure is loaded by the interpreter prior to any other
definitions, unless the -n or --noprelude option is specified. The prelude is searched for in
the directory specified with the PURELIB environment variable. If the PURELIB variable is not
set, a system-specific default is used. Relative pathnames of other source scripts specified on
the command line are interpreted relative to the current working directory. In addition, the
executed program may load other scripts and libraries via a using declaration in the source,
which are searched for in a number of locations, including the directories named with the -I
and -L options; see the Declarations and C Interface sections for details.

10 1.2 Invoking Pure
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1.2.3 Compiling Scripts

The interpreter compiles scripts, as well as definitions that you enter interactively, automati-
cally. This is done in an incremental fashion, as the code is needed, and is therefore known as
JIT (just in time) compilation. Thus the interpreter never really “interprets” the source pro-
gram or some intermediate representation, it just acts as a frontend to the compiler, taking
care of compiling source code to native machine code before it gets executed.

Pure’s LLVM backend does “lazy JIT compilation” by default, meaning that each function
(global or local) is compiled no sooner than it is run for the first time. With the --eager-jit
option, however, it will also compile all other (global or local) functions that may be called by
the compiled function. (The PURE_EAGER_JIT environment variable, when set to any value,
has the same effect, so that you do not have to specify the --eager-jit option each time
you run the interpreter.) Eager JIT compilation may be more efficient in some cases (since
bigger chunks of compilation work can be done in one go) and less efficient in others (e.g.,
eager JITing may compile large chunks of code which aren’t actually called later, except in
rare circumstances).

Note that the eager JIT mode is only available with LLVM 2.7 or later; otherwise this option
will be ignored.

It is also possible to compile your scripts to native code beforehand, using the -c batch com-
pilation option. This option forces the interpreter to batch mode (unless -i is specified as
well, which overrides -c). Any scripts specified on the command line are then executed as
usual, but after execution the interpreter takes a snapshot of the program and compiles it
to one of several supported output formats, LLVM assembler (.ll) or bitcode (.bc), native as-
sembler (.s) or object (.o), or a native executable, depending on the output filename specified
with -o. If the output filename ends in the .ll extension, an LLVM assembler file is created
which can then be processed with the LLVM toolchain. If the output filename is just ‘-‘, the
assembler file is written to standard output, which is useful if you want to pass the gener-
ated code to the LLVM tools in a pipeline. If the output filename ends in the .bc extension,
an LLVM bitcode file is created instead.

The .ll and .bc formats are supported natively by the Pure interpreter, no external tools are
required to generate these. If the target is an .s, .o or executable file, the Pure interpreter
creates a temporary bitcode file on which it invokes the LLVM tools opt and llc to create a
native assembler or object file, and then uses the C/C++ compiler to link the resulting pro-
gram (if requested). You can also specify additional libraries to be linked into the executable
with the -l option. If the output filename is omitted, it defaults to a.out (a.exe on Windows).

The C/C++ compiler invoked by the batch compiler is normally gcc by default, but you
can change this with the CC and CXX environment variables. The LLVM tools opt and llc
are usually located on the PATH or in a system-specific directory determined at installation
time. It is also possible to use custom versions of these programs with the batch compiler,
by placing them into the Pure library directory, as specified at installation time or by the
PURELIB environment variable. (Note that this lets you use the batch compiler on systems
which don’t have the LLVM toolchain installed. In fact, you could even deploy a stand-alone
version of the interpreter together with the requisite LLVM tools on systems which don’t
have LLVM installed at all, by linking both the Pure runtime and the opt and llc programs

1.2.3 Compiling Scripts 11
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statically against LLVM.)

The -c option provides a convenient way to quickly turn a Pure script into a standalone ex-
ecutable which can be invoked directly from the shell. One advantage of compiling your
script is that this eliminates the JIT compilation time and thus considerably reduces the
startup time of the program. Another reason to prefer a standalone executable is that it
lets you deploy the program on systems without a full Pure installation (usually only the
runtime library is required on the target system). On the other hand, compiled scripts also
have some limitations, mostly concerning the use of the built-in eval function. Please see
the Batch Compilation section for details.

The -v64 (or -v0100) verbosity option can be used to have the interpreter print the com-
mands it executes during compilation, see Verbosity and Debugging Options below. When
creating an object file, this also prints the suggested linker command (including all the dy-
namic modules loaded by the script, which also have to be linked in to create a working
executable), to which you only have to add the options describing the desired output file.

1.2.4 Tagging Scripts

Pure programs often have declarations and definitions of global symbols scattered out over
many different source files. The --ctags and --etags options let you create a tags file which
allows you to quickly locate these items in text editors such as vi and emacs which support
this feature.

If --ctags or --etags is specified, the interpreter enters a special variation of batch mode
in which it only parses source files without executing them and collects information about
the locations of global symbol declarations and definitions. The collected information is
then written to a tags file in the ctags or etags format used by vi and emacs, respectively.
The desired name of the tags file can be specified with the -T option; it defaults to tags for
--ctags and TAGS for --etags (which matches the default tags file names used by vi and
emacs, respectively).

The tags file contains information about the global constant, variable, macro, function and
operator symbols of all scripts specified on the command line, as well as the prelude and
other scripts included via a using clause. Tagged scripts which are located in the same di-
rectory as the tags file (or, recursively, in one of its subdirectories) are specified using relative
pathnames, while scripts outside this hierarchy (such as included scripts from the standard
library) are denoted with absolute pathnames. This scheme makes it possible to move an
entire directory together with its tags file and have the tags information still work in the new
location.

1.2.5 Running Interactively

If the interpreter runs in interactive mode, it repeatedly prompts you for input (which may
be any legal Pure code or some special interpreter commands provided for interactive us-
age), and prints computed results. This is also known as the read-eval-print loop and is
described in much more detail in the Interactive Usage section. To exit the interpreter, just
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type the quit command or the end-of-file character (Ctrl-d on Unix) at the beginning of the
command line.

The interpreter may also source a few additional interactive startup files immediately be-
fore entering the interactive loop, unless the --norc option is specified. First .purerc in the
user’s home directory is read, then .purerc in the current working directory. These are ordi-
nary Pure scripts which can be used to provide additional definitions for interactive usage.
Finally, a .pure file in the current directory (usually containing a dump from a previous in-
teractive session) is loaded if it is present.

When the interpreter is in interactive mode and reads from a tty, unless the --noediting
option is specified, commands are usually read using readline or some compatible replace-
ment, providing completion for all commands listed under Interactive Usage, as well as for
symbols defined in the running program. When exiting the interpreter, the command history
is stored in ~/.pure_history, from where it is restored the next time you run the interpreter.

The interpreter also provides a simple source level debugger when run in interactive mode,
see Debugging for details. To enable the debugger, you need to specify the -g option when
invoking the interpreter. This option causes your script to run much slower, so you should
only use this option if you want to run the debugger.

1.2.6 Verbosity and Debugging Options

The -v option is useful for debugging the interpreter, or if you are interested in the code your
program gets compiled to. The level argument is optional; it defaults to 1. Seven different
levels are implemented at this time. Only the first two levels will be useful for the average
Pure programmer; the remaining levels are mostly intended for maintenance purposes.

1 (0x1, 001) denotes echoing of parsed definitions and expressions.

2 (0x2, 002) adds special annotations concerning local bindings (de Bruijn indices, subterm
paths; this can be helpful to debug tricky variable binding issues).

4 (0x4, 004) adds descriptions of the matching automata for the left-hand sides of equations
(you probably want to see this only when working on the guts of the interpreter).

8 (0x8, 010) dumps the “real” output code (LLVM assembler, which is as close to the native
machine code for your program as it gets; you definitely don’t want to see this unless
you have to inspect the generated code for bugs or performance issues).

16 (0x10, 020) adds debugging messages from the bison(1) parser; useful for debugging the
parser.

32 (0x20, 040) adds debugging messages from the flex(1) lexer; useful for debugging the
lexer.

64 (0x40, 0100) turns on verbose batch compilation; this is useful if you want to see exactly
which commands get executed during batch compilation (-c).

These values can be or’ed together, and, for convenience, can be specified in either decimal,
hexadecimal or octal. Thus 0xff or 0777 always gives you full debugging output (which
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isn’t likely to be used by anyone but the Pure developers). Some useful flag combinations
for experts are (in octal) 007 (echo definitions along with de Bruijn indices and matching
automata), 011 (definitions and assembler code), 021 (parser debugging output along with
parsed definitions) and 0100 (verbose batch compilation).

Note that the -v option is only applied after the prelude has been loaded. If you want
to debug the prelude, use the -n option and specify the prelude.pure file explicitly on the
command line. Verbose output is also suppressed for modules imported through a using
clause. As a remedy, you can use the interactive show command (see the Interactive Usage
section) to list definitions along with additional debugging information.

1.2.7 Compilation Options

Besides the options listed above, the interpreter also understands some additional command
line switches and corresponding environment variables to control various compilation op-
tions.

Code Generation Options

These options take the form --opt and --noopt, respectively, where opt denotes the option
name (see below for a list of supported options). By default, these options are all enabled;
--noopt disables the option, --opt reenables it. In addition, for each option opt there is
also a corresponding environment variable PURE_NOOPT (with the option name in uppercase)
which, when set, disables the option by default. (Setting this variable to any value will do,
the interpreter only checks whether the variable exists in the environment.)

For instance, the checks option controls stack and signal checks. Thus --nochecks on the
command line disables the option, and setting the PURE_NOCHECKS environment variable
makes this the default, in which case you can use --checks on the command line to reenable
the option.

Each code generation option can also be used as a pragma (compiler directive) in source
code so that you can control it on a per-rule basis. The pragma must be on a line by itself,
starting in column 1, and takes the following form (using --nochecks as an example):

#! --nochecks // line-oriented comment may go here

Currently, the following code generation options are recognized:

--checks
--nochecks

Enable or disable various extra stack and signal checks. By default, the interpreter
checks for stack overflows and pending signals on entry to every function, see Stack
Size and Tail Recursion and Handling of Asynchronous Signals for details. This is
needed to catch these conditions in a reliable way, so we recommend to leave this
enabled. However, these checks also make programs run a little slower (typically
some 5%, YMMV). If performance is critical then you can disable the checks with the
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--nochecks option. (Even then, a minimal amount of checking will be done, usually
on entry to every global function.)

--const
--noconst

Enable or disable the precomputing of constant values in batch compilation (cf. Com-
piling Scripts). If enabled (which is the default), the values of constants in const defi-
nitions are precomputed at compile time (if possible) and then stored in the generated
executable. This usually yields faster startup times but bigger executables. You can
disable this option with --noconst to get smaller executables at the expense of slower
startup times. Please see the Batch Compilation section for an example.

--fold
--nofold

Enable or disable constant folding in the compiler frontend. This means that constant
expressions involving int and double values and the usual arithmetic and logical op-
erations on these are precomputed at compile time. (This is mostly for cosmetic pur-
poses; the LLVM backend will perform this optimization anyway when generating
machine code.) For instance:

> foo x = 2*3*x;
> show foo
foo x = 6*x;

Disabling constant folding in the frontend causes constant expressions to be shown as
you entered them:

> #! --nofold
> bar x = 2*3*x;
> show bar
bar x = 2*3*x;

The same option also determines the handling of type aliases at compile time, see Type
Rules.

--symbolic
--nosymbolic

Enable or disable symbolic mode. Pure’s default behaviour is to evaluate function ap-
plications in a symbolic fashion using the equations (rewriting rules) supplied by the
programmer, cf. Definitions and Expression Evaluation. This means that it is not nor-
mally an error if there is no equation which applies to the given function application to
be evaluated; rather, the unevaluated function becomes a “constructor symbol” which
is applied to the provided arguments to form a literal (“normal form”) term which
stands for itself. E.g., here’s what you get if you try to add an (undefined) symbol and
a number:

> a+1;
a+1

The --nosymbolic option changes this behaviour so that if a global function has any
defining equations, then an attempt to invoke the function on a combination of argu-
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ments for which there is no applicable equation, raises an exception. So if the inter-
preter is invoked with --nosymbolic then you’ll see this instead:

> a+1;
<stdin>, line 1: unhandled exception ’failed_match’ while evaluating ’a+1’

This behaviour is more in line with traditional languages where it is an error if a “de-
fined function” cannot be evaluated in case of argument mismatch. It makes it eas-
ier to spot argument mismatch errors which might well go unnoticed if a program
is executed in Pure’s default symbolic mode. However, it also makes it impossible
to perform symbolic expression evaluations which is one of the key features of term
rewriting as a programming language.

Much of Pure’s library and many programming examples assume Pure’s default mode
of symbolic evaluation, so that it is generally not advisable to run the interpreter with a
global --nosymbolic option, except maybe for debugging purposes. More commonly
--nosymbolic is used as a pragma in source code where it only applies to a specific col-
lection of function definitions. In addition, there’s a --defined pragma which enables
you to mark individual functions as “defined functions”, see below.

--tc
--notc

Enable or disable tail call optimization (TCO). TCO is needed to make tail-recursive
functions execute in constant stack space, so we recommend to leave this enabled.
However, at the time of this writing LLVM’s TCO support is still bug-ridden on some
platforms, so the --notc option allows you to disable it. (Note that TCO can also be
disabled when compiling the Pure interpreter, in which case these options have no
effect; see the installation instructions for details.)

Note: All of the options above also have a corresponding “option symbol” so that they can
be queried and set using the facilities described under Conditional Compilation below. (The
symbol is just the name of the option, e.g., checks for the --checks, --nochecks option and
pragma.)

Besides these, there are the following special pragmas affecting the evaluation of some global
function or macro, which is specified in the pragma. These pragmas can only be used in
source code, they cannot be controlled using command line options or environment vari-
ables. Note that the given symbol fun may in fact be an arbitrary symbol (not just an iden-
tifier), so that these pragmas can also be applied to special operator symbols (cf. Lexical
Matters). Also note that each of these pragmas also implicitly declares the symbol, so if a
symbol needs any special attributes then it must be declared before any pragmas involving
it (cf. Symbol Declarations).

--eager fun
Instruct the interpreter to JIT-compile the given function eagerly. This means that na-
tive code will be created for the function, as well as all other (global or local) functions
that may be called by the compiled function, as soon as the function gets recompiled.
This avoids the hiccups you get when a function is compiled on the fly if it is run for the
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first time, which is particularly useful for functions which are to be run in realtime (typ-
ically in multimedia applications). Please note that, in difference to the --eager-jit
option, this feature is available for all LLVM versions (it doesn’t require LLVM 2.7 or
later).

--required fun
Inform the batch compiler (cf. Compiling Scripts) that the given function symbol fun
should never be stripped from the program. This is useful, e.g., if a function is never
called explicitly but only through eval. Adding a --required pragma for the function
then makes sure that the function is always linked into the program. Please see the
Batch Compilation section for an example.

--defined fun
--nodefined fun

These pragmas change the behaviour of global functions defined in a Pure program.
The --defined pragma marks the given function or operator symbol as a “defined
function” so that an exception is raised if the function is applied to a combination
of arguments for which there is no applicable equation. This works similarly to the
--nosymbolic pragma (see above), but allows you to mark individual functions as
“defined”. For instance:

> #! --defined +
> a+1;
<stdin>, line 2: unhandled exception ’failed_match’ while evaluating ’a+1’

The --defined status of a function can be changed at any time (causing the function
to be recompiled on the fly if necessary), and the --nodefined pragma restores the
default behaviour of returning a normal form upon failure:

> #! --nodefined +
> a+1;
a+1

More information and examples for common uses of the --defined and --nosymbolic
pragmas can be found under Defined Functions in the Caveats and Notes section.

--quoteargs fun
This pragma tells the macro evaluator (cf. Macros) that the given macro should receive
its arguments unevaluated, i.e., in quoted form. This is described in more detail in the
Built-in Macros and Special Expressions section.

Conditional Compilation

As of version 0.49, Pure also provides a rudimentary facility for denoting optional and al-
ternative code paths. This is supposed to cover the most common cases where conditional
compilation is needed. (For more elaborate needs you can always use real Pure code which
enables you to configure your program at runtime using, e.g., the eval function.)

Pure’s conditional compilation pragmas are based on the notion of user-defined symbols
(which can be really any text that does not contain whitespace or any of the shell wildcard
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characters *?[]) called compilation options. By default, all options are undefined and enabled.
An option becomes defined as soon as it is set explicitly, either with an environment variable
or one of the --enable and --disable pragmas, see below.

You can define the value of an option by setting a corresponding environment variable
PURE_OPTION_OPT, where OPT is the option symbol in uppercase. The value of the environ-
ment variable should either be 0 (disabled) or 1 (enabled).

Options can be enabled and disabled in Pure scripts with the following pragmas, which are
also available as command line options when invoking the Pure interpreter:

--enable option
--disable option

Enable or disable the given option, respectively. Note that an option specified in the
environment is overridden by a value specified with these options on the command
line, which in turn is overridden by a corresponding pragma in source code.

The actual conditional compilation pragmas work in pretty much the same fashion as the
C preprocessor directives #if, #ifdef etc. (except that, as already mentioned, an option is
always enabled if it is undefined).

--ifdef option
--ifndef option

Begins a code section which should be included in the program if the given option is
defined or undefined, respectively.

--if option
--ifnot option

Begins a code section which should be included in the program if the given option is
enabled or disabled, respectively.

--else
Begins an alternative code section which is included in the program if the correspond-
ing --ifdef, --ifndef, --if or --ifnot section was excluded, and vice versa.

--endif
Ends a conditional code section.

Conditional code sections may be nested to an arbitrary depth. Each --ifdef, --ifndef,
--if or --ifnot pragma must be followed by a matching --endif. The --else section is
optional; if present, it applies to the most recent --ifdef, --ifndef, --if or --ifnot section
not terminated by a matching --endif. Unmatched conditional pragmas warrant an error
message by the compiler.

Conditional code is handled at the level of the lexical analyzer. Excluded code sections are
treated like comments, i.e., the parser never gets to see them.

The --ifdef and --ifndef pragmas are typically used to change the default of an option
without clobbering defaults set by the user through an environment variable or a command
line option. For instance:
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#! --ifndef opt
#! --disable opt
#! --endif

Here’s a (rather contrived) example which shows all these pragmas in action. You may
want to type this in the interpreter to verify that the code sections are indeed included and
excluded from the Pure program as indicated:

// disable the ’bar’ option
#! --disable bar

#! --ifdef foo
1/2; // excluded
#! --endif
#! --ifndef bar
1/3; // excluded
#! --endif

#! --if foo
foo x = x+1; // included
#! --if bar
bar x = x-1; // excluded
#! --else
bar x = x/2; // included
#! --endif // bar
#! --endif // foo

// reenable the ’bar’ option
#! --enable bar

#! --if bar
bar 99; // included
#! --endif // bar

#! --ifnot foo
baz x = 2*x; // excluded
#! --endif // not foo

A few options are always predefined as “builtins” by the interpreter. This includes all of the
options described under Code Generation Options and Warning Options, so that these can
also be queried with --if, --ifnot and set with --enable, --disable. For instance:

#! --ifnot checks
puts "This program uses deep recursion, so we enable stack checks here!";
#! --enable checks
#! --endif // not checks

#! --if warn
puts "Beware of bugs in the above code.";
puts "I have only proved it correct, not tried it.";
#! --endif // warn
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Moreover, the following options are provided as additional builtins which are useful for
handling special compilation requirements as well as system and version dependencies.

• The compiled option is enabled if a program is batch-compiled. This lets you pick al-
ternative code paths depending on whether a script is compiled to a native executable
or not. Please see the example at the end of the Batch Compilation section for details.

• The interactive and debugging options are enabled if a program runs in interactive
(-i) and/or debugging (-g) mode, respectively. These options are read-only; they can-
not be changed with --enable, --disable. Example:

#! --if interactive
puts "Usage: run ’main filename’";
#! --else
main (argv!1);
#! --endif

• The version-x.y option indicates a check against the version of the host Pure inter-
preter. x.y indicates the required (major/minor) version. You can also use x.y+ to
indicate version x.y or later, or x.y- for version x.y or earlier. By combining these,
you can pick code depending on a particular range of Pure versions, or you can re-
verse the test to check for anything later or earlier than a given version:

#! --if version-0.36+
#! --if version-0.48-
// code to be executed for Pure versions 0.36..0.48 (inclusive)
#! --endif
#! --endif

#! --ifnot version-0.48-
// code to be executed for Pure versions > 0.48
#! --endif

• Last but not least, the interpreter always defines the target triplet of the host system
as an option symbol. This is the same as what sysinfo returns, so you can check for a
specific system like this:

#! --if x86_64-unknown-linux-gnu
// 64 bit Linux-specific code goes here
#! --endif

It goes without saying that this method isn’t very practical if you want to check for a
wide range of systems. As a remedy, the --if and --ifnot pragmas treat shell glob
patterns in tests for option symbols in a special way, by matching the pattern against
the host triplet to see whether the condition holds. This allows you to write a generic
test, e.g., for Windows systems like this:

#! --if *-mingw32
// Windows-specific code goes here
#! --endif
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Warning Options

The -w option enables some additional warnings which are useful to check your scripts for
possible errors. In particular, it will report implicit declarations of function and type sym-
bols, which might indicate undefined or mistyped symbols that need to be fixed, see Symbol
Lookup and Creation for details.

This option can also be controlled on a per-rule basis by adding the following pragmas to
your script:

--warn
--nowarn

Enable or disable compiler warnings. The -w flag sets the default for these pragmas.

--rewarn
Reset compiler warnings to the default, as set with the -w flag (or not).

The latter pragma is useful to enable or disable warnings in a section of code and reset it to
the default afterwards:

#! --warn
// Code with warnings goes here.
#! --rewarn

(The same could also be achieved with conditional compilation, but only much more clum-
sily. However, note that --rewarn only provides a single level of “backup”, so nesting such
sections is not supported.)

1.2.8 Startup Files

The interpreter may source various files during its startup. These are:

~/.pure_history
Interactive command history.

~/.purerc, .purerc, .pure
Interactive startup files. The latter is usually a dump from a previous interactive ses-
sion.

prelude.pure
Standard prelude. If available, this script is loaded before any other definitions, unless
-n was specified.

1.2.9 Environment

Various aspects of the interpreter can be configured through the following shell environment
variables:

CC
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CXX
C and C++ compiler used by the Pure batch compiler (pure -c) to compile and link
native executables. Defaults to gcc and g++, respectively.

BROWSER
If the PURE_HELP variable is not set (see below), this specifies a colon-
separated list of browsers to try for reading the online documentation. See
http://catb.org/~esr/BROWSER/.

PURELIB
Directory to search for library scripts, including the prelude. If PURELIB is not set, it
defaults to some location specified at installation time.

PURE_EAGER_JIT
Enable eager JIT compilation (same as --eager-jit), see Compiling Scripts for details.

PURE_ESCAPE
If set, interactive commands are prefixed with the first character in the value of this
variable (same as --escape), see Interactive Usage for details.

PURE_HELP
Command used to browse the Pure manual. This must be a browser capable of dis-
playing html files. Default is w3m.

PURE_INCLUDE
Additional directories (in colon-separated format) to be searched for included scripts.

PURE_LIBRARY
Additional directories (in colon-separated format) to be searched for dynamic libraries.

PURE_MORE
Shell command to be used for paging through output of the show command, when the
interpreter runs in interactive mode. PURE_LESS does the same for evaluation results
printed by the interpreter.

PURE_PS
Command prompt used in the interactive command loop (“> ” by default).

PURE_STACK
Maximum stack size in kilobytes (0 = unlimited). A reasonable default is provided
(currently this is always 8192K - 128K for interpreter and runtime, which should work
on most modern PCs). If you’re still getting segfaults due to stack overflow then you’ll
either have to reduce this value or increase the actual stack space available to programs.

Besides these, the interpreter also understands a number of other environment variables
for setting various compilation options (see Compilation Options above) and commands to
invoke different LLVM compilers on inline code (see Inline Code).
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1.3 Pure Overview

Pure is a fairly simple yet powerful language. Programs are basically collections of term
rewriting rules, which are used to reduce expressions to normal form in a symbolic fash-
ion. For convenience, Pure also offers some extensions to the basic term rewriting calculus,
like global variables and constants, nested scopes of local function and variable definitions,
anonymous functions (lambdas), exception handling and a built-in macro facility. These are
all described below and in the following sections.

Most basic operations are defined in the standard prelude. This includes the usual arithmetic
and logical operations, as well as the basic string, list and matrix functions. The prelude is
always loaded by the interpreter, so that you can start using the interpreter as a sophisti-
cated kind of desktop calculator right away. Other useful operations are provided through
separate library modules. Some of these, like the system interface and the container data
structures, are distributed with the interpreter, others are available as separate add-on pack-
ages from the Pure website. A (very) brief overview of some of the modules distributed with
the Pure interpreter can be found in the Standard Library section.

In this section we first give a brief overview of the most important elements of the Pure lan-
guage. After starting out with a discussion of the lexical syntax, we proceed by explaining
definitions and expressions, which are the major ingredients of Pure programs. After study-
ing this section you should be able to write simple Pure programs. Subsequent sections then
describe the concepts and notions introduced here in much greater detail and also cover the
more advanced language elements which we only gloss over here.

1.3.1 Lexical Matters

Pure is a free-format language, i.e., whitespace is insignificant (unless it is used to delimit
other symbols). Thus, in contrast to “layout-based” languages like Haskell, you must use
the proper delimiters (;) and keywords (end) to terminate definitions and block structures.
In particular, definitions and expressions at the toplevel have to be terminated with a semi-
colon, even if you’re typing them interactively in the interpreter.

Comments use the same syntax as in C++: // for line-oriented, and /* ... */ for multiline
comments. The latter must not be nested. Lines beginning with #! are treated as comments,
too; as already discussed above, on Unix-like systems this allows you to add a “shebang” to
your main script in order to turn it into an executable program.

A few ASCII symbols are reserved for special uses, namely the semicolon, the “at” symbol
@, the equals sign =, the backslash \, the Unix pipe symbol |, parentheses (), brackets [] and
curly braces {}. (Among these, only the semicolon is a “hard delimiter” which is always a
lexeme by itself; the other symbols can be used inside operator symbols.) Moreover, there
are some keywords which cannot be used as identifiers:

case const def else end extern if
infix infixl infixr interface let namespace nonfix
of otherwise outfix postfix prefix private public
then type using when with
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Pure fully supports the Unicode character set or, more precisely, UTF-8. This is an ASCII ex-
tension capable of representing all Unicode characters, which provides you with thousands
of characters from most of the languages of the world, as well as an abundance of special
symbols for almost any purpose. If your text editor supports the UTF-8 encoding (most
editors do nowadays), you can use all Unicode characters in your Pure programs, not only
inside strings, but also for denoting identifiers and special operator symbols.

The customary notations for identifiers, numbers and strings are all provided. In addition,
Pure also allows you to define your own operator symbols. Identifiers and other symbols
are described by the following grammar rules in EBNF format:

symbol ::= identifier | special
identifier ::= letter (letter | digit)*
special ::= punct+
letter ::= “A”|...|”Z”|”a”|...|”z”|”_”|...
digit ::= “0”|...|”9”
punct ::= ”!”|”#”|”$”|”%”|”&”|...

Pure uses the following rules to distinguish “punctuation” (which may only occur in de-
clared operator symbols) and “letters” (identifier constituents). In addition to the punctua-
tion symbols in the 7 bit ASCII range, the following code points in the Unicode repertoire
are considered as punctuation: U+00A1 through U+00BF, U+00D7, U+00F7, and U+20D0
through U+2BFF. This comprises the special symbols in the Latin-1 repertoire, as well as
the Combining Diacritical Marks for Symbols, Letterlike Symbols, Number Forms, Arrows,
Mathematical Symbols, Miscellaneous Technical Symbols, Control Pictures, OCR, Enclosed
Alphanumerics, Box Drawing, Blocks, Geometric Shapes, Miscellaneous Symbols, Dingbats,
Miscellaneous Mathematical Symbols A, Supplemental Arrows A, Supplemental Arrows B,
Miscellaneous Mathematical Symbols B, Supplemental Mathematical Operators, and Mis-
cellaneous Symbols and Arrows. This should cover almost everything you’d ever want to
use in an operator symbol. All other extended Unicode characters are effectively treated as
“letters” which can be used as identifier constituents. (Charts of all Unicode symbols can be
found at the Code Charts page of the Unicode Consortium.)

The following are examples of valid identifiers: foo, foo_bar, FooBar, BAR, bar99. Case is
significant in identifiers, so Bar and bar are distinct identifiers, but otherwise the case of
letters carries no meaning. Special symbols consist entirely of punctuation, such as ::=.
These may be used as operator symbols, but have to be declared before they can be used
(see Symbol Declarations).

Pure also has a notation for qualified symbols which carry a namespace prefix. These take
the following format (note that no whitespace is permitted between the namespace prefix
and the symbol):

qualified_symbol ::= [qualifier] symbol
qualified_identifier ::= [qualifier] identifier
qualifier ::= [identifier] ”::” (identifier ”::”)*

Example: foo::bar.
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Number literals come in three flavours: integers, bigints (denoted with an L suffix) and
floating point numbers (indicated by the presence of the decimal point and/or a base 10
scaling factor). Integers and bigints may be written in different bases (decimal, binary, octal
and hexadecimal), while floating point numbers are always denoted in decimal.

number ::= integer | integer “L” | float
integer ::= digit+

| “0” (“X”|”x”) hex_digit+
| “0” (“B”|”b”) bin_digit+
| “0” oct_digit+

oct_digit ::= “0”|...|”7”
hex_digit ::= “0”|...|”9”|”A”|...|”F”|”a”|...|”f”
bin_digit ::= “0”|”1”
float ::= digit+ [”.” digit+] exponent

| digit* ”.” digit+ [exponent]
exponent ::= (“E”|”e”) [”+”|”-“] digit+

Examples: 4711, 4711L, 1.2e-3. Numbers in different bases: 1000 (decimal), 0x3e8 (hex-
adecimal), 01750 (octal), 0b1111101000 (binary).

String literals are arbitrary sequences of characters enclosed in double quotes, such as
"Hello, world!".

string ::= ‘”’ char* ‘”’

Special escape sequences may be used to denote double quotes and backslashes (\", \\), con-
trol characters (\b, \f, \n, \r, \t, these have the same meaning as in C), and arbitrary Uni-
code characters given by their number or XML entity name (e.g., \169, \0xa9 and \&copy;
all denote the Unicode copyright character, code point U+00A9). As indicated, numeric es-
capes can be specified in any of the supported bases for integer literals. For disambiguating
purposes, these can also be enclosed in parentheses. E.g., "\(123)4" is a string consisting of
the character \123 followed by the digit 4. Strings can also be continued across line ends by
escaping the line end with a backslash. The escaped line end is ignored (use \n if you need
to embed a newline in a string). For instance,

"Hello, \
world.\n"

denotes the same string literal as

"Hello, world.\n"

1.3.2 Definitions and Expression Evaluation

The real meat of a Pure program is in its definitions. In Pure these generally take the form
of equations which tell the interpreter how expressions are to be evaluated. For instance,
the following two equations together define a function fact which computes, for each given
integer n, the factorial of n:
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fact 0 = 1;
fact n::int = n*fact (n-1) if n>0;

The first equation covers the case that n is zero, in which case the result is 1. The second
equation handles the case of a positive integer. Note the n::int construct on the left-hand
side, which means that the equation is restricted to (machine) integers n. This construct is
also called a “type tag” in Pure parlance. In addition, the n>0 in the condition part of the
second equation ensures that n is positive. If these conditions are met, the equation becomes
applicable and we recursively compute fact (n-1) and multiply by n to obtain the result.
The fact function thus computes the product of all positive integers up to n, which is indeed
just how the factorial is defined in mathematics.

To give this definition a try, you can just enter it at the command prompt of the interpreter
as follows:

> fact 0 = 1;
> fact n::int = n*fact (n-1) if n>0;
> fact 10;
3628800

On the surface, Pure is quite similar to other modern functional languages like Haskell and
ML. But under the hood it is a much more dynamic language, more akin to Lisp. In par-
ticular, Pure is dynamically typed, so functions can process arguments of as many different
types as you like. In fact, you can add to the definition of an existing function at any time.
For instance, we can extend our example above to make the fact function work with floating
point numbers, too:

> fact 0.0 = 1.0;
> fact n::double = n*fact (n-1) if n>0;
> fact 10.0;
3628800.0

Here we employed the constant 0.0 and the double type tag to define the factorial for the
case of floating point numbers. Both int and double are built-in types of the Pure language.
Our earlier definition for the int case still works as well:

> fact 10;
3628800

In FP parlance, we say that a function like fact is polymorphic, because it applies to dif-
ferent argument types. More precisely, the kind of polymorphism at work here is ad-hoc
polymorphism, because we have two distinct definitions of the same function which be-
have differently for different argument types.

Note that in this specific case, the two definitions are in fact very similar, to the point that
the right-hand sides of the definitions are almost the same. Observing these similarities, we
may also define fact in a completely generic way:

> clear fact
> fact n = 1 if n==0;
> fact n = n*fact (n-1) if n>0;
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(Note that before we can enter the new definition, we first need to scratch our previous
definition of fact, that’s what the clear fact command does. This is necessary because, as
we already saw, the interpreter would otherwise just keep adding equations to the definition
of fact that we already have.)

Our new definition doesn’t have any type tags on the left-hand side and will thus work with
any type of numbers:

> fact 10; // int
3628800
> fact 30.0; // floating point
2.65252859812191e+32
> fact 50L; // bigint
30414093201713378043612608166064768844377641568960512000000000000L

Let’s now take a look at how the equations are actually applied in the evaluation process.
Conceptually, Pure employs term rewriting as its underlying model of computation, so the
equations are applied as rewriting rules, reading them from left to right. An equation is
applicable if its left-hand side matches the target term to be evaluated, in which case we can
bind the variables in the left-hand side to the corresponding subterms in the target term.
Equations are tried in the order in which they are written; as soon as the left-hand side of
an equation matches (and the condition part of the equation, if any, is satisfied), it can be
applied to reduce the target term to the corresponding right-hand side.

For instance, let’s take a look at the target term fact 3. This matches both equations of our
generic definition of fact from above, with n bound to 3. But the condition 3==0 of the first
equation fails, so we come to consider the second equation, whose condition 3>0 holds. Thus
we can perform the reduction fact 3 ==> 3*fact (3-1) and then evaluate the new target
term 3*fact (3-1) recursively.

At this point, we have to decide which of the several subterms we should reduce first. This
is also called the reduction strategy and there are different ways to go about it. For instance,
we might follow the customary “call-by-value” strategy where the arguments of a function
application are evaluated recursively before the function gets applied to it, and this is also
what Pure normally does. More precisely, expressions are evaluated using the “leftmost-
innermost” reduction strategy where the arguments are considered from left to right.

So this means that on the right-hand side of the second equation, first n-1 (being the ar-
gument of fact) is evaluated, then fact (n-1) (which is an argument to the * operator),
and finally fact (n-1) is multiplied by n to give the value of fact n. Thus the evaluation
of fact 3 actually proceeds as follows (abbreviating reductions for the built-in arithmetic
operations):

fact 3 => 3*fact 2 => 3*2*fact 1 => 3*2*1*fact 0 => 3*2*1*1 => 6.

We mention in passing here that Pure also has a few built-in “special forms” which take
some or all of their arguments unevaluated, using “call by name” argument passing. This is
needed to handle some constructs such as logical operations and conditionals in an efficient
manner, and it also provides a way to implement “lazy” data structures. We’ll learn about
these later.
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One of the convenient aspects of the rewriting model of computation is that it enables you to
define a function by pattern matching on structured argument types. For instance, we might
compute the sum of the elements of a list as follows:

> sum [] = 0;
> sum (x:xs) = x+sum xs;

This discriminates over the different cases for the argument value which might either be
the empty list [] or a non-empty list of the from x:xs where the variables x and xs refer to
the head element and the rest of the list, respectively. (The ‘:‘ infix operator is Pure’s way
of writing Lisp’s “cons”; this works the same as in other modern FPLs and is discussed in
much more detail later.)

Let’s give it a try:

> sum (1..10);
55

Note that 1..10 denotes the list of all positive integers up to 10 here, so we get the sum of
the numbers 1 thru 10 as the result, which is indeed 55. (The ‘..‘ operation is provided in
Pure’s prelude, i.e., it is part of the standard library.)

Due to its term rewriting semantics, Pure actually goes beyond most other functional lan-
guages in that it can do symbolic evaluations just as well as “normal” computations:

> square x = x*x;
> square 4;
16
> square (a+b);
(a+b)*(a+b)

In fact, leaving aside the built-in support for some common data structures such as numbers
and strings, all the Pure interpreter really does is evaluate expressions in a symbolic fash-
ion, rewriting expressions using the equations supplied by the programmer, until no more
equations are applicable. The result of this process is called a normal form which represents
the “value” of the original expression. Moreover, there’s no distinction between “defined”
and “constructor” function symbols in Pure, so any function symbol or operator can be used
anywhere on the left-hand side of an equation, and may act as a constructor symbol if it hap-
pens to occur in a normal form term. This enables you to work with algebraic rules like
associativity and distributivity in a direct fashion:

> (x+y)*z = x*z+y*z; x*(y+z) = x*y+x*z;
> x*(y*z) = (x*y)*z; x+(y+z) = (x+y)+z;
> square (a+b);
a*a+a*b+b*a+b*b

The above isn’t possible in languages like Haskell and ML which always enforce that only
“pure” constructor symbols (without any defining equations) may occur as a subterm on
the left-hand side of a definition; this is also known as the constructor discipline. Thus
equational definitions like the above are forbidden in these languages. Pure doesn’t enforce
the constructor discipline, so it doesn’t keep you from writing such symbolic rules if you
need them.
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Another way of looking at this is that Pure allows you to have constructor equations. For
instance, the following equation makes lists automatically stay sorted:

> x:y:xs = y:x:xs if x>y;
> [13,7,9,7,1]+[1,9,7,5];
[1,1,5,7,7,7,9,9,13]

This isn’t possible in Haskell and ML either because it violates the constructor discipline;
since ‘:‘ is a constructor it can’t simultaneously be a defined function in these languages.
Pure gives you much more freedom there.

This symbolic mode of evaluation is rather unusual outside of the realm of symbolic algebra
systems, but it provides the programmer with a very flexible model of computation and is
one of Pure’s most distinguishing features. In some cases, however, the unevaluated normal
forms may also become a nuisance since they may obscure possible programming errors.
Therefore Pure provides special --nosymbolic and --defined pragmas (cf. Code Generation
Options) which force functions to be treated as defined functions, so that they become more
like functions in traditional untyped languages such as Lisp and Python which raise an
exception under such conditions. This is described in more detail under Defined Functions
in the Caveats and Notes section.

Variables in Equations

Taking another look at the examples above, you might wonder how the Pure interpreter fig-
ures out what the parameters (a.k.a. “variables”) in an equation are. This is quite obvious
in rules involving just variables and special operator symbols, such as (x+y)*z = x*z+y*z.
However, what about an equation like foo (foo bar) = bar? Since most of the time we
don’t declare any symbols in Pure, how does the interpreter know that foo is a literal func-
tion symbol here, while bar is a variable?

The answer is that the interpreter considers the different positions in the left-hand side ex-
pression of an equation. Basically, a Pure expression is just a tree formed by applying ex-
pressions to other expressions, with the atomic subexpressions like numbers and symbols
at the leaves of the tree. (This is true even for infix expressions like x+y, since in Pure these
are always equivalent to a function application of the form (+) x y which has the atomic
subterms (+), x and y at its leaves.)

Now the interpreter divides the leaves of the expression tree into “head” (or “function”)
and “parameter” (or “variable”) positions based on which leaves are leftmost in a function
application or not. Thus, in an expression like f x y z, f is in the head or function position,
while x, y and z are in parameter or variable positions. (Note that in an infix expression like
x+y, (+) is the head symbol, not x, as the expression is really parsed as (+) x y, see above.)

Identifiers in head positions are taken as literal function symbols by the interpreter, while
identifiers in variable positions denote, well, variables. We also refer to this convention
as the head = function rule. It is quite intuitive and lets us get away without declaring
the variables in equations. (There are some corner cases not covered here, however. In
particular, Pure allows you to declare special “nonfix” symbols, if you need a symbol to be
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recognized as a literal even if it occurs in a variable position. This is done by means of a
nonfix declaration, see Symbol Declarations for details.)

1.3.3 Expression Syntax

Like in other functional languages, expressions are the central ingredient of all Pure pro-
grams. All computation performed by a Pure program consists in the evaluation of expres-
sions, and expressions also form the building blocks of the equational rules which are used
to define the constants, variables, functions and macros of a Pure program.

Typical examples of the different expression types are summarized in the following table.
Note that lambdas bind most weakly, followed by the special case, when and with con-
structs, followed by conditional expressions (if-then-else), followed by the simple expres-
sions. Operators are a part of the simple expression syntax, and are parsed according to
their declared precedences and associativities (cf. Symbol Declarations). Function applica-
tion binds stronger than all operators. Parentheses can be used to group expressions and
override default precedences as usual.

Type Example Description
Block \x y->2*x-y anonymous function (lambda)

case f u of x,y = x+y end case expression
x+y when x,y = f u end local variable definition
f u with f (x,y) = x+y end local function definition

Conditional if x>0 then x else -x conditional expression
Simple x+y, -x, x mod y operator application

sin x, max a b function application
Primary 4711, 4711L, 1.2e-3 number

"Hello, world!\n" string
foo, x, (+) function or variable symbol
[1,2,3], (1,2,3) list and tuple
{1,2;3,4} matrix
[x,-y | x=1..n; y=1..m; x<y] list comprehension
{i==j | i=1..n; j=1..m} matrix comprehension

The formal syntax of expressions is as follows. (Note that the rule and simple_rule ele-
ments are part of the definition syntax, which is explained in the Rule Syntax section.)

30 1.3 Pure Overview



Pure Language and Library Documentation, Release 0.62

expr ::= “\” prim_expr+ “->” expr
| “case” expr “of” rules “end”
| expr “when” simple_rules “end”
| expr “with” rules “end”
| “if” expr “then” expr “else” expr
| simple_expr

simple_expr ::= simple_expr op simple_expr
| op simple_expr
| simple_expr op
| application

application ::= application prim_expr
| prim_expr

prim_expr ::= qualified_symbol
| number
| string
| “(” op ”)”
| “(” left_op right_op ”)”
| “(” simple_expr op ”)”
| “(” op simple_expr ”)”
| “(” expr ”)”
| left_op expr right_op
| “[” exprs “]”
| “{” exprs (”;” exprs)* [”;”] “}”
| “[” expr “|” simple_rules “]”
| “{” expr “|” simple_rules “}”

exprs ::= expr (”,” expr)*
op ::= qualified_symbol
left_op ::= qualified_symbol
right_op ::= qualified_symbol
rules ::= rule (”;” rule)* [”;”]
simple_rules ::= simple_rule (”;” simple_rule)* [”;”]

Primary Expressions

The Pure language provides built-in support for machine integers (32 bit), bigints (imple-
mented using GMP), floating point values (double precision IEEE 754) and character strings
(UTF-8 encoded). These can all be denoted using the corresponding literals described in
Lexical Matters. Truth values are encoded as machine integers; as you might expect, zero
denotes false and any non-zero value true, and the prelude also provides symbolic constants
false and true to denote these. Pure also supports generic C pointers, but these don’t have
a syntactic representation in Pure, except that the predefined constant NULL may be used
to denote a generic null pointer; other pointer values need to be created with external C
functions.

Together, these atomic types of expressions make up most of Pure’s primary expression
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syntax. Pure also provides built-in support for some types of “compound primaries” (lists,
tuples and matrices). We also list these here since they are typically denoted in some kind of
bracketed form, even though some related non-primary expression types such as x:y or x,y
really belong to the simple expressions.

Numbers: 4711, 4711L, 1.2e-3
The usual C notations for integers (decimal: 1000, hexadecimal: 0x3e8, octal: 01750)
and floating point values are all provided. Integers can also be denoted in base 2 by
using the 0b or 0B prefix: 0b1111101000. Integer constants that are too large to fit into
machine integers are promoted to bigints automatically. Moreover, integer literals im-
mediately followed by the uppercase letter L are always interpreted as bigint constants,
even if they fit into machine integers. This notation is also used when printing bigint
constants, to distinguish them from machine integers.

Strings: ”Hello, world!\n”
String constants are double-quoted and terminated with a null character, like in C.
In contrast to C, strings are always encoded in UTF-8, and character escapes in Pure
strings have a more flexible syntax (borrowed from the author’s Q language) which
provides notations to specify any Unicode character. Please refer to Lexical Matters for
details.

Function and variable symbols: foo, foo_bar, BAR, foo::bar
These consist of the usual sequence of letters (including the underscore) and digits,
starting with a letter. Case is significant, thus foo, Foo and FOO are distinct identifiers.
The ‘_‘ symbol, when occurring on the left-hand side of an equation, is special; it de-
notes the anonymous variable which matches any value without actually binding a
variable. Identifiers can also be prefixed with a namespace identifier, like in foo::bar.
(This requires that the given namespace has already been created, as explained under
Namespaces in the Declarations section.)

Operator symbols: +, ==, not
For convenience, Pure also provides you with a limited means to extend the syntax of
the language with special operator symbols by means of a corresponding fixity dec-
laration, as discussed in section Symbol Declarations. Besides the usual infix, prefix
and postfix operators, Pure also provides outfix (bracket) and nonfix (nullary opera-
tor) symbols. (Nonfix symbols actually work more or less like ordinary identifiers, but
the nonfix attribute tells the compiler that when such a symbol occurs on the left-hand
side of an equation, it is always to be interpreted as a literal, cf. The “Head = Function”
Rule.)

Operator (and nonfix) symbols may take the form of an identifier or a sequence of
punctuation characters, which may optionally be qualified with a namespace prefix.
These symbols must always be declared before use. Once declared, they are always
special, and can’t be used as ordinary identifiers any more. However, like in Haskell,
by enclosing an operator in parentheses, such as (+) or (not), you can turn it into an
ordinary function symbol.

Lists: [x,y,z], x:xs
Pure’s basic list syntax is the same as in Haskell, thus [] is the empty list and x:xs
denotes a list with head element x and tail list xs. The infix constructor symbol ‘:‘ is
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declared in the prelude. It associates to the right, so that x:y:z is the same as x:(y:z).
The usual syntactic sugar for list values in brackets is also provided, thus [x,y,z] is
exactly the same as x:y:z:[]. (This kind of list value is also called a “proper” list.
Pure also permits “improper” list values such as 1:2:3 with a non-list value in the tail.
These aren’t of much use as ordinary list values, but are frequently used in patterns or
symbolic expressions such as x:y where the tail usually is a variable.)

Lists can be nested to an arbitrary depth. Also note that, in contrast to Haskell, lists
are not required to be homogeneous, so in general they may contain an arbitary mix
of element types. E.g., [1,2.0,[x,y]] is a three-element list consisting of an integer, a
floating point number and a nested list containing two symbols.

Pure also provides a notation for arithmetic sequences such as 1..5, which denotes the
list [1,2,3,4,5]. Note the missing brackets; Pure doesn’t use any special syntax for
arithmetic sequences, the ‘..‘ symbol is just an ordinary infix operator declared and
defined in the prelude. Sequences with arbitrary stepsizes can be written by denoting
the first two sequence elements using the ‘:‘ operator, as in 1.0:1.2..3.0. To prevent
unwanted artifacts due to rounding errors, the upper bound in a floating point se-
quence is always rounded to the nearest grid point. Thus, e.g., 0.0:0.1..0.29 actually
yields [0.0,0.1,0.2,0.3], as does 0.0:0.1..0.31.

Tuples: (x,y,z)
Pure’s tuples are a flat variant of lists which are often used as aggregate function ar-
guments and results when no elaborate hierarchical structure is needed. They are con-
structed using the infix “pairing” operator ‘,‘, for which the empty tuple () acts as
a neutral element (i.e., (),x is just x, as is x,()). Pairs always associate to the right,
meaning that x,y,z = x,(y,z) = (x,y),z, where x,(y,z) is the normalized repre-
sentation. These rules imply that tuples can’t be nested and that there are no “true”
1-tuples distinct from their single members; if you need this then you should use lists
instead (cf. Splicing Tuples and Matrices).

Note that the parentheses are not really part of the tuple syntax in Pure, they’re just
used to group expressions. So (x,y,z) denotes just x,y,z. But since the ‘,‘ operator
has a low precedence, the parentheses are often needed to include tuples in other con-
texts. In particular, the parentheses are required to set off tuple elements in lists and
matrices. E.g., [(1,2),3,(4,5)] denotes a three element list consisting of two tuples
and an integer.

Mathematically, Pure’s notion of tuples corresponds to a monoid with an associative
binary operation ‘,‘ and neutral element (). This is different from the usual definition
of tuples in mathematical logic, which are nestable and correspond to Pure’s notion
of lists. So in Pure you can take your pick and use either flat tuples or nestable lists,
whatever is most convenient for the problem at hand.

Matrices: {1.0,2.0,3.0}, {1,2;3,4}, {cos t,-sin t;sin t,cos t}
Pure also offers matrices, a kind of two-dimensional arrays, as a built-in data structure
which provides efficient storage and element access. These work more or less like their
Octave/MATLAB equivalents, but using curly braces instead of brackets. Component
values may either be individual elements (“scalars”) or submatrices which are com-
bined to form a larger matrix, provided that all dimensions match up. Here, a scalar
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is any expression which doesn’t yield a matrix; these are considered to be 1x1 sub-
matrices for the purpose of matrix construction. (Note that this “splicing” behaviour
pertains to matrix construction only; nested matrix patterns are always matched liter-
ally.)

The comma arranges submatrices and scalars in columns, while the semicolon ar-
ranges them in rows. So, if both x and y are n x m matrices, then {x,y} becomes an
n x 2*m matrix consisting of all the columns of x followed by all the columns of y. Like-
wise, {x;y} becomes a 2*n x m matrix (all the rows of x above of all rows of y). For
instance, {{1;3},{2;4}} is another way to write the 2x2 matrix {1,2;3,4}. Row vec-
tors are denoted as 1 x n matrices ({1,2,3}), column vectors as n x 1 matrices ({1;2;3}).
More examples can be found in the Matrices and Vectors section.

Pure supports both numeric and symbolic matrices. The former are homogeneous ar-
rays of double, complex double or (machine) int matrices, while the latter can contain
any mixture of Pure expressions. Pure will pick the appropriate type for the data at
hand. If a matrix contains values of different types, or Pure values which cannot be
stored in a numeric matrix, then a symbolic matrix is created instead (this also in-
cludes the case of bigints, which are considered as symbolic values as far as matrix
construction is concerned). Numeric matrices use an internal data layout that is fully
compatible with the GNU Scientific Library (GSL), and can readily be passed to GSL
routines via the C interface. (The Pure interpreter does not require GSL, however, so
numeric matrices will work even if GSL is not installed.)

Comprehensions: [x,y | x=1..n; y=1..m; x<y], {f x | x=1..n}
Pure provides both list and matrix comprehensions as a convenient means to construct
list and matrix values from a “template” expression and one or more “generator” and
“filter” clauses. The former bind a pattern to values drawn from a list or matrix, the
latter are just predicates determining which generated elements should actually be
added to the result. Comprehensions are in fact just syntactic sugar for a combination
of lambdas, conditional expressions and certain list and matrix operations, but they
are often much easier to write.

Thus, for instance, [f x | x=1..n] is pretty much the same as map f (1..n), while
[x | x=xs; x>0] corresponds to filter (>0) xs. However, comprehensions are con-
siderably more general in that they allow you to draw values from different kinds of
aggregates including lists, matrices and strings. Also, matrix comprehensions alter-
nate between row and column generation so that most common mathematical abbre-
viations carry over quite easily. Patterns can be used on the left-hand side of generator
clauses as usual, and will be matched against the actual list or matrix elements; any
unmatched elements are filtered out automatically, like in Haskell.

More details and examples can be found in the Examples section; in particular, see List
Comprehensions and Matrices and Vectors.
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Simple Expressions

The rest of Pure’s expression syntax mostly revolves around the notion of function appli-
cations. For convenience, Pure also allows you to declare pre-, post-, out- and infix opera-
tor symbols, but these are in fact just syntactic sugar for function applications; see Symbol
Declarations for details. Function and operator applications are used to combine primary
expressions to compound terms, also referred to as simple expressions; these are the data
elements which are manipulated by Pure programs.

As in other modern FPLs, function applications are written simply as juxtaposition (i.e., in
“curried” form) and associate to the left. This means that in fact all functions only take a
single argument. Multi-argument functions are represented as chains of single-argument
functions. For instance, in f x y = (f x) y first the function f is applied to the first ar-
gument x, yielding the function f x which in turn gets applied to the second argument y.
This makes it possible to derive new functions from existing ones using partial applications
which only specify some but not all arguments of a function. For instance, taking the max
function from the prelude as an example, max 0 is the function which, for a given x, returns
x itself if it is nonnegative and zero otherwise. This works because (max 0) x = max 0 x is
the maximum of 0 and x.

One major advantage of having curried function applications is that, without any further
ado, functions become first-class objects. That is, they can be passed around freely both as
parameters and as function return values. Much of the power of functional programming
languages stems from this feature.

Operator applications are written using prefix, postfix, outfix or infix notation, as the decla-
ration of the operator demands, but are just ordinary function applications in disguise. As
already mentioned, enclosing an operator in parentheses turns it into an ordinary function
symbol, thus x+y is exactly the same as (+) x y. For convenience, partial applications of
infix operators can also be written using so-called operator sections. A left section takes the
form (x+) which is equivalent to the partial application (+) x. A right section takes the form
(+x) and is equivalent to the term flip (+) x. (This uses the flip combinator from the pre-
lude which is defined as flip f x y = f y x.) Thus (x+) y is equivalent to x+y, while (+x)
y reduces to y+x. For instance, (1/) denotes the reciprocal and (+1) the successor function.
(Note that, in contrast, (-x) always denotes an application of unary minus; the section (+-x)
can be used to indicate a function which subtracts x from its argument.)

The common operator symbols like +, -, *, / etc. are all declared at the beginning of the
prelude, see the Pure Library Manual for a list of these. Arithmetic and relational operators
mostly follow C conventions. However, since !, & and | are used for other purposes in Pure,
the logical and bitwise operations, as well as the negated equality predicates are named a
bit differently: ~, && and || denote logical negation, conjunction and disjunction, while the
corresponding bitwise operations are named not, and and or. Moreover, following these
conventions, inequality is denoted ~=. Also note that && and || are special forms which are
evaluated in short-circuit mode (see Special Forms below), whereas the bitwise connectives
receive their arguments using call-by-value, just like the other arithmetic operations.
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Special Expressions

Some special notations are provided for conditional expressions as well as anonymous func-
tions (lambdas) and local function and variable definitions. The latter are also called block
expressions since they introduce local bindings of variable and function symbols which may
override other global or local bindings of these symbols. This gives rise to a kind of block
structure similar to Algol-like programming languages. Please check Scoping Rules below
for more information about this.

The constructs described here are called “special” because, in contrast to the other forms
of expressions, they cannot occur in normal form terms as first-class values (at least not
literally; there is an alternative quoted representation of special expressions, however, which
can be manipulated with macros and functions for meta programming purposes, cf. Built-in
Macros and Special Expressions).

Conditional expressions: if x then y else z
Evaluates to y or z depending on whether x is “true” (i.e., a nonzero integer). A
failed_cond exception is raised if the condition is not an integer.

Lambdas: \x -> y
These denote anonymous functions and work pretty much like in Haskell. A lambda
matches its argument against the left-hand side pattern x and then evaluates the right-
hand side body y with the variables in x bound to their corresponding values. Pure
supports multiple-argument lambdas (e.g, \x y -> x*y), as well as pattern-matching
lambda abstractions such as \(x,y) -> x*y. A failed_match exception is raised if the
actual arguments do not match the given patterns.

Case expressions: case x of u = v; ... end
Matches an expression, discriminating over a number of different cases, similar to the
Haskell case construct. The expression x is matched in turn against each left-hand side
pattern u in the rule list, and the first pattern which matches x gives the value of the
entire expression, by evaluating the corresponding right-hand side v with the variables
in the pattern bound to their corresponding values. A failed_match exception is raised
if the target expression doesn’t match any of the patterns.

When expressions: x when u = v; ... end
An alternative way to bind local variables by matching a collection of subject terms
against corresponding patterns, similar to Aardappel‘s when construct. A single bind-
ing x when u = v end is equivalent to the lambda expression (\u -> x) v or the case
expression case v of u = x end, so it matches v against the pattern u and evaluates x
with the variables in u bound to their corresponding values (or raises a failed_match
exception if v doesn’t match u). However, a when clause may contain multiple defini-
tions, which are processed from left to right, so that later definitions may refer to the
variables in earlier ones. (This is exactly the same as several nested single definitions,
with the first binding being the “outermost” one.)

With expressions: x with u = v; ... end
Defines local functions. Like Haskell’s where construct, but it can be used anywhere in-
side an expression (just like Aardappel’s where, but Pure uses the keyword with which
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better lines up with case and when). Several functions can be defined in a single with
clause, and the definitions can be mutually recursive and consist of as many equations
as you want. Local functions are applied in the same way as global ones, i.e., the ar-
gument patterns of each rule are matched against the actual function arguments and
the first rule which matches has its right-hand side evaluated with the variables in the
argument patterns bound to their corresponding values. If none of the rules match
then the function application remains unevaluated (it becomes a normal form), so no
exception is raised in this case. (This is in contrast to a lambda which otherwise is
pretty much like a nameless local function defined by a single rule.)

The block constructs are similar to those available in most modern functional languages. In
Pure these constructs are all implemented in terms of the basic term rewriting machinery,
using lambda lifting to eliminate local functions, and the following equivalences which re-
duce lambdas as well as case and when expressions to special kinds of local functions or local
function applications:

\x1 ... xn -> y
== f with f x1 ... xn = y; f _ ... _ = throw failed_match end

case x of y1 = z1; ...; yn = zn end
== f x with f y1 = z1; ...; f yn = zn; f _ = throw failed_match end

x when y = z end
== f z with f y = x; f _ = throw failed_match end

x when y1 = z1; ...; yn = zn end
== x when yn = zn end ... when y1 = z1 end

Note that by convention these constructs report a failed_match exception in case of argu-
ment mismatch. So they’re treated like defined functions, which is somewhat at odds with
the term rewriting semantics. This is done for convenience, however, so that the programmer
doesn’t have to deal with unevaluated applications of nameless block constructs in normal
form terms. The case of named local functions is considered different because it effectively
represents a local rewriting system which should be treated accordingly, in order to allow
for symbolic evaluation.

1.3.4 Special Forms

As already mentioned, some operations are actually implemented as special forms which
process some or all of their arguments using call-by-name.

if x then y else z
The conditional expression is a special form with call-by-name arguments y and z; only
one of the branches is actually evaluated, depending on the value of x.

x && y
x || y

The logical connectives evaluate their operands in short-circuit mode. Thus the second
operand is passed by name and will only be evaluated if the first operand fails to
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determine the value of the expression. For instance, x&&y immediately becomes false
if x evaluates to false; otherwise y is evaluated to give the value of the expression. The
built-in definitions of these operations work as if they were defined by the following
equations (but note that the second operand is indeed passed by name):

x::int && y = if x then y else x;
x::int || y = if x then x else y;

Note that this isn’t quite the same as in C, as the results of these operations are not
normalized, i.e., they may return nonzero values other than 1 to denote “true”. (This
has the advantage that these operations can be implemented tail-recursively, see Stack
Size and Tail Recursion.) Thus, if you need a normalized truth value then you’ll have
to make sure that either both operands are already normalized, or you’ll have to nor-
malize the result yourself. (A quick way to turn a machine int x into a normalized truth
value is to compute ~~x or x~=0.)

Moreover, if the built-in definition fails because the first operand is not a machine
int, then the second operand will be evaluated anyway and the resulting application
becomes a normal form, which gives you the opportunity to extend these operations
with your own definitions just like the other built-in operations. Note, however, that
in this case the operands are effectively passed by value.

x $$ y
The sequencing operator $$ evaluates its left operand, immediately throws the result
away and then goes on to evaluate the right operand which gives the result of the
entire expression. This operator is useful to write imperative-style code such as the
following prompt-input interaction:

> using system;
> puts "Enter a number:" $$ scanf "%g";
Enter a number:
21
21.0

We mention in passing here that the same effect can be achieved with a when clause,
which also allows you to execute a function solely for its side-effects and just ignore
the return value:

> scanf "%g" when puts "Enter a number:" end;
Enter a number:
21
21.0

x &
The & operator does lazy evaluation. This is the only postfix operator defined in the
standard prelude. It turns its operand into a kind of parameterless anonymous closure,
deferring its evaluation. These kinds of objects are also commonly known as thunks
or futures. When the value of a future is actually needed (during pattern-matching,
or when the value becomes an argument of a C call), it is evaluated automatically and
gets memoized, i.e., the computed result replaces the thunk so that it only has to be
computed once.
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Futures are useful to implement all kinds of lazy data structures in Pure, in particular:
lazy lists a.k.a. streams. A stream is simply a list with a thunked tail, which allows it
to be infinite. The Pure prelude defines many functions for creating and manipulating
these kinds of objects; for further details and examples please Lazy Evaluation and
Streams in the Examples section.

quote x
‘ x

This special form quotes an expression, i.e., quote x (or, equivalently, ’x) returns just
x itself without evaluating it. The prelude also provides a function eval which can be
used to evaluate a quoted expression at a later time. For instance:

> let x = ’(2*42+2^12); x;
2*42+2^12
> eval x;
4180.0

This enables some powerful metaprogramming techniques, which should be well fa-
miliar to Lisp programmers. However, there are some notable differences to Lisp’s
quote, please see The Quote in the Examples section for details and more examples.

1.3.5 Toplevel

At the toplevel, a Pure program basically consists of rewriting rules (which are used to de-
fine functions, macros and types), constant and variable definitions, and expressions to be
evaluated:

script ::= item*
item ::= “let” simple_rule ”;”

| “const” simple_rule ”;”
| “def” macro_rule ”;”
| “type” type_rule ”;”
| rule ”;”
| expr ”;”

These elements are discussed in more detail in the Rule Syntax section. Also, a few addi-
tional toplevel elements are part of the declaration syntax, see Declarations.

lhs = rhs;
Rewriting rules always combine a left-hand side pattern (which must be a simple ex-
pression) and a right-hand side (which can be any kind of Pure expression described
above). The same format is also used in with, when and case expressions. In toplevel
rules, with and case expressions, this basic form can also be augmented with a con-
dition if guard tacked on to the end of the rule, where guard is an integer expression
which determines whether the rule is applicable. Moreover, the keyword otherwise
may be used to denote an empty guard which is always true (this is syntactic sugar
to point out the “default” case of a definition; the interpreter just treats this as a com-
ment). Pure also provides some abbreviations for factoring out common left-hand or
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right-hand sides in collections of rules; see the Rule Syntax section for details.

type lhs = rhs;
A rule starting with the keyword type defines a type predicate. This works pretty
much like an ordinary rewriting rule, except that only a single right-hand side is per-
mitted (which may also be omitted in some cases) and the left-hand side may involve
at most one argument expression; see the Type Rules section for details. There’s also
an alternative syntax which lets you define types in a more abstract way and have
the compiler generate the type rules for you; this is described in the Interface Types
section.

def lhs = rhs;
A rule starting with the keyword def defines a macro function. No guards or multiple
right-hand sides are permitted here. Macro rules are used to preprocess expressions
on the right-hand side of other definitions at compile time, and are typically employed
to implement user-defined special forms and simple kinds of optimization rules. See
the Macros section below for details and examples.

let lhs = rhs;
Binds every variable in the left-hand side pattern to the corresponding subterm of the
right-hand side (after evaluating it). This works like a when clause, but serves to bind
global variables occurring free on the right-hand side of other function and variable
definitions.

const lhs = rhs;
An alternative form of let which defines constants rather than variables. (These are
not to be confused with nonfix symbols which simply stand for themselves!) Like let,
this construct binds the variable symbols on the left-hand side to the corresponding
values on the right-hand side (after evaluation). The difference is that const symbols
can only be defined once, and thus their values do not change during program ex-
ecution. This also allows the compiler to apply some special optimizations such as
constant folding.

expr;
A singleton expression at the toplevel, terminated with a semicolon, simply causes the
given value to be evaluated (and the result to be printed, when running in interactive
mode).

1.3.6 Scoping Rules

A few remarks about the scope of identifiers and other symbols are in order here. Special
expressions introduce local scopes of functions and variables. Specifically, lambda expres-
sions, as well as the left-hand sides of rules in case, when and with expressions, bind the vari-
ables in the patterns to their corresponding values. In addition, a with expression also binds
function names to the corresponding functions defined by the rules given in the expression.
In either case, these bindings are limited to the scope of the corresponding construct. Inside
that scope they override other (global or local) definitions of the same symbols which may
be present in the surrounding program code. This gives rise to a hierarchical block structure
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where each occurrence of a symbol refers to the innermost definition of that symbol visible
at that point of the program.

The precise scoping rules for the different constructs are as follows:

• \x -> y: The scope of the variables bound by the pattern x is the lambda body y.

• case x of u = v; ... end: The scope of the variables bound by the pattern u in
each rule is the corresponding right-hand side v.

• x when u = v; ... end: The scope of the variables bound by the pattern u in each
rule extends over the right-hand sides of all subsequent rules and the target expression
x.

• x with u = v; ... end: The scope of the variables bound by the pattern u in each
rule is the corresponding right-hand side v. In addition, the scope of the function names
defined by the with clause (i.e., the head symbols of the rules) extends over the right-
hand sides of all rules and the target expression x. Note that this allows local function
definitions to be mutually recursive, since the right-hand side of each rule in the with
clause may refer to any other function defined by the with clause.

Like most modern functional languages, Pure uses lexical or static binding for local func-
tions and variables. What this means is that the binding of a local name is completely de-
termined at compile time by the surrounding program text, and does not change as the
program is being executed. In particular, if a function returns another (anonymous or local)
function, the returned function captures the environment it was created in, i.e., it becomes a
(lexical) closure. For instance, the following function, when invoked with a single argument
x, returns another function which adds x to its argument:

> foo x = bar with bar y = x+y end;
> let f = foo 99; f;
bar
> f 10, f 20;
109,119

This works the same no matter what other bindings of x may be in effect when the closure is
invoked:

> let x = 77; f 10, (f 20 when x = 88 end);
109,119

In contrast to local bindings, Pure’s toplevel environment binds global symbols dynami-
cally, so that the bindings can be changed easily at any time during an interactive session.
This is mainly a convenience for interactive usage, but works the same no matter whether the
source code is entered interactively or being read from a script, in order to ensure consistent
behaviour between interactive and batch mode operation.

In particular, you can easily bind a global variable to a new value by just entering a cor-
responding let command. For instance, contrast the following with the local bar function
from above which had the x value bound in the surrounding context:
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> clear x
> bar y = x+y;
> bar 10, bar 20;
x+10,x+20
> let x = 99;
> bar 10, bar 20;
109,119
> let x = 77;
> bar 10, bar 20;
87,97

Observe how changing the value of the global x variable immediately affects the value com-
puted by the global bar function. This works pretty much like global variables in imperative
languages, but note that in Pure the value of a global variable can only be changed with a
let command at the toplevel. Thus referential transparency is unimpaired; while the value
of a global variable may change between different toplevel expressions, it will always take
the same value in a single evaluation.

Similarly, you can also add new equations to an existing function at any time. The Pure
interpreter will then automatically recompile the function as needed. For instance:

> fact 0 = 1;
> fact n::int = n*fact (n-1) if n>0;
> fact 10;
3628800
> fact 10.0;
fact 10.0
> fact 1.0 = 1.0;
> fact n::double = n*fact (n-1) if n>1;
> fact 10.0;
3628800.0
> fact 10;
3628800

In interactive mode, it is even possible to completely erase a function definition and redo it
from scratch, see section Interactive Usage for details.

So, while the meaning of a local symbol never changes once its definition has been pro-
cessed, toplevel definitions may well evolve while the program is being processed, and the
interpreter will always use the latest definitions at a given point in the source when an ex-
pression is evaluated.

Note: As already mentioned, this behaviour makes Pure much more convenient to use in
an interactive setting. We should point out, however, that dynamic environments are often
frowned upon by functional programming purists (for good reasons), and Pure’s dynamic
toplevel certainly has its pitfalls just like any other. Specifically, even in a script file you’ll
have to take care that all symbols needed in an evaluation are completely defined before en-
tering the expression to be evaluated. Nevertheless, it is expected that most Pure program-
mers will use Pure interactively most of the time, and so tailoring the design to interactive
usage seems justifiable in this case.
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1.4 Rule Syntax

Basically, the same rule syntax is used in all kinds of global and local definitions. However,
some constructs (specifically, when, let, const, type and def) use a variation of the basic rule
syntax which does away with guards and/or multiple left-hand or right-hand sides. The
syntax of these elements is captured by the following grammar rules:

rule ::= pattern (“|” pattern)* “=” expr [guard]
(”;” “=” expr [guard])*

type_rule ::= pattern (“|” pattern)* [ “=” expr [guard] ]
macro_rule ::= pattern (“|” pattern)* “=” expr
simple_rule ::= pattern “=” expr | expr
pattern ::= simple_expr
guard ::= “if” simple_expr

| “otherwise”
| guard “when” simple_rules “end”
| guard “with” rules “end”

When matching against a function or macro call, or the subject term in a case expression,
the rules are always considered in the order in which they are written, and the first matching
rule (whose guard evaluates to a nonzero value, if applicable) is picked. (Again, the when
construct is treated differently, because each rule is actually a separate definition.)

1.4.1 Patterns

The left-hand side of a rule is a special kind of simple expression, called a pattern. The
variables in a pattern serve as placeholders which are bound to corresponding values when
the rule is applied to a target expression. To these ends, the pattern is matched against
the target expression, i.e., the literal parts of the pattern are compared against the target
expression and, if everything matches up, the variables in the pattern are bound to (set to
the value of) the corresponding subterms of the target expression.

Patterns are pervasive in Pure; they are used on the left-hand side of function and macro
definitions, just as well as in global and local variable definitions. For instance, the follow-
ing variable definition matches the result of evaluating the right-hand side list expression
against the pattern x:y:xs and binds the variables x and y to the first two elements of the
resulting list and xs to the list of remaining elements, respectively. We can then place x and
y at the end of the list, thereby performing a kind of “rotation” of the first two list members:

> let x:y:xs = 1..10;
> xs+[x,y];
[3,4,5,6,7,8,9,10,1,2]

The same works with a local variable definition:
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> xs+[x,y] when x:y:xs = 1..10 end;
[3,4,5,6,7,8,9,10,1,2]

Or with a case expression:

> case 1..10 of x:y:xs = xs+[x,y] end;
[3,4,5,6,7,8,9,10,1,2]

The arguments of functions (and macros) are handled in the same fashion, too:

> rot2 (x:y:xs) = xs+[x,y];
> rot2 (1..10);
[3,4,5,6,7,8,9,10,1,2]

However, there is a big difference here. For global and local variable definitions, it is an error
if the pattern does not match the target expression:

> let x:y:xs = [1];
<stdin>, line 7: failed match while evaluating ’let x:y:xs = [1]’

The same holds if the target expression doesn’t match any of the left-hand side patterns in a
case expression:

> case [1] of x:y:xs = xs+[x,y] end;
<stdin>, line 8: unhandled exception ’failed_match’ while evaluating
’case [1] of x:y:xs = xs+[x,y] end’

(The error message is slightly different in this case, but the reported kind of exception is
actually the same as with the let expression above.)

This doesn’t normally happen with functions and macros. Instead, a match failure just
means that the corresponding rule will be bypassed and other rules will be tried instead.
If there are no more rules, the target expression becomes a normal form which is simply
returned as is:

> rot2 [1];
rot2 [1]

This may come as a surprise (other functional languages will give you an error in such cases),
but is a crucial feature of term rewriting languages, as it opens the door to symbolic evalua-
tion techniques, see Definitions and Expression Evaluation.

There are two different ways to force a function definition to bail out with an error if you
prefer that behaviour. First, you can provide an explicit rule which raises an exception (cf.
Exception Handling). But this can make it difficult or even impossible to add more rules to
the function later, as discussed below. Instead, you may want to use the --defined pragma
as follows:

> #! --defined rot2
> rot2 [1];
<stdin>, line 13: unhandled exception ’failed_match’ while evaluating ’rot2 [1]’

44 1.4 Rule Syntax



Pure Language and Library Documentation, Release 0.62

Note: This pragma tells the compiler that rot2 is supposed to be a “defined” function,
which means that it should be an error if no rule applies to it; please see Defined Functions
in the Caveats and Notes section for details. Also note that exceptions will always interfere
with symbolic evaluation and thus the use of this facility isn’t really recommended. How-
ever, there are situations in which it can make your life a lot easier.

One of Pure’s key features is that you can usually just keep on adding new rules to existing
function definitions in order to handle different kinds of arguments. As already mentioned,
the rules will then be considered in the order in which they are written, and the first rule
which matches the given arguments will be used to reduce the function application. For
instance, adding the following rule we can make the rot2 function also work with tuples:

> rot2 (x,y,xs) = xs,x,y;
> rot2 (1,2,3,4,5);
3,4,5,1,2

This is also known as ad-hoc polymorphism. By these means, you can make a function ap-
ply to as many different kinds of arguments as you want, and the pattern matching handles
the necessary “dispatching” so that the right rule gets invoked for the provided arguments.

Pattern matching is not limited to the predefined aggregates such as lists, tuples and matri-
ces. In principle, any legal Pure expression can occur as a pattern on the left-hand side of a
rule or definition, so you can also write something like:

> rot2 (point x y z) = point z x y;
> rot2 (point 1 2 3);
point 3 1 2

Or even:

> foo (foo x) = foo x;
> bar (foo x) = foo (bar x);
> foo (bar (foo 99));
foo (bar 99)

Note that symbolic rules like in the latter example (which in this case express the idempo-
tence of foo and a kind of commutativity with respect to bar) often involve symbols which
play the role of both a function and a constructor symbol.

Syntactically, patterns are simple expressions, thus special expressions need to be parenthe-
sized if you want to include them in a pattern. (In fact, special expressions are given special
treatment if they occur in patterns, see the Macros section for details.) A few other special
elements in patterns are discussed below.

The “Head = Function” Rule

A central ingredient of all patterns are of course the variables which get bound in the pattern
matching process. Pure is a rather terse language and thus it has no explicit way to declare
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which identifiers are the variables. Instead, the compiler figures them out on its own, using
a rather intuitive rule already explained in Variables in Equations.

Recall that the variables in a pattern are the identifiers in “variable positions”. The head
= function rule tells us that a variable position is any leaf (atomic subexpression) of the
expression tree which is not the head symbol of a function application. Thus a pattern like
f (g x) y contains the variables x and y, whereas f and g are interpreted as literal function
symbols. This rule also applies to the case of infix, prefix or postfix operator symbols, if we
write the corresponding application in its unsugared form. E.g., x+y*z is equivalent to (+) x
((*) y z) which contains the variables x, y and z and the literal function symbols (+) and
(*).

There are some exceptions to the “head = function” rule. Specifically, it is possible to declare
an identifier as a nonfix symbol so that it will be interpreted as a literal function symbol
even if it occurs in a variable position, see Symbol Declarations for details. For instance:

nonfix nil;
foo nil = 0;

Note that since nil is declared as a nonfix symbol here, the symbol is interpreted as a literal
rather than a variable in the left-hand side foo nil, and thus foo will return 0 for a literal
nil value only.

Another case which needs special consideration are patterns consisting of a single identi-
fier, such as x. Here the meaning depends on the kind of construct. All variable-binding
constructs (let, const, when and case) treat a singleton identifier as a variable (unless it is
declared nonfix). Thus all of the following constructs will have the expected result of bind-
ing the variable x to the given list value [1,2,3]. In either case the result is [0,1,2,3]:

let x = [1,2,3]; 0:x;
0:x when x = [1,2,3] end;
case [1,2,3] of x = 0:x end;

In contrast, a single identifier is always interpreted as a literal if it occurs on the left-hand
side of a function or macro definition, so that the following rule defines a parameterless
function y:

y = [1,2,3]; 0:y;

(While they yield the same values here, there are some notable differences between the pa-
rameterless function y and the global variable x defined above; see Defining Functions for
details.)

Please also check “Head = Function” Pitfalls in the Caveats and Notes section which has
some some further interesting details and workarounds concerning the “head = function”
rule.

Constant Patterns

Constants in patterns must be matched literally. For instance:
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foo 0 = 1;

This will only match an application of foo to the machine integer 0, not 0.0 or 0L (even
though these compare equal to 0 using the ‘==‘ operator).

The Anonymous Variable

The ‘_‘ symbol is special in patterns; it denotes the anonymous variable which matches an
arbitrary value (independently for all occurrences) without actually binding a variable. This
is useful if you don’t care about an argument or one of its components, in which case you
can just use the anonymous variable as a placeholder for the value and don’t have to invent
a variable name for it. For instance:

foo _ _ = 0;

This will match the application of foo to any combination of two arguments (and just ignore
the values of these arguments).

Non-Linear Patterns and Syntactic Equality

In contrast to Haskell, patterns may contain repeated variables (other than the anonymous
variable), i.e., they may be non-linear. Thus rules like the following are legal in Pure, and
will only be matched if all occurrences of the same variable in the left-hand side pattern are
matched to the same value:

> foo x x = x;
> foo 1 1;
1
> foo 1 2;
foo 1 2

Non-linear patterns are particularly useful for computer algebra where you will frequently
encounter rules such as the following:

> x*y+x*z = x*(y+z);
> a*(3*4)+a*5;
a*17

The notion of “sameness” employed here is that of syntactical identity, which means that the
matched subterms must be identical in structure and content. The prelude provides syntactic
equality as a function same and a comparison predicate ‘===‘. Thus the above definition of
foo is roughly equivalent to the following:

foo x y = x if same x y;

It is important to note the differences between syntactic equality embodied by same and
‘===‘, and the “semantic” equality operator ‘==‘. The former are always defined on all terms,
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whereas ‘==‘ is only available on data where it has been defined explicitly, either in the pre-
lude or by the programmer. Also note that ‘==‘ may assert that two terms are equal even if
they are syntactically different. Consider, e.g.:

> 0==0.0;
1
> 0===0.0;
0

This distinction is actually quite useful. It gives the programmer the flexibility to define ‘==‘
in any way that he sees fit, which is consistent with the way the other comparison operators
like ‘<‘ and ‘>‘ are handled in Pure.

Syntactic equality is also used in pattern matching in order to decide whether a constant in
a pattern matches the corresponding subterm in the target expression. This explains why
the pattern foo 0, as already mentioned, only matches an application of foo to the machine
integer 0, not 0.0 or 0L which aren’t syntactically equal to 0.

However, there is one caveat here. Due to its term rewriting heritage, Pure distinguishes
between literal function symbols in patterns and named functions. The latter are runtime
objects which are only considered syntactically equal if they not only have the same name
but actually refer to the same (global or local) closure. In contrast, a function symbol in a
pattern is just a literal symbol without reference to any particular closure that the symbol
may be bound to in some context. Thus a function symbol in a pattern matches any instance
of the symbol in the target expression, no matter whether it happens to be a pure constructor,
quoted symbol or any named closure bound to that symbol.

This leads to some discrepancies between pattern matching and syntactic equality which
may be surprising at first sight. For instance, consider:

> foo x = case x of bar y = x===bar y end;
> bar x y = x+y;
> foo (bar 99);
1
> foo (’bar 99);
0
> foo (bar 99) with bar x y = x*y end;
0

Note that the argument term bar 99 matches the pattern bar y in the case expression in
either case, even though in the last two expressions bar is not considered syntactically equal
to the global bar function because it is quoted (cf. The Quote) or bound to a local closure of
the same name, respectively.

Special Patterns

Last but not least, patterns may also contain the following special elements which are not
permitted in right-hand side expressions:

• A Haskell-style “as” pattern of the form variable @ pattern binds the given variable to
the expression matched by the subpattern pattern (in addition to the variables bound
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by pattern itself). This is convenient if the value matched by the subpattern is to be
used on the right-hand side of an equation.

• A left-hand side variable (including the anonymous variable) may be followed by a
type tag of the form :: name, where name is either one of the built-in type symbols
int, bigint, double, string, matrix, pointer, or an identifier denoting a user-defined
data type. The variable can then match only values of the designated type. Thus, for
instance, ‘x::int‘ only matches machine integers. See the Type Tags section below for
details.

To these ends, the expression syntax is augmented with the following grammar rule (but
note that this form of expression is in fact only allowed on the left-hand side of a rule):

prim_expr ::= qualified_identifier
(”::” qualified_identifier | “@” prim_expr)

As shown, both “as” patterns and type tags are primary expressions, and the subpattern of
an “as” pattern is a primary expression, too. Thus, if a compound expression is to be used
as the subpattern, it must be parenthesized. For instance, the following function duplicates
the head element of a list:

foo xs@(x:_) = x:xs;

Note that if you accidentally forget the parentheses around the subpattern x:_, you still get
a syntactically correct definition:

foo xs@x:_ = x:xs;

But this gets parsed as (foo xs@x):_ = x:xs, which is most certainly not what you want. It
is thus a good idea to just always enclose the subpattern with parentheses in order to prevent
such glitches.

Note: Another pitfall is that the notation foo::bar is also used to denote “qualified sym-
bols” in Pure, cf. Namespaces. Usually this will be resolved correctly, but if foo happens to
also be a valid namespace then most likely you’ll get an error message about an undeclared
symbol. You can always work around this by adding spaces around the ‘::‘ symbol, as in
foo :: bar. Spaces are never permitted in qualified symbols, so this makes it clear that
the construct denotes a type tag. The same applies if the variable or the tag is a qualified
identifier; in this case they should always be separated by whitespace.

1.4.2 Type Tags

Like Lisp, Pure is essentially a typeless language and doesn’t really have a built-in notion of
“data types”. Rather, all data belongs to the same universe of terms. However, for conve-
nience it is possible to describe data domains by means of (unary) type predicates which may
denote arbitrary sets of terms. The names of these type predicates can then be used as type
tags on variables, so that they can only be matched by values of the given type.
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We have to emphasize here that Pure’s notion of types has nothing to do with static typing.
Type tags are merely used at runtime to restrict the kind of data that can be matched by a
rule (and by the compiler to generate better code in some cases). But they will never cause
the compiler to impose a static typing discipline and spit out corresponding “type errors”.
(This wouldn’t make any sense in Pure anyway, as failure to match any of the rules given in
the definition of a function simply means that a function application is in normal form.)

Some basic types are built into the language. The corresponding tags enable you to match
the built-in types of terms for which there is no way to spell out all “constructors”, as there
are infinitely many (or none, as in the case of pointer values which are constructed and in-
spected using special primitives, but are otherwise “opaque” at the Pure level). Specifically,
the following data types are built-in (in fact, the pattern matcher has special knowledge
about these so that they can be matched very efficiently):

type int
The type of machine integers.

type bigint
The type of arbitrary precision integers (GMP bigints).

type double
The type of double precision floating point numbers.

type string
The type of character strings.

type matrix
The type of all numeric and symbolic matrix values.

type pointer
The type of C pointer values.

Pure’s standard library provides additional data types along with the corresponding opera-
tions, such as rational and complex numbers, lists, tuples and the container data types (sets,
dictionaries, etc.). These are all described in the Pure Library Manual.

You can define your own data types using a special kind of rule syntax which is explained in
Type Rules below. For instance, we might represent points in the plane using a constructor
symbol Point which gets applied to pairs of coordinates. We can then define the point data
type as follows:

type point (Point x y);

This introduces the type symbol point and specifies that this type consists of terms of the
form Point x y. We can now equip this data type with an operation point to construct a
point from its coordinates, two operations xcoord and ycoord to retrieve the coordinates,
and an operation move to change the coordinates to the given values:

point x y = Point x y;
xcoord (Point x y) = x;
ycoord (Point x y) = y;
move (Point _ _) x y = Point x y;
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Next we might define a function translate which shifts the coordinates of a point by a given
amount in the x and y directions as follows:

translate x y p::point = move p (xcoord p+x) (ycoord p+y);

Note the use of point as a type tag on the p variable. By these means, we can ensure that the
argument is actually an instance of the point data type we just defined. The type tag acts just
like an extra guard of the equation defining translate, but all the necessary type checking is
done automatically during pattern matching. This is often more convenient (and, depending
on the implementation, the compiler may generate more efficient code for a type tag than
for an ordinary guard).

The translate function can be invoked as follows:

> let p::point = point 3 3;
> p; translate 1 2 p;
Point 3 3
Point 4 5

One important point to note here is that translate can be defined without knowing or as-
suming anything about the internal representation of the point data type. We have defined
point as a concrete data type in this example, making its constructor and internal structure
visible in the rest of the program. This is often convenient, but the Point constructor might
just as well be hidden by making it a private member of some namespace (cf. Namespaces),
so that all accesses to the data structure would have to be done through the provided oper-
ations. Such a data type is also known as an abstract data type (ADT).

Note: As we’ve already seen, Pure has some powerful capabilities which enable you to write
functions to inspect and manipulate terms in a completely generic fashion. Thus the internal
structure of term data is never truly opaque in Pure and it is always possible to break the
“abstraction barrier” provided by an ADT. But if the user of an ADT plays such dirty tricks
to wreak havoc on the internal representation of an ADT, he gets what he deserves.

Pure provides some additional facilities to ease the handling of abstract data types. Specif-
ically, instead of defining point as a concrete data type using a type rule, we might also
specify it as an interface type which merely lists the supported operations as follows:

interface point with
xcoord p::point;
ycoord p::point;
move p::point x y;

end;

We can implement this type the same way as before:

point x y = Point x y;
xcoord (Point x y) = x;
ycoord (Point x y) = y;
move (Point _ _) x y = Point x y;

1.4.2 Type Tags 51



Pure Language and Library Documentation, Release 0.62

The definition of the translate function is also unchanged:

translate x y p::point = move p (xcoord p+x) (ycoord p+y);

The difference is that now the structure of members of the type is not made explicit anywhere
in the definition of the type. Instead, the compiler figures out which data matches the point
tag on its own. We can check the actual term patterns making up the point type with the
show interface command:

> show interface point
type point (Point x y);

As you can see, the compiler derived our previous definition of the type. But in fact
translate will now work with any data type which implements the point interface (i.e.,
provides the xcoord, ycoord and move operations), so we may swap out the underlying data
structure on a whim. For instance, if we’d like to use vectors instead of constructor terms,
all we have to do is to provide a corresponding construction function and implement the
interface operations:

vpoint x y = {x,y};
xcoord {x,y} = x;
ycoord {x,y} = y;
move {_,_} x y = {x,y};

After these definitions the new data representation works just fine with existing point oper-
ations such as translate:

> show interface point
type point (Point x y);
type point {x,y};
> let p::point = vpoint 3 3;
> p; translate (1,2) p;
{3,3}
{4,5}

This separation of interface and implementation of a data structure is an important ingredi-
ent of software engineering techniques. More examples and detailed explanations of Pure’s
notions of type predicates and interface types can be found in the Type Rules and Interface
Types sections.

1.4.3 General Rules

The most general type of rule, used in function definitions and case expressions, consists
of a left-hand side pattern, a right-hand side expression and an optional guard. The left-
hand side of a rule can be omitted if it is the same as for the previous rule. This provides
a convenient means to write out a collection of equations for the same left-hand side which
discriminates over different conditions:

lhs = rhs if guard;
= rhs if guard;

52 1.4 Rule Syntax



Pure Language and Library Documentation, Release 0.62

...
= rhs otherwise;

For instance:

fact n = n*fact (n-1) if n>0;
= 1 otherwise;

This expands to:

fact n = n*fact (n-1) if n>0;
fact n = 1 otherwise;

Pure also allows a collection of rules with different left-hand sides but the same right-hand
side(s) to be abbreviated as follows:

lhs |
...

lhs = rhs;

This is useful, e.g., if you specialize a rule to different type tags on the left-hand side vari-
ables. For instance:

fact n::int |
fact n::double = n*fact(n-1) if n>0;

= 1 otherwise;

This expands to:

fact n::int = n*fact(n-1) if n>0;
= 1 otherwise;

fact n::double = n*fact(n-1) if n>0;
= 1 otherwise;

In fact, the left-hand sides don’t have to be related at all, so you can also write something
like:

foo x | bar y = x*y;

Which expands to:

foo x = x*y;
bar y = x*y;

But more often you’ll have an “as” pattern which binds a common variable to a parameter
value after checking that it matches one of several possible argument patterns (which is
slightly more efficient than using an equivalent type-checking guard). E.g., the following
definition binds the xs variable to the parameter of foo, which may be either the empty list
or a list starting with an integer:

foo xs@[] | foo xs@(_::int:_) = bar xs;

The | notation also works in case expressions, which is convenient if different cases should
be mapped to the same value, e.g.:

1.4.3 General Rules 53



Pure Language and Library Documentation, Release 0.62

case ans of "y" | "Y" = 1; _ = 0; end;

Sometimes it is useful if local definitions (when and with) can be shared by the right-hand
side and the guard of a rule. This can be done by placing the local definitions behind the
guard, as follows (we only show the case of a single when clause here, but of course there
may be any number of when and with clauses behind the guard):

lhs = rhs if guard when defns end;

Note that this is different from the following, which indicates that the definitions only apply
to the guard but not the right-hand side of the rule:

lhs = rhs if (guard when defns end);

Conversely, definitions placed before the guard only apply to the right-hand side but not the
guard (no parentheses are required in this case):

lhs = rhs when defns end if guard;

An example showing the use of a local variable binding spanning both the right-hand side
and the guard of a rule is the following quadratic equation solver, which returns the (real)
solutions of the equation x^2+p*x+q = 0 if the discriminant d = p^2/4-q is nonnegative:

> using math;
> solve p q = -p/2+sqrt d,-p/2-sqrt d if d>=0 when d = p^2/4-q end;
> solve 4 2; solve 2 4;
-0.585786437626905,-3.41421356237309
solve 2 4

Note that the above definition leaves the case of a negative discriminant undefined.

1.4.4 Simple Rules

As already mentioned, when, let and const use a simplified kind of rule syntax which just
consists of a left-hand and a right-hand side separated by the equals sign. In this case the
meaning of the rule is to bind the variables in the left-hand side of the rule to the correspond-
ing subterms of the value of the right-hand side. This is also called a pattern binding.

Guards or multiple left-hand or right-hand sides are not permitted in these rules. However,
it is possible to omit the left-hand side if it is just the anonymous variable ‘_‘ by itself, indi-
cating that you don’t care about the result. The right-hand side is still evaluated, if only for
its side-effects, which is handy, e.g., for adding debugging statements to your code. For in-
stance, here is a variation of the quadratic equation solver which also prints the discriminant
after it has been computed:

> using math, system;
> solve p q = -p/2+sqrt d,-p/2-sqrt d if d>=0
> when d = p^2/4-q; printf "The discriminant is: %g\n" d; end;
> solve 4 2;
The discriminant is: 2
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-0.585786437626905,-3.41421356237309
> solve 2 4;
The discriminant is: -3
solve 2 4

Note that simple rules of the same form lhs = rhs are also used in macro definitions (def),
to be discussed in the Macros section. In this case, however, the rule denotes a real rewriting
rule, not a pattern binding, hence the left-hand side is mandatory in these rules.

1.4.5 Type Rules

In Pure the definition of a type takes a somewhat unusual form, since it is not a static dec-
laration of the structure of the type’s members, but rather an arbitrary predicate which de-
termines through a runtime check which terms belong to the type. Thus the definition of
a type looks more like an ordinary function definition (and that’s essentially what it is, al-
though types live in their own space where they can’t be confused with functions of the same
name).

The definition of a type thus consists of one or more type rules which basically have the same
format as the general rules, but with the keyword type in front of each rule. Also, each left-
hand side must have at most one argument pattern and exactly one right-hand side. Hence,
if the definition of a type requires several right-hand sides, you normally have to write a
separate type rule for each of them. Multiple left-hand sides work the same as in the general
rule format, though.

As already mentioned, there is an alternative way for defining types in an indirect way
through so-called interface types from which the corresponding type rules are derived auto-
matically. These are part of Pure’s declaration syntax and thus will be discussed later in the
Declarations section. In this section we focus on how you can write your own type rules in
order to define types in a direct fashion.

The identifier in the head of the left-hand side of a type rule is the name of the type which
can then be used as a type tag in other equations, cf. Type Tags. This is just a normal,
possibly qualified identifier subject to the same namespace mechanisms as other symbols;
see Namespaces for details. However, as the type symbol only gets used as a type tag, it can
never collide with function and variable symbols and hence the same symbol can be used
both as a type and as a function or variable name.

A collection of type rules specifies a predicate, i.e. a unary, truth-valued function which
denotes a set of terms. The type consists precisely of those terms for which the type predicate
yields a nonzero result. For instance, the following type defines the type triple as the set of
all tuples with exactly three elements:

type triple (x,y,z) = ~tuplep z;

Note that the type check consists of two parts here: The left-hand side pattern (x,y,z) re-
stricts the set to all tuples with at least three elements. The right-hand side ~tuplep z then
verifies that the last component z is not a tuple itself, and thus the entire tuple consists of
exactly three elements.
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Another important point here is that the definition of the triple predicate is partial, as the
given rule only applies to tuples with at least three elements. A value will only match the
triple type tag if the predicate explicitly returns true; otherwise the match will fail, no
matter what the result is (and even if the predicates just fails, i.e., returns an unevaluated
normal form). Thus there is no need to make the predicate work on all terms (and in fact
there are good reasons to not do so, see below).

In general, you should try to make your type definitions as specific as possible. This makes
it possible to extend the predicate later, just like Pure allows you to extend the definition of
a function to new types of arguments. For instance, if you later decide that lists with three
elements should be considered as triples, too, then you may add the following type rule:

type triple [x,y,z] = true;

This makes it possible to define a type in a piecemeal fashion. Each subsequent rule enlarges
the term set of the type. Conversely, consider a definition like:

type pair x = tuplep x && #x==2;

In this case the type rule applies to all values x and thus the type definition is complete; there
is no way to extend it later. Whether to prefer the former or latter kind of definition depends
on the situation. If you want to keep a type extensible, so that you can later make existing
definitions of operations on the type work with new data representations, then you should
use the former approach, otherwise the latter.

As an example for an extensible type definition, consider the following type nat which de-
notes the type of positive (machine) integers:

type nat x::int = x>0;

This definition is complete for the case of machine integers, but allows the type to be ex-
tended for other base types, and we’ll do that in a moment. But first let’s define the factorial
on nat values as follows:

fact n::nat = if n==1 then 1 else n * fact (n-1);

Note that this definition would loop on zero or negative values if we permitted arbitrary int
arguments. But since we restricted the argument type to nat, this case cannot occur and so
the definition is safe:

> fact 0;
fact 0
> map fact (1..10);
[1,2,6,24,120,720,5040,40320,362880,3628800]

The way we defined fact, it works on positive machine integers, but nothing else:

> fact 10L;
fact 10L

If we later decide that positive bigints should be considered as members of nat as well, we
can simply add another rule for the nat type:
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type nat x::bigint = x>0;

Et voila, our fact routine now magically works with bigints, too:

> map fact (0L..10L);
[fact 0L,1,2L,6L,24L,120L,720L,5040L,40320L,362880L,3628800L]

Note that we did all this without ever touching our original definition of fact. This works
because the bigint data type already provides all the operations which we expect to use
with the nat type. Pulling off this trick with other, more exotic kinds of data requires more
preparation, since we’ll first have to provide the required operations. In this case, we need
at least multiplication, as well as comparisons with 1 and subtraction by 1. For instance,
and just for the fun of it, let’s implement our own variation of the nat type using Peano
arithmetic:

type nat (s x) = true;

// addition
x + 0 = x;
x + 1 = s x;
x + s y = s (x+y);

// multiplication
x * 0 = 0;
x * 1 = x;
x * s y = x + x*y;

// subtract 1
s x - 1 = x;

// comparison with 0 and 1
s x == 0 = false;
s x == 1 = x == 0;

This implements just the bare bones, but that should be enough to make fact work. Let’s
give it a try:

> fact (s (s (s 0)));
s (s (s (s (s (s 0)))))

So, counting the s‘s, the factorial of 3 is 6. Works! (It goes without saying, though, that this
implementation of nat is not very practical; you’ll get mountains of s‘s for larger values of
n.)

As you can see, a type definition may in general consist of many type rules which may be
scattered out over different parts of a program. This works in exactly the same way as with
ordinary functions.

There’s an additional convenience provided for type rules, namely that the right-hand side
may be omitted if it’s just true. For instance, the rule
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type nat (s x) = true;

from above can also be written simply as:

type nat (s x);

This kind of notation is particularly convenient for “algebraic types” which are usually given
by a collection of constructors with different arities. For instance, a binary tree data type
might be defined as follows (here we employ the | symbol to separate the different left-hand
sides so that we can give all the constructor patterns in one go):

nonfix nil;
type bintree nil | bintree (bin x left right);

This method is also useful if you define your own abstract data types. In this case you’re
free to choose any suitable representation, so you might just wrap up all data objects of the
type with a special constructor symbol, which makes checking the type simple and efficient.
This is also the approach taken in the point example in Type Tags above, as well as by the
container data types in the standard library.

The same notation can also be used to quickly make one type a “subtype” of another, or to
create a type which is the union of several existing types. The following example can be
found in the standard library:

type integer x::int | integer x::bigint;

A type rule can also take the form of a function definition without arguments. The corre-
sponding right-hand side may either be another type symbol, or any kind of closure denot-
ing a (curried) type predicate. In this case the defined type is simply an alias for the type
denoted on the right-hand side. This is often done, e.g., for numeric types, to document that
they actually stand for special kinds of quantities:

type speed = double;
type size = int;

Note that the definition of a type alias is always complete; there’s no way to extend the
corresponding type later. Therefore type aliases are normally resolved at compile time, so
that they incur no additional runtime cost. For instance:

> half x::speed = x/2;
> show half
half x::double = x/2;

(If necessary, this “type folding” can also be disabled with the --nofold pragma.)

Finally, it’s also possible to just specify the type name, without giving the right-hand side:

type thing;

This doesn’t have any effect other than just declaring the type symbol, so that it can be used
as a type tag in subsequent definitions. You then still have to give a proper definition of the
type later (either as an explicit predicate or an alias).
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Type aliases can also be used to quickly turn an existing predicate into a “convenience” type
which can be used as a tag on the left-hand side of equations. The prelude defines a number
of these, see Prelude Types. For instance:

type closure = closurep;

Conversely, you can turn any type tag into an ordinary predicate which can be used on the
right-hand side of other definitions. To these ends, the prelude provides the typep predicate
which takes a type symbol and the value to be checked as arguments. For instance:

type odd x::int = x mod 2;
type even x::int = ~odd x;

odd x = typep odd x;
even x = typep even x;

With those definitions you get:

> map odd (0..10);
[0,1,0,1,0,1,0,1,0,1,0]
> map even (0..10);
[1,0,1,0,1,0,1,0,1,0,1]

There’s one caveat here. As the type symbol passed to typep gets evaluated in normal code
you have to be careful if the symbol is also defined as a parameterless function or a variable;
in such a case you’ll have to quote the symbol, as described in section The Quote. For in-
stance, we might rewrite the above definitions as follows, giving “pointless” definitions of
the odd and even predicates in terms of typep:

type odd x::int = x mod 2;
type even x::int = ~odd x;

odd = typep (’odd);
even = typep (’even);

Note that the quotes on odd and even are really needed here to prevent the predicate defi-
nitions from looping. If you need this a lot then you might define a little helper macro (cf.
Macros) which quotes the type symbol in an automatic fashion:

def typep ty::symbol = typep (’ty);

(However, this gets in the way if you want to check for computed type symbols, that’s why
this macro isn’t defined in the prelude.)

Pure places no a priori restrictions on the rules defining a data type (other than that they
must either define a unary predicate or an alias for an existing data type). As far as Pure is
concerned, types are just subsets of the universe of terms. Thus any type of relation between
two data types is possible; they might be unrelated (disjoint) term sets, one may be a subset
of another, or they might be related in some other way (some terms may be members of both
types, while others aren’t).

For instance, consider the types nat and odd from above. Both are subtypes of the int type
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(assuming our original definition of nat as the positive int values), but neither is a sub-
type of the other. It’s sometimes useful to define the “intersection type” of two such types,
which can be done in a straightforward way using the logical conjunction of the two type
predicates:

type nat x::int = x>0;
type odd x::int = x mod 2;
type odd_nat x = typep nat x && typep odd x;

Similarly, a variation of the integer union type from above could be defined using logical
disjunction (this employs the intp and bigintp predicates from the prelude):

type myinteger x = intp x || bigintp x;

(Note that this isn’t quite the same as the previous definition, which uses explicit patterns in
order to make the definition extensible.)

Since the right-hand side of a type definition may in general be any predicate, it is up to
the programmer to ensure that the definition of a type is actually computable. In fact, you
should strive for the best possible efficiency in type predicates. A type definition which
has worse than O(1) complexity may well be a serious performance hog depending on the
way in which it is used, see Recursive Types in the Caveats and Notes section for more
information about this.

Finally, note that in general it may be hard or even impossible to predict exactly when the
code of a type definition will be executed at runtime. Thus, as a general rule, a type definition
should not rely on side effects such as doing I/O (except maybe for debugging purposes),
modifying references or external data structures via C pointers, etc.

1.5 Examples

This section assumes that you’ve read the Pure Overview and Rule Syntax sections, so that
you are familiar with the basic elements of the Pure language. We now bring the pieces
together and show you how simple but typical problems can be solved using Pure. You
might use this section as a mini-tutorial on the Pure language. As we haven’t discussed the
more advanced elements of the Pure language yet, the scope of this section is necessarily
limited. But it should give you a pretty good idea of how Pure programs looks like. After
working through these examples you should be able to write useful Pure programs and
understand the more advanced features discussed in subsequent sections.

1.5.1 Hello, World

The notorious “hello world” program can be written in Pure as follows:

using system;
puts "Hello, world!";
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This employs the puts function from Pure’s system module (which is in fact just the puts
function from the C library). If you put these lines into a script file, say, hello.pure, you can
run the program from the command line as follows:

$ pure hello.pure
Hello, world!

You may notice a slight delay when executing the script, before the “Hello, world!” mes-
sage appears. That’s because the interpreter first has to compile the definitions in your script
as well as the prelude and other imported modules before the puts "Hello, world!" ex-
pression can be evaluated. The startup times can be reduced (sometimes considerably) by
compiling scripts to native executables, see Compiled Scripts below.

Passing Parameters

Sometimes you may want to pass parameters to a script from the command line. To these
ends, just follow the script name with the required parameters. The interpreter makes the
command line parameters (including the script name) available as a list of strings in the argv
variable. For instance, here is a version of the “hello world” program which uses printf to
print the line Hello, foo! where foo is whatever was specified as the first command line
parameter:

using system;
printf "Hello, %s!\n" (argv!1);

This script is invoked as:

$ pure hello.pure foo
Hello, foo!

Of course, many real-world programs will require more elaborate processing of command
line parameters, such as recognizing program options. We won’t discuss this here, but you
can have a look at the getopt module which provides that kind of functionality in a conve-
nient package.

Executable Scripts

It is often convenient if you can turn a script into a standalone executable which can be
invoked by just typing its name on the command line. There are several ways to do this.

First, on most systems you can invoke the Pure script through some kind of shell script or
command file which contains the command to invoke the interpreter. The details of this
depend on the operating system and type of shell that you use, however, so we won’t go
into this here.

Second, on Unix-like systems it is possible to make any script file executable like this:
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$ chmod a+x hello.pure

However, we also have to tell the shell about the command interpreter which should be
invoked to run the script. (Otherwise the shell itself may try to execute the script, which
won’t work because it’s not a shell script.) As already mentioned in Overview of Operation,
this is done by adding a special kind of comment, a “shebang”, to the beginning of the script,
so that it looks like:

#!/usr/local/bin/pure
using system;
puts "Hello, world!";

Note that you must give the full path to the Pure interpreter in the shebang line. This path of
course depends on where you installed Pure. The above shebang will work with an instal-
lation from source, unless you changed the installation prefix when configuring the source
package. If you installed the interpreter from a binary package, the proper path will often be
/usr/bin/pure instead. In any case, you can find out where the interpreter lives by typing
the following command in the shell:

$ which pure
/usr/local/bin/pure

If you get anything else on your system then you’ll have to fix the shebang accordingly. You
should then be able to run the script as follows:

$ ./hello.pure
Hello, world!

Note: Many modern Unix-like systems provide the /usr/bin/env utility which can perform
a search for the interpreter executable, so that you can also use a shebang like:

#!/usr/bin/env pure

This has the advantage that you don’t have to hardcode the path to the Pure interpreter into
the shebang; the /usr/bin/env utility will locate the interpreter for you, provided that it is
installed somewhere on the system PATH.

Compiled Scripts

Last but not least, you can also turn a Pure script into an executable by “batch-compiling” it.
This works on all supported systems (provided that you have the necessary LLVM tools and
3rd party compilers installed, see the installation instructions for details). The result is a real
native executable which can then be run directly just like any other binary program on your
system. To these ends, the interpreter is run with the -c option which tells it to run in batch
compilation mode, and the -o option which specifies the desired name of the executable. For
instance:
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$ pure -c hello.pure -o hello
Hello, world!
$ ./hello
Hello, world!

You’ll notice that the compilation command in the first line above also prints the Hello,
world! message. This reveals a rather unusual aspect of Pure’s batch compiler: it actually
executes the script even during batch compilation. The reasons for this behaviour and poten-
tial uses are discussed in the Batch Compilation section. If you want to suppress the program
output during batch compilation, you can rewrite the program as follows:

using system;
main = puts "Hello, world!";
compiling || main;

Note that here we turned the code to be executed into a separate main function. This isn’t
really necessary, but often convenient, since it allows us to run the code to be executed by
just evaluating a single function. (Note that in contrast to C, the name main has no special
significance in Pure; it’s just a function like any other. We still have to include a call to this
function at the end of our program so that it gets executed.)

The last line now reads compiling || main which is a shorthand for “if the compiling vari-
able is nonzero then do nothing, otherwise evaluate the main function”. In a batch compi-
lation the interpreter sets this variable to a nonzero value so that the evaluation of main is
skipped:

$ pure -c hello.pure -o hello
$ ./hello
Hello, world!

We should mention here that batch-compiled scripts have some limitations because the com-
piled executable runs under a trimmed-down runtime system. This disables some of the
advanced compile time features which are only available when running a script with the
interpreter or at batch-compilation time. However, this won’t usually affect run-of-the-mill
scripts like the one above. More information about this can be found in the Batch Compila-
tion section.

1.5.2 Running the Interpreter

While Pure scripts can be run as standalone programs directly from the shell, most of the
time you’ll probably use the Pure interpreter in an interactive way. You then simply run it
like this:

$ pure

__ \ | | __| _ \ Pure 0.62 (x86_64-unknown-linux-gnu)
| | | | | __/ Copyright (c) 2008-2014 by Albert Graef
.__/ \__,_|_| \___| (Type ’help’ for help, ’help copying’

_| for license information.)
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Loaded prelude from /usr/lib/pure/prelude.pure.

>

The interpreter prints its sign-on message and leaves you at its command prompt. (You
can also try pure --plain for a less fancy sign-on, or pure -q to completely suppress the
message.)

At this point you can just start typing definitions and expressions to be evaluated. For in-
stance:

> fact n = if n<=0 then 1 else n*fact (n-1);
> map fact (1..10);
[1,2,6,24,120,720,5040,40320,362880,3628800]

Note that Pure is a free-format language, and thus definitions and expressions must be ter-
minated with a semicolon, so that the interpreter knows when you’re done entering each
item. This probably needs getting used to, but it’s convenient because you can easily type
more than one expression on a single line, or split longer constructs across multiple lines:

> 6*7; 16.3805*5.0;
42
81.9025
> 16753418726345
> * 991726534256718265234;
16614809890429729930396098173389730L

If the interpreter appears to just eat away expressions without printing any results, then
most likely you forgot to enter the terminating semicolon. In such a case you can just type
the semicolon on a line by itself:

> 6*7
> ;

(This won’t do any harm even if it’s not needed, because an empty item is always valid input
at Pure’s toplevel.)

The interpreter also reports syntax errors if you mistype an expression:

> 16.3805*(5;
<stdin>, line 8: syntax error, unexpected ’;’, expecting when or with or ’)’

In such a case, just correct the error and resubmit the offending input. The interpreter’s
readline facility makes this pretty convenient, because you can use the cursor keys to recall
previous input lines and edit them as needed.

Other kinds of errors may happen at runtime, when evaluating a syntactically correct ex-
pression. These give rise to so-called exceptions. For instance:

> 1 div 0;
<stdin>, line 9: unhandled exception ’signal 8’ while evaluating ’1 div 0’
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Besides integer division by zero (flagged as ‘signal 8‘ here), common sources of exceptions
are failed matches and conditionals, interrupts (e.g., if the user aborts an evaluation with
Ctrl-c) and stack overflows (cf. Stack Size and Tail Recursion). Normally these are fatal and
require you to fix the program or the expression that you entered, but programs can also
catch these errors and handle them in any desired way, cf. Exception Handling.

Note that in contrast to most other programming languages, undefined identifiers are gen-
erally not an error in Pure. Instead, you’ll simply get an unevaluated normal form:

> foo 5;
foo 5

Therefore, we recommend invoking the interpreter with the -w option so that it at least warns
you about unknown symbols. You can also enter this option interactively or in a script using
the --warn pragma:

> #! --warn
> bar 5;
<stdin>, line 12: warning: implicit declaration of ’bar’
bar 5

The interpreter has a global variable environment in which you can store intermediate re-
sults:

> let x = 16.3805*5;
> x; x/2; 1/x;
81.9025
40.95125
0.0122096395103935
> let y = 2*x; y;
163.805

Another handy feature is the special built-in function ans which yields the most recent result
printed by the interpreter:

> 16.3805*5;
81.9025
> ans*2;
163.805

The interpreter recognizes a few other special commands which, like ans, are only available
when it is run interactively. For instance, you can purge the value of a variable like this (this
also works with any other defined item, such as constants, functions and macros):

> clear x
> x;
x

Another useful command is show which prints the definition of anything that you can define
in a Pure script, such as variables and functions. For instance:

> show fact
fact n = if n<=0 then 1 else n*fact (n-1);
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You can also just type show to print all definitions done interactively at the command prompt,
which lets us review our accomplishments so far:

> show
fact n = if n<=0 then 1 else n*fact (n-1);
let y = 163.805;

The dump command saves these definitions in a file for later use:

> dump

This command doesn’t print anything, but you can have a look at the written file in a text
editor and maybe edit it as needed. By default, dump saves interactive definitions in a hidden
file named .pure in the current directory, which gets reloaded automatically if we later rerun
the interpreter in the same directory. We can also print this file, e.g., with the Unix cat
command (note that ‘!‘ executes a shell command):

> !cat .pure
// dump written Wed Sep 5 10:00:15 2012
fact n = if n<=0 then 1 else n*fact (n-1);
let y = 163.805;

If we mess up badly, it’s often convenient to just rerun the interpreter from scratch so that
we can try again in a clean environment:

> run

As we’ve saved our scribblings with dump previously, those definitions will be reloaded au-
tomatically:

> show
fact n = if n<=0 then 1 else n*fact (n-1);
let y = 163.805;

If you don’t want this then you can just remove the .pure file or rename it before invoking
run.

Another helpful command is help which brings up the online documentation (this requires
that you’ve configured the interpreter for the web browser that you use; see Online Help):

> help help

Last but not least, you can use the following command to exit the interpreter and return to
the command shell:

> quit

Typing just an end-of-file character (usually Ctrl-d on Unix-like systems) at the beginning
of the command line does the same.

There are a few other built-in commands that you may find useful when working with the
interpreter, and you can even define your own. These interactive commands are special; they
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have their own syntax and need to be typed on a separate line. Please refer to Interactive
Usage for a detailed explanation of the command syntax and the available commands.

1.5.3 Basic Examples

Pure has a few built-in data types, namely numbers (machine integers, bigints and double
precision floating point numbers), strings, matrices, symbols, functions and pointer values.
Compound expressions are formed from these using function application. In the syntax of
the Pure language, these are also known as simple expressions. For want of a catchier name,
we also simply call them terms. Pure is a programming language based on term rewriting,
so all computations performed in Pure consist of the rewriting of terms. Some terms may
reduce to other terms, others simply stand for themselves; the latter are also called normal
forms and are what constitutes a “value” in the Pure language.

When the Pure interpreter starts up, it normally loads a collection of Pure scripts collectively
called the prelude. The prelude defines many of the usual operations on numbers, strings,
lists and other basic data structures that you may need, so you can start using the interpreter
as a sophisticated kind of desktop calculator right away. Let’s begin with some simple cal-
culations involving integer and floating point numbers:

> 6*7;
42
> 16.3805*5.0;
81.9025
> 16753418726345 * 991726534256718265234;
16614809890429729930396098173389730L

Note that the integer constants in the last example exceeded the 32 bit range of machine
integers, so they were promoted to bigints. The result is again a bigint (indicated by the L
suffix). You can also turn any integer constant into a bigint by explicitly adding the L suffix:

> 6L*7L;
42L

Arithmetic with mixed operands will generally return the most general type capable of hold-
ing the result:

> 6*7L;
42L
> 16.3805*5;
81.9025
> 16.3805*5L;
81.9025

But note that most operations involving only machine integers will produce another ma-
chine integer; the result is never promoted to a bigint automatically, even in case of “over-
flow” (i.e., wrap-around). So the following will yield the same kind of signed 32 bit result as
you’d get in C:
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> 2147483647 + 1;
-2147483648

This has the advantage that you always know the type of the result of each operation be-
forehand by just looking at the types of the operands. It also makes it possible to compile
machine integer operations to efficient native code. Therefore, if you suspect that a machine
integer operation may wrap around and you’d thus prefer to do the calculation with bigints
instead, you’ll have to convert at least one of the operands to a bigint beforehand:

> 2147483647L + 1;
2147483648L

Also note that, in contrast to C or Fortran, the result of the / (division) and ^ (exponentiation)
operators is always a floating point value in Pure, even if both operands are integers:

> 14/12;
1.16666666666667
> 2L^60L;
1.15292150460685e+18

Integer division and modulo are done with the div and mod operators, and exact powers of
machine integers and bigints can be computed with the pow function:

> 14 div 12; 14 mod 12;
1
2
> pow 2 60;
1152921504606846976L

Also note that many of the standard math functions are available in a separate math module,
so we need to import that module if we want to use one of these (see Modules and Imports
for a detailed explanation of Pure’s module system). For instance:

> using math;
> sqrt (16.3805*5)/.05;
181.0

The math module also provides you with complex and rational number types for doing more
advanced calculations, but we won’t go into that here.

Before we proceed, a few remarks about the syntax of function applications are in order.
Function application is an explicit operation in Pure, so that functions become first class
values which can be passed around as function arguments and results. Like in most modern
functional languages, function application is simply denoted by juxtaposition:

> sqrt 2;
1.4142135623731

In this case, you may also write sqrt(2) instead, but multiple arguments are normally spec-
ified as f x y z rather than f(x,y,z). The former notation is known as currying (named
after the American mathematician and logician Haskell B. Curry), and is ubiquitous in mod-
ern functional programming languages. The latter notation can be used in Pure as well, but
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it actually indicates that f is called on a single, structured argument (in this case a tuple).
However, most predefined functions use the curried notation in Pure. For instance, the max
function defined in the prelude takes two separate arguments, so it is invoked as follows:

> max 4 7;
7

Function application associates to the left, so the above is parsed as (max 4) 7, where max
4 is called a partial application of the max function. A partial application is a function in its
own right; e.g., max 4 denotes the function which computes max 4 y for each given y.

Parentheses are used for grouping expressions as usual. In particular, since function appli-
cation associates to the left, a nested function application in a function argument must be
parenthesized as follows:

> sqrt (sqrt 2);
1.18920711500272

The same is true for any kind of expression involving operators, since function application
binds stronger than any of these:

> sqrt (2*3);
2.44948974278318

The map function lets us apply a function to each member of a given list, which gives us a
quick way of tabulating function values:

> map sqrt (0..2);
[0.0,1.0,1.4142135623731]

Here, the list argument is specified as an arithmetic sequence 0..2 which evaluates to the
list [0,1,2]. This is fairly convenient when tabulating values of numeric functions. Here
is another example which employs a partial application of the max function as the function
argument:

> map (max 0) (-3..3);
[0,0,0,0,1,2,3]

Note that when the max 0 function gets applied, say, to the first list member -3, we obtain
the application max 0 (-3) which now has all the arguments that it needs; we also say that
max 0 (-3) is a saturated application, which means that it’s “ready to go”. Evaluating max 0
(-3) gives 0 which becomes the first member of the result list returned by map. The other list
members are calculated in an analogous fashion. It is easy to see that max 0 thus computes
what mathematicians call the “positive part” of its argument x, which is x itself if it is greater
than 0 and 0 otherwise.

Operators aren’t special either, they are just functions in disguise. You can turn any operator
into an ordinary function by enclosing it in parentheses. Thus (+) denotes the function
which adds its two arguments, and x+1 can also be written as (+) x 1; in fact, the former
expression is nothing but syntactic sugar for the latter. You can easily verify this in the
interpreter:
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> (+) x 1;
x+1

You can also have partial applications of operators like (*) 2 which denotes a function
which doubles its argument:

> map ((*) 2) [1,2,3,4,5];
[2,4,6,8,10]

Moreover, Pure offers some convenient syntactic sugar to denote so-called operator sections
which specify a binary operator with only either its left or right operand. So the doubling
function above may also be denoted as (2*) or (*2). Similarly, (+1) denotes the “increment
by 1” and (1/) the reciprocal function:

> map (+1) (1..5);
[2,3,4,5,6]
> map (1/) (1..5);
[1.0,0.5,0.333333333333333,0.25,0.2]

Note that the latter kind of section (also called a left section) is just a convenient shorthand
for a partial application:

> (1/);
(/) 1

The former kind (a right section) can’t be handled this way, because it’s the first operand
which is missing, and partial applications only allow you to omit trailing arguments. In-
stead, right sections expand to a partial application of the flip function,

> (+1);
flip (+) 1

which is defined in the prelude as follows:

flip f x y = f y x;

Note that flip (+) 1 thus denotes a function which, when the missing operand is supplied,
reduces to an application of the first (function) argument while also flipping around the
operands. For another example, here’s how you can compute third powers 3^x of some
numbers x with a right section of the ‘^‘ operator:

> map (^3) (1..5);
[1.0,8.0,27.0,64.0,125.0]

Note that this is exactly the same as:

> map (flip (^) 3) (1..5);
[1.0,8.0,27.0,64.0,125.0]

Such explicit applications of flip also work with ordinary functions like pow, so if we want
to compute the cubes as exact bigint numbers, we can also write:
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> map (flip pow 3) (1..5);
[1L,8L,27L,64L,125L]

Note the difference between flip pow 3 which computes third powers, and pow 3 which is
a partial application that computes powers of 3.

Sometimes it is convenient to have function application as an explicit operation which can
be passed as a function value to other functions. The $ operator is provided for this purpose.
f $ x is just f x, so you can write, e.g.:

> map ($1) [(+2),(*2),(/2)];
[3,2,0.5]

Recall that ($1) is a right section which, when applied to an argument f, evaluates to f $
1 = f 1. E.g., we have that ($1) (+2) = (+2) $ 1 = (+2) 1 = 1+2 = 3. Hence the above
expression actually applies a list of functions to the given argument 1.

The $ operator has a low precedence and is right-associative, so that it is sometimes used
to eliminate the parentheses in cascading function calls. For instance, sqrt $ sqrt $ 2*3 is
the same as sqrt (sqrt (2*3)).

Another convenient operation for combining functions is the function composition operator,
denoted ‘.‘. It applies two functions in sequence, so that (f.g) x evaluates to f (g x). For
instance:

> g x = 2*x-1;
> map g (-3..3);
[-7,-5,-3,-1,1,3,5]
> map (max 0 . g) (-3..3);
[0,0,0,0,1,3,5]

Operations like ‘.‘, which take functions as arguments and return other functions as results,
are also called higher-order functions. We’ll have a closer look at these later.

As already mentioned, the interpreter also has a global variable environment in which you
can store arbitrary expression values. This provides a means to define abbreviations for
frequently-used expressions and for storing intermediate results. Global variable definitions
are done with let. For instance:

> let x = 16.3805*5;
> x;
81.9025

As we’ve explained above, functions are first-class citizens and can thus be assigned to vari-
ables as well:

> let f = sqrt;
> f x/0.05;
181.0

The value of a global variable can be changed at any time. So we can type:
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> let f = sin;
> f x/0.05;
4.38588407225469

You can also bind several variables at once by using an expression pattern as the left-hand
side of a variable definition. This is useful if we need to extract elements from an aggregate
value such as a list:

> let x1:x2:xs = map (^3) (1..5);
> x1,x2,xs;
1.0,8.0,[27.0,64.0,125.0]

Pure also provides a kind of “read-only” variables a.k.a. constants. They are defined pretty
much like global variables (using the const keyword in lieu of let), but work more like a
parameterless function whose value is precomputed at compile time:

> const π = 4*atan 1.0;
> show π
const π = 3.14159265358979;
> h x = sin (2*π*x);
> show h
h x = sin (6.28318530717959*x);
> map h [-1/4,-1/8,0,1/8,1/4];
[-1.0,-0.707106781186547,0.0,0.707106781186547,1.0]

Note that the compiler normally computes constant subexpressions at compile time, such
as 2*π in the function h. This works with all simple scalars (machine ints and doubles), see
Constant Definitions for details.

As an aside, the last example also shows that Pure has no problems with Unicode. π is a
Greek letter and thus an identifier as good as any other, although you will have a hard time
finding that letter on an English keyboard. Fortunately, most operating systems nowadays
provide you with an applet that lets you enter foreign language characters and other special
symbols with ease.

1.5.4 Defining Functions

Now that we’ve learned how to run the interpreter and evaluate some expressions, it’s time
to embark on some real programming. Like in other functional programming languages,
we do this by defining functions which perform the desired computation. The form these
definitions take in Pure is a collection of rewriting rules which specify how an application
of the function reduces to another expression which then gets evaluated recursively to give
the value of the function application.

In the simplest case, the left-hand side of a rewriting rule may just specify the function name
along with some argument names. For instance:

square x = x*x;
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Now, if we evaluate an expression like square 7, it reduces to 7*7 which in turn reduces to
49 by the built-in rules for integer arithmetic. You can verify this by entering the definition
in the interpreter:

> square x = x*x;
> square 7;
49

In fact, the above definition is completely generic; since x is an unqualified variable, we can
apply square to any value x and have it evaluate to x*x:

> square 7.0;
49.0
> square 7L;
49L
> square (a+b);
(a+b)*(a+b)

As the last example shows, this will even work if the supplied argument is no number at all,
which is useful, e.g., if we want to do symbolic evaluations.

Functions can have as many arguments as you like, subject to the constraint that each equa-
tion defining the function has the same number of arguments on the left-hand side. For
instance, suppose that we want to calculate the sum of two squares. We can do this using
the square function from above as follows:

> sumsquares x y = square x + square y;
> sumsquares 3 4;
25

The interpreter keeps track of the number of arguments of each defined function, so if we
accidentally try to define sumsquares with three arguments later then we’ll get an error mes-
sage:

> sumsquares x y z = square x + square y + square z;
<stdin>, line 8: function ’sumsquares’ was previously defined with 2 args

This actually makes perfect sense if you think about the way curried function applications
work. If the above was permitted, then an expression like sumsquares x y would become
ambiguous (would it denote an invocation of the binary sumsquares or a partial application
of the ternary one?).

Thus Pure doesn’t really have variadic functions which take a variable number of argu-
ments. There are ways to emulate this behaviour in some cases, but usually it’s easier to just
pass the arguments as a single structured value instead. It is customary to employ tuples
for this purpose, so that the call uses the familiar notation f (x,y,z). A typical example are
optional arguments. For instance, suppose that we’d like to define a function incr which
increments a numeric value, where the amount to be added can be specified as an optional
second value which defaults to 1. This can be done in Pure as follows:

incr (x,y) = x+y;
incr x = x+1 otherwise;
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These equations must be in the indicated order. Pure considers different equations for the
same function in the order in which they are written. Therefore “special case” rules, like the
one for incr (x,y) in this example, must be listed first. (Note that if the second equation
came first, incr (5,2) would reduce to (5,2)+1 rather than 5+2, because x also matches, in
particular, any tuple x,y.)

Functions taking a single tuple argument are also (somewhat misleadingly) called uncurried
functions, because their arguments have to be given all in one go, which precludes partial
applications of the function. While curried functions are often preferred, uncurried functions
can be more convenient at times, e.g., if you have to map a function to a list containing given
combinations of arguments. For instance, given the above definition of incr we may write:

> map incr [(5,1),(5,2),(6,3),(7,5)];
[6,7,9,12]

To make this work with curried functions, the prelude provides a function uncurry which
turns a curried function of two arguments into an uncurried one which takes a single tuple
argument:

> map (uncurry (+)) [(5,1),(5,2),(6,3),(7,5)];
[6,7,9,12]

On the other hand, some generic list processing functions such as foldl expect curried func-
tions, so the reverse transformation curry is also provided:

> foldl (curry incr) 0 (1..10);
55

In fact, the definitions of curry and uncurry don’t involve any special magic, they just trans-
late curried calls to uncurried ones and vice versa. From the horse’s mouth:

> show curry uncurry
curry f x y = f (x,y);
uncurry f (x,y) = f x y;

A function can also have zero arguments, i.e., you can define parameterless functions such
as:

foo = 1..3;

The function is then simply invoked without any arguments:

> foo;
[1,2,3]

It is worth noting the difference between this and the variable definition:

let bar = 1..3;

While bar and foo yield the same result [1,2,3], they do so in different ways. bar is a global
variable whose value is computed once and then stored under its name, so that the value can
be simply recalled when bar is later invoked in an expression. Also, the value of bar can be
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changed at any time with an appropriate let statement. (If the value is not supposed to
change later then you can also define it as a const instead.)

In contrast, foo is a function which recomputes the list value on each invocation. To avoid
the overhead of recalculating the same value each time it is needed, a variable or constant is
usually preferred over a parameterless function in Pure. However, a parameterless function
will be needed if the computation involves some hidden side effects which cause a new value
to be produced for each invocation. For instance, the math module provides a parameterless
function random which computes a new pseudo random number each time it is called:

> using math;
> random, random, random;
-795755684,581869302,-404620562

Many functions also involve conditionals which let them take different computation paths
depending on the outcome of a condition. One way to do this is to employ a conditional
expression. For instance, we may compute the sign of a number as follows:

> sign x = if x>0 then 1 else if x<0 then -1 else 0;
> map sign (-3..3);
[-1,-1,-1,0,1,1,1]

Alternatively, you can also use a collection of conditional rules instead:

sign x = 1 if x>0;
= -1 if x<0;
= 0 otherwise;

Note that here we omitted the left-hand side in the second and third equations, in which case
the compiler assumes that it’s the same as for the first equation; cf. Rule Syntax for details.
Also note that the otherwise keyword is only syntactic sugar in Pure, you can always omit
it. However, it tends to improve readability by marking the default case of a definition.

Both styles are frequently used in Pure programs; it depends on the situation which one is
more appropriate. Conditional rules make the conditions stick out more clearly and hence
tend to improve readability. On the other hand, conditional expressions can be nested more
easily and thus facilitate the programming of complicated decision trees.

Function definitions may also be recursive, i.e., a function may invoke itself either directly or
indirectly in its definition. For instance, here is a definition of the Ackerman function using
conditional rules:

ack x y = y+1 if x == 0;
= ack (x-1) 1 if y == 0;
= ack (x-1) (ack x (y-1)) otherwise;

We will have more to say about recursive functions later; see Recursion below.
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1.5.5 Pattern Matching

So far we have only seen function definitions involving just unqualified variables as pa-
rameters. In general it is possible to specify arbitrary patterns for the parameters, in which
case the actual arguments are checked against the patterns and, if everything matches up,
the right-hand side of the rule is invoked with the variables in the patterns bound to their
corresponding values.

The simplest nontrivial patterns are type tags which can be placed on a variable to restrict
the type of value an argument can match. For instance:

> square x::int = x*x;
> square 7;
49

Note that in contrast to our previous generic definition of the square function we gave in
Defining Functions, this definition now only applies to the case of an int argument:

> square 7.0;
square 7.0

Polymorphic definitions can be made by giving separate equations for the different argu-
ment types. For instance, we can easily add an equation for the double case:

> square x::double = x*x;
> show square
square x::int = x*x;
square x::double = x*x;
> square 7; square 7.0;
49
49.0

Here the right-hand sides of both rules are the same. Pure has a convenient shorthand nota-
tion for this case which lets you factor out the common right-hand side using the ‘|‘ delimiter
as follows:

square x::int | square x::double = x*x;

The compiler expands this to the same two rules as above:

square x::int = x*x;
square x::double = x*x;

Let’s compare this to our earlier generic definition of square:

square x = x*x;

There are two different kinds of polymorphism at work here. The latter, generic definition
is an example of parametric polymorphism; it applies to any type of argument x whatso-
ever (at least if it makes sense to multiply a member of the type with itself). Also note that
this definition is “closed”; because equations are considered in the order in which they are
written, there’s no way you could add another “special case” rule to this definition later.
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In contrast, the former definition leaves any application of square to a value other than int
or double undefined. This gives us the opportunity to define square on as many types of
arguments as we like, and (this is the crucial point) define the function in different ways for
different argument types. This is also known as ad-hoc polymorphism or function over-
loading. For instance, if we later need to square 2x2 matrices, we might add a rule like:

square {a,b;c,d} = {a*a+b*c,a*b+b*d;c*a+d*c,c*b+d*d};

Pure places no restriction on the number of equations used to define a function, and the dif-
ferent equations may in fact be scattered out over many different places. So as long as the
left-hand side patterns properly discriminate between the different cases, you can overload
any operation in Pure to handle as many argument types as you want. However, it is im-
portant to note that in contrast to overloaded functions in statically typed languages such as
C++, there’s really only one square function here which handles all the different argument
types. The necessary “dispatching” to select the proper rewriting rule for the argument val-
ues at hand is done at runtime by pattern matching.

Parametric polymorphism has the advantage that it lets you define polymorphic functions in
a very concise way. On the other hand, ad-hoc polymorphism lets you deal with disparate
cases of an operation which cannot easily be reconciled. It also allows you to tailor the
definition to the specific case at hand, which might be more efficient than using a generic
rule. You can also combine both approaches, but in this case you have to list the special case
rules before the generic ones. For instance:

square x::int | square x::double |
square x = x*x;

(Note that the first two rules are just specialization of the last rule to int and double argu-
ments, so we could in fact eliminate the special case rules here and still get the same results.
But the type tags tell the compiler that the argument in these rules is always an int or double,
respectively, so it may generate more efficient code for these cases.)

Patterns may also involve constant values, in which case the constant must be matched liter-
ally in the argument. For instance, here is another definition of the Ackerman function from
Defining Functions which uses constant argument patterns instead of conditional rules:

ack 0 y = y+1;
ack x 0 = ack (x-1) 1;
ack x y = ack (x-1) (ack x (y-1)) otherwise;

The first two rules take care of the “base cases” x==0 and y==0. Note that these rules must
be given in the indicated order to make them work. Specifically, the left-hand side ack x y
of the last equation also matches, in particular, terms like ack 0 y and ack x 0, so placing
the last equation before the first two will “shadow” those rules and cause non-termination,
resulting in a stack overflow. Similarly, placing the second equation before the first one will
cause the definition to loop on ack 0 0.

Another point that deserves mentioning here is that constants on the left-hand side of a
rule must be matched literally, cf. Constant Patterns. E.g., ack 0 y only matches if the first
argument is really 0, not 0.0 or 0L (although these compare equal to 0). So the above defi-

1.5.5 Pattern Matching 77



Pure Language and Library Documentation, Release 0.62

nition of ack isn’t quite the same as our previous definition from Defining Functions. If you
wanted the definition above to also work with double and bigint values, you’d have to add
corresponding rules for the 0.0 and 0L cases.

Last but not least, patterns are also used to “deconstruct” structured values like lists, tuples
and matrices, binding variables to the component values. For instance, to compute the sum
of a list of values, you may write:

> sum [] = 0;
> sum (x:xs) = x+sum xs;
> sum (1..100);
5050

This definition works in a straightforward recursive manner. The first rule involves the
constant pattern [] and thus handles the base case of an empty list, in which case the sum
is zero. The second rule has a structured argument pattern x:xs which denotes a list with
head element x and tail xs; in this case the result is x added to the sum of the remaining list
elements xs. (In fact, this computational pattern is so common that the prelude provides a
family of functions such as foldl and foldr to do this kind of operation in a generic way.
Our sum function above is actually equivalent to foldr (+) 0, see List Processing below for
details.)

Instead of placing the patterns directly into the left-hand sides of the function definition, you
might also do the necessary pattern-matching in the right hand side, by employing a case
expression:

sum xs = case xs of [] = 0; x:xs = x+sum xs end;

This works a bit different, though, since a case expression raises an exception if the target
expression is not matched (cf. Patterns):

> sum (1:2:xs);
<stdin>, line 2: unhandled exception ’failed_match’ while evaluating ’sum (1:2:xs)’

To avoid that, you may want to add a type tag, which ensures that the argument of sum is of
the proper type:

sum xs::list = case xs of [] = 0; x:xs = x+sum xs end;

Now the case of an improper list is handled a bit more gracefully, yielding the same normal
form expression you’d get with the first definition of sum above:

> sum (1:2:xs);
1+(2+sum xs)

Pure also allows to define sum in a more traditional way which will be familiar to Lisp pro-
grammers (note that head and tail correspond to Lisp’s “car” and “cdr”):

sum xs::list = if null xs then 0 else head xs + sum (tail xs);

Choosing one or the other is again a question of style. However, if you’re dealing with
concrete data structures such as lists, pattern-matching definitions are often more convenient
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and easier to understand.

Pattern matching also works with user-defined constructors (cf. Data Types). For instance,
here’s how to implement an insertion operation which can be used to construct a binary tree
data structure useful for sorting and searching:

nonfix nil;

insert nil y = bin y nil nil;
insert (bin x L R) y = bin x (insert L y) R if y<x;

= bin x L (insert R y) otherwise;

Note that nil needs to be declared as a nonfix symbol here, so that the compiler doesn’t
mistake it for a variable; see The “Head = Function” Rule for details. The following example
illustrates how the above definition may be used to obtain a binary tree data structure from
a list:

> tree [] = nil;
> tree (x:xs) = insert (tree xs) x;
> tree [7,12,9,5];
bin 5 nil (bin 9 (bin 7 nil nil) (bin 12 nil nil))

Conversely, it’s also easy to convert such a tree structure back to a list. We can then combine
these operations to sort a list in ascending order:

> list nil = [];
> list (bin x L R) = list L + (x:list R);
> list (tree [7,12,9,5]);
[5,7,9,12]

1.5.6 Local Functions and Variables

Up to this point our examples only involved global functions and variables. When the prob-
lems to be solved become more difficult, it will be necessary to structure the solution in some
way, so that you’ll often end up with many small functions which need to work in concert to
solve the problem at hand. Typically only a few of these functions will serve as actual entry
points, while other functions are only to be used internally. Pure supports this through local
functions and variables whose scope is limited either to the right-hand side of a rule or one
of its subexpression. This offers two main advantages:

• Local functions and variables are hidden from the main scope so that they can only be
used in the context where they are needed and don’t clutter up the global environment.
This provides a way to define functions in a modular fashion while hiding internal
details from the rest of the program.

• The right-hand sides of local definitions have full access to other local functions and
variables in their parent environments, which eliminates the “plumbing” which would
otherwise be needed to pass these values around. For instance, a local function nested
in another function can freely access the parent function’s arguments and other local
variables in its scope.
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Local functions are defined using the with construct, while local variables can be introduced
with a when or case expression, see Special Expressions for details. These constructs can be
tacked on to any expression, and they can also be nested. For instance:

> f 5 with f x = y+y when y = x*x end end;
50

Note that the local function f there computes twice the square of its argument x. To these
ends, first x*x is assigned to the local variable y whose value is then doubled by computing
y+y which becomes the result of f.

Local functions can also be created without actually naming them, by employing a so-called
lambda abstraction. For instance, a function which squares its argument might be denoted
as \x -> x*x. This is pretty much the same as a local function f with f x = x*x end except
that the function remains nameless. This notation is pretty convenient for making up little
“one-off” functions which are to be applied on the spot or passed as function arguments or
results to other functions. For instance, here’s how you can compute the first ten squares,
first with an ordinary (named) local function, and then with an equivalent lambda:

> map f (1..10) with f x = x*x end;
[1,4,9,16,25,36,49,64,81,100]
> map (\x -> x*x) (1..10);
[1,4,9,16,25,36,49,64,81,100]

For obvious reasons lambdas work best for non-recursive functions. While there are tech-
niques to create recursive functions out of lambdas using so-called fixed point combinators
(cf. fix), named functions are much more convenient for that purpose.

Pattern matching works in local definitions as usual. For instance, here are several ways
to swap two values represented as a tuple, using either a local function or a when or case
expression:

> swap (1,2) with swap (x,y) = y,x end;
2,1
> (\(x,y) -> y,x) (1,2);
2,1
> y,x when x,y = 1,2 end;
2,1
> case 1,2 of x,y = y,x end;
2,1

You’ll also frequently find code like the following, where a global “wrapper” function just
sets up some initial parameter values and then invokes a local “worker” function which
does all the real work. The following function calculates the sum of the positive integers up
to n (the “accumulating parameters” technique used in this example will be explained later,
cf. Recursion).

sum n = sum 0 n with
sum s n = s if n < 0;

= sum (s+n) (n-1) otherwise;
end;
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Note that there are actually two separate functions named sum here. This works because
according to the scoping rules the right-hand side of the global definition is under the scope
of the with clause, and thus the call sum 0 n on the right-hand refers to the local sum function,
not the global one. (While it is perfectly correct and even makes sense in this example, this
style may be somewhat confusing, so we often prefer to give wrapper and worker different
names for clarity.)

As discussed in Scoping Rules, a local function can refer to other local functions and vari-
ables in its parent environments. It can also be returned as a function value, which is where
things get really interesting. The local function value then becomes a lexical closure which
carries around with it the local variable environment it was created in. For instance:

> adder x = add with add y = x+y end;
> let g = adder 5; g; map g (1..5);
add
[6,7,8,9,10]

Note that here the local function add refers to the argument value x of its parent function
adder. The invocation adder 5 thus returns an instance of add which has x bound to the
value 5, so that add y reduces to 5+y for each y. This works as if this instance of the add
closure had an invisible x argument of 5 attached to it. (And this is in fact how closures
are implemented internally, using a transformation called lambda lifting which effectively
turns local functions into global ones.) You should study this example carefully until you
fully understand how it works; we’ll see a bunch of other, more complicated examples of
this kind later.

Lexical closures also provide a means to encapsulate data in a way reminiscent of object-
oriented programming. For instance:

nonfix coords;

point (x,y) = \msg -> case msg of
coords = x,y;
move (dx,dy) = point (x+dx,y+dy);

end;

The anonymous function returned by point in fact works like an “object” which can be
queried for its coordinates and moved by a given offset through corresponding “messages”
passed as arguments to the object:

> let p = point (1,2); p;
#<closure 0x7f420660e658>
> p coords; p (move (2,3)) coords;
1,2
3,5

Note that this still lacks some typical features of object-oriented programming such as mu-
tability and inheritance. It isn’t really hard to add these, but this requires the use of some of
Pure’s more advanced machinery which we didn’t discuss yet. For instance, mutability can
be implemented in Pure by using so-called expression references, a kind of mutable storage
cells which can hold arbitrary expression values:
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> let x = ref 99; get x;
99
> put x 2;
2
> get x;
2

Using these we can rewrite our definition of the point object as follows:

nonfix coords;

point (x,y) = (\msg -> case msg of
coords = get x, get y;
move (dx,dy) = put x (get x+dx), put y (get y+dy);

end) when
x,y = ref x,ref y;

end;

Note that the coordinates are kept in corresponding expression references assigned to the
local x and y variables, which now shadow the x and y arguments of point. This makes it
possible to have move actually modify the point object in-place:

> let p = point (1,2); p coords;
1,2
> p (move (2,3)); p coords;
3,5
3,5

It goes without saying that this style isn’t preferred in functional programs, but it certainly
has its uses, especially when interfacing to imperative code written in other languages such
as C.

1.5.7 Data Types

Before we consider the more advanced uses of functions in Pure, a few remarks about data
types are in order. Like Lisp, Pure is basically a “typeless” language. That doesn’t mean that
there are no data types; in fact, they’re a dime a dozen in Pure. But Pure lets you make up
your own data structures as you go, without even formally defining a data type. Data types
can be defined and associated with a name pretty much in the same way as functions, but
that’s just a convenience and completely optional. This sets Pure apart from statically typed
languages like ML and Haskell, where explicit data type definitions are mandatory if you
want to introduce new data structures.

As we’ve seen, Pure knows about a few built-in types such as numbers, strings, symbols
and functions; everything else is a function application. If a symbol is defined as a function,
which merely means that there are some rewriting rules for it, then an application of that
function to some arguments may evaluate to something else. But if it doesn’t, then Pure is
perfectly happy with that; it just means that the function application is in normal form and
thus becomes a “value”. For instance:
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> cons 3 (cons 5 nil);
cons 3 (cons 5 nil)

There’s nothing mysterious about this; the cons and nil symbols being used here aren’t
defined anywhere, and thus any terms constructed with these symbols are just “data”, no
questions asked. We also call such symbols constructors. (Note that these are different from
constructors in object-oriented programming; constructor applications in term rewriting and
functional programming normally don’t execute any code, they’re just literal data objects.)

We can now go ahead and define some operations on this kind of data. (To these ends, it’s
necessary to declare nil as a nonfix symbol so that we can use it as a literal in patterns; cf.
Pattern Matching.)

nonfix nil;

#nil = 0;
#cons x xs = #xs+1;

head (cons x xs) = x;
tail (cons x xs) = xs;

nil + ys = ys;
cons x xs + ys = cons x (xs + ys);

Et voilà, we’ve just created our own list data structure! It’s admittedly still a bit paltry, but
if we keep at it and define all the other functions that we need then we could turn it into
a full-blown replacement for Pure’s list data structure. In fact Pure’s lists work in a very
similar fashion, using the infix ‘:‘ constructor and the empty list [] in lieu of cons and nil,
respectively.

If we want, we can define a new data type for the data structure we just invented. This
works by giving a number of type rules similar to those used in function definitions. In
general, these may denote arbitrary unary predicates, but in our case it’s sufficient to just list
the patterns of terms which are supposed to be members of the type (see Type Rules for an
explanation of the definition syntax):

type mylist nil | mylist (cons x xs);

This definition lets us use the mylist type as a tag on the left-hand side of an equation, cf.
Pattern Matching. But if we’re content with using the patterns directly then we might just as
well do without that.

Types consisting solely of constructor term patterns are sometimes also called algebraic
types. In fact, most user-defined data structures are algebraic types in Pure, and there are
plenty of examples of these in the standard library as well. In particular, lists and tuples
are algebraic types, as are complex and rational numbers, and most of Pure’s container data
types such as dictionaries and sets are also implemented as algebraic types.

Pure differs from most functional languages in that symbols may act as both constructors and
defined functions, depending on the arguments. Thus Pure allows you to have “constructors
with equations”. For instance:
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cons nil ys = ys;
cons (cons x xs) ys = cons x (cons xs ys);

Now cons has become a (partially) defined function. Note that these rules make cons asso-
ciative and turn nil into a left-neutral element for cons. This in fact makes cons behave like
concatenation, so that our lists are always flat now:

> cons (cons 1 (cons 2 nil)) (cons 3 nil);
cons 1 (cons 2 (cons 3 nil))

Examples of such constructor equations can be found in the standard library as well, such as
the rules used to flatten tuples, keep rational numbers in lowest terms, or confine the angles
of complex numbers in polar notation.

Another possible use of constructor equations is to check the well-formedness of constructor
terms. For instance, in our example we might want to preclude terms like cons 1 2 which
don’t have a mylist in the second argument to cons. This can be done with a constructor
equation which raises an exception in such cases (cf. Exception Handling):

> cons x y = throw (bad_mylist y) if ~typep mylist y;
> cons 1 2;
<stdin>, line 18: unhandled exception ’bad_mylist 2’ while evaluating ’cons 1 2’

A specific kind of algebraic data types which are useful in many applications are the enu-
merated types. In this case the type consists of symbolic constants (nonfix symbols) only,
which are the elements of the type. For instance:

nonfix sun mon tue wed thu fri sat;
type day sun | day mon | day tue | day wed | day thu | day fri | day sat;

However, to make this type actually work as an enumerated type, we may want to provide
definitions for basic arithmetic, ord, succ, etc. This is rather straightforward, but tedious. So
as of Pure 0.56, the standard library provides a little utility module, enum, which generates
the necessary definitions in an automatic fashion. All we have to do is to import the module
and then invoke the enum function on the type and we’re set:

using enum;
enum day;

It’s also possible to define the type and make it enumerable in one go using the defenum
function:

defenum day [sun,mon,tue,wed,thu,fri,sat];

In either case, we can now perform calculations with the members of the type just like with
other predefined enumerated types such as numbers and characters:

> ord sun;
0
> day (ans+3);
wed
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> pred sat;
fri
> sun+3;
wed
> fri-2;
wed
> fri-tue;
3
> mon..fri;
[mon,tue,wed,thu,fri]
> sun:tue..sat;
[sun,tue,thu,sat]
> sat:fri..mon;
[sat,fri,thu,wed,tue,mon]

A more abstract way to define algebraic types are the interface types. For instance, if we
take another look at the operations defined on our list type, we may observe that the data
structure is quite apparent from the patterns in the rules of operations such as ‘#‘ and ‘+‘.
Pure lets us leverage that information by creating an algebraic type from a collection of
operation patterns it supports. For instance, we may write:

interface list_alike with
#x::list_alike;
x::list_alike + y;

end;

This defines a generic type consisting of all terms which may be passed as an argument to
both ‘#‘ and ‘+‘. We can ask the interpreter about the patterns actually matched by the type
as follows:

> show interface list_alike
type list_alike s::string;
type list_alike [];
type list_alike (x:xs);
type list_alike nil;
type list_alike (cons x xs);

Note that the list_alike type not only includes our own list type, but also any other data
structure providing the ‘#‘ and ‘+‘ operations. This also comprises the standard list and
string types for which there are definitions of the ‘#‘ and ‘+‘ operations in the prelude.

Pure’s interface types are a first attempt at formalizing the notion of Duck typing in Pure.
They are thus still a bit experimental and require some diligence in defining the interface
operations in a suitable way. Please check Interface Types in the Declarations section for
more information and examples.

1.5.8 Recursion

Recursion means that a function calls itself, either directly or indirectly. It is one of the most
fundamental techniques in functional programming, and you won’t find many useful Pure
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programs which don’t use it in one form or another. That’s because most interesting pro-
grams execute pieces of code repeatedly. Pure doesn’t have any special looping constructs,
so recursion is the only way to do this in Pure. We’ve already seen various examples of this
throughout the manual, so let’s take a closer look at it now and learn a few related tricks
along the way.

For a simple example, consider the factorial. In order to compute the factorial of an integer
n, we need to multiply the positive integers up to n. There’s a straightforward recursive
definition which does this:

fact n = if n>0 then n*fact (n-1) else 1;

If you prefer conditional rules instead, you can also write:

fact n = n*fact (n-1) if n>0;
= 1 otherwise;

It’s not hard to see how this definition operates. The first rule only applies if n>0, otherwise
the second rule kicks in so that fact n becomes 1 if n is zero or negative (which is consistent
with our informal description because in this case the product of all positive integers up to n
is the empty product which is 1 by mathematical convention). The first rule is the interesting
one where the recursion happens. If n>0 then we may compute fact n by computing fact
(n-1) recursively and multiplying that with n, giving n*(n-1)*...*1. Let’s check that this
works:

> map fact (1..10);
[1,2,6,24,120,720,5040,40320,362880,3628800]

Note that these numbers grow fairly quickly; they outgrow the 32 bit range and start wrap-
ping around already at n==13. To avoid that, you’ll have to do the computation with bigints,
or you could use floating point values if you don’t mind the limited precision.

> fact 13;
1932053504
> fact 13L;
6227020800L
> fact 30L;
265252859812191058636308480000000L
> fact 30.0;
2.65252859812191e+32

However, you’ll run into another, more serious obstacle if you want to compute factorials
for some really big values of n. For instance:

> fact 200000L;
<stdin>, line 7: unhandled exception ’stack_fault’ while evaluating ’fact 200000L’

Oops. What happened there? Well, each recursive invocation of fact needs some small
amount of memory on the execution stack, a so-called “stack frame”. Thus, when n becomes
big enough then our definition is in danger of running out of stack space. (This is also why
you keep hearing in most CS 101 courses that you should try to avoid recursion. If you’ve
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forgotten how subroutine calls are executed by keeping the execution context on a stack then
it’s time to revisit those CS 101 lecture notes now.)

So how can we avoid using all that stack space? In a language like C we’d be using a spe-
cialized loop construct instead of recursion, e.g.:

int fact(int n)
{

int p = 1;
while (n>0) { p = n*p; n = n-1; }
return p;

}

Pure doesn’t have a while loop, but we can rewrite the definition so that it becomes tail-
recursive. This means that the recursive call becomes the final operation on the right-hand
side of the recursive rule. The Pure compiler treats this pretty much like a loop in traditional
programming languages.

The trick of the trade to turn a recursive function into a tail-recursive one is the accumulating
parameter technique. The idea here is to have a separate “worker” function which carries
around an extra argument representing the intermediate result for the current iteration. The
final value of that parameter is then returned as the result. In the case of the factorial this
can be done as follows:

fact n = loop n 1 with
loop n p = loop (n-1) (n*p) if n>0;

= p otherwise;
end;

Note that fact has now become a simple “wrapper” which supplies the initial value of the
accumulating parameter (p in this case) for the “worker” function loop which does all the
hard work. This kind of design is fairly common in functional programs.

Our worker function is tail-recursive since the recursive call to loop is indeed the final call
on the right-hand side of the first equation defining loop. The Pure compiler generates code
which optimizes such “tail calls” so that they reuse the stack frame of the calling function.
Thus a tail-recursive function like loop will execute in constant stack space; in fact it will
be just as efficient as the while loop in our little C snippet above (up to constant factors, of
course). After entering our new definition of fact we can now compute fact 200000L just
fine (this may take a little while, though, depending on how fast your computer is; the result
has 973351 digits):

> fact 200000L;
14202253454703144049669463336823059760899... // lots of digits follow

The accumulating parameter technique isn’t fully general, but it covers all the kinds of sim-
ple iterative algorithms which you’d do using loop constructs in traditional programming
languages. Some algorithms may require additional techniques such as tabulation (keeping
track of some or all intermediate results), however, so that they can be written in an iterative
form. To see how this can be done in Pure, let’s consider the Fibonacci numbers. These can
be computed with the following naive recursive definition:
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fib n = if n<=1 then n else fib (n-2) + fib (n-1);

Here are some members of this famous sequence:

> map fib (0..20);
[0,1,1,2,3,5,8,13,21,34,55,89,144,233,377,610,987,1597,2584,4181,6765]

Note that the right-hand side of the definition above involves two recursive invocations of
fib in the else branch. This is bad because it means our definition will need exponential
running time. (More precisely, you’ll find that the ratio between the running times of succes-
sive invocations quickly starts approaching the golden ratio φ = 1.618..., which is no accident
because the times are proportional to the Fibonacci function itself!)

Using a simple iterative algorithm, it is possible to calculate the Fibonacci numbers in lin-
ear time instead. Observe that each member of the sequence is simply the sum of the two
preceding members. If we keep track of the last two members of the sequence then we can
compute the next member with a single addition. This yields the following tail-recursive
implementation which uses the same kind of “wrapper-worker” design:

fib n = loop n 0L 1L with
loop n a b = loop (n-1) b (a+b) if n>0;

= a otherwise;
end;

Note that as a matter of prudence we primed the iteration with the bigints 0L and 1L so that
we can compute large Fibonacci numbers without suffering wrap-around. For instance, try
the following:

> fib 1000000;
1953282128707757731632014947596256332443... // lots of digits follow

Recursion also naturally occurs when traversing recursive data structures. We’ve already
seen various examples of these, such as the binary tree data structure:

nonfix nil;

insert nil y = bin y nil nil;
insert (bin x L R) y = bin x (insert L y) R if y<x;

= bin x L (insert R y) otherwise;

The insert function implements a binary tree insertion algorithm which keeps the tree (rep-
resented with the bin and nil constructor symbols) sorted. To these ends, it recurses into
the left or right subtree, depending on whether the element y to be inserted is less than the
current element x or not. The final result is a new tree which has a nil subtree replaced with
a new bin y nil nil subtree at the right location.

If we do an inorder traversal of such a binary tree (at each non-nil subtree, first visit the
left subtree, then note the element at the top of the current subtree, and finally visit the
right subtree), we obtain the elements of the tree in ascending order. This traversal is also
implemented recursively, e.g., as follows:
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list nil = [];
list (bin x L R) = list L + (x:list R);

Note that these functions can’t be made tail-recursive using the accumulating parameter
technique, because traversing a tree structure requires more general forms of recursion.
There is in fact a more general continuation passing technique to do this, which we will look
at in The Same-Fringe Problem below; alas, it’s not as easy as accumulating parameters. For-
tunately, some important recursive structures such as lists only involve simple recursion and
can thus be traversed and manipulated in a tail-recursive fashion more easily. For instance,
consider our earlier definition of the sum function:

sum [] = 0;
sum (x:xs) = x+sum xs;

This definition isn’t tail-recursive, but we can easily massage it into this form using the
accumulating parameter technique:

sum xs::list = loop 0 xs with
loop s [] = s;
loop s (x:xs) = loop (s+x) xs;

end;

Functions can also be mutually recursive, in which case two or more functions are defined
in terms of each other. For instance, suppose that we’d like to skip every other element of a
list (i.e., return a list with only the elements having either even or odd indices, respectively).
One way to do this involves two functions (named pick and skip here) which recursively
call each other:

> pick [] = []; pick (x:xs) = x:skip xs;
> skip [] = []; skip (x:xs) = pick xs;
> pick (1..10);
[1,3,5,7,9]
> skip (1..10);
[2,4,6,8,10]

A Numeric Root Finder

Let’s now see how we can apply the techniques explained above in the context of a some-
what more practical example: a numeric root finder. That is, we’re going to write a function
which takes another function f and determines a (double) value x such that f x becomes
(close to) zero.

We’ll develop this in a bottom-up fashion. The method we employ here is known as the
Newton-Raphson algorithm, whose basic building block is the following routine improve
which improves a given candidate solution x by computing a first-order approximation of
the root. This involves computing (a numeric approximation of) the first derivative at the
given point, which we do using a second function derive:
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improve f x = x - f x / derive f x;
derive f x = (f (x+dx) - f x) / dx;

If you still remember your calculus then these should look familiar. Note that in both func-
tions, f is our target function to be solved and x the current candidate solution. The second
equation is nothing but the difference quotient of the function at the point x, using dx as
the increment along the x axis. The improve function computes the intersection of the corre-
sponding secant of f with the x axis.

To illustrate how the method works, let’s perform a few improvement steps manually, using
the target function f x = x*x-2 which becomes zero at the square root of 2. Here we choose
a dx value of 1e-8 and start from the initial guess 2:

> let dx = 1e-8;
> improve f x = x - f x / derive f x;
> derive f x = (f (x+dx) - f x) / dx;
> f x = x*x-2;
> improve f 2;
1.49999999696126
> improve f ans;
1.41666666616021
> improve f ans;
1.41421568628522
> improve f ans;
1.41421356237468

It should be apparent by now that this converges to the square root of 2 rather quickly. To
automate this process, we need another little helper function which iterates improve until
the current candidate solution is “good enough”. A suitable termination criterion is that the
improvement drops below a certain threshold (i.e., abs (x-f x) <= dy for some reasonably
small dy). For extra safety, we’ll also bail out of the loop if a prescribed number n of iterations
has been performed. This function can be implemented in a tail-recursive fashion as follows:

loop n f x = x if n <= 0;
= if abs (x-y) < dy then y else loop (n-1) f y when y = f x end;

Let’s give it a try:

> let dy = 1e-12;
> loop n f x = x if n <= 0;
> = if abs (x-y) < dy then y else loop (n-1) f y when y = f x end;
> loop 20 (improve dx f) 2;
1.4142135623731
> ans*ans;
2.0

Looks good. So let’s finally wrap this up in a main entry point solve which takes the function
to be solved and an initial guess as parameters. Our little helper functions improve, derive
and loop are only used internally, so we can turn them into local functions of solve. The
additional parameters of the algorithm are implemented as global variables so that we can
easily modify their values if needed. The end result looks as follows. Note that the initial
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guess x is an implicit parameter of the solve function, so the function actually gets invoked
as solve f x.

let dx = 1e-8; // delta value for the approximation of the derivative
let dy = 1e-12; // delta value for testing convergence
let nmax = 20; // maximum number of iterations

solve f = loop nmax (improve f) with
loop n f x = x if n <= 0;
= if abs (x-y) < dy then y else loop (n-1) f y when y = f x end;

improve f x = x - f x / derive f x;
derive f x = (f (x+dx) - f x) / dx;

end;

Here are some examples showing how the solve function is used. Note that we specify the
target functions to be solved as lambdas here. E.g., \t -> t^3-x denotes a function mapping
t to t^3-x, which becomes zero if t equals the cube root of x.

> sqrt x = solve (\t -> t*t-x) x;
> sqrt 2; sqrt 5;
1.4142135623731
2.23606797749979
> cubrt x = solve (\t -> t^3-x) x;
> cubrt 8;
2.0

Our little root finder isn’t perfect. It needs a fairly well-behaved target function and/or a
good initial guess to work properly. For instance, consider:

> solve (\t -> 1/t-2) 1;
0.00205230175365927

Here solve didn’t find the real root at 0.5 at all. In fact, if you print the solution candidates
then you will find that solve converges rather slowly in this case and thus bails out after 20
iterations before a good solution is found. Increasing the nmax value fixes this:

> let nmax = 50;
> solve (\t -> 1/t-2) 1;
0.5

There are other pathological cases where the algorithm performs even more poorly. Further
improvements of the method presented here can be found in textbooks on numeric algo-
rithms; the interested reader may want to cut his teeth on these algorithms by translating
them to Pure in the way we’ve shown here.

The Same-Fringe Problem

This is one of the classical problems in functional programming which has a straightforward
recursive solution, but needs some thought if we want to solve it in an efficient way. Con-
sider a (rooted, directed) tree consisting of branches and leaves. To keep things simple, we
may represent these structures as nested lists, e.g.:
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let t1 = [[a,b],c,[[d]],e,[f,[[g,h]]]];
let t2 = [a,b,c,[[d],[],e],[f,[g,[h]]]];
let t3 = [[a,b],d,[[c]],e,[f,[[g,h]]]];

Thus each inner node of the tree is represented as a list containing its (zero or more) subtrees,
and the leaves are the “atomic” (non-list) elements. The fringe of such a structure is the list
of all leaves in left-to-right order, which can be computed as follows:

fringe t = if listp t then catmap fringe t else [t];

Note that listp is a predicate which decides whether its argument is a (proper or improper)
list and the catmap function applies the given function to a list, like map, and concatenates all
the resulting lists, like cat. Thus, if the argument t is an “atom” (leaf) then fringe simply
returns [t], otherwise it recursively applies itself to all the subtrees and concatenates the
results:

> fringe t1;
[a,b,c,d,e,f,g,h]
> fringe t2;
[a,b,c,d,e,f,g,h]
> fringe t3;
[a,b,d,c,e,f,g,h]

Note that t1 and t2 differ in structure but have the same fringe, while t1 and t3 have the
same structure but different fringes. The problem now is to decide, given any two trees,
whether they have the same fringe. Of course, we can easily solve this by just computing the
fringes and comparing them with ‘===‘ (note that we employ syntactic equality here which
also allows us to compare symbols, for which ‘==‘ isn’t normally defined):

> fringe t1 === fringe t2;
1
> fringe t3 === fringe t2;
0

However, this is rather inefficient since we always have to fully construct the fringes which
may need considerable extra time and space if the trees are large. Most of this effort may
be completely wasted if we only need to inspect a tiny fraction of the fringes to find out
that they’re different, as in the case of t2 and t3. Also note that our version of the fringe
function isn’t tail-recursive and we may thus run into stack overflows for large trees.

This problem, while posed in an abstract way here, is not only of academic interest. For in-
stance, trees may be used as an alternative string data structure which implements concate-
nation in constant time by just delaying it. In this case we certainly don’t want to explicitly
carry out all those concatenations in order to decide whether two such objects are the same.

Therefore, this problem has been studied extensively and more efficient approaches have
been developed. One way to solve the problem involves the technique of continuation
passing which is a generalization of the accumulating parameter technique we already dis-
cussed. It never constructs any part of the fringes explicitly and also works in constant stack
space. The algorithm can be implemented in Pure as follows. (This is a slightly modified
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transliteration of a Lisp program given in Henry Baker’s article “Iterators: Signs of Weak-
ness in Object-Oriented Languages”, ACM OOPS Messenger 4(3), 1993, pp. 18-25, which is
also available from Henry Baker’s Archive of Research Papers.)

samefringe t1 t2 =
samefringe (\c -> genfringe t1 c done) (\c -> genfringe t2 c done) with
done c = c [] done;
samefringe g1 g2 =
g1 (\x1 g1 -> g2 (\x2 g2 -> x1===x2 && (x1===[] || samefringe g1 g2)));

genfringe [] c g = g c;
genfringe (x:t) c g = genfringe x c (\c -> genfringe t c g);
genfringe x c g = c x g;

end;

As Baker admits himself, this style of programming isn’t “particularly perspicuous”, so we’ll
explain the algorithm in a moment. But first let us verify that the program indeed works
as advertized. It’s helpful to print out the actual comparisons performed in the innermost
lambda in the definition of the local samefringe function, which can be done by adding a
little debugging statement as follows (this also needs an import clause “using system;” to
make the printf function available):

samefringe g1 g2 =
g1 (\x1 g1 -> g2 (\x2 g2 -> printf "%s === %s?\n" (str x1,str x2) $$

x1===x2 && (x1===[] || samefringe g1 g2)));

With this we get:

> samefringe t1 t2;
a === a?
b === b?
c === c?
d === d?
e === e?
f === f?
g === g?
h === h?
[] === []?
1

So in this case we do a complete traversal of both trees which is the best that we can hope for
if the fringes are the same. Note that the final comparison [] === [] ensures that we also
hit the end of the two fringes at the same time. This test deals with the corner case that one
fringe is a prefix of the other. For instance:

> let t4 = [[a,b],c,[[d]],e,[f,[[g,h,i]]]];
> samefringe t4 t2;
a === a?
b === b?
c === c?
d === d?
e === e?
f === f?
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g === g?
h === h?
i === []?
0

Things go a bit differently, however, when comparing t3 and t2; as soon as we hit the first
discrepany between the two fringes, the algorithm bails out and correctly asserts that the
fringes are different:

> samefringe t3 t2;
a === a?
b === b?
d === c?
0

Let’s take a closer look at the various parts of the algorithm now. First, the genfringe func-
tion:

genfringe [] c g = g c;
genfringe (x:t) c g = genfringe x c (\c -> genfringe t c g);
genfringe x c g = c x g;

This routine generates the fringe of a tree, given as the first argument, on the fly. The second
argument c (the “consumer”) is a function which gets invoked on the current leaf, to do any
required processing. (As we’ll see later, it may also get invoked with the special “sentinel”
value [] to indicate the end of the fringe.)

The third argument g (the “generator”) is a continuation, a kind of “callback function” to
be invoked after the current subtree has been traversed, in order to process the remainder
of the tree. It takes the consumer function c as its sole argument. Consequently, genfringe
simply invokes the continuation g on the consumer c when applied to an empty subtree [],
i.e., if there aren’t any leaves to be processed. This case is handled in the first equation for
genfringe.

The second equation for genfringe is the interesting one where the recursion happens. It
deals with a nonempty tree x:t by invoking itself recursively on x, setting up a new contin-
uation \c -> genfringe t c g, which will take care of processing the rest of the subtree t,
after which it chains to the previous continuation g which will handle the rest of the tree.

The third equation for genfringe handles the case of a non-list argument, i.e., a leaf. In this
case we just pass the leaf x to the consumer function c along with the continuation g. The
consumer processes x as needed and may then decide to call the continuation g on itself
in order to continue processing the rest of the tree, or simply bail out, returning any value.
Note that this entire process is tail-recursive, as long as c chains to g as the last call. It thus
only needs constant stack space in addition to what c itself uses.

Note that we need an initial continuation g to get the process started. This is provided by
the done function:

done c = c [] done;
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As we’ve defined it, done invokes the consumer c on an empty list to signal the end of
the fringe. For good measure, it also passes itself as the continuation argument; however,
normally the consumer will never use this argument and just bail out when invoked on the
[] value.

To see how this works, we can just enter done and genfringe as global functions and invoke
them on a suitable consumer function, e.g.:

> done c = c [] done;
> genfringe [] c g = g c;
> genfringe (x:t) c g = genfringe x c (\c -> genfringe t c g);
> genfringe x c g = c x g;
> c x g = if x===[] then g else printf "%s... " (str x) $$ g c;
> genfringe t1 c done;
a... b... c... d... e... f... g... h... done

In the case of samefringe, we use the local samefringe function as our consumer instead.
This works pretty much the same, except that samefringe employs two continuations g1 and
g2 to traverse both trees at the same time:

samefringe g1 g2 =
g1 (\x1 g1 -> g2 (\x2 g2 -> x1===x2 && (x1===[] || samefringe g1 g2)));

Note that the outer lambda (\x1 g1 -> ...) becomes the consumer for the first generator
g1 which traverses t1. When called, it then invokes the second generator g2, which traverses
t2, on the consumer (inner lambda) (\x2 g2 -> ...). This in turn does the necessary tests
to verify that the current leaf elements are the same, or to bail out from the recursion if they
aren’t or if we reached the end of the fringes. Also note that this is still tail-recursive because
the short-circuit logical operations && and || are both tail-recursive in their second operand
(cf. Stack Size and Tail Recursion).

1.5.9 Higher-Order Functions

As we have seen, functions are first-class citizens in Pure which can be created on the fly
(using partial applications as well as lambdas and local functions), assigned to variables
and passed around freely as function arguments and results. Thus it becomes possible to
define higher-order functions which take other functions as arguments and/or return them
as results. This is generally considered a hallmark feature of functional programming, and
much of the power of functional programming stems from it. In fact, higher-order functions
are so deeply ingrained in the modern functional programming style that you’ll hardly find
a nontrivial program that doesn’t use them in some way, and we have already seen many
examples of them throughout the manual. While most imperative programming languages
today let you treat functions as values, too, they’re typically much more limited in the ways
that new functions can be created dynamically. Only recently have partial application and
anonymous closures arrived in some mainstream imperative languages, and they are often
still rather awkward to use.

The simplest case of a higher-order function is a function which takes another function as
an argument. For instance, we have seen the function map which applies a function to each
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member of a list. If it wasn’t in the prelude, it could be defined as follows:

map f [] = [];
map f (x:xs) = f x : map f xs;

(Note that this isn’t the actual definition from the prelude, which goes to some lengths to
make the operation tail-recursive and properly handle lazy lists. But we won’t dive into
these technicalities here since we’re only interested in the higher-order aspect right now.)

This definition is rather straightforward: To map a function f to a list, just apply it to the
head element x and recurse into the tail xs. The recursion stops at the empty list which is
returned as is. For instance:

> map (*2) (0..10);
[0,2,4,6,8,10,12,14,16,18,20]

The prelude includes an entire collection of such generic list functions which have proven
their utility as basic building blocks for many list processing tasks. We’ll have a closer look
at these later, see List Processing.

Another numerical example is the function derive which we used in our root finder example
to calculate the difference quotient of a function f at a given point x:

derive f x = (f (x+dx) - f x) / dx;

This example is also interesting because we can turn derive into a function mapping func-
tions to other functions, by partially applying it to the target function. So we may write:

> let dx = 1e-8;
> map (derive square) (1..4) with square x = x*x end;
[1.99999998784506,3.99999997569012,5.99999996353517,7.99999995138023]

This illustrates an easy way to create new functions from existing ones: partial application.
(In fact we also did that when we applied the operator section (*2) using map above. Note
that (*2) is a function which doubles its single argument.) This simple recipe is surprisingly
powerful. For instance, the prelude defines the function composition operator ‘.‘ as:

(f.g) x = f (g x);

The partial application f.g thus applies two given functions f and g in sequence (first g,
then f). Functions of this kind, which create new functions by combining existing ones, are
also known as combinators. For instance, using ‘.‘ we can easily create a function which
“clamps” its argument between given bounds by just combining the min and max functions
from the prelude as follows:

> clamp a b = max a . min b;
> map (clamp (-3) 3) (-5..5);
[-3,-3,-3,-2,-1,0,1,2,3,3,3]

Note that partial application works with constructor symbols, too:
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> map (0:) [1..3,4..6,7..9];
[[0,1,2,3],[0,4,5,6],[0,7,8,9]]

Another more direct way to define combinators is to make them return a local or anonymous
function. For instance, the following equations lift the ‘+‘ and ‘-‘ operators to pointwise
operations:

f + g = \x -> f x + g x if nargs f > 0 && nargs g > 0;
f - g = \x -> f x - g x if nargs f > 0 && nargs g > 0;

This employs the nargs function from the standard library which returns the argument count
of a global or local function. We use this here to check that the operands are defined functions
taking at least one argument. The result is a function which applies the function operands
to the given argument and computes their sum and difference, respectively. For instance:

> map (f+g-h) (1..10) with f x = 2*x+1; g x = x*x; h x = 3 end;
[1,6,13,22,33,46,61,78,97,118]

These rules also handle functions taking multiple arguments, so that you can write, e.g.:

> (max-min) 2 5;
3

Constructors can be extended in exactly the same way:

> f,g = \x -> f x, g x if nargs f > 0 && nargs g > 0;
> (max,min,max-min) 2 5;
5,2,3

1.5.10 List Processing

Pure’s list data structure provides you with a convenient way to represent sequences of
arbitrary values. This is one of the few compound data structures which has built-in support
by the compiler, so that some syntactic sugar is available which allows you to express certain
list operations in a convenient way. But for the most part, lists are implemented in the
prelude just like any other data structure.

The empty list is denoted [], and compound lists can be put together in a right-recursive
fashion using the ‘:‘ operator. The customary bracketed notation is provided as well, and
this is also the syntax the interpreter normally uses to print list values:

> 1:2:3:[];
[1,2,3]

Note that the bracketed notation is just syntactic sugar; internally all list values are repre-
sented as right-recursive applications of the ‘:‘ operator. Thus it is possible to match the
head and tail of a list using a pattern like x:xs:

> case [1,2,3] of x:xs = x,xs end;
1,[2,3]
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Lists can contain any combination of elements (also from different types) and they may also
be nested:

> [1,2.0,[x,y],"a string"];
[1,2.0,[x,y],"a string"]

List concatenation is denoted +, and the #, ! and !! operators can be used to compute the
length of a list and extract elements and slices of a list using zero-based indexing:

> [a,b,c]+[x,y,z];
[a,b,c,x,y,z]
> #ans, ans!5, ans!![2,3];
6,z,[c,x]

Note that lists are immutable in Pure (just like most of Pure’s built-in and predefined data
structures), so there are no operations which modify lists in-place. E.g., concatenation works
as if it was defined recursively by the following rules:

[]+ys = ys;
(x:xs) + ys = x : (xs+ys);

So a new list is created which replaces the empty list in the last component of the left operand
with the right operand. This even works if the second operand is no list at all, in which case
an improper list value is produced:

> [a,b,c]+y;
a:b:c:y

These can be useful, e.g., to represent symbolic list values. Note that a proper list value
contains the empty list [] in its rightmost component; an improper list value is one which
doesn’t. There are some list functions like reverse which really need proper lists to work and
will throw an exception otherwise, but many predefined operations will deal with improper
lists just fine:

> map f (x:y:z);
f x:f y:map f z

Lists can also be compared using the == and ~= operators:

> [1,2,3] == [1,2,4];
0

Arithmetic sequences are denoted with the .. operator:

> 1..10; 10:9..1; 0.0:0.1..1.0;
[1,2,3,4,5,6,7,8,9,10]
[10,9,8,7,6,5,4,3,2,1]
[0.0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0]

List comprehensions provide another way to construct (proper) list values using a conve-
nient math-like notation:
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> [2^x | x = 1..10];
[2.0,4.0,8.0,16.0,32.0,64.0,128.0,256.0,512.0,1024.0]

We’ll discuss this construct in more detail later, see List Comprehensions.

The prelude provides a fairly comprehensive collection of useful list functions, including
some powerful generic operations which let you do most common list manipulations with
ease. For instance, we have already seen the map function:

> map (\x->2*x-1) (1..10);
[1,3,5,7,9,11,13,15,17,19]

There’s also a function do which works in the same fashion but throws away all the results
and simply returns (). Of course this makes sense only if the applied function has some
interesting side-effect. E.g., here’s a quick way to print all members of a list, one per line.
This combines the str function (which converts any Pure expression to its printable rep-
resentation, cf. String Processing below) with the puts function from the system module
(which is just the corresponding C function, so it prints a string on the terminal, followed by
a newline).

> using system;
> do (puts.str) (1..3);
1
2
3
()

Another useful list function is filter which applies a predicate to each member of a list and
collects all list elements which satisfy the predicate:

> odd x = x mod 2; even x = ~odd x;
> filter odd (1..20);
[1,3,5,7,9,11,13,15,17,19]
> filter even (1..20);
[2,4,6,8,10,12,14,16,18,20]

In addition, the all and any functions can be used to check whether all or any list elements
satisfy a given predicate:

> any even (1:3..20);
0
> all odd (1:3..20);
1

There’s also a family of functions such as foldl which generalize the notion of aggregate
functions such as list sums and products. Starting from a given initial value a, foldl iterates
a binary function f over a list xs and returns the accumulated result. It’s defined as follows:

foldl f a [] = a;
foldl f a (x:xs) = foldl f (f a x) xs;

For instance, we can use foldl to compute list sums and products:

1.5.10 List Processing 99



Pure Language and Library Documentation, Release 0.62

> foldl (+) 0 (1..10);
55
> foldl (*) 1 (1..10);
3628800

Note that foldl (“fold-left”) accumulates results from left to right, so the result accumulated
so far is passed as the left argument to the function f. There’s a foldr (“fold-right”) function
which works analogously but collects results from right to left, and accordingly passes the
accumulated result in the right argument. Usually this won’t make a difference if the iterated
function is associative, but foldl and foldr have lots of applications beyond these simple
use cases. For instance, we may use foldl to reverse a list as follows:

> foldl (flip (:)) [] (1..10);
[10,9,8,7,6,5,4,3,2,1]

Note that we have to flip the arguments of the ‘:‘ constructor here, since foldl passes the
accumulated list in the left argument, but ‘:‘ wants it on the right. Conversely, we have that:

> foldr (:) [] (1..10);
[1,2,3,4,5,6,7,8,9,10]

This just returns the list unchanged. So the order in which we accumulate results does matter
here.

In a similar fashion, we might use foldl (or foldr) to build any kind of compound data
structure from a list of its members. For instance, recall our binary tree example:

nonfix nil;
insert nil y = bin y nil nil;
insert (bin x L R) y = bin x (insert L y) R if y<x;

= bin x L (insert R y) otherwise;

We can then use foldl insert to construct a binary tree from its member list as follows:

> foldl insert nil [7,12,9,5];
bin 7 (bin 5 nil nil) (bin 12 (bin 9 nil nil) nil)

Sometimes we’d like to know not just the final result of an aggregate function, but all the
intermediate results as well. The scanl function does this. For instance:

> scanl (+) 0 (1..10);
[0,1,3,6,10,15,21,28,36,45,55]

Note that this computes the same list of partial sums as:

> [foldl (+) 0 (1..n) | n = 0..10];
[0,1,3,6,10,15,21,28,36,45,55]

However, the former is more efficient since it does all the partial sums in one go.

Like foldl, scanl also has a sibling called scanr which collects results from right to left,
starting at the end of the list:
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> scanr (+) 0 (1..10);
[55,54,52,49,45,40,34,27,19,10,0]

Another useful list generation function is iterwhile which keeps applying a function start-
ing at a given initial value, as long as the current value satisfies the given predicate. So
another way to generate the odd numbers up to 20 is:

> iterwhile (<=20) (+2) 1;
[1,3,5,7,9,11,13,15,17,19]

Or we might collect all powers of 2 which fall into the 16 bit range:

> iterwhile (<0x10000) (*2) 1;
[1,2,4,8,16,32,64,128,256,512,1024,2048,4096,8192,16384,32768]

There are also various functions to partition a list into different parts according to various
criteria. The simplest of these are the head and tail functions:

> let xs = 1..10;
> head xs; tail xs;
1
[2,3,4,5,6,7,8,9,10]

Conversely, the last and init functions give you the last element of a list, and all but the
last element, respectively:

> last xs; init xs;
10
[1,2,3,4,5,6,7,8,9]

The take and drop functions take or remove a given number of initial elements, while
takewhile and dropwhile take or remove initial elements while a given predicate is sat-
isfied:

> take 4 xs; drop 4 xs;
[1,2,3,4]
[5,6,7,8,9,10]
> takewhile (<=4) xs; dropwhile (<=4) xs;
[1,2,3,4]
[5,6,7,8,9,10]

Lists can be reversed with reverse and sorted using sort:

> reverse xs;
[10,9,8,7,6,5,4,3,2,1]
> sort (<) (xs + ans);
[1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10]

You can also concatenate a list of lists with the cat function:

> cat [1..n | n = 1..5];
[1,1,2,1,2,3,1,2,3,4,1,2,3,4,5]
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Last but not least, there is the zip family of functions which let you combine members of
two or more lists in different ways. The zip function itself collects pairs of corresponding
elements in two input lists:

> zip (1..5) ("a".."e");
[(1,"a"),(2,"b"),(3,"c"),(4,"d"),(5,"e")]

The effect of zip can be undone with unzip which returns a pair of lists:

> unzip ans;
[1,2,3,4,5],["a","b","c","d","e"]

The zipwith function is a generic version of zip which combines corresponding members
from two lists using a given binary function f:

> zipwith (*) (1..10) (1..10);
[1,4,9,16,25,36,49,64,81,100]

You might also consider zipwith a variant of map working with two lists at the same time (in
fact this operation is also known as map2 in some functional programming languages). There
are also variations of these functions which work with three lists (zip3, unzip3, zipwith3).

Note that zip itself is equivalent to zipwith (,):

> zipwith (,) (1..5) ("a".."e");
[(1,"a"),(2,"b"),(3,"c"),(4,"d"),(5,"e")]

Also note that since tuples are formed by just applying the ‘,‘ operator repeatedly, you can
use multiple calls of zip to piece together tuples of any length:

> zip (1..3) (zip ("a".."c") [a,b,c]);
[(1,"a",a),(2,"b",b),(3,"c",c)]

This can be achieved even more easily by folding zip over a list of lists; here we employ a
variation foldr1 of foldr which takes the initial value from the beginning of the list.

> foldr1 zip [1..3,"a".."c",[a,b,c]];
[(1,"a",a),(2,"b",b),(3,"c",c)]

Note that this method easily scales up to as many element lists as you want. Recovering
the original element lists is a bit trickier, though, but it can be done using this little helper
function:

unzipn n xs = xs if n<=1;
= xs,unzipn (n-1) ys when xs,ys = unzip xs end otherwise;

For instance:

> foldr1 zip [1..3,"a".."c",[a,b,c]];
[(1,"a",a),(2,"b",b),(3,"c",c)]
> unzipn 3 ans;
[1,2,3],["a","b","c"],[a,b,c]

102 1.5 Examples



Pure Language and Library Documentation, Release 0.62

Also, the elements to be zipped don’t have to be singletons, they can themselves be tuples
of any size:

> foldr1 zip [[1,2,3],[a,(),c],[x,y,(z,t)]];
[(1,a,x),(2,y),(3,c,z,t)]

But note that in this case you loose the information which elements came from which sub-
lists, so unzip won’t be able to recover the original lists any more. If you need to avoid that
then it’s best to use other aggregates such as lists or vectors for the sublist elements.

There are other interesting list functions in the prelude, but we’ll leave it at that for now.
Please check the Pure Library Manual for a full account of the available operations.

1.5.11 String Processing

Let’s take a short break from lists and look at strings. We postponed that until now since
strings are in many ways just like lists of characters. In fact the similarities run so deep
that in some languages, most notably Haskell, strings are in fact just lists. Pure doesn’t go
quite that far; it still represents strings as null-terminated arrays of characters in the UTF-8
encoding, which is a much more compact representation and eases interoperability with C.
However, most common list operations also work on strings in an analogous fashion. Thus
you can concatenate strings, compute their length, and index, slice and compare them as
usual:

> "abc"+"xyz";
"abcxyz"
> #ans, ans!5, ans!![2,3];
6,"z","cx"
> "abc"=="abd";
0

In addition, strings can also be ordered lexicographically:

> "abd"<"abcd";
0
> "abd">"abcd";
1
> sort (<) ["the","little","brown","fox"];
["brown","fox","little","the"]

Where it makes sense, list operations on strings return again a string result:

> head "abc"; tail "abc";
"a"
"bc"
> take 4 "abcdefg"; drop 4 "abcdefg";
"abcd"
"efg"

A slight complication arises with the map function, because in this case the result is not guar-
anteed to be a string in all cases. For instance:
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> map ord "HAL";
[72,65,76]

To have map work consistently, it will thus yield a list even in cases where the result could
again be represented as a string. If you want a string result instead, you’ll have to do the
conversion explicitly, using the string function:

> map (+1) "HAL";
["I","B","M"]
> string ans;
"IBM"

Conversely, you can also convert a string to a list of its characters using either chars or the
generic list conversion function:

> list ans;
["I","B","M"]

As in the case of map, this conversion is usually done automatically if a list operation from
the prelude is applied to a string. This also happens if a list comprehension draws values
from a string:

> [x-1 | x = "IBM"];
["H","A","L"]

Talking about characters, these are simply single character strings, so Pure has no separate
data type for them. However, there is a type tag char for the single character strings which
can be used in pattern matching:

> isupper x::char = "A"<=x && x<= "Z";
> filter isupper "The Little Brown Fox";
"TLBF"
> any isupper "The Little Brown Fox";
1

Maybe you wondered how that "HAL" => "IBM" transformation above came about? Well,
the prelude also defines basic arithmetic on characters:

> "a"+1, "a"+2, "z"-1;
"b","c","y"
> "z"-"a";
25

This considers characters as an enumerated data type where each character corresponds to
a numeric code point in Unicode. Hence, e.g., "a"+1 gives "b" because "b" is the code point
following "a" in Unicode, and "b"-"a" gives 1 for the same reason.

So here’s the rot13 encoding in Pure:

rot13 x::string = string (map rot13 x) with
rot13 c = c+13 if "a" <= lower c && lower c <= "m";

= c-13 if "n" <= lower c && lower c <= "z";
= c otherwise;
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lower c = "a"+(c-"A") if "A"<=c && c<="Z";
= c otherwise;

end;

For instance:

> rot13 "The quick brown fox";
"Gur dhvpx oebja sbk"
> rot13 ans;
"The quick brown fox"

Character arithmetic also makes arithmetic sequences of characters work as expected:

> "a".."k"; "k":"j".."a";
["a","b","c","d","e","f","g","h","i","j","k"]
["k","j","i","h","g","f","e","d","c","b","a"]
> string ("a":"c".."z");
"acegikmoqsuwy"

You can also convert between characters and their ordinal numbers using the ord and chr
functions:

> ord "a";
97
> chr (ans+1);
"b"

Thus using Horner’s rule we might convert a string of decimal digits to its numeric repre-
sentation as follows:

> foldl (\x c -> 10*x+ord c-ord "0") 0 "123456";
123456

However, there are much easier and more general ways to convert between strings and Pure
expressions. Specifically, val and str can be used to convert between any Pure value and its
string representation:

> val "2*(3+4)"; str ans;
2*(3+4)
"2*(3+4)"

If you also want to evaluate the string representation of a Pure expression then eval is your
friend:

> eval "2*(3+4)";
14

Two other convenient functions are split which breaks apart a string at a given delimiter
string, and join which concatenates a list of strings, interpolating the delimiter string be-
tween successive list elements:

> split " " "The quick brown fox";
["The","quick","brown","fox"]

1.5.11 String Processing 105



Pure Language and Library Documentation, Release 0.62

> join ":" ans;
"The:quick:brown:fox"

If you don’t need the intervening delimiters then you can also concatenate string lists simply
with strcat:

> strcat ["The","quick","brown","fox"];
"Thequickbrownfox"

These operations are all implemented in an efficient way so that they run in linear time.
(Note that the string conversion function we mentioned above is in fact just strcat on lists
of strings, but it also works with other aggregates such as vectors of strings.)

For more elaborate needs there’s also a suite of functions for doing regular expression match-
ing in the regex module, and the system module provides the usual facilities for reading and
writing strings from/to text files and the terminal, as well as the printf and scanf family of
functions which are used to print and parse strings according to a given format string. These
are all explained in detail in the Pure Library Manual.

1.5.12 List Comprehensions

List comprehensions are Pure’s main workhorse for generating and processing all kinds of
list values. You can think of them as a combination of map and filter using a prettier syntax
reminiscent of the way in which sets are commonly specified in mathematics. List compre-
hensions are in fact just syntactic sugar, so anything that can be done with them can also be
accomplished with Pure’s generic list functions; but often they are much easier to write and
understand.

In the simplest case, list comprehensions are just a shorthand for map with lambdas:

> [2*x-1 | x = 1..10];
[1,3,5,7,9,11,13,15,17,19]

This can be read aloud as “the list of all 2*x-1 for which x runs through the list 1..10”. The
part x = 1..10 is called a generator clause. The comprehension binds x to each member of
the list 1..10 in turn and evaluates the target expression 2*x+1 in the context of this binding.
This is equivalent to the following map expression:

> map (\x->2*x-1) (1..10);
[1,3,5,7,9,11,13,15,17,19]

List comprehensions may also involve filter clauses: predicates which determine the ele-
ments that are to be included in the result list.

> [2*x-1 | x = 1..10; x mod 3];
[1,3,7,9,13,15,19]

This can be read as “the list of all 2*x-1 for which x runs through 1..10 and for which x mod
3 is non-zero” (which means that x is not a multiple of 3). It is roughly equivalent to:
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> map (\x->2*x-1) (filter (\x->x mod 3) (1..10));
[1,3,7,9,13,15,19]

List comprehensions can also draw values from other kinds of aggregates such as strings
and matrices, but the result is always a list:

> [x-1 | x = "IBM"];
["H","A","L"]
> [1/x | x = {1,2,3;4,5,6}; ~x mod 2];
[0.5,0.25,0.166666666666667]

List comprehensions can have as many generator and filter clauses as you want. The clauses
are considered in left-to-right order so that later clauses may refer to any variables intro-
duced in earlier generator clauses. E.g., here’s how you can generate the list of all pairs
(i,j) with 1<=i<=j<=5 such that i+j is even:

> [i,j | i = 1..5; j = i..5; ~(i+j) mod 2];
[(1,1),(1,3),(1,5),(2,2),(2,4),(3,3),(3,5),(4,4),(5,5)]

The left-hand side of a generator clause can be an arbitary pattern, which is useful if you
need to peek at the list elements to see what’s inside. For instance, let’s take the previous
result and check that the sums of the number pairs are in fact all even:

> [i+j | i,j = ans];
[2,4,6,4,6,6,8,8,10]

Generator clauses involving patterns also act as filters; unmatched elements are filtered out
automatically:

> [i+j | i,j = ["to be ignored",(1,1),(2,2),3]];
[2,4]

List comprehensions can also be nested to an arbitrary depth. For instance, we may rewrite
the “even sums” comprehension from above as follows, in order to group the pairs into
sublists for each value of i:

> [[i,j | j = i..5; ~(i+j) mod 2] | i = 1..5];
[[(1,1),(1,3),(1,5)],[(2,2),(2,4)],[(3,3),(3,5)],[(4,4)],[(5,5)]]

A notorious example is the following recursive algorithm which implements a variation
of Erathosthenes’ classical prime sieve. (This method is actually rather slow and thus not
suitable for computing large primes, but we’re not concerned with that here.)

primes n = sieve (2..n) with
sieve [] = [];
sieve (p:qs) = p : sieve [q | q = qs; q mod p];

end;

Note that the sieve recursively filters out the multiples of the current front element p of the
list, which, by virtue of the construction, is always a prime number. The result is the list of
all primes up to n:
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> primes 100;
[2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97]

List comprehensions are also a useful device to organize backtracking searches. For instance,
here’s an algorithm for the n queens problem, which returns the list of all placements of n
queens on an n x n board (encoded as lists of n pairs (i,j) with i = 1..n), so that no two
queens hold each other in check:

queens n = search n 1 [] with
search n i p = [reverse p] if i>n;

= cat [search n (i+1) ((i,j):p) | j = 1..n; safe (i,j) p];
safe (i,j) p = ~any (check (i,j)) p;
check (i1,j1) (i2,j2)

= i1==i2 || j1==j2 || i1+j1==i2+j2 || i1-j1==i2-j2;
end;

1.5.13 Lazy Evaluation and Streams

As already mentioned, lists can also be evaluated in a “lazy” fashion, by just turning the tail
of a list into a future. This special kind of list is also called a stream. Streams enable you to
work with infinite lists (or finite lists which are so huge that you would never want to keep
them in memory in their entirety). E.g., here’s one way to define the infinite stream of all
Fibonacci numbers:

> let fibs = fibs 0L 1L with fibs a b = a : fibs b (a+b) & end;
> fibs;
0L:#<thunk 0xb5d54320>

Note the & on the tail of the list in the definition of the local fibs function. This turns the
result of fibs into a stream, which is required to prevent the function from recursing into
samadhi. Also note that we work with bigints in this example because the Fibonacci num-
bers grow quite rapidly, so with machine integers the values would soon start wrapping
around to negative integers.

Streams like these can be worked with in pretty much the same way as with lists. Of course,
care must be taken not to invoke “eager” operations such as # (which computes the size
of a list) on infinite streams, to prevent infinite recursion. However, many list operations
work with infinite streams just fine, and return the appropriate stream results. E.g., the take
function (which retrieves a given number of elements from the front of a list) works with
streams just as well as with “eager” lists:

> take 10 fibs;
0L:#<thunk 0xb5d54350>

Hmm, not much progress there, but that’s just how streams work (or rather they don’t,
they’re lazy bums indeed!). Nevertheless, the stream computed with take is in fact finite
and we can readily convert it to an ordinary list, forcing its evaluation:
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> list (take 10 fibs);
[0L,1L,1L,2L,3L,5L,8L,13L,21L,34L]

An alternative way to achieve this is to cut a “slice” from the stream:

> fibs!!(0..10);
[0L,1L,1L,2L,3L,5L,8L,13L,21L,34L,55L]

Note that since we bound the stream to a variable, the already computed prefix of the stream
has been memoized, so that this portion of the stream is now readily available in case we
need to have another look at it later. By these means, possibly costly reevaluations are
avoided, trading memory for execution speed:

> fibs;
0L:1L:1L:2L:3L:5L:8L:13L:21L:34L:55L:#<thunk 0xb5d54590>

The prelude also provides some convenience operations for generating stream values. In-
finite arithmetic sequences are specified using inf or -inf to denote an upper (or lower)
infinite bound for the sequence, e.g.:

> let u = 1..inf; let v = -1.0:-1.2..-inf;
> u!!(0..10); v!!(0..10);
[1,2,3,4,5,6,7,8,9,10,11]
[-1.0,-1.2,-1.4,-1.6,-1.8,-2.0,-2.2,-2.4,-2.6,-2.8,-3.0]

Other useful stream generator functions are iterate, which keeps applying the same func-
tion over and over again, repeat, which just repeats its argument forever, and cycle, which
cycles through the elements of the given list:

> iterate (*2) 1!!(0..10);
[1,2,4,8,16,32,64,128,256,512,1024]
> repeat 1!!(0..10);
[1,1,1,1,1,1,1,1,1,1,1]
> cycle [0,1]!!(0..10);
[0,1,0,1,0,1,0,1,0,1,0]

Moreover, list comprehensions can draw values from streams and return the appropriate
stream result:

> let rats = [m,n-m | n=2..inf; m=1..n-1; gcd m (n-m) == 1]; rats;
(1,1):#<thunk 0xb5d54950>
> rats!!(0..10);
[(1,1),(1,2),(2,1),(1,3),(3,1),(1,4),(2,3),(3,2),(4,1),(1,5),(5,1)]

We can also rewrite our prime sieve so that it generates the infinite stream of all prime num-
bers:

all_primes = sieve (2..inf) with
sieve (p:qs) = p : sieve [q | q = qs; q mod p] &;

end;

Note that we can omit the empty list case of sieve here, since the sieve now never becomes
empty. Example:
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> let P = all_primes;
> P!!(0..20);
[2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73]
> P!299;
1987

You can also just print the entire stream. Note that this sieve algorithm isn’t tail-recursive,
so the following will eventually result in a stack overflow. But this will take a while, so you
may want to hit Ctrl-c when you get bored:

> using system;
> do (printf "%d\n") all_primes;
2
3
5

...

It’s also possible to convert an ordinary list to a stream:

> stream (1..10);
1:#<thunk 0x7f2692a0f138>

This may seem like a silly thing to do, because the original list is already fully known before-
hand. But this transformation allows us to traverse the list in a lazy fashion, which can be
useful if the list is employed in a list comprehension or processed by functions such as cat
and map. For instance, we can use this to rewrite the fringe function from The Same-Fringe
Problem so that it calculates the fringe in a lazy fashion:

lazyfringe t = if listp t then catmap lazyfringe (stream t) else [t];

Recall that the fringe of a tree is the list of its leaves in left-to-right order. The tree itself
is represented as a nested list, to which lazyfringe applies stream recursively so that the
fringe becomes a stream whose elements are only produced on demand:

> lazyfringe [[a,b],c,[[d]],e,[f,[[g,h]]]];
a:#<thunk 0x7f127fc1f090>
> list ans;
[a,b,c,d,e,f,g,h]

Hence a simple syntactic equality check now suffices to solve the same-fringe problem in
an efficient way. For instance, consider the following sample trees from The Same-Fringe
Problem:

let t1 = [[a,b],c,[[d]],e,[f,[[g,h]]]];
let t2 = [a,b,c,[[d],[],e],[f,[g,[h]]]];
let t3 = [[a,b],d,[[c]],e,[f,[[g,h]]]];

Let’s also bind the fringes to some variables so that we can check which parts actually get
evaluated:

let l1 = lazyfringe t1;
let l2 = lazyfringe t2;
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let l3 = lazyfringe t3;

Now comparing l3 and l2 we get:

> l3 === l2; l3; l2;
0
a:b:d:#<thunk 0x7fd308116178>
a:b:c:#<thunk 0x7fd308116060>

As you can see, the two fringes were only constructed as far as needed to decide that they
differ. Of course, if we compare l1 and l2 then the fringes will still be fully constructed
before we find that they’re equal:

> l1 === l2; l1; l2;
1
[a,b,c,d,e,f,g,h]
[a,b,c,d,e,f,g,h]

But this doesn’t really matter if we construct the fringes as temporary values, as in:

> fringe t1 === fringe t2;

Now only the parts of the fringes are in memory which are currently under scrutiny as the
‘===‘ operator passes over them; the prefixes which have already been found to be equal
can be garbage-collected immediately. Moreover, the ‘===‘ operator is tail-recursive so that
the entire equality test can be executed in constant stack space. This gives us an easier way
to solve the same-fringe problem which has pretty much the same benefits as our earlier
solution using continuations. The latter might still be considered more elegant, because it
works without actually constructing the fringes at all. But the solution using lazy evaluation
is certainly much simpler.

1.5.14 Matrices and Vectors

Pure has a versatile matrix data structure offering compact storage and efficient random ac-
cess to its members. Pure matrices work pretty much like in MATLAB or Octave, except
that indexes are zero-based and elements are stored in C’s row-major rather than Fortran’s
column-major format. They are also binary-compatible with the GNU Scientific Library
(GSL) so that they can readily be passed to GSL functions for doing numeric calculations.

Pure offers a number of basic matrix operations, such as matrix construction, pattern match-
ing, indexing, slicing, as well as getting the size and dimensions of a matrix. It does not
supply built-in support for matrix arithmetic and other linear algebra algorithms, but it’s
easy to roll your own if desired, as we’ll see below. (Usually this won’t offer the same per-
formance as the GSL and other carefully optimized C and Fortran routines, however. So if
you need to do some heavy-duty number crunching then you might want to take a look at
the pure-gsl module available at the Pure website, which is an ongoing project to make the
GSL functions available in Pure.)

Matrices are denoted using curly braces in Pure:
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> let x = {1,2,3;4,5,6}; x;
{1,2,3;4,5,6}

Note that the semicolon is used to separate different rows, while the elements inside each
row are separated with commas. Thus the above denotes a 2x3 matrix (2 rows, 3 columns).
The dim function lets you check the dimensions, while the ‘#‘ operator gives the total number
of elements:

> dim x; #x;
2,3
6

There’s no separate data type for vectors; row and column vectors are simply represented as
1 x n and n x 1 matrices, respectively:

> dim {1,2,3}; dim {1;2;3};
1,3
3,1

Singleton and empty matrices can be denoted as follows:

> dim {1}; dim {};
1,1
0,0

The transpose function turns columns into rows and vice versa; in particular, you can also
use this to convert between row and column vectors:

> transpose x;
{1,4;2,5;3,6}
> transpose {1,2,3}; transpose {1;2;3};
{1;2;3}
{1,2,3}

Note that matrices are immutable in Pure, so matrix functions like transpose always return a
new matrix, leaving the original matrix unchanged. (If you need to modify matrices in-place
for efficiency, then you can use the GSL or other C or Fortran functions.)

You can change the dimensions of a matrix with the redim function, provided that the size
stays the same. So, for instance, we can turn the matrix x into a row vector as follows:

> redim (1,6) x;
{1,2,3,4,5,6}

Again, this doesn’t change the original matrix, but returns a new matrix with the same con-
tents and the requested dimensions. This operation also allows you to change the dimen-
sions of an empty matrix which, as we’ve seen above, has dimensions 0,0 by default. Of
course, this requires that either the number of rows or columns is still zero. For instance:

> redim (3,0) {};
{}
> dim ans;
3,0
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Another way to do this is to just construct a zero matrix with zero rows or columns directly,
see below. (Note that these different kinds of empty matrices are needed to represent the
corner cases. E.g., a linear mapping from 3-dimensional vectors to the zero vector space
corresponds to a 0x3 matrix which yields a 3x0 matrix when transposed.)

A number of other specific conversion operations are available, such as rowvector and
colvector which convert a matrix to a row or column vector, respectively, or diag which
extracts the main diagonal of a matrix:

> rowvector x;
{1,2,3,4,5,6}
> colvector x;
{1;2;3;4;5;6}
> diag x;
{1,5}

You can also extract the rows and columns of a matrix, which yields a list of the correspond-
ing row and column vectors, respectively:

> rows x; cols x;
[{1,2,3},{4,5,6}]
[{1;4},{2;5},{3;6}]

There are a number of other operations which convert between matrices and different kinds
of aggregates; please check the Matrix Functions section in the Pure Library Manual for details.

Element access uses the index operator ‘!‘. You can either specify a pair (i,j) of row and
column indices, or a single index i which treats the entire matrix as a single vector in row-
major order:

> x!(0,2);
3
> x!3;
4

Slicing is done with the ‘!!‘ operator. The index range can be specified in different ways.
First, a pair of lists of row and column indices cuts a rectangular slice from the matrix:

> x!!(0..1,1..2);
{2,3;5,6}

Second, a pair of a list and a row or column index cuts slices from individual rows or
columns:

> x!!(0,1..2); x!!(0..1,2);
{2,3}
{3;6}

Third, a list of pairs of row and column indices, or a list of element indices gives a row vector
with all the corresponding elements:

> x!![(0,2),(1,2)];
{3,6}
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> x!!(2..3);
{3,4}

While most of the slices above are contiguous (a case which the prelude optimizes for), you
can also specify indices in any order, possibly with duplicates. So we may not only cut
submatrix slices, but also permute and/or copy rows and columns of a matrix along the
way:

> x!!([1,0,1],0..2);
{4,5,6;1,2,3;4,5,6}

Matrices can also be constructed from submatrices by arranging the submatrices in rows
or columns. In fact, the curly braces accept any combination of submatrices and scalars,
provided that all dimensions match up:

> {1,{2,3};{4,5},6};
{1,2,3;4,5,6}
> {{1;4},{2,3;5,6}};
{1,2,3;4,5,6}
> {{1;2;3},{4;5;6}};
{1,4;2,5;3,6}

The end result must be a rectangular matrix, however, otherwise you’ll get an exception
indicating a submatrix whose dimensions don’t match:

> {1,{2,3};{4,5}};
<stdin>, line 24: unhandled exception ’bad_matrix_value {4,5}’
while evaluating ’{1,{2,3};{4,5}}’

This “splicing” of submatrices is especially useful when doing linear algebra, where matrices
are often composed from smaller “block matrices” or vectors; we’ll see an example of this
later. (Sometimes this behaviour also gets in the way, and thus there are ways to disable it;
see Symbolic Matrices below.)

Pure actually provides several different types of numeric matrices, which correspond to
the different GSL matrix types for integer, floating point and complex numbers. (Note that
complex numbers aren’t a built-in data type in Pure, but there are ways to specify this kind
of numbers and perform calculations with them; see the math module for details.) Which
type of matrix is created by the curly braces depends on the element types. Homogeneous
matrices which contain only int, double or complex values yield the corresponding type
of GSL matrix. Matrices can also hold any other type of Pure value or an arbitrary mix of
values, in which case they become symbolic matrices; we’ll discuss these later.

The functions imatrix, dmatrix and cmatrix can be used to convert between the different
kinds of numeric matrices. For instance:

> dmatrix {1,2,3;4,5,6};
{1.0,2.0,3.0;4.0,5.0,6.0}
> imatrix ans;
{1,2,3;4,5,6}
> cmatrix ans;
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{1.0+:0.0,2.0+:0.0,3.0+:0.0;4.0+:0.0,5.0+:0.0,6.0+:0.0}
> dmatrix ans;
{1.0,0.0,2.0,0.0,3.0,0.0;4.0,0.0,5.0,0.0,6.0,0.0}

(Note that the latter conversion turns a complex into a double matrix, interleaving the real
and imaginary parts of the original matrix.)

The same functions can also be used to construct zero matrices with given dimensions:

> imatrix (2,3);
{0,0,0;0,0,0}
> dmatrix (2,2);
{0.0,0.0;0.0,0.0}
> cmatrix (1,1);
{0.0+:0.0}

As already mentioned, this also gives you a direct way to create empty matrices with differ-
ent dimensions. For instance:

> imatrix (0,3); dim ans;
{}
0,3

The prelude offers matrix versions of the common list operations like map, foldl, zip etc.,
which provide a way to implement common matrix operations. E.g., multiplying a matrix x
with a scalar a amounts to mapping the function (a*) to x, which can be done as follows:

> type scalar x = ~matrixp x;
> a::scalar * x::matrix = map (a*) x;
> 2*{1,2,3;4,5,6};
{2,4,6;8,10,12}

Note that the matrix type tag or the matrixp predicate can be used to restrict a variable
to matrix values. (The prelude provides a few other types and corresponding predicates
for various specific kinds of matrices, see the Pure Library Manual for details.) In addition,
we also introduced a convenience type scalar for non-matrix values here, so that we can
distinguish scalar from matrix multiplication which will be discussed below.

Matrix addition and other element-wise operations can be realized using zipwith, which
combines corresponding elements of two matrices using a given binary function:

> x::matrix + y::matrix = zipwith (+) x y if dim x == dim y;
> {1,2,3;4,5,6}+{1,2,1;3,2,3};
{2,4,4;7,7,9}

Another way to define matrix functions in Pure is to employ a matrix pattern. The Pure
language has built-in support for these, so that they work like the other kinds of patterns
we’ve already encountered. For instance, to compute the dot product of two 2D vectors, you
may write something like:

> {x1,y1}*{x2,y2} = x1*x2+y1*y2;
> {2,3}*{1,4};
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Or, to compute the determinant of a 2x2 matrix:

> det {a,b;c,d} = a*d-b*c;
> det {1,2;3,4};
-2

These patterns are convenient if the dimensions of the involved matrices are small and
known beforehand. If this isn’t the case then it’s better to use matrix comprehensions in-
stead, which work with arbitrary dimensions and make it easy to express many simple kinds
of algorithms which would typically be done using for loops in conventional programming
languages.

Matrix comprehensions work pretty much like list comprehensions, but with a special twist:
if values are drawn from lists then the generator clauses alternate between row and column
generation. (More precisely, the last generator, which varies most quickly, yields a row, the
next-to-last one a column of these row vectors, and so on.) This makes matrix comprehen-
sions resemble customary mathematical notation very closely. For instance, here is how we
can define an operation to create a square identity matrix of a given dimension (note that the
i==j term is just a Pure idiom for the Kronecker symbol):

> eye n = {i==j | i = 1..n; j = 1..n};
> eye 3;
{1,0,0;0,1,0;0,0,1}

Of course, matrix comprehensions can also draw values from other matrices instead of lists.
In this case the block layout of the component matrices is preserved. For instance:

> {x,y | x = {1,2}; y = {a,b;c,d}};
{(1,a),(1,b),(2,a),(2,b);(1,c),(1,d),(2,c),(2,d)}

Note that a matrix comprehension involving filters may fail because the filtered re-
sult isn’t a rectangular matrix any more. E.g., {2*x|x={1,2,3,-4};x>0} works, as does
{2*x|x={-1,2;3,-4};x>0}, but {2*x|x={1,2;3,-4};x>0} doesn’t because the rows of the
result matrix have different lengths.

As a slightly more comprehensive example (no pun intended!), here is a definition of matrix
multiplication in Pure:

x::matrix * y::matrix = {dot u v | u = rows x; v = cols y} with
dot u v = foldl (+) 0 $ zipwith (*) u (rowvector v);

end if m==n when _,m = dim x; n,_ = dim y end;

The basic building block in this example is the dot product of two vectors, which is defined
as a local function. The matrix product is obtained by simply calculating the dot product of
all the rows of x with all the columns of y. To make this work, the rows of x should be the
same length as the columns of y, we check this condition in the guard of the rule. Let’s give
it a try:
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> {1,0;0,1}*{1,2;3,4};
{1,2;3,4}
> {0,1;1,0}*{1,2;3,4};
{3,4;1,2}
> {0,1;1,0;1,1}*{1,2,3;4,5,6};
{4,5,6;1,2,3;5,7,9}
> {1,2;3,4}*{1;1};
{3;7}

Well, that was easy. So let’s take a look at a more challenging example, Gaussian elimination,
which can be used to solve systems of linear equations. The algorithm brings a matrix into
“row echelon” form, a generalization of triangular matrices. The resulting system can then
be solved quite easily using back substitution.

Here is a Pure implementation of the algorithm. Note that the real meat is in the pivoting
and elimination step (step function) which is iterated over all columns of the input matrix.
In each step, x is the current matrix, i the current row index, j the current column index, and
p keeps track of the current permutation of the row indices performed during pivoting. The
algorithm returns the updated matrix x, row index i and row permutation p.

gauss_elimination x::matrix = p,x
when n,m = dim x; p,_,x = foldl step (0..n-1,0,x) (0..m-1) end;

// One pivoting and elimination step in column j of the matrix:
step (p,i,x) j
= if max_x==0 then p,i,x
else
// updated row permutation and index:
transp i max_i p, i+1,
{// the top rows of the matrix remain unchanged:
x!!(0..i-1,0..m-1);
// the pivot row, divided by the pivot element:
{x!(i,l)/x!(i,j) | l=0..m-1};
// subtract suitable multiples of the pivot row:
{x!(k,l)-x!(k,j)*x!(i,l)/x!(i,j) | k=i+1..n-1; l=0..m-1}}

when
n,m = dim x; max_i, max_x = pivot i (col x j);
x = if max_x>0 then swap x i max_i else x;

end with
pivot i x = foldl max (0,0) [j,abs (x!j)|j=i..#x-1];
max (i,x) (j,y) = if x<y then j,y else i,x;

end;

Please refer to any good textbook on numerical mathematics for a closer description of the
algorithm. But here is a brief rundown of what happens in each elimination step: First we
find the pivot element in column j of the matrix. (We’re doing partial pivoting here, i.e.,
we only look for the element with the largest absolute value in column j, starting at row i.
That’s usually good enough to achieve numerical stability.) If the pivot is zero then we’re
done (the rest of the pivot column is already zeroed out). Otherwise, we bring it into the
pivot position (swapping row i and the pivot row), divide the pivot row by the pivot, and
subtract suitable multiples of the pivot row to eliminate the elements of the pivot column in
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all subsequent rows. Finally we update i and p accordingly and return the result.

In order to complete the implementation, we still need the following little helper functions
to swap two rows of a matrix (this is used in the pivoting step) and to apply a transposition
to a permutation (represented as a list):

swap x i j = x!!(transp i j (0..n-1),0..m-1) when n,m = dim x end;
transp i j p = [p!tr k | k=0..#p-1]
with tr k = if k==i then j else if k==j then i else k end;

Finally, let us define a convenient print representation of double matrices a la Octave (the
meaning of the __show__ function is explained in Pretty-Printing):

using system;
__show__ x::matrix
= strcat [printd j (x!(i,j))|i=0..n-1; j=0..m-1] + "\n"
with printd 0 = sprintf "\n%10.5f"; printd _ = sprintf "%10.5f" end
when n,m = dim x end if dmatrixp x;

Example:

> let x = dmatrix {2,1,-1,8; -3,-1,2,-11; -2,1,2,-3};
> x; gauss_elimination x;

2.00000 1.00000 -1.00000 8.00000
-3.00000 -1.00000 2.00000 -11.00000
-2.00000 1.00000 2.00000 -3.00000

[1,2,0],
1.00000 0.33333 -0.66667 3.66667
0.00000 1.00000 0.40000 2.60000
0.00000 0.00000 1.00000 -1.00000

1.5.15 Symbolic Matrices

As already mentioned, matrices may contain not just numbers but any kind of Pure values,
in which case they become symbolic matrices. For instance:

> {1,2.0,3L;a,b,c};
{1,2.0,3L;a,b,c}

The smatrixp predicate gives you a quick way to check whether a matrix is a symbolic one:

> smatrixp ans;
1

Note that this may not always be obvious. For instance, you can use the smatrix function to
explicitly convert a numeric matrix:

> smatrix {1,2;3,4};
{1,2;3,4}

This still looks the same as the original matrix, but smatrixp reveals that it’s in fact a sym-
bolic matrix:
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> smatrixp ans;
1

Also note that the empty matrix is by default a symbolic matrix, as are matrices containing
bigints:

> smatrixp {};
1
> smatrixp {1L,2L;3L,4L};
1

However, you can easily convert these to a numeric type if needed, e.g.:

> dmatrix {1L,2L;3L,4L};
{1.0,2.0;3.0,4.0}

Symbolic matrices are a convenient data structure for storing arbitrary collections of values
which provides fast random access to its members. In particular, they can also be nested,
and thus multidimensional tensors or arrays of arbitrary dimension can be realized as nested
symbolic vectors. However, you have to be careful when constructing such values, because
the {...} construct normally combines submatrices to larger matrices. For instance:

> {{1,2},{3,4}};
{1,2,3,4}

One way to inhibit this splicing of the submatrices in a larger matrix is to use the quote
operator (cf. The Quote):

> ’{{1,2},{3,4}};
{{1,2},{3,4}}

Note that this result is really different from {1,2;3,4}. The latter is a 2x2 integer matrix,
while the former is a symbolic vector a.k.a. 1x2 matrix whose elements happen to be two
integer vectors. So a double index will be required to access the subvector elements:

> ans!0!1;
2

You can also match these values with a nested matrix pattern, e.g.:

> let {{a,b},{c,d}} = ’{{1,2},{3,4}};
> a,b,c,d;
1,2,3,4

Unfortunately, the quote operator in fact inhibits evaluation of all embedded subterms which
may be undesirable if the matrix expression contains arithmetic (as in ’{{1+1,2*3}}), so this
method works best for constant matrices. A more general way to create a symbolic vector
of matrices is provided by the vector function from the prelude, which is applied to a list of
the vector elements as follows:

> vector [{1,2},{3,4}];
{{1,2},{3,4}}
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Calls to the vector function can be nested to an arbitrary depth to obtain higher-dimensional
“arrays”:

> vector [vector [{1,2}],vector [{3,4}]];
{{{1,2}},{{3,4}}}

This obviously becomes a bit unwieldy for higher dimensions, but Pure 0.56 and later pro-
vide the following shorthand notation:

> {|{1,2},{3,4}|};
{{1,2},{3,4}}
> {|{|{1,2}|},{|{3,4}|}|};
{{{1,2}},{{3,4}}}

This makes it much more convenient to denote nested vector values. Note that the {| |}
construct doesn’t use any special magic, it’s just a standard outfix operator implemented as
a Pure macro. For more details please check the description of the non-splicing vector brackets
in the Pure Library Manual.

1.5.16 Record Data

Symbolic matrices also provide a means to represent simple record-like data, by encoding
records as symbolic vectors consisting of “hash pairs” of the form key => value. This kind
of data structure is very convenient to represent aggregates with lots of different compo-
nents. Since the components of records can be accessed by indexing with key values, you
don’t have to remember which components are stored in which order, just knowing the keys
of the required members is enough. In contrast, tuples, lists and other kinds of constructor
terms quickly become unwieldy for such purposes.

The keys used for indexing the record data must be either symbols or strings, while the
corresponding values may be arbitrary Pure values. The prelude provides some operations
on these special kinds of matrices, which let you retrieve vector elements by indexing and
perform non-destructive updates, see the Record Functions section in the Pure Library Manual
for details. Here are a few examples which illustrate how to create records and work with
them:

> let r = {x=>5, y=>12};
> recordp r, member r x;
1,1
> r!y; r!![y,x];
12
{12,5}
> insert r (x=>99);
{x=>99,y=>12}
> insert ans (z=>77);
{x=>99,y=>12,z=>77}
> delete ans z;
{x=>99,y=>12}

Records can also be nested:
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> let r = {a => {b=>1,c=>2}, b => 2};
> r!a, r!b, r!a!b;
{b=>1,c=>2},2,1

Note the use of the “hash rocket” => which denotes the key=>value associations in a record.
The hash rocket is a constructor declared as an infix operator in the prelude, see the Hash
Pairs section in the Pure Library Manual for details. There’s one caveat here, however. Since
neither ‘=>‘ nor ‘!‘ treat their key operand in a special way, you’ll have to take care that the
key symbols do not evaluate to something else, as might be the case if they are bound to a
global or local variable or parameterless function:

> let u = 99;
> {u=>u};
{99=>99}

In the case of global variables and function symbols, you might protect the symbol with a
quote (see The Quote):

> {’u=>u};
{u=>99}
> ans!’u;
99

However, even the quote doesn’t save you from local variable substitution:

> {’u=>u} when u = 99 end;
{99=>99}

In such cases you’ll either have to rename the local variable, or use the prelude function val
to quote the symbol:

> {’u=>v} when v = 99 end;
{u=>99}
> {val "u"=>u} when u = 99 end;
{u=>99}

It’s also possible to directly use strings as keys instead, which may actually be more conve-
nient in some cases:

> let r = {"x"=>5, "y"=>12};
> keys r; vals r;
{"x","y"}
{5,12}
> update r "y" (r!"y"+1);
{"x"=>5,"y"=>13}

You can also mix strings and symbols as keys in the same record (but note that strings and
symbols are always distinct, so y and "y" are really two different keys here):

> insert r (y=>99);
{"x"=>5,"y"=>12,y=>99}
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As records are in fact just special kinds of matrices, the standard matrix operations can be
used on record values as well. For instance, the matrix constructor provides an alternative
way to quickly augment a record with a collection of new key=>value associations:

> let r = {x=>5, y=>12};
> let r = {r, x=>7, z=>3}; r;
{x=>5,y=>12,x=>7,z=>3}
> r!x, r!z;
7,3
> delete r x;
{x=>5,y=>12,z=>3}
> ans!x;
5

As the example shows, this may produce duplicate keys, but these are handled gracefully;
indexing and updates will always work with the last association for a given key in the record.
If necessary, you can remove duplicate entries from a record as follows; this will only keep
the last association for each key:

> record r;
{x=>7,y=>12,z=>3}

In fact, the record operation not only removes duplicates, but also orders the record entries
by keys. This produces a kind of normalized representation which is useful if you want to
compare or combine two record values irrespective of the ordering of the fields. For instance:

> record {x=>5, y=>12} === record {y=>12, x=>5};
1

The record function can also be used to construct a normalized record directly from a list or
tuple of hash pairs:

> record [x=>5, x=>7, y=>12];
{x=>7,y=>12}

Other matrix operations such as map, foldl, etc., and matrix comprehensions can be ap-
plied to records just as easily. This enables you to perform bulk updates of record data in
a straightforward way. For instance, here’s how you can define a function maprec which
applies a function to all values stored in a record:

> maprec f = map (\(u=>v) -> u=>f v);
> maprec (*2) {x=>5,y=>12};
{x=>10,y=>24}

Another example: The following ziprec function collects pairs of values stored under com-
mon keys in two records (we also normalize the result here so that duplicate keys are always
removed):

> ziprec x y = record {u=>(x!u,y!u) | u = keys x; member y u};
> ziprec {a=>3,x=>5,y=>12} {x=>10,y=>24,z=>7};
{x=>(5,10),y=>(12,24)}
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Thus the full power of generic matrix operations is available for records, which turns them
into a much more versatile data structure than records in conventional programming lan-
guages, which are usually limited to constructing records and accessing or modifying their
components.

Note that since the values stored in records can be arbitrary Pure values, you can also have
records with mutable components by making use of Pure’s expression references. For instance:

> let r = {x=>ref 1,y=>ref 2}; maprec get r;
{x=>1,y=>2}
> put (r!x) 99; maprec get r;
99
{x=>99,y=>2}

Another interesting application of records are the “virtual method tables” used in object-
oriented programming. Pure has a built-in __locals__ macro which captures the environ-
ment of local functions at the point of the call and returns it as a list of hash pairs of function
symbols and the corresponding closures. We can readily convert this into a record data
structure which can be used as a virtual method table. For instance:

> record __locals__ with f x = x+1 end;
{f=>f}
> (ans!f) 99;
100

Here is a little helper macro that we can use to turn the virtual method table into an anony-
mous function which, when applied to a symbol, returns the appropriate closure:

def obj = (\x -> vt!x) when
vt = record __locals__;

end;

Continuing our example from Local Functions and Variables, we can now implement the
point object as follows:

point (x,y) = obj with
coords () = get x,get y;
move (dx,dy) = put x (get x+dx), put y (get y+dy);

end when
x,y = ref x,ref y;

end;

Note that obj really needs to be implemented as a macro so that its body is inserted into
the point function and the _locals__ call is executed in the context of the local function
environment there. (A macro is like a function which gets evaluated at compile time; see the
Macros section for details.) Also note that we changed the coords “method” so that it takes a
dummy parameter () now; this prevents premature evaluation of the closure. If coords was
a parameterless function then its value would be fixed at the time we construct the virtual
method table, which is not what we want here.

Now we can write:

1.5.16 Record Data 123



Pure Language and Library Documentation, Release 0.62

> let p = point (1,2);
> p coords ();
1,2
> p move (2,3);
3,5
> p coords ();
3,5

This provides us with an interesting way to represent stateful objects which works very
much like object-oriented programming. What’s still missing here is the inheritance of meth-
ods from other objects, but this can now be done by just combining virtual method tables
using the record operations we’ve already discussed above; we leave this as an exercise for
the interested reader.

1.5.17 The Quote

We’ve already seen some uses of the quote in previous examples, so let’s have a closer look
at it now. As described in Special Forms, the quote operation quotes an expression, so that
it can be passed around and manipulated freely until its value is needed, in which case you
can pass it to the eval function to obtain its value. For instance:

> let x = ’(2*42+2^12); x;
2*42+2^12
> eval x;
4180.0

Lisp programmers will be well familiar with this operation which enables some powerful
metaprogramming techniques. However, there are some notable differences to Lisp’s quote.
In particular, quote only inhibits the evaluation of global variables, local variables are substi-
tuted as usual:

> (\x -> ’(2*x+1)) 99;
2*99+1
> foo x = ’(2*x+1);
> foo 99; foo $ ’(7/y);
2*99+1
2*(7/y)+1
> ’(x+1) when x = ’(2*3) end;
2*3+1
> ’(2*42+2^n) when n = 12 end;
2*42+2^12

Local parameterless functions are treated in the same fashion:

> ’(2*42+2^n) with n = 12 end;
2*42+2^12

Note that, in contrast, for global variables (and functions) we have:
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> let n = 12;
> ’(2*42+2^n);
2*42+2^n

This discrepancy may come as a surprise (or even annoyance) to real Lisp weenies, but it
does have its advantages. As illustrated in the examples above, local variable substitution
makes it easy to fill in the variable parts in a quoted “template” expression, without any
need for an arguably complex tool like Lisp’s “quasiquote”. (But note that it is quite easy to
define the quasiquote in Pure if you want it. See the Recursive Macros section for a simplified
version; a full implementation can be found in the Pure library.)

If you do need to quote a symbol which is already being used as a local variable or function
in the current context, you can do this by supplying the symbol as a string to the prelude
function val:

> val "x"+x when x = 99 end;
x+99

Also note that while local functions are always substituted in a quoted expression, applica-
tions involving local functions can still be quoted:

> ’foo 99 with foo x = 2*x+1 end;
foo 99
> eval ans;
199

The quote also inhibits evaluation inside matrix expressions, including the “splicing” of em-
bedded submatrices:

> ’{1,2+3,2*3};
{1,2+3,2*3}
> ’{1,{2,3},4};
{1,{2,3},4}

Special expressions (conditionals, lambda and the case, when and with constructs) can be
quoted as well. But since these constructs cannot be directly represented at runtime, the
quote actually produces some ordinary “placeholder” terms for these:

> ’(x+1 when x = ’(2*3) end);
x+1 __when__ [x-->’(2*3)]
> eval ans;
2*3+1
> ’(2*42+(f 6 with f n = 2^(2*n) end));
2*42+(f 6 __with__ [f n-->2^(2*n)])
> eval ans;
4180.0

Note that these placeholders are in fact special built-in macros which reconstruct the special
expression when evaluated. Moreover, special expressions are implicitly quoted when they
occur on the left-hand side of an equation or as an argument of a “quoteargs” macro call.
This is often used to implement macros which manipulate these constructs as literals. For
instance, the following macro swaps the arguments in a lambda:
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> #! --quoteargs bar
> def bar (\x y -> z) = __eval__ (’(\y x -> z));
> show bar
def bar (__lambda__ [x,y] z) = __eval__ (’__lambda__ [y,x] z);
> baz = bar (\a b -> a-b);
> show baz
baz = \b a -> a-b;
> baz 2 3;
1

The Macros section explains in detail how this meta programming works.

1.6 Declarations

Pure is a very terse language by design. Usually you don’t declare much stuff, you just
define it and be done with it. However, there are a few constructs which let you declare
symbols with special attributes and manage programs consisting of several source modules:

• symbol declarations determine “scope” and “fixity” of a symbol;

• interface declarations specify abstract data types;

• extern declarations specify external C functions;

• using clauses let you include other scripts in a Pure script;

• namespace declarations let you avoid name clashes and thereby make it easier to man-
age large programs consisting of many separate modules.

These are toplevel elements (cf. Toplevel):

item ::= symbol_decl | interface_decl | extern_decl
| using_decl | namespace_decl

We defer the discussion of extern declarations to the C Interface section. The other kinds of
declarations are described in the following subsections.

1.6.1 Symbol Declarations

Symbol declarations declare special attributes of a symbol, such as their scope (whether
they are “public” or “private”) and their fixity (for operator symbols). The syntax of these
declarations is as follows:
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symbol_decl ::= scope qualified_symbol+ ”;”
| [scope] fixity qualified_symbol+ ”;”

scope ::= “public” | “private”
fixity ::= “nonfix” | “outfix”

| (“infix”|”infixl”|”infixr”|”prefix”|”postfix”) precedence
precedence ::= integer | “(” op ”)”

Scope declarations take the following form:

public symbol ...;
private symbol ...;

This declares the listed symbols as public or private, respectively. Each symbol must either
be an identifier or a sequence of punctuation characters. The latter kind of symbols must
always be declared before use, whereas ordinary identifiers can be used without a prior
declaration in which case they are declared implicitly and default to public scope, meaning
that they are visible everywhere in a program. An explicit public declaration of ordinary
identifiers is thus rarely needed (unless you want to declare symbols as members of a specific
namespace, see Namespaces below). Symbols can also be declared private, meaning that the
symbol is visible only in the namespace it belongs to. This is explained in more detail under
Private Symbols in the Namespaces section below.

Note: The declared symbols may optionally be qualified with a namespace prefix, but
since new symbols can only be created in the current namespace, the namespace prefix
must match the current namespace (see Namespaces). Thus the namespace prefix isn’t really
needed, unless you want to declare a symbol which happens to be a reserved Pure keyword
(cf. Lexical Matters). In this specific case, it will be necessary to use a qualified name so that
the symbol isn’t mistaken for a keyword.

Note that to declare several symbols in a single declaration, you can list them all with white-
space in between. The same syntax applies to the other types of symbol declarations dis-
cussed below. (Commas are not allowed as delimiters here, as they may occur as legal sym-
bol constituents in the list of symbols.) The public and private keywords can also be used
as a prefix in any of the special symbol declarations discussed below, to specify the scope of
the declared symbols (if the scope prefix is omitted, it defaults to public).

The following “fixity” declarations are available for introducing special operator symbols.
This changes the way that these symbols are parsed and thus provides you with a limited
means to extend the Pure language at the lexical and syntactical level.

infix level symbol ...;
infixl level symbol ...;
infixr level symbol ...;
prefix level symbol ...;
postfix level symbol ...;

Pure provides you with a theoretically unlimited number of different precedence levels for
user-defined infix, prefix and postfix operators. Precedence levels are numbered starting at
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0; larger numbers indicate higher precedence. (For practical reasons, the current implemen-
tation does require that precedence numbers can be encoded as 24 bit unsigned machine
integers, giving you a range from 0 to 16777215, but this should be large enough to incur no
real limitations on applications. Also, the operator declarations in the prelude have been set
up to leave enough “space” between the “standard” levels so that you can easily sneak in
new operator symbols at low, high or intermediate precedences.)

On each precedence level, you can declare (in order of increasing precedence) infix (binary
non-associative), infixl (binary left-associative), infixr (binary right-associative), prefix
(unary prefix) and postfix (unary postfix) operators. For instance, here is a typical excerpt
from the prelude (the full table can be found in the Prelude section of the Pure Library Manual):

infix 1800 < > <= >= == ~= ;
infixl 2200 + - ;
infixl 2300 * / div mod ;
infixr 2500 ^ ;
prefix 2600 # ;

Note: Unary minus plays a special role in the syntax. Like in Haskell and following math-
ematical tradition, unary minus is the only prefix operator symbol which is also used as an
infix operator, and is always on the same precedence level as binary minus, whose prece-
dence may be chosen freely in the prelude. (The minus operator is the only symbol which
gets that special treatment; all other operators must have distinct lexical representations.)
Thus, with the standard prelude, -x+y will be parsed as (-x)+y, whereas -x*y is the same
as -(x*y). Also note that the notation (-) always denotes the binary minus operator; the
unary minus operation can be denoted using the built-in neg function.

Instead of denoting the precedence by an explicit integer value, you can also specify an
existing operator symbol enclosed in parentheses. Thus the following declaration gives the
++ operator the same precedence as +:

infixl (+) ++ ;

The given symbol may be of a different fixity than the declaration, but it must have a proper
precedence level (i.e., it must be an infix, prefix or postfix symbol). E.g., the following dec-
laration gives ^^ the same precedence level as the infix ^ symbol, but turns it into a postfix
operator:

postfix (^) ^^ ;

Pure also provides unary outfix operators, which work like in Wm Leler’s constraint pro-
gramming language Bertrand. These can be declared as follows:

outfix left right ...;

Outfix operators let you define your own bracket structures. The operators must be given as
pairs of matching left and right symbols (which must be distinct). For instance:
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outfix |: :| BEGIN END;

After this declaration you can write bracketed expressions like |:x:| or BEGIN foo, bar
END. These are always at the highest precedence level (i.e., syntactically they work like paren-
thesized expressions). Just like other operators, you can turn outfix symbols into ordinary
functions by enclosing them in parentheses, but you have to specify the symbols in matching
pairs, such as (BEGIN END).

Pure also has a notation for “nullary” operators, that is, “operators without operands”.
These are used to denote special literals which simply stand for themselves. They are in-
troduced using a nonfix declaration:

nonfix symbol ...;

For instance:

nonfix red green blue;

Semantically, nonfix symbols are a kind of “symbolic constants”. However, it is important
to note the difference to defined constants, which are symbols bound to a constant value by
means of a const definition. In fact, there are some use cases where a symbol may be both
a defined constant and a nonfix symbol, see Constant Definitions in the Caveats and Notes
section for details.

Syntactically, nonfix symbols work just like ordinary identifiers, so they may stand
whereever an identifier is allowed (no parentheses are required to “escape” them). How-
ever, just like other kinds of operators, they may also consist of punctuation (which isn’t
allowed in ordinary identifiers). The other difference to ordinary identifiers is that nonfix
symbols are always interpreted as literals, even if they occur in a variable position on the
left-hand side of a rule. So, with the above declaration, you can write something like:

> foo x = case x of red = green; green = blue; blue = red end;
> map foo [red,green,blue];
[green,blue,red]

Thus nonfix symbols are pretty much like nullary constructor symbols in languages like
Haskell. Non-fixity is just a syntactic attribute, however. Pure doesn’t enforce that such
values are irreducible, so you can still write a “constructor equation” like the following:

> red = blue;
> map foo [red,green,blue];
[blue,blue,blue]

Examples for all types of symbol declarations can be found in the prelude which declares a
bunch of standard (arithmetic, relational, logical) operator symbols as well as the list and
pair constructors ‘:‘ and ‘,‘, and a few nonfix symbols (true and false, as well as different
kinds of exceptions).

1.6.1 Symbol Declarations 129



Pure Language and Library Documentation, Release 0.62

1.6.2 Interface Types

Besides the “concrete” types already described in the Type Rules section, Pure provides an-
other, more abstract way to characterize a type through the collection of operations it sup-
ports. These interface types work pretty much like in Google’s Go programming language.
They provide a safe form of Duck typing in which the operations available on a type are
stated explicitly, and hence members of the type are always known to provide all of the
listed operations.

An interface declaration gives the type name along with a collection of patterns, the so-called
signature which specifies the manifest operations of the type:

interface_decl ::= “interface” qualified_identifier
“with” interface_item* “end” ”;”

interface_item ::= pattern ”;”
| “interface” qualified_identifier ”;”

Interfaces thus consist of two kinds of items:

• The patterns, which indicate which operations are supported by the type, and which
arguments they expect. This may be anything that can occur as the left-hand side of an
ordinary function definition, cf. General Rules.

• The name of another interface type. This causes the signature of the named interface
type to be included in the interface type being defined, which effectively turns the new
interface type into a subtype of the existing one.

The gist of an interface is in its patterns, more precisely: in the pattern variables which have
the name of the interface as a type tag. The precise meaning of the patterns is as follows:

• The patterns are matched against the left-hand sides of ordinary function definitions. If
a left-hand side matches, any argument pattern substituted for a variable tagged with
the interface type becomes a “candidate pattern” of the type.

• The type consists of all candidate patterns which can be matched by some candidate
pattern of each interface function. That is, candidate patterns which are only supported
by some but not all of the interface functions, are eliminated.

• Finally, all trivial candidate patterns (x where x is just a variable without any type tag,
which thus matches any value) are eliminated as well.

Interface patterns often take a simple form like the following,

interface foo with foo x::foo y z; end;

specifying the number of arguments of the interface function along with the position of the
interface type argument. However, general patterns are permitted, in order to further restrict
the left-hand sides of the function definitions to be taken into consideration. Specifically, note
that type tags other than the interface type must always be matched literally on the left-hand
sides of equations. Thus,
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interface foo with foo x::foo y::int; end;

matches any rule of the form

foo x y::int = ...;

but not:

foo x 0 = ...;
foo x y::bar = ...;

(unless bar happens to be an alias of the int type, of course). In such cases it is necessary to
explicitly add these patterns to the interface if you want them to be included.

Interface patterns may contain the interface type tag any number of times, yielding candi-
date patterns for each occurrence of the interface type tag in the pattern. For instance, here
is a quick way to determine the type of all “addable” data structures in the prelude (this
uses the interactive show interface command to list the patterns actually matched by an
interface type, cf. The show Command):

> interface addable with x::addable + y::addable; end;
> show interface addable
type addable x::int;
type addable x::double;
type addable x::bigint;
type addable s::string;
type addable [];
type addable xs@(_:_);

On the other hand, interfaces may also contain “static” patterns which do not include the
interface type as a tag at all, such as:

interface foo with bar x::bar y; end;

These do not contribute anything to the candidate patterns of the type, but do restrict the
type just like the other patterns, in that the type will be empty unless the static patterns are
all “implemented”. In the example above, this means that the foo type will be empty unless
the bar function is defined and takes an element of the bar type as its first argument.

An interface may also be empty, in which case it matches any value. Thus,

interface any with end;

is just a fancy way to define the type:

type any _;

Interfaces can be composed in a piecemeal fashion, by adding more interface patterns. Thus,

interface foo with foo x::foo; end;
interface foo with bar x::foo; end;

is equivalent to:
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interface foo with foo x::foo; bar x::foo; end;

It is also possible to include one interface in another, which effectively establishes a subtype
relationship. For instance, here’s yet another way to define the foo interface above:

interface bar with
bar x::bar;

end;

interface foo with
foo x::foo;
interface bar;

end;

This has the effect of including the signature of bar in foo (while renaming the interface type
tags in the bar signature accordingly):

> show foo
interface foo with
foo x::foo;
bar x::foo;

end;

Note: Including interfaces is a static operation. Only the interface patterns known at the
point of inclusion become part of the including interface; refining the included interface later
has no effect on the set of included patterns. In particular, this also prevents circular interface
definitions.

When composing interfaces in this fashion, it is easy to end up with duplicate interface
patterns from various sources. The compiler removes such duplicates, even if they only
match up to the renaming of variables. For instance:

> show bar foo
interface bar with
bar x::bar;

end;
interface foo with

foo x::foo;
bar x::foo;

end;
> interface baz with
> interface foo; interface bar;
> foo y::baz;
> end;
> show baz
interface baz with
foo x::baz;
bar x::baz;

end;

Also note that, despite the obvious similarities between interfaces and classes in object-
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oriented programming, they are really different things. The former are essentially just signa-
tures of functions living elsewhere, whereas the latter also include data layouts and method
implementations. More on the similarities and differences of interfaces and classes can be
found in the Go FAQ.

Let’s now take a look at the example of a stack data structure to see how this all works in
practice:

interface stack with
push s::stack x;
pop s::stack;
top s::stack;

end;

Note the use of the type tag stack in the operation patterns, which marks the positions of
stack arguments of the interface operations. The interface tells us that a stack provides three
operations push, pop and top which each take a stack as their first argument; also, push takes
two arguments, while pop and top just take a single (stack) argument.

This information is all that the compiler needs to figure out which terms are members of the
stack data type. To these ends, the compiler looks at existing definitions of push, pop and
top and extracts the patterns for arguments marked with the stack tag in the interface. The
stack patterns implemented by all of the interface operations make up the stack type; i.e.,
the members of the type are all the instances of these patterns.

Right now our stack type doesn’t have any members, because we didn’t implement the
interface operations yet, so let’s do this now. For instance, to implement stacks as lists, we
might define:

push xs@[] x | push xs@(_:_) x = x:xs;
pop (x:xs) = xs;
top (x:xs) = x;

This is also known as “instantiating” the type. In addition, we will need an operation to
create an initial stack value. The following will do for our purposes:

stack xs::list = xs;

This yields a stack with the given initial contents. Let’s give it a go:

> top (push (stack []) 99);
99

Looks good so far. We can also check the actual definition of the type in terms of its type
rules using the show interface command:

> show interface stack
type stack xs@(_:_);

Wait, something seems to be wrong there. The empty list pattern of the push function is
missing, where did it go? Let’s restart the interpreter with warnings enabled (-w) and retype
the above definitions. The compiler then tells us:
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> show interface stack
warning: interface ’stack’ may be incomplete
warning: function ’pop’ might lack a rule for ’xs@[]’
warning: function ’top’ might lack a rule for ’xs@[]’
type stack xs@(_:_);

See? A pattern is only considered part of the type if it is supported by all the interface
operations. Since the pop and top operations don’t have any rules for empty list arguments,
empty lists are excluded from the type. We can fix this quite easily by adding the following
“error rules” which handle this case:

> pop [] = throw "empty stack";
> top [] = throw "empty stack";
> show interface stack
type stack xs@[];
type stack xs@(_:_);

This looks fine now, so let’s see how we can put our new stack data structure to good use.
Operations on the type are defined as usual, employing stack as a type tag for stack argu-
ments so that we can be sure that the push, pop and top operations are all supported. For
instance, let’s implement a little RPN (“Reverse Polish Notation”) calculator:

rpn xs::stack ops::list = foldl (call []) xs ops with
call ys xs op = push xs (foldl ($) op ys) if nargs op<=#ys;

= call (top xs:ys) (pop xs) op otherwise;
end;

This takes an initial stack xs and a list ops of operands and operations as inputs and returns
the resulting stack after processing ops. Examples:

> rpn (stack []) [10,4,3,(+),2,(*),(-)];
[-4]
> using math;
> rpn (stack []) [1,2,ln,(/)];
[1.44269504088896]
> rpn (stack []) [4,1,atan,(*)];
[3.14159265358979]
> rpn (stack []) [2,(*)];
<stdin>, line 5: unhandled exception ’"empty stack"’ while evaluating
’rpn (stack []) [2,(*)]’

Ok, this is all very nice, but it seems that so far we haven’t done much more than we could
have achieved just as easily with plain lists instead. So what are the benefits of having an
interface type?

First, an interface provides a fair amount of safety. As long as we stick to the interface
functions, we can be sure that the data is capable of carrying out the requested operations.
At the same time, the interface also serves as a valuable piece of documentation, since it tells
us at a glance exactly which operations are supported by the type.

Second, an interface provides data abstraction. We don’t need to know how the interface
operations are implemented, and in fact functions coded against the interface will work
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with any implementation of the interface. For instance, suppose that we’d like to provide a
“bounded stacks” data structure, i.e., stacks which don’t grow beyond a certain limit. These
can be implemented as follows:

push (n,xs@[]) x | push (n,xs@(_:_)) x =
if n>0 then (n-1,x:xs) else throw "full stack";

pop (n,x:xs) = n+1,xs;
top (n,x:xs) = x;
pop (n,[]) = throw "empty stack";
top (n,[]) = throw "empty stack";

Note that we represent a bounded stack by a pair (n,xs) here, where xs is the list of elements
and n is the “free space” (number of elements we still allow to be pushed). We also add a
function to construct such values:

bstack n::int xs::list = (n-#xs,xs);

Without any further ado, our little RPN calculator works just fine with the new variation of
the data structure:

> rpn (bstack 3 []) [10,4,3,(+),2,(*),(-)];
2,[-4]
> rpn (bstack 2 []) [10,4,3,(+),2,(*),(-)];
<stdin>, line 7: unhandled exception ’"full stack"’ while evaluating
’rpn (bstack 2 []) [10,4,3,(+),2,(*),(-)]’

While they’re quite useful in general, Pure’s interface types also have their limitations. In
particular, the guarantees provided by an interface are of a purely syntactic nature; the sig-
nature doesn’t tell us anything about the actual meaning of the provided operations, so unit
testing is still needed to ensure certain semantic properties of the implementation. Some
further issues due to Pure’s dynamically typed nature are discussed under Interfaces in the
Caveats and Notes section.

1.6.3 Modules and Imports

Pure doesn’t offer separate compilation, but the following type of declaration provides a
simple but effective way to assemble a Pure program from several source modules.

using_decl ::= “using” name (”,” name)* ”;”
name ::= qualified_identifier | string

The using declaration takes the following form (note that in contrast to symbol declarations,
the comma is used as a delimiter symbol here):

using name, ...;

This causes each given script to be included in the Pure program at the given point (if it
wasn’t already included before), which makes available all the definitions of the included
script in your program. Note that each included script is loaded only once, when the first
using clause for the script is encountered. Nested imports are allowed, i.e., an imported
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module may itself import other modules, etc. A Pure program then basically is the con-
catenation of all the source modules given as command line arguments, with other modules
listed in using clauses inserted at the corresponding source locations.

(The using clause also has an alternative form which allows dynamic libraries and LLVM
bitcode modules to be loaded, this will be discussed in the C Interface section.)

For instance, the following declaration causes the math.pure script from the standard library
to be included in your program:

using math;

You can also import multiple scripts in one go:

using array, dict, set;

Moreover, Pure provides a notation for qualified module names which can be used to denote
scripts located in specific package directories, e.g.:

using examples::libor::bits;

In fact this is equivalent to the following using clause which spells out the real filename of
the script between double quotes (the .pure suffix can also be omitted in which case it is
added automatically):

using "examples/libor/bits.pure";

Both notations can be used interchangeably; the former is usually more convenient, but the
latter allows you to denote scripts whose names aren’t valid Pure identifiers.

Script identifiers are translated to the corresponding filenames by replacing the ‘::‘ sym-
bol with the pathname separator ‘/‘ and tacking on the ‘.pure‘ suffix. The following table
illustrates this with a few examples.

Script identifier Filename
math "math.pure"

examples::libor::bits "examples/libor/bits.pure"

::pure::examples::hello "/pure/examples/hello.pure"

Note the last example, which shows how an absolute pathname can be denoted using a
qualifier starting with ‘::‘.

Unless an absolute pathname is given, the interpreter performs a search to locate the script.
The search algorithm considers the following directories in the given order:

• the directory of the current script, which is the directory of the script containing the
using clause, or the current working directory if the clause was read from standard
input (as is the case, e.g., in an interactive session);

• the directories named in -I options on the command line (in the given order);

• the colon-separated list of directories in the PURE_INCLUDE environment variable (in the
given order);
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• finally the directory named by the PURELIB environment variable.

Note that the current working directory is not searched by default (unless the using clause
is read from standard input), but of course you can force this by adding the option -I. to the
command line, or by including ‘.’ in the PURE_INCLUDE variable.

The directory of the current script (the first item above) can be skipped by specifying the
script to be loaded as a filename in double quotes, prefixed with the special sys: tag. The
search then starts with the “system” directories (-I, PURE_INCLUDE and PURELIB) instead.
This is useful, e.g., if you want to provide your own custom version of a standard library
script which in turn imports that library script. For instance, a custom version of math.pure
might employ the following using clause to load the math.pure script from the Pure library:

using "sys:math";
// custom definitions go here
log2 x = ln x/ln 2;

The interpreter compares script names (to determine whether two scripts are actually the
same) by using the canonicalized full pathname of the script, following symbolic links to the
destination file (albeit only one level). Thus different scripts with the same basename, such
as foo/utils.pure and bar/utils.pure can both be included in the same program (unless they
link to the same file).

More precisely, canonicalizing a pathname involves the following steps:

• relative pathnames are expanded to absolute ones, using the search rules discussed
above;

• the directory part of the pathname is normalized to the form returned by the getcwd
system call;

• the ”.pure” suffix is added if needed;

• if the resulting script name is actually a symbolic link, the interpreter follows that link
to its destination, albeit only one level. (This is only done on Unix-like systems.)

The directory of the canonicalized pathname is also used when searching other scripts in-
cluded in a script. This makes it possible to have an executable script with a shebang line
in its own directory, which is then executed via a symbolic link placed on the system PATH.
In this case the script search performed in using clauses will use the real script directory
and thus other required scripts can be located there. This is the recommended practice for
installing standalone Pure applications in source form which are to be run directly from the
shell.

1.6.4 Namespaces

To facilitate modular development, Pure also provides namespaces as a means to avoid name
clashes between symbols, and to keep the global namespace tidy and clean. Namespaces
serve as containers holding groups of related identifiers and other symbols. Inside each
namespace, symbols must be unique, but the same symbol may be used to denote different
objects (variables, functions, etc.) in different namespaces. (Pure’s namespace system was
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heavily inspired by C++ and works in a very similar fashion. So if you know C++ you should
feel right at home and skimming this section to pick up Pure’s syntax of the namespace
constructs should be enough to start using it.)

The global namespace is always available. By default, new symbols are created in this name-
space, which is also called the default namespace. Additional namespaces can be created
with the namespace declaration, which also switches to the given namespace (makes it the
current namespace), so that new symbols are then created in that namespace rather than the
default one. The current namespace also applies to all kinds of symbol declarations, includ-
ing operator and nonfix symbol declarations, as well as extern declarations (the latter are
described in the C Interface section).

The syntax of namespace declarations is captured by the following grammar rules:

namespace_decl ::= “namespace” [name] [brackets] ”;”
| “namespace” name [brackets] “with” item+ “end” ”;”
| “using” “namespace” [name_spec (”,” name_spec)*] ”;”

brackets ::= “(” left_op right_op ”)”
name_spec ::= name [”(” qualified_symbol+ ”)”]

The basic form of the namespace declaration looks as follows (there’s also a “scoped” form
of the namespace declaration which will be discussed in Scoped Namespaces at the end of
this section):

namespace name;
// declarations and definitions in namespace ’name’
namespace;

The second form switches back to the default namespace. For instance, in order to define
two symbols with the same print name foo in two different namespaces foo and bar, you
can write:

namespace foo;
foo x = x+1;
namespace bar;
foo x = x-1;
namespace;

We can now refer to the symbols we just defined using qualified symbols of the form
namespace::symbol:

> foo::foo 99;
100
> bar::foo 99;
98

This avoids any potential name clashes, since the qualified identifier notation always makes
it clear which namespace the given identifier belongs to.

A namespace can be “reopened” at any time to add new symbols and definitions to it. This
allows namespaces to be created that span several source modules. You can also create
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several different namespaces in the same module.

Similar to the using declaration, a namespace declaration accepts either identifiers or double-
quoted strings as namespace names. E.g., the following two declarations are equivalent:

namespace foo;
namespace "foo";

The latter form also allows more descriptive labels which aren’t identifiers, e.g.:

namespace "Private stuff, keep out!";

Note that the namespace prefix in a qualified identifier must be a legal identifier, so it isn’t
possible to access symbols in namespaces with such descriptive labels in a direct fashion.
The only way to get at the symbols in this case is with namespace brackets or by using a
namespace or using namespace declaration (for the latter see Using Namespaces below).

Using Namespaces

Since it is rather inconvenient if you always have to write identifiers in their qualified form
outside of their “home” namespace, Pure allows you to specify a list of search namespaces
which are used to look up symbols not in the default or the current namespace. This is done
with the using namespace declaration, which takes the following form:

using namespace name1, name2, ...;
// ...
using namespace;

As with namespace declarations, the second form without any namespace arguments gets
you back to the default empty list of search namespaces.

For instance, consider this example:

namespace foo;
foo x = x+1;
namespace bar;
foo x = x-1;
bar x = x+1;
namespace;

The symbols in these namespaces can be accessed unqualified as follows:

> using namespace foo;
> foo 99;
100
> using namespace bar;
> foo 99;
98
> bar 99;
100

1.6.4 Namespaces 139



Pure Language and Library Documentation, Release 0.62

This method is often to be preferred over opening a namespace with the namespace declara-
tion, since using namespace only gives you “read access” to the imported symbols, so you
can’t accidentally mess up the definitions of the namespace you’re using. Another advan-
tage is that the using namespace declaration also lets you search multiple namespaces at
once:

using namespace foo, bar;

Be warned, however, that this brings up the very same issue of name clashes again:

> using namespace foo, bar;
> foo 99;
<stdin>, line 15: symbol ’foo’ is ambiguous here

In such a case you’ll have to resort to using namespace qualifiers again, in order to resolve
the name clash:

> foo::foo 99;
100

To avoid this kind of mishap, you can also selectively import just a few symbols from a
namespace instead. This can be done with a declaration of the following form:

using namespace name1 ( sym1 sym2 ... ), name2 ... ;

As indicated, the symbols to be imported can optionally be placed as a whitespace-delimited
list inside parentheses, following the corresponding namespace name. (As with symbol dec-
larations, the symbols may optionally be qualified with a namespace prefix, which must
match the imported namespace here.) For instance:

> using namespace foo, bar (bar);
> foo 99;
100
> bar 99;
100
> bar::foo 99;
98

Note that now we have no clash on the foo symbol any more, because we restricted the
import from the bar namespace to the bar symbol, so that bar::foo has to be denoted with
a qualified symbol now.

Symbol Lookup and Creation

Pure’s rules for looking up and creating symbols are fairly straightforward and akin to those
in other languages featuring namespaces. However, there are some intricacies involved,
because the rewriting rule format of definitions allows “referential” use of symbols not only
in the “body” (right-hand side) of a definition, but also in the left-hand side patterns. We
discuss this in detail below.
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The compiler searches for symbols first in the current namespace (if any), then in the cur-
rently active search namespaces (if any), and finally in the default (i.e., the global) name-
space, in that order. This automatic lookup can be bypassed by using an absolute namespace
qualifier of the form ::foo::bar. In particular, ::bar always denotes the symbol bar in the
default namespace, while ::foo::bar denotes the symbol bar in the foo namespace. (Nor-
mally, the latter kind of notation is only needed if you have to deal with nested namespaces,
see Hierarchical Namespaces below.)

If no existing symbol is found, a new symbol is created automatically, by implicitly declaring
a public symbol with default attributes. New unqualified symbols are always created in the
current namespace, while new qualified symbols are created in the namespace given by the
namespace prefix of the symbol.

Note: Pure’s implicit symbol declarations are a mixed blessing. They are convenient, espe-
cially in interactive usage, but they also let missing or mistyped symbols go unnoticed much
too easily. As a remedy, in the case of qualified symbols the compiler checks that the given
namespace prefix matches the current namespace, in order to catch typos and other silly
mistakes and prevent you from accidentally clobbering the contents of other namespaces.
For instance:

> namespace foo;
> namespace;
> foo::bar x = 1/x;
<stdin>, line 3: undeclared symbol ’foo::bar’

To make these errors go away it’s enough to just declare the symbols in their proper name-
spaces.

In addition, you can run the interpreter with the -w option (see Invoking Pure) to check
your scripts for (non-defining) uses of undeclared unqualified function symbols. This is
highly recommended. For instance, in the following example we forgot to import the system
module which defines the puts function. Running the interpreter with -w highlights such
potential errors:

$ pure -w
> puts "bla"; // missing import of system module
<stdin>, line 1: warning: implicit declaration of ’puts’
puts "bla"

For legitimate uses (such as forward uses of a symbol which is defined later), you can make
these warnings go away by declaring the symbol before using it.

New symbols are also created if a global unqualified (and yet undeclared) symbol is being
“defined” in a rewriting rule or let/const definition, even if a symbol with the same print
name from another namespace is already visible in the current scope. To distinguish “defin-
ing” from “referring” uses of a global symbol, Pure uses the following (purely syntactic)
notions:

• A defining occurrence of a global function, macro or type symbol is any occurrence of the
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symbol as the (leftmost) head symbol on the left-hand side of a rewriting rule.

• A defining occurrence of a global variable or constant symbol is any occurrence of the
symbol in a variable position (as given by the “head = function” rule, cf. Variables in
Equations) on the left-hand side of a let or const definition.

• All other occurrences of global symbols on the left-hand side, as well as all symbol
occurrences on the right-hand side of a definition are referring occurrences. (Note that
this also subsumes all occurrences of type tags on the left-hand side of an equation.)

The following example illustrates these notions:

namespace foo;
bar (bar x) = bar x;
let x,y = 1,2;
namespace;

Here, the first occurrence of bar on the left-hand side bar (bar x) of the first rule is a defining
occurrence, as are the occurrences of x and y on the left-hand side of the let definition.
Hence these symbols are created as new symbols in the namespace foo. On the other hand,
the other occurrences of bar in the first rule, as well as the ‘,‘ symbol on the left-hand side of
the let definition are referring occurrences. In the former case, bar refers to the bar symbol
defined by the rule, while in the latter case the ‘,‘ operator is actually declared in the prelude
and thus imported from the global namespace.

The same rules of lookup also apply to type tags on the left-hand side of an equation, but
in this case the interpreter will look specifically for type symbols, avoiding any other kinds
of symbols which might be visible in the same context. Thus, in the following example, the
type tag bar is correctly resolved to bar::bar, even though the (function) symbol foo::bar
is visible at this point:

> namespace bar;
> type bar;
> namespace foo;
> public bar;
> using namespace bar;
> foo x::bar = bar x;
> show foo::foo
foo::foo x :: bar::bar = foo::bar x;

Note that special operator (and nonfix) symbols always require an explicit declaration. This
works as already discussed in the Symbol Declarations section, except that you first switch
to the appropriate namespace before declaring the symbols. For instance, here is how you
can create a new + operation which multiplies its operands rather than adding them:

> namespace my;
> infixl 2200 +;
> x+y = x*y;
> 5+7;
35

Note that the new + operation really belongs to the namespace we created. The + operation
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in the default namespace works as before, and in fact you can use qualified symbols to pick
the version that you need:

> namespace;
> 5+7;
12
> 5 ::+ 7;
12
> 5 my::+ 7;
35

Here’s what you get if you happen to forget the declaration of the + operator:

> namespace my;
> x+y = x*y;
<stdin>, line 2: infixl symbol ’+’ was not declared in this namespace

Thus the compiler will never create a new instance of an operator symbol on the fly, an
explicit declaration is always needed in such cases.

Note that if you really wanted to redefine the global + operator, you can do this even while
the my namespace is current. You just have to use a qualified identifier in this case, as follows:

> namespace my;
> x ::+ y = x*y;
> a+b;
a*b

This should rarely be necessary (in the above example you might just as well enter this rule
while in the global namespace), but it can be useful in some circumstances. Specifically, you
might want to “overload” a global function or operator with a definition that makes use of
private symbols of a namespace (which are only visible inside that namespace; see Private
Symbols below). For instance:

> namespace my;
> private bar;
> bar x y = x*y;
> x ::+ y = bar x y;
> a+b;
a*b

(The above is a rather contrived example, since the very same functionality can be accom-
plished much easier, but there are some situations where this method is needed.)

Private Symbols

Pure also allows you to have private symbols, as a means to hide away internal operations
which shouldn’t be accessed directly outside the namespace in which they are declared.
The scope of a private symbol is confined to its namespace, i.e., the symbol is only visible
when its “home” namespace is current. Symbols are declared private by using the private
keyword in the symbol declaration:
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> namespace secret;
> private baz;
> // ’baz’ is a private symbol in namespace ’secret’ here
> baz x = 2*x;
> // you can use ’baz’ just like any other symbol here
> baz 99;
198
> namespace;

Note that, at this point, secret::baz is now invisible, even if you have secret in the search
namespace list:

> using namespace secret;
> // this actually creates a ’baz’ symbol in the default namespace:
> baz 99;
baz 99
> secret::baz 99;
<stdin>, line 27: symbol ’secret::baz’ is private here

The only way to bring the symbol back into scope is to make the secret namespace current
again:

> namespace secret;
> baz 99;
198
> secret::baz 99;
198

Namespace Brackets

All the namespace-related constructs we discussed so far only provide a means to switch
namespaces on a per-rule basis. Sometimes it is convenient if you can switch namespaces
on the fly inside an expression. This is especially useful if you want to embed a domain-
specific sublanguage (DSL) in Pure. DSLs typically provide their own system of operators
which differ from the standard Pure operators and thus need to be declared in their own
namespace.

To make this possible, Pure allows you to associate a namespace with a corresponding pair
of outfix symbols. This turns the outfix symbols into special namespace brackets which can
then be used to quickly switch namespaces in an expression by just enclosing a subexpres-
sion in the namespace brackets.

To these ends, the syntax of namespace declarations allows you to optionally specify a pair
of outfix symbols inside parentheses after the namespace name. The outfix symbols to be
used as namespace brackets must have been declared beforehand. For instance:

outfix « »;
namespace foo (« »);
infixr (::^) ^;
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x^y = 2*x+y;
namespace;

The code above introduces a foo namespace which defines a special variation of the (^)
operator. It also associates the namespace with the « » brackets so that you can write:

> (a+b)^c+10;
(a+b)^c+10
> «(a+b)^c»+10;
2*(a+b)+c+10

Note the use of the namespace brackets in the second input line. This changes the meaning
of the ^ operator, which now refers to foo::^ instead. Also note that the namespace brackets
themselves are removed from the resulting expression; they are only used to temporarily
switch the namespace to foo inside the bracketed subexpression. This works pretty much
like a namespace declaration (so any active search namespaces remain in effect), but is limited
in scope to the bracketed subexpression and only gives access to the public symbols of the
namespace (like a using namespace declaration would do).

The rules of visibility for the namespace bracket symbols themselves are the same as for any
other symbols. So they need to be in scope if you want to denote them in unqualified form
(which is always the case if they are declared in the default namespace, as in the example
above). If necessary, you can also specify them in their qualified form as usual.

Namespace brackets can be used anywhere inside an expression, even on the left-hand side
of a rule. So, for instance, we might also have written the example above as follows:

outfix « »;
namespace foo (« »);
infixr (::^) ^;
namespace;

«x^y» = 2*x+y;

Note the use of the namespace brackets on the last line. This rule actually expands to:

x foo::^ y = 2*x+y;

The special meaning of namespace brackets can be turned off and back on again at any time
with a corresponding namespace declaration. For instance:

> namespace (« »); // turn off the special meaning of « »
> «(a+b)^c»+10;
« (a+b)^c »+10
> namespace foo (« »); // turn it on again
> namespace;
> «(a+b)^c»+10;
2*(a+b)+c+10

(Note that as a side effect these declarations also change the current namespace, so that
we use the namespace; declaration in the second last line to change back to the default
namespace.)
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As shown in the first line of the example above, a namespace brackets declaration without
a namespace just turns off the special processing of the brackets. In order to define a name-
space bracket for the default namespace, you need to explicitly specify an empty namespace
instead, as follows:

> outfix «: :»;
> namespace "" («: :»);
> «(a+b)^«:x^y:»»;
2*(a+b)+x^y

As this example illustrates, namespace brackets can also be nested, which is useful, e.g.,
if you need to combine subexpressions from several DSLs in a single expression. In this
example we employ the «:x^y:» subexpression to temporarily switch back to the default
namespace inside the « »-bracketed expression which is parsed in the foo namespace.

Hierarchical Namespaces

Namespace identifiers can themselves be qualified identifiers in Pure, which enables you
to introduce a hierarchy of namespaces. This is useful, e.g., to group related namespaces
together under a common “umbrella” namespace:

namespace my;
namespace my::old;
foo x = x+1;
namespace my::new;
foo x = x-1;

Note that the namespace my, which serves as the parent namespace, must be created before
the my::old and my::new namespaces, even if it does not contain any symbols of its own.
After these declarations, the my::old and my::new namespaces are part of the my namespace
and will be considered in name lookup accordingly, so that you can write:

> using namespace my;
> old::foo 99;
100
> new::foo 99;
98

This works pretty much like a hierarchy of directories and files, where the namespaces play
the role of the directories (with the default namespace as the root directory), the symbols in
each namespace correspond to the files in a directory, and the using namespace declaration
functions similar to the shell’s PATH variable.

Sometimes it is necessary to tell the compiler to use a symbol in a specific namespace, bypass-
ing the usual symbol lookup mechanism. For instance, suppose that we introduce another
global old namespace and define yet another version of foo in that namespace:

namespace old;
foo x = 2*x;
namespace;
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Now, if we want to access that function, with my still active as the search namespace,
we cannot simply refer to the new function as old::foo, since this name will resolve to
my::old::foo instead. As a remedy, the compiler accepts an absolute qualified identifier of
the form ::old::foo. This bypasses name lookup and thus always yields exactly the sym-
bol in the given namespace (if it exists; as mentioned previously, the compiler will complain
about an undeclared symbol otherwise):

> old::foo 99;
100
> ::old::foo 99;
198

Also note that, as a special case of the absolute qualifier notation, ::foo always denotes the
symbol foo in the default namespace.

Scoped Namespaces

Pure also provides an alternative scoped namespace construct which makes nested name-
space definitions more convenient. This construct takes the following form:

namespace name with ... end;

The part between with and end may contain arbitrary declarations and definitions, using the
same syntax as the toplevel. These are processed in the context of the given namespace, as if
you had written:

namespace name;
...
namespace;

However, the scoped namespace construct always returns you to the namespace which was
active before, and thus these declarations may be nested:

namespace foo with
// declarations and definitions in namespace foo
namespace bar with
// declarations and definitions in namespace bar

end;
// more declarations and definitions in namespace foo

end;

Note that this kind of nesting does not necessarily imply a namespace hierarchy as discussed
in Hierarchical Namespaces. However, you can achieve this by using the appropriate quali-
fied namespace names:

namespace foo with
// ...
namespace foo::bar with
// ...

end;
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// ...
end;

Another special feature of the scoped namespace construct is that using namespace declara-
tions are always local to the current namespace scope (and other nested namespace scopes
inside it). Thus the previous setting is restored at the end of each scope:

using namespace foo;
namespace foo with
// still using namespace foo here
using namespace bar;
// now using namespace bar
namespace bar with
// still using namespace bar here
using namespace foo;
// now using namespace foo

end;
// back to using namespace bar

end;
// back to using namespace foo at toplevel

Finally, here’s a more concrete example which shows how scoped namespaces might be used
to declare two namespaces and populate them with various functions and operators:

namespace foo with
infixr (::^) ^;
foo x = x+1;
bar x = x-1;
x^y = 2*x+y;

end;

namespace bar with
outfix <: :>;
foo x = x+2;
bar x = x-2;

end;

using namespace foo(^ foo), bar(bar <: :>);

// namespace foo
foo x;
x^y;

// namespace bar
bar x;
<: x,y :>;

Pure’s namespaces can thus be used pretty much like “packages” or “modules” in languages
like Ada or Modula-2. They provide a structured way to describe program components
offering collections of related data and operations, which can be brought into scope in a
controlled way by making judicious use of using namespace declarations. They also provide
an abstraction barrier, since internal operations and data structures can be hidden away
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employing private symbols.

Please note that these facilities are not Pure’s main focus and thus they are somewhat limited
compared to programming languages specifically designed for big projects and large teams
of developers. Nevertheless they should be useful if your programs grow beyond a small
collection of simple source modules, and enable you to manage most Pure projects with ease.

1.7 Macros

Macros are a special type of functions to be executed as a kind of “preprocessing stage” at
compile time. In Pure these are typically used to define custom special forms and to perform
inlining of function calls and other kinds of source-level optimizations.

Whereas the macro facilities of most programming languages simply provide a kind of tex-
tual substitution mechanism, Pure macros operate on symbolic expressions and are imple-
mented by the same kind of rewriting rules that are also used to define ordinary functions
in Pure. This makes them robust and easy to use for most common preprocessing purposes.

Syntactically, a macro definition looks just like a function definition with the def keyword in
front of it. Only unconditional rewriting rules are permitted here, i.e., rules without guards
and multiple right-hand sides. However, multiple left-hand sides can be employed as usual
to abbreviate a collection of rules with the same left-hand side, as described in the General
Rules section.

The major difference between function and macro definitions is that the latter are processed
at compile time rather than run time. To these ends, macro calls on the right-hand sides
of function, constant and variable definitions are evaluated by reducing them to normal
form using the available macro rules. The resulting expressions are then substituted for the
macro calls. All macro substitution happens before constant substitutions and the actual
compilation step. Macros can be defined in terms of other macros (also recursively), and are
normally evaluated using call by value (i.e., macro calls in macro arguments are expanded
before the macro gets applied to its parameters).

In the first half of this section we start out with some common uses of macros which should
cover most aspects of macro programming that the average Pure programmer will need.
The remainder of this section then discusses some more advanced features of Pure’s macro
system intended for power users.

1.7.1 Optimization Rules

Let’s begin with a simple example of an optimization rule from the prelude, which eliminates
saturated instances of the right-associative function application operator (you can find this
near the beginning of prelude.pure):

def f $ x = f x;
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Like in Haskell, ‘$‘ in fact just denotes function application, but it is a low-priority operator
which is handy to write cascading function calls. With the above macro rule, these will be
“inlined” as ordinary function applications automatically. Example:

> foo x = bar $ bar $ 2*x;
> show foo
foo x = bar (bar (2*x));

Note that a macro may have the same name as an ordinary Pure function, which is essential
if you want to inline calls to an existing function. (Just like ordinary functions, the number
of parameters in each rule for a given macro must be the same, but a macro may have a
different number of arguments than the corresponding function.)

When running interactively, you can follow the reduction steps the compiler performs dur-
ing macro evaluation. To these ends, you have to set “tracepoints” on the relevant macros,
using the trace command with the -m option; see Interactive Commands. (This works even
if the interpreter is run in non-debugging mode.) Note that since macro expansion is per-
formed at compile time, you’ll have to do this before entering the definitions in which the
macro is used. However, in many cases you can also just enter the right-hand side of the
equation at the interpreter prompt to see how it gets expanded. For instance:

> trace -m $
> bar $ bar $ 2*x;
-- macro ($): bar$2*x --> bar (2*x)
-- macro ($): bar$bar (2*x) --> bar (bar (2*x))
bar (bar (2*x))

Now let’s see how we can add our own optimization rules. Suppose we’d like to expand
saturated calls of the succ function. This function is defined in the prelude; it just adds 1 to
its single argument. We can inline such calls as follows:

> def succ (x+y) = x+(y+1);
> def succ x = x+1;
> foo x = succ (succ (succ x));
> show foo
foo x = x+3;

Again, let’s see exactly what’s going on there:

> trace -m succ
> succ (succ (succ x));
-- macro succ: succ x --> x+1
-- macro succ: succ (x+1) --> x+(1+1)
-- macro succ: succ (x+(1+1)) --> x+(1+1+1)
x+3

Note that the contraction of the subterm 1+1+1 to the integer constant 3 is actually done
by the compiler after macro expansion has been performed. This is also called “constant
folding”, see Constant Definitions in the Caveats and Notes section for details. It is also the
reason that we added the first rule for succ. This rule may seem superflous at first sight, but
actually it is needed to massage the sum into a form which enables constant folding.
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Rules like these can help the compiler generate better code. Of course, the above examples
are still rather elementary. Pure macros can do much more elaborate optimizations, but for
this we first need to discuss how to write recursive macros, as well as macros which take
apart special terms like lambdas. After that we’ll return to the subject of optimization rules
in Advanced Optimization below.

1.7.2 Recursive Macros

Macros can also be recursive, in which case they usually consist of multiple rules and make
use of pattern-matching just like ordinary function definitions.

Note: Pure macros are just as powerful as (unconditional) term rewriting systems and thus
they are Turing-complete. This implies that a badly written macro may well send the Pure
compiler into an infinite recursion, which results in a stack overflow at compile time.

As a simple example, let’s see how we can inline invocations of the # size operator on list
constants:

def #[] = 0;
def #(x:xs) = #xs+1;

As you can see, the definition is pretty straightforward; exactly the same rules might also be
used for an ordinary function definition, although the standard library actually implements
# a bit differently to make good use of tail recursion. Let’s check that this actually works:

> foo = #[1,2,3,4];
> show foo
foo = 4;

Note that the result of macro expansion is actually 0+1+1+1+1 here, you can check that by
running the macro with trace -m #. Constant folding contracts this to 4 after macro expan-
sion, as explained in the previous subsection.

This was rather easy. So let’s implement a more elaborate example: a basic Pure version of
Lisp’s quasiquote which allows you to create a quoted expression from a “template” while
substituting variable parts of the template. (For the sake of brevity, we present a somewhat
abridged version here which does not cover all corner cases. The full version of this macro
can be found as lib/quasiquote.pure in the Pure distribution.)

def quasiquote (unquote x) = x;
def quasiquote (f@_ (splice x)) = foldl ($) (quasiquote f) x;
def quasiquote (f@_ x) = quasiquote f (quasiquote x);
def quasiquote x = quote x;

(Note the f@_, which is an anonymous “as” pattern forcing the compiler to recognize f as
a function variable, rather than a literal function symbol. See “As” Patterns in the Caveats
and Notes section for an explanation of this trick.)
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The first rule above takes care of “unquoting” embedded subterms. The second rule
“splices” an argument list into an enclosing function application. The third rule recurses
into subterms of a function application, and the fourth and last rule takes care of quoting the
“atomic” subterms. Note that unquote and splice themselves are just passive constructor
symbols, the real work is done by quasiquote, using foldl at runtime to actually perform
the splicing. (Putting off the splicing until runtime makes it possible to splice argument lists
computed at runtime.)

If we want, we can also add some syntactic sugar for Lisp weenies. (Note that we cannot
have ‘,‘ for unquoting, so we use ‘,$‘ instead.)

prefix 9 ‘ ,$ ,@ ;
def ‘x = quasiquote x; def ,$x = unquote x; def ,@x = splice x;

Examples:

> ‘(2*42+2^12);
2*42+2^12
> ‘(2*42+,$(2^12));
2*42+4096.0
> ‘foo 1 2 (,@’[2/3,3/4]) (5/6);
foo 1 2 (2/3) (3/4) (5/6)
> ‘foo 1 2 (,@args) (5/6) when args = ’[2/3,3/4] end;
foo 1 2 (2/3) (3/4) (5/6)

1.7.3 User-Defined Special Forms

The quasiquote macro in the preceding subsection also provides an example of how you can
use macros to define your own special forms. This works because the actual evaluation of
macro arguments is put off until runtime, and thus we can safely pass them to built-in special
forms and other constructs which defer their evaluation at runtime. In fact, the right-hand
side of a macro rule may be an arbitrary Pure expression involving conditional expressions,
lambdas, binding clauses, etc. These are never evaluated during macro substitution, they
just become part of the macro expansion (after substituting the macro parameters).

Here is another useful example of a user-defined special form, the macro timex which em-
ploys the system function clock to report the cpu time in seconds needed to evaluate a given
expression, along with the computed result:

> using system;
> def timex x = (clock-t0)/CLOCKS_PER_SEC,y when t0 = clock; y = x end;
> sum = foldl (+) 0L;
> timex $ sum (1L..100000L);
0.43,5000050000L

Note that the above definition of timex wouldn’t work as an ordinary function definition,
since by virtue of Pure’s basic eager evaluation strategy the x parameter would have been
evaluated already before it is passed to timex, making timex always return a zero time value.
Try it!
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1.7.4 Macro Hygiene

Pure macros are lexically scoped, i.e., the binding of symbols in the right-hand-side of a
macro definition is determined statically by the text of the definition, and macro parameter
substitution also takes into account binding constructs, such as with and when clauses, in
the right-hand side of the definition. Macro facilities with these pleasant properties are also
known as hygienic macros. They are not susceptible to so-called “name capture,” which
makes macros in less sophisticated languages bug-ridden and hard to use.

Macro hygiene is a somewhat esoteric topic for most programmers, so let us take a brief look
at what it’s all about. The problem avoided by hygienic macros is that of name capture. There
are actually two kinds of name capture which may occur in unhygienic macro systems:

• A free symbol in the macro body inadvertently becomes bound to the value of a local
symbol in the context in which the macro is called.

• A free symbol in the macro call inadvertently becomes bound to the value of a local
symbol in the macro body.

Pure’s hygienic macros avoid both pitfalls. Here is an example for the first form of name
capture:

> def G x = x+y;
> G 10 when y = 99 end;
10+y

Note that the expansion of the G macro correctly uses the global instance of y, even though
y is locally defined in the context of the macro call. (In some languages this form of name
capture is sometimes used deliberately in order to make the macro use the binding of the
symbol which is active at the point of the macro call. Normally, this won’t work in Pure,
although there is a way to force this behaviour in Pure as well, see Name Capture in the
Caveats and Notes section.)

In contrast, the second form of name capture is usually not intended, and is therefore more
dangerous. Consider the following example:

> def F x = x+y when y = x+1 end;
> F y;
y+(y+1)

Pure again gives the correct result here. You’d have to be worried if you got (y+1)+(y+1)
instead, which would result from the literal expansion y+y when y = y+1 end, where the
(free) variable y passed to F gets captured by the local binding of y. In fact, that’s exactly
what you get with C macros:

#define F(x) { int y = x+1; return x+y; }

Here F(y) expands to { int y = y+1; return y+y; } which is usually not what you want.

This completes our little introduction to Pure’s macro facilities. The above material should
in fact cover all the common uses of macros in Pure. However, if you want to become a real
Pure macro wizard then read on. In the following subsections we’re going to discover some
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more advanced features of Pure’s macro system which let you write macros for manipulating
special forms and give you access to Pure’s reflection capabilities.

1.7.5 Built-in Macros and Special Expressions

As already mentioned in The Quote, special expressions such as conditionals and lambdas
cannot be directly represented as runtime data in Pure. But they can be quoted in which
case they are replaced by corresponding “placeholder terms”. These placeholder terms are
in fact implemented as built-in macros which, when evaluated, construct the corresponding
specials.

macro __ifelse__ x y z
This macro expands to the conditional expression if x then y else z during macro
evaluation.

macro __lambda__ [x1,...,xn] y
Expands to the lambda expression \x1 ... xn -> y.

macro __case__ x [(x1 –> y1),...,(xn –> yn)]
Expands to the case expression case x of x1 = y1; ...; xn = yn end. Note that
the --> symbol is used to separate the left-hand side and the right-hand side of each
rule (see below).

macro x __when__ [(x1 –> y1),...,(xn –> yn)]
Expands to the when expression x when x1 = y1; ...; xn = yn end. Here the left-
hand side of a rule may be omitted if it is just the anonymous variable; i.e., x __when__

[foo y] is the same as x __when__ [_ --> foo y].

macro x __with__ [(x1 –> y1),...,(xn –> yn)]
Expands to the with expression x with x1 = y1; ...; xn = yn end.

Note that the following low-priority infix operators are used to denote equations in the
__case__, __when__ and __with__ macros:

constructor x --> y
Denotes an equation x = y.

constructor x __if__ y
Attaches a guard to the right-hand side of an equation. That is, x --> y __if__

z denotes the conditional equation x = y if z. This symbol is only recognized in
__case__ and __with__ calls.

In addition, patterns on the left-hand side of equations or in lambda arguments may be
decorated with the following constructor terms to indicate “as” patterns and type tags (these
are infix operators with a very high priority):

constructor x __as__ y
Denotes an “as” pattern x @ y.

constructor x __type__ y
Denotes a type tag x :: y.

154 1.7 Macros



Pure Language and Library Documentation, Release 0.62

Note that all these symbols are in fact just constructors which are only interpreted in the
context of the built-in macros listed above; they aren’t macros themselves.

It’s good to remember the above when you’re doing macro programming. However, to see
the placeholder term of a special, you can also just type a quoted expression in the inter-
preter:

> ’(\x->x+1);
__lambda__ [x] (x+1)
> ’(f with f x = y when y = x+1 end end);
f __with__ [f x-->y __when__ [y-->x+1]]

List and matrix comprehensions can also be quoted. These are basically syntactic sugar for
lambda applications, cf. Primary Expressions. The compiler expands them to their “un-
sugared” form already before macro substitution, so no special kinds of built-in macros are
needed to represent them. When quoted, comprehensions are thus denoted in their unsug-
ared form, which consists of a pile of lambda expressions and list or matrix construction
functions for the generation clauses, and possibly some conditionals for the filter clauses of
the comprehension. For instance:

> ’[2*x | x = 1..3];
listmap (__lambda__ [x] (2*x)) (1..3)

Here’s how type tags and “as” patterns in quoted specials look like:

> ’(\x::int->x+1);
__lambda__ [x __type__ int] (x+1)
> ’(dup (1..3) with dup xs@(x:_) = x:xs end);
dup (1..3) __with__ [dup (xs __as__ (x:_))-->x:xs]

Note that the placeholder terms for the specials are quoted here, and hence they are not
evaluated (quoting inhibits macro expansion, just like it prevents the evaluation of ordinary
function calls). Evaluating the placeholder terms executes the corresponding specials:

> ’(dup (1..3) with dup xs@(x:_) = x:xs end);
dup (1..3) __with__ [dup (xs __as__ (x:_))-->x:xs]
> eval ans;
[1,1,2,3]

Of course, you can also just enter the macros directly (without quoting) to have them evalu-
ated:

> dup (1..3) __with__ [dup (xs __as__ (x:_))-->x:xs];
[1,1,2,3]
> __lambda__ [x __type__ int] (x+1);
#<closure 0x7f1934158dc8>
> ans 99;
100

The __str__ function can be used to pretty-print quoted specials:
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> __str__ (’__lambda__ [x __type__ int] (x+1));
"\\x::int -> x+1"
> __str__ (’(dup (1..3) __with__ [dup (xs __as__ (x:_))-->x:xs]));
"dup (1..3) with dup xs@(x:_) = x:xs end"

This is useful to see which expression a quoted special will expand to. Note that __str__ can
also be used to define print representations for quoted specials with __show__ (described in
Pretty-Printing) if you always want to have them printed that way by the interpreter.

As quoted specials are just ordinary Pure expressions, they can be manipulated by functions
just like any other term. For instance, here’s how you can define a function which takes a
quoted lambda and swaps its two arguments:

> swap (__lambda__ [x,y] z) = ’(__lambda__ [y,x] z);
> swap (’(\a b->a-b));
__lambda__ [b,a] (a-b)
> eval ans 2 3; // same as (\b a->a-b) 2 3
1

For convenience, a literal special expression can also be used on the left-hand side of an
equation, in which case it actually denotes the corresponding placeholder term. So the swap
function can also be defined like this (note that we first scratch the previous definition of
swap with the clear command, see Interactive Commands):

> clear swap
> swap (\x y -> z) = ’(\y x -> z);
> swap (’(\a b->a-b));
__lambda__ [b,a] (a-b)

This is usually easier to write and improves readability. However, there are cases in which
you want to work with the built-in macros in a direct fashion. In particular, this becomes
necessary when writing more generic rules which deal, e.g., with lambdas involving a vari-
able number of arguments, or if you need real (i.e., unquoted) type tags or “as” patterns in a
placeholder pattern. We’ll see examples of these later.

Quoted specials can be manipulated with macros just as well as with functions. In fact, this
is quite common and thus the macro evaluator has some special support to make this more
convenient. Specifically, it is possible to make a macro quote its arguments in an automatic
fashion, by means of the --quoteargs pragma. To illustrate this, let’s redefine swap as a
macro:

> clear swap
> #! --quoteargs swap
> def swap (\x y -> z) = ’(\y x -> z);
> swap (\a b->a-b);
__lambda__ [b,a] (a-b)

The --quoteargs pragma makes the swap macro receive its argument unevaluated, as if
it was quoted (but without a literal quote around it). Therefore the quote on the lambda
argument of swap can now be omitted. However, the result is still a quoted lambda. It’s
tempting to just omit the quote on the right-hand side of the macro definition as well, in
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order to get a real lambda instead:

> clear swap
> def swap (\x y -> z) = \y x -> z;
> swap (\a b->a-b);
#<closure 0x7f1934156f00>
> ans 2 3;
a-b

We got a closure all right, but apparently it’s not the right one. Let’s use trace -m to figure
out what went wrong:

> trace -m swap
> swap (\a b->a-b);
-- macro swap: swap (\a b -> a-b) --> \y x -> a-b
#<closure 0x7f1934157248>

Ok, so the result is the lambda \y x -> a-b, not \b a -> a-b as we expected. This happens
because we used a literal (unquoted) lambda on the right-hand side, which does its own
variable binding; consequently, the variables x and y are bound by the lambda in this context,
not by the left-hand side of the macro rule.

So just putting an unquoted lambda on the right-hand side doesn’t do the job. One way to
deal with the situation is to just employ the __lambda__ macro in a direct way, as we’ve seen
before:

> clear swap
> def swap (__lambda__ [x,y] z) = __lambda__ [y,x] z;
> swap (\a b->a-b);
-- macro swap: swap (\a b -> a-b) --> __lambda__ [b,a] (a-b)
-- macro __lambda__: __lambda__ [b,a] (a-b) --> \b a -> a-b
#<closure 0x7f1934156f00>
> ans 2 3;
1

This works, but doesn’t look very nice. Often it’s more convenient to first construct a quoted
term involving the necessary specials and then have it evaluated during macro evaluation.
Pure provides yet another built-in macro for this purpose:

macro __eval__ x
Evaluate x at macro expansion time. This works by stripping one level of (outermost)
quotes from x and performing macro expansion on the resulting unquoted subexpres-
sions.

Using __eval__, we can implement the swap macro as follows:

> clear swap
> def swap (\x y -> z) = __eval__ (’(\y x -> z));
> swap (\a b->a-b);
-- macro swap: swap (\a b -> a-b) --> __eval__ (’__lambda__ [b,a] (a-b))
-- macro __lambda__: __lambda__ [b,a] (a-b) --> \b a -> a-b
-- macro __eval__: __eval__ (’__lambda__ [b,a] (a-b)) --> \b a -> a-b
#<closure 0x7f7e1f867dc8>
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> ans 2 3;
1

Lisp programmers should note the difference. In Lisp, macros usually yield a quoted expres-
sion which is evaluated implicitly during macro expansion. This is never done automatically
in Pure, since many Pure macros work perfectly well without it. Instead, quotes in a macro
expansion are treated as literals, and you’ll have to explicitly call __eval__ to remove them
during macro evaluation.

A final caveat: Placeholder terms for specials are just simple expressions; they don’t do any
variable binding by themselves. Thus the rules of macro hygiene don’t apply to them, which
makes it possible to manipulate lambdas and local definitions in any desired way. On the
other hand, this means that it is the programmer’s responsibility to avoid accidental name
capture when using these facilities. Most macro code will work all right when written in a
straightforward way, but there are some corner cases which need special attention (cf. Name
Capture).

Sometimes the only convenient way to avoid name capture is to create new symbols on the
fly. This will often be necessary if a macro generates an entire block construct (case, when,
with or lambda) from scratch. The following built-in macro is provided for this purpose:

macro __gensym__

Create a new unqualified symbol which is guaranteed to not exist at the time of the
macro call. These symbols typically look like __x123__ and can be used for any pur-
pose (i.e., as global or local as well as function or variable symbols).

For instance, here’s how we can implement a macro foo which creates a lambda from a given
argument, using __gensym__ to generate a fresh local variable for the lambda argument.
This guarantees that variables in the argument expression don’t get captured by the lambda
variable when the closure is created with a call to the built-in __lambda__ macro.

> def foo x = bar __gensym__ x;
> def bar x y = __lambda__ [x] (x+y);
> trace -m foo
> foo (a*b);
-- macro foo: foo (a*b) --> bar __gensym__ (a*b)
-- macro __gensym__: __gensym__ --> __x1__

-- macro bar: bar __x1__ (a*b) --> __lambda__ [__x1__] (__x1__+a*b)
-- macro __lambda__: __lambda__ [__x1__] (__x1__+a*b) --> \__x1__ -> __x1__+a*b
#<closure 0x7f66f6c88db0>
> ans 77;
77+a*b

The __gensym__ macro returns a new variable for each invocation, and always ensures that
it doesn’t accidentally reuse a symbol already introduced by the user (even if it looks like a
symbol that __gensym__ might itself create):

> foo (a*__x2__);
-- macro foo: foo (a*__x2__) --> bar __gensym__ (a*__x2__)
-- macro __gensym__: __gensym__ --> __x3__

-- macro bar: bar __x3__ (a*__x2__) --> __lambda__ [__x3__] (__x3__+a*__x2__)
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-- macro __lambda__: __lambda__ [__x3__] (__x3__+a*__x2__) --> \__x3__ -> __x3__+a*__x2__

#<closure 0x7f66f6c887e8>
> ans 77;
77+a*__x2__

1.7.6 Advanced Optimization

We are now in a position to have a look at some of the trickier optimization macros defined
in the prelude. The following __do__ macro can be found near the end of the prelude.pure
module; it is used to optimize the case of “throwaway” list and matrix comprehensions.
This is useful if a comprehension is evaluated solely for its side effects. To keep things
simple, we discuss a slightly abridged version of the __do__ macro which only deals with
list comprehensions and ignores some obscure corner cases. You can find this version in the
examples/do.pure script. Please also check the prelude for the full version of this macro.

Note that we define our own versions of void and __do__ here which are placed into the my
namespace to avoid conflicts with the prelude.

namespace my;

void _ = ();

#! --quoteargs my::__do__

def void [x] = void x;
def void (catmap f x) | void (listmap f x) = __do__ f x;

// Recurse into embedded generator clauses.
def __do__ (__lambda__ [x] y@(listmap _ _)) |

__do__ (__lambda__ [x] y@(catmap _ _)) =
__do__ $ (__lambda__ [x] (void y));

// Recurse into embedded filter clauses.
def __do__ (__lambda__ [x] (__ifelse__ y z [])) =

__do__ $ (__lambda__ [x] (__ifelse__ y (void z) ()));

// Eliminate extra calls to ’void’ in generator clauses.
def __do__ (__lambda__ [x] (void y)) = __do__ (__lambda__ [x] y);

// Eliminate extra calls to ’void’ in filter clauses.
def __do__ (__lambda__ [x] (__ifelse__ y (void z) ())) =

__do__ (__lambda__ [x] (__ifelse__ y z ()));

// Any remaining instances reduce to a plain ’do’ (this must come last).
def __do__ f = do f;

First, note that the void function simply throws away its argument and returns () instead.
The do function applies a function to every member of a list (like map), but throws away
all intermediate results and just returns (), which is much more efficient if you don’t need
those results anyway. These are both defined in the prelude, but we define our own version
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of void here so that we can hook it up to our simplified version of the __do__ macro.

The __do__ macro eventually reduces to just a plain do call, but applies some optimizations
along the way. While the above rules for __do__ are always valid optimizations for do,
it’s a good idea to use a separate macro here instead of clobbering do itself, so that these
optimizations do not interfere with calls to do in ordinary user code. The prelude handles
this in an analogous fashion.

Before we further delve into this example, a few remarks are in order about the way list
comprehensions are implemented in Pure. As already mentioned, list comprehensions are
just syntactic sugar; the compiler immediately transforms them to an equivalent expression
involving only lambdas and a few other list operations. The latter are essentially equivalent
to piles of nested filters and maps, but for various reasons they are actually implemented
using two special helper operations, catmap and listmap.

The catmap operation combines map and cat; this is needed, in particular, to accumulate the
results of nested generators, such as [i,j | i = 1..n; j = 1..m]. The same operation is
also used to implement filter clauses, you can see this below in the examples. However,
for efficiency simple generators like [2*i | i = 1..n] are translated to a listmap instead
(which is basically just map, but works with different aggregate types, so that list compre-
hensions can draw values from aggregates other than lists, such as matrices).

Now let’s see how the rules above transform a list comprehension if we “void” it. (Remem-
ber to switch to the my namespace when trying the following examples.)

> using system;
> using namespace my;
> f = [printf "%g\n" (2^x+1) | x=1..5; x mod 2];
> g = void [printf "%g\n" (2^x+1) | x=1..5; x mod 2];
> show f g
f = catmap (\x -> if x mod 2 then [printf "%g\n" (2^x+1)] else []) (1..5);
g = do (\x -> if x mod 2 then printf "%g\n" (2^x+1) else ()) (1..5);

As you can see, the catmap got replaced with a do, and the list brackets inside the lambda
were eliminated as well. These optimizations are just what’s needed to make this code go
essentially as fast as a for loop in traditional programming languages (up to constant factors,
of course). Here’s how it looks like when we run the g function:

> g;
3
9
33
()

It’s also instructive to have a look at how the above macro rules work in concert to rewrite a
“voided” comprehension. To these ends, you can rerun the right-hand side of g with some
tracing enabled, as follows (we omit the tracing output here for brevity):

> trace -m my::void
> void [printf "%g\n" (2^x+1) | x=1..5; x mod 2];

The above optimization rules also take care of nested list comprehensions, since they recurse
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into the lambda bodies of generator and filter clauses. For instance:

> h = void [puts $ str (x,y) | x=1..2; y=1..3];
> show h
h = do (\x -> do (\y -> puts (str (x,y))) (1..3)) (1..2);

Again, you should run this with macro tracing enabled to see how the __do__ macro recurses
into the outer lambda body of the list comprehension. Here’s the rule which actually does
this:

def __do__ (__lambda__ [x] y@(catmap _ _)) =
__do__ $ (__lambda__ [x] (void y));

Note that in order to make this work, __do__ is implemented as a “quoteargs” macro so
that it can inspect and recurse into the lambda terms in its argument. Also note the $ on
the right-hand side of this rule; this is also implemented as a macro in the prelude. Here
the $ operator is used to forcibly evaluate the macro argument __lambda__ [x] (void y),
so that the embedded call to the void macro gets expanded. (Without the $ the argument to
__do__ would be quoted and thus not be evaluated.) A similar rule is used to recurse into
embedded filter clauses, as in the example of the function g above.

It should be mentioned that, while our version of the __do__ macro will properly handle
most list comprehensions, there is a rather obscure corner case which it still refuses to opti-
mize: outermost filter clauses. For instance, consider:

> let c = 2;
> k = void [printf "%g\n" (2^x+1) | c>0; x=1..3];
> show k
k = my::void (if c>0 then listmap (\x -> printf "%g\n" (2^x+1)) (1..3) else []);

It’s possible to handle this case as well, but we have to go to some lengths to achieve that.
The complication here is that we don’t want to mess with calls to void in ordinary user code,
so void itself cannot be a “quoteargs” macro. But the quoted form of void‘s argument is
needed to detect the “outermost filter clause” situation. The interested reader may refer to
the prelude code to see how the prelude implementation of __do__ uses some helper macros
to make this work. Another detail of the full version of __do__ is the handling of patterns
on the left-hand side of generator clauses, which requires some special magic to filter out
unmatched list elements; we also omitted this here for brevity.

1.7.7 Reflection

The meta representation of specials discussed in Built-in Macros and Special Expressions is
also useful to obtain information about the running program and even modify it. Pure’s
runtime provides some built-in operations to implement these reflection capabilities, which
are comparable in scope to what the Lisp programming language offers.

Specifically, the get_fundef function allows you to retrieve the definition of a global Pure
function. Given the symbol denoting the function, get_fundef returns the list of rewriting
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rules implementing the functions, using the same lhs --> rhs format used by the __case__,
__when__ and __with__ macros discussed above. For instance:

> fact n = 1 if n<=1;
> = n*fact (n-1) otherwise;
> get_fundef fact;
[(fact n-->1 __if__ n<=1),(fact n-->n*fact (n-1))]

Defining a new function or extending an existing function definition can be done just as
easily, using the add_fundef function:

> add_fundef $ ’[(fib n-->1 __if__ n<=1),(fib n-->fib (n-2)+fib (n-1))];
()
> show fib
fib n = 1 if n<=1;
fib n = fib (n-2)+fib (n-1);
> map fib (0..10);
[1,1,2,3,5,8,13,21,34,55,89]

Note that, to be on the safe side, we quoted the rule list passed to add_fundef to prevent
premature evaluation of symbols used in the rules. This is necessary because add_fundef is
an ordinary function, not a macro. (Of course, you could easily define a macro which would
take care of this, if you like. We leave this as an exercise to the reader.)

Also note that add_fundef doesn’t override existing function definitions. It simply keeps
on adding rules to the current program, just as if you typed the equations at the command
prompt of the interpreter. It is possible to delete individual equations with del_fundef:

> del_fundef $ ’(fib n-->fib (n-2)+fib (n-1));
()
> show fib
fib n = 1 if n<=1;

Moreover, the clearsym function allows you to completely get rid of an existing function:

> clearsym fib 0;
()
> show fib
> fib 9;
fib 9

There’s also a companion function, globsym, which enables you to get a list of defined sym-
bols which match a given glob pattern:

> globsym "fact" 0;
[fact]
> globsym "*" 0;
[(!),(!!),(#),($),($$),...]
> #globsym "*" 0;
304

Note that globsym also returns symbols defined as types, macros, variables or constants. But
we can easily check for a given type of symbol by using the appropriate function to retrieve
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the rules defining the symbol, and filter out symbols with an empty rule list:

> #[sym | sym = globsym "*" 0; ~null (get_fundef sym)];
253

Pure also provides the operations get_typedef, get_macdef, get_vardef and get_constdef,
which are completely analogous to get_fundef, but return the definitions of types, macros,
(global) variables and constants. Note that in the latter two cases the rule list takes the form
[var-->val] if the symbol is defined, [] if it isn’t.

For instance, let’s check the definition of the $ macro (cf. Optimization Rules) and the list
type (cf. Recursive Types):

> get_macdef ($);
[f$x-->f x]
> get_typedef list;
[(list []-->1),(list (_:_)-->1)]

Or let’s lists all global variables along with their values:

> catmap get_vardef (globsym "*" 0);
[(argc-->0),(argv-->[]),(compiling-->0),
(sysinfo-->"x86_64-unknown-linux-gnu"),(version-->"0.62")]

The counterparts of add_fundef and del_fundef are provided as well. Not very surprisingly,
they are named add_typedef, del_typedef, etc. For instance:

> add_vardef [’x-->3*33];
()
> show x
let x = 99;
> del_vardef (’x);
()
> show x

The above facilities should cover most metaprogramming needs. For even more exotic re-
quirements, you can also use the eval and evalcmd primitives to execute arbitrary Pure code
in text form; please see the Pure Library Manual for details.

Finally, a word of caution: The use of add_fundef, del_fundef and similar operations
to modify a running program breaks referential transparency and hence these functions
should be used with care. Moreover, at present the JIT compiler doesn’t support truly self-
modifying code (i.e., functions modifying themselves while they’re executing); this results
in undefined behaviour. Also, note that none of the inspection and mutation capabilities
provided by these operations will work in batch-compiled programs, please check the Batch
Compilation section for details.

1.8 Exception Handling

Pure also offers a useful exception handling facility. To raise an exception, you just invoke
the built-in function throw with the value to be thrown as the argument. Exceptions are
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caught with the built-in special form catch which is invoked as follows:

catch handler x
Catch an exception. The first argument denotes the exception handler (a function to be
applied to the exception value). The second (call-by-name) argument is the expression
to be evaluated.

For instance:

> catch error (throw hello_world);
error hello_world

Exceptions are also generated by the runtime system if the program runs out of stack space,
when a guard does not evaluate to a truth value, and when the subject term fails to match
the pattern in a pattern-matching lambda abstraction, or a let, case or when construct.
These types of exceptions are reported using the symbols stack_fault, failed_cond and
failed_match, respectively, which are declared as nonfix symbols in the standard prelude.
You can use catch to handle these kinds of exceptions just like any other. For instance:

> fact n = if n>0 then n*fact(n-1) else 1;
> catch error (fact foo);
error failed_cond
> catch error (fact 1000000);
error stack_fault

Unhandled exceptions are reported by the interpreter with a corresponding error message:

> fact foo;
<stdin>, line 2: unhandled exception ’failed_cond’ while evaluating ’fact foo’

Note that since the right-hand side of a type definition (cf. Type Rules) is just ordinary Pure
code, it may be susceptible to exceptions, too. Such exceptions are reported or caught just
like any other. In particular, if you want to make a type definition just fail silently in case of
an exception, you’ll have to wrap it up in a suitable catch clause:

> foo x = throw foo; // dummy predicate which always throws an exception
> type bar x = foo x;
> type baz x = catch (cst false) (foo x);
> test_bar x::bar = x;
> test_baz x::baz = x;
> test_bar ();
<stdin>, line 6: unhandled exception ’foo’ while evaluating ’test_bar ()’
> test_baz ();
test_baz ()

Exceptions also provide a way to handle asynchronous signals. Pure’s system module pro-
vides symbolic constants for common POSIX signals and also defines the operation trap
which lets you rebind any signal to a signal exception. For instance, the following lets you
handle the SIGQUIT signal:

> using system;
> trap SIG_TRAP SIGQUIT;
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You can also use trap to just ignore a signal or revert to the system’s default handler (which
might take different actions depending on the type of signal, see signal(7) for details):

> trap SIG_IGN SIGQUIT; // signal is ignored
> trap SIG_DFL SIGQUIT; // reinstalls the default signal handler

Note that when the interpreter runs interactively, for convenience most standard termina-
tion signals (SIGINT, SIGTERM, etc.) are already set up to produce corresponding Pure ex-
ceptions of the form signal SIG where SIG is the signal number. If a script is to be run
non-interactively then you’ll have to do this yourself (otherwise most signals will terminate
the program).

While exceptions are normally used to report abnormal error conditions, they also provide
a way to implement non-local value returns. For instance, here’s a variation of our n queens
algorithm (cf. List Comprehensions) which only returns the first solution. Note the use of
throw in the recursive search routine to bail out with a solution as soon as we found one. The
value thrown there is caught in the main routine. Also note the use of void in the second
equation of search. This effectively turns the list comprehension into a simple loop which
suppresses the normal list result and just returns () instead. Thus, if no value gets thrown
then the function regularly returns with () to indicate that there is no solution.

queens n = catch reverse (search n 1 []) with
search n i p = throw p if i>n;

= void [search n (i+1) ((i,j):p) | j = 1..n; safe (i,j) p];
safe (i,j) p = ~any (check (i,j)) p;
check (i1,j1) (i2,j2)

= i1==i2 || j1==j2 || i1+j1==i2+j2 || i1-j1==i2-j2;
end;

E.g., let’s compute a solution for a standard 8x8 board:

> queens 8;
[(1,1),(2,5),(3,8),(4,6),(5,3),(6,7),(7,2),(8,4)]

1.9 Standard Library

Pure comes with a collection of Pure library modules, which includes the standard prelude
(loaded automatically at startup time) and some other modules which can be loaded explic-
itly with a using clause. The prelude offers the necessary functions to work with the built-in
types (including arithmetic and logical operations) and to do most kind of list processing
you can find in ML- and Haskell-like languages. It also provides a collection of basic string
and matrix operations. Please refer to the Pure Library Manual for details on the provided
operations. Here is a very brief summary of some of the prelude operations which, besides
the usual arithmetic and logical operators, are probably used most frequently:

x+y
The arithmetic + operation is also used to denote list and string concatenation in Pure.
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x:y
This is the list-consing operation. x becomes the head of the list, y its tail. As ‘:‘ is a
constructor symbol, you can use it in patterns on the left hand side of rewriting rules.

x..y
Constructs arithmetic sequences. x:y..z can be used to denote sequences with arbi-
trary stepsize y-x. Infinite sequences can be constructed using an infinite bound (i.e.,
inf or -inf). E.g., 1:3..inf denotes the stream of all odd integers starting at 1.

x,y
This is the pair constructor, used to create tuples of arbitrary sizes. Tuples provide
an alternative way to represent aggregate values in Pure. In contrast to lists, tuples
are always “flat”, so that (x,y),z and x,(y,z) denote the same triple x,y,z. (This is
explained in more detail in the Primary Expressions section.)

#x
The size (number of elements) of the list, tuple, matrix or string x. In addition, dim x
yields the dimensions (number of rows and columns) of a matrix.

x!y
This is Pure’s indexing operation, which applies to lists, tuples, matrices and strings.
Note that all indices in Pure are zero-based, thus x!0 and x!(#x-1) are the first and
last element of x. In the case of matrices, the subscript may also be a pair of row and
column indices, such as x!(1,2).

x!!ys
This is the “slicing” operation, which returns the list, tuple, matrix or string of all
x!y while y runs through the elements of the list or matrix ys. Thus, e.g., x!!(i..j)
returns all the elements between i and j (inclusive). Indices which fall outside the
valid index range are quietly discarded. The index range ys may contain any number
of indices (also duplicates), in any order. Thus x!![0|i=1..n] returns the first element
of x n times, and, if ys is a permutation of the range 0..#x-1, then x!!ys yields the
corresponding permutation of the elements of x. In the case of matrices the index
range may also contain two-dimensional subscripts, or the index range itself may be
specified as a pair of row/column index lists such as x!!(i..j,k..l).

The prelude also offers support operations for the implementation of list and matrix compre-
hensions, as well as the customary list operations like head, tail, drop, take, filter, map,
foldl, foldr, scanl, scanr, zip, unzip, etc., which make list programming so much fun in
modern FPLs. In Pure, these also work on strings as well as matrices, although, for reasons
of efficiency, these data structures are internally represented as arrays.

Besides the prelude, Pure’s standard library also comprises a growing number of additional
library modules which we can only mention in passing here. In particular, the math module
provides additional mathematical functions as well as Pure’s complex and rational number
data types. Common container data structures like sets and dictionaries are implemented in
the set and dict modules, among others. Moreover, the system interface can be found in
the system module. In particular, this module also provides operations to do basic C-style
I/O, including printf and scanf.
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1.10 C Interface

Pure makes it very easy to call C functions (as well as functions in a number of other lan-
guages supported by the GNU compiler collection). To call an existing C function, you just
need an extern declaration of the function, as described below. By these means, all func-
tions in the standard C library and the Pure runtime are readily available to Pure scripts.
Functions can also be loaded from dynamic libraries and LLVM bitcode files at runtime. In
the latter case, you don’t even need to write any extern declarations, the interpreter will do
that for you. As of Pure 0.45, you can also add inline C/C++ and Fortran code to your Pure
scripts and have the Pure interpreter compile them on the fly, provided that you have the
corresponding compilers from the LLVM project installed.

In some cases you will still have to rely on big and complicated third-party and system
libraries which aren’t readily available in bitcode form. It goes without saying that writing
all the extern declarations for such libraries can be a daunting task. Fortunately, there is a
utility to help with this, by extracting the extern declarations automatically from C headers.
Please see External C Functions in the Caveats and Notes section for details.

1.10.1 Extern Declarations

To access an existing C function in Pure, you need an extern declaration of the function,
which is a simplified kind of C prototype. The syntax of these declarations is described by
the following grammar rules:

extern_decl ::= [scope] “extern” prototype (”,” prototype) ”;”
prototype ::= c_type identifier “(” [parameters | ”...”] ”)” [”=” identifier]
parameters ::= parameter (”,” parameter)* [”,” ”...”]
parameter ::= c_type [identifier]
c_type ::= identifier “*”*

Extern functions can be called in Pure just like any other. For instance, the following com-
mands, entered interactively in the interpreter, let you use the sin function from the C library
(of course you could just as well put the extern declaration into a script):

> extern double sin(double);
> sin 0.3;
0.29552020666134

An extern declaration can also be prefixed with a public/private scope specifier:

private extern double sin(double);

Multiple prototypes can be given in one extern declaration, separating them with commas:

extern double sin(double), double cos(double), double tan(double);

For clarity, the parameter types can also be annotated with parameter names (these only
serve informational purposes and are for the human reader; they are effectively treated as
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comments by the compiler):

extern double sin(double x);

Pointer types are indicated by following the name of the element type with one or more
asterisks, as in C. For instance:

> extern char* strchr(char *s, int c);
> strchr "foo bar" (ord "b");
"bar"

As you can see in the previous example, some pointer types get special treatment, allowing
you to pass certain kinds of Pure data (such as Pure strings as char* in this example). This
is discussed in more detail in C Types below.

The interpreter makes sure that the parameters in a call match; if not, then by default the call
is treated as a normal form expression:

> extern double sin(double);
> sin 0.3;
0.29552020666134
> sin 0;
sin 0

This gives you the opportunity to augment the external function with your own Pure equa-
tions. To make this work, you have to make sure that the extern declaration of the function
comes first. For instance, we might want to extend the sin function with a rule to handle
integers:

> sin x::int = sin (double x);
> sin 0;
0.0

Sometimes it is preferable to replace a C function with a wrapper function written in Pure. In
such a case you can specify an alias under which the original C function is known to the Pure
program, so that you can still call the C function from the wrapper. An alias is introduced
by terminating the extern declaration with a clause of the form = alias. For instance:

> extern double sin(double) = c_sin;
> sin x::double = c_sin x;
> sin x::int = c_sin (double x);
> sin 0.3; sin 0;
0.29552020666134
0.0

Aliases are just one way to declare a synonym of an external function. As an alternative, you
can also declare the C function in a special namespace (cf. Namespaces in the Declarations
section):

> namespace c;
> extern double sin(double);
> c::sin 0.3;
0.29552020666134
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Note that the namespace qualification only affects the Pure side; the underlying C function is
still called under the unqualified name as usual. The way in which such qualified externs are
accessed is the same as for ordinary qualified symbols. In particular, the using namespace
declaration applies as usual, and you can declare such symbols as private if needed. It is
also possible to combine a namespace qualifier with an alias:

> namespace c;
> extern double sin(double) = mysin;
> c::mysin 0.3;
0.29552020666134

In either case, different synonyms of the same external function can be declared in slightly
different ways, which makes it possible to adjust the interpretation of pointer values on
the Pure side. This is particularly useful for string arguments which, as described below,
may be passed both as char* (which implies copying and conversion to or from the system
encoding) and as void* (which simply passes through the character pointers). For instance:

> extern char *strchr(char *s, int c) = foo;
> extern void *strchr(void *s, int c) = bar;
> foo "foo bar" 98; bar "foo bar" 98;
"bar"
#<pointer 0x12c2f24>

Also note that, as far as Pure is concerned, different synonyms of an external function are
really different functions. In particular, they can each have their own set of augmenting Pure
equations. For instance:

> extern double sin(double);
> extern double sin(double) = mysin;
> sin === sin;
1
> sin === mysin;
0
> sin 1.0; mysin 1.0;
0.841470984807897
0.841470984807897
> sin x::int = sin (double x);
> sin 1; mysin 1;
0.841470984807897
mysin 1

1.10.2 Variadic C Functions

Variadic C functions are declared as usual by terminating the parameter list with an ellipsis
(...):

> extern int printf(char*, ...);
> printf "Hello, world\n";
Hello, world
13
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Note that the variadic prototype is mandatory here, since the compiler needs to know about
the optional arguments so that it can generate the proper code to call the function. However,
in Pure a function always has a fixed arity, so, as far as Pure is concerned, the function is still
treated as if it had no extra arguments. Thus the above declaration only allows you to call
printf with a single argument.

To make it possible to pass optional arguments to a variadic function, you must explicitly
give the (non-variadic) prototypes with which the function is to be called. To these ends,
the additional prototypes are declared as synonyms of the original variadic function. This
works because the compiler only checks the non-variadic parameters for conformance. For
instance:

> extern int printf(char*, char*) = printf_s;
> printf_s "Hello, %s\n" "world";
Hello, world
13
> extern int printf(char*, int) = printf_d;
> printf_d "Hello, %d\n" 99;
Hello, 99
10

1.10.3 C Types

As indicated in the previous section, the data types in extern declarations are either C type
names or pointer types derived from these. The special expr* pointer type is simply passed
through; this provides a means to deal with Pure data in C functions in a direct fashion. For
all other C types, Pure values are “marshalled” (converted) from Pure to C when passed as
arguments to C functions, and the result returned by the C function is then converted back
from C to Pure. All of this is handled by the runtime system in a transparent way, of course.

Note that, to keep things simple, Pure does not provide any notations for C structs or func-
tion types, although it is possible to represent pointers to such objects using void* or some
other appropriate pointer types. In practice, this simplified system should cover most kinds
of calls that need to be done when interfacing to C libraries, but there are ways to work
around these limitations if you need to access C structs or call back from C to Pure, see
External C Functions in the Caveats and Notes section for details.

Basic C Types

Pure supports the usual range of basic C types: void, bool, char, short, int, long, float,
double, and converts between these and the corresponding Pure data types (machine ints,
bigints and double values) in a straightforward way.

The void type is only allowed in function results. It is converted to the empty tuple ().

Both float and double are supported as floating point types. Single precision float ar-
guments and return values are converted from/to Pure’s double precision floating point
numbers.
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A variety of C integer types (bool, char, short, int, long) are provided which are converted
from/to the available Pure integer types in a straightforward way. In addition, the synonyms
int8, int16 and int32 are provided for char, short and int, respectively, and int64 denotes
64 bit integers (a.k.a. ISO C99 long long). Note that long is equivalent to int32 on 32 bit
systems, whereas it is the same as int64 on most 64 bit systems. To make it easier to interface
to various system routines, there’s also a special size_t integer type which usually is 4 bytes
on 32 bit and 8 bytes on 64 bit systems.

All integer parameters take both Pure ints and bigints as actual arguments; truncation or
sign extension is performed as needed, so that the C interface behaves as if the argument
was “cast” to the C target type. Returned integers use the smallest Pure type capable of
holding the result, i.e., int for the C char, short and int types, bigint for int64.

Pure considers all integers as signed quantities, but it is possible to pass unsigned integers
as well (if necessary, you can use a bigint to pass positive values which are too big to fit
into a machine int). Also note that when an unsigned integer is returned by a C routine,
which is too big to fit into the corresponding signed integer type, it will “wrap around” and
become negative. In this case, depending on the target type, you can use the ubyte, ushort,
uint, ulong and uint64 functions provided by the prelude to convert the result back to an
unsigned quantity.

Pointer Types

The use of pointer types is also fairly straightforward, but Pure has some special rules for
the conversion of certain pointer types which make it easy to pass aggregate Pure data to
and from C routines, while also following the most common idioms for pointer usage in C.
The following types of pointers are recognized both as arguments and return values of C
functions.

Bidirectional pointer conversions:

• char* is used for string arguments and return values which are converted from Pure’s
internal utf-8 based string representation to the system encoding and vice versa. (Thus
a C routine can never modify the raw Pure string data in-place; if this is required then
you’ll have to pass the string argument as a void*, see below.)

• void* is for any generic pointer value, which is simply passed through unchanged.
When used as an argument, you can also pass Pure strings, matrices and bigints. In
this case the raw underlying data pointer (char* in the case of strings, int*, double*
or expr* in the case of numeric and symbolic matrices, and the GMP type mpz_t in the
case of bigints) is passed, which allows the data to be modified in place (with care). In
particular, passing bigints as void* makes it possible to call most GMP integer routines
directly from Pure.

• dmatrix*, cmatrix* and imatrix* allow you to pass numeric Pure matrices of the
appropriate types (double, complex, int). Here a pointer to the underlying GSL matrix
structure is passed (not just the data itself). This makes it possible to transfer GSL
matrices between Pure and GSL routines in a direct fashion without any overhead.
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(For convenience, there are also some other pointer conversions for marshalling matrix
arguments to numeric C vectors, which are described in Pointers and Matrices below.)

• expr* is for any kind of Pure value. A pointer to the expression node is passed to or
from the C function. This type is to be used for C routines which are prepared to deal
with pristine Pure data, using the corresponding functions provided by the runtime.
You can find many examples of this in the standard library.

All other pointer types are simply taken at face value, allowing you to pass Pure pointer
values as is, without any conversions. This also includes pointers to arbitrary named types
which don’t have a predefined meaning in Pure, such as FILE*. As of Pure 0.45, the inter-
preter keeps track of the actual names of all pointer types and checks (at runtime) that the
types match in an external call, so that you can’t accidentally get a core dump by passing,
say, a FILE* for a char*. (The call will then simply fail and yield a normal form, which
gives you the opportunity to hook into the function with your own Pure definitions which
may supply any desired data conversions.) Typing information about pointer values is also
available to Pure scripts by means of corresponding library functions, please see the Tagged
Pointers section in the Pure Library Manual for details.

Pointers and Matrices

The following additional pointer conversions are provided to deal with Pure matrix values
in arguments of C functions, i.e., on the input side. These enable you to pass Pure matrices
for certain kinds of C vectors. Note that in any case, you can also simply pass a suitable
plain pointer value instead. Also, these types aren’t special in return values, where they will
simply yield a pointer value (with the exception of char* which gets special treatment as
explained in the previous subsection). Thus you will have to decode such results manually
if needed. The standard library provides various routines to do this, please see the String
Functions and Matrix Functions sections in the Pure Library Manual for details.

Numeric pointer conversions (input only):

• char*, short*, int*, int64*, float*, double* can be used to pass numeric matrices
as C vectors. This kind of conversion passes just the matrix data (not the GSL matrix
structure, as the dmatrix* et al conversions do) and does conversions between integer
or floating point data of different sizes on the fly. You can either pass an int matrix as
a char*, short* int* or int64* argument, or a double or complex matrix as a float*
or double* argument (complex values are then represented as two separate double
numbers, first the real, then the imaginary part, for each matrix element).

• char**, short**, int**, int64**, float**, double** provide yet another way to pass
numeric matrix arguments. This works analogously to the numeric vector conversions
above, but here a temporary C vector of pointers is passed to the C function, whose
elements point to the rows of the matrix.

Argv-style conversions (input only):

• char** and void** can be used to pass argv-style vectors as arguments to C functions.
In this case, the Pure argument must be a symbolic vector of strings or generic pointer
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values. char** converts the string elements to the system encoding, whereas void**
passes through character string data and other pointers unchanged (and allows in-
place modification of the data). A temporary C vector of these elements is passed to
the C function, which is always NULL-terminated and can thus be used for almost any
purpose which requires such argv-style vectors.

Note that in the numeric pointer conversions, the matrix data is passed “per reference” to
C routines, i.e., the C function may modify the data “in place”. This is true even for tar-
get data types such as short* or float** which involve automatic conversions and hence
need temporary storage. In this case the data from the temporary storage is written back to
the original matrix when the function returns, to maintain the illusion of in-place modifica-
tion. Temporary storage is also needed when the GSL matrix has the data in non-contiguous
storage. You may want to avoid this if performance is critical, by always using “packed”
matrices (see pack in Matrix Functions) of the appropriate types.

Pointer Examples

Let’s finally have a look at some instructive examples to explain some of the trickier pointer
types.

First, the matrix pointer types dmatrix*, cmatrix* and imatrix* can be used to pass double,
complex double and int matrices to GSL functions taking pointers to the corresponding GSL
types (gsl_matrix, gsl_matrix_complex and gsl_matrix_int) as arguments or returning
them as results. (Note that there is no special marshalling of Pure’s symbolic matrix type, as
these aren’t supported by GSL anyway.) Also note that matrices are always passed by refer-
ence. Thus, if you need to pass a matrix as an output parameter of a GSL matrix routine, you
should either create a zero matrix or a copy of an existing matrix to hold the result. The pre-
lude provides various operations for that purpose (in particular, see the dmatrix, cmatrix,
imatrix and pack functions in matrices.pure). For instance, here is how you can quickly
wrap up GSL’s double matrix addition function in a way that preserves value semantics:

> using "lib:gsl";
> extern int gsl_matrix_add(dmatrix*, dmatrix*);
> x::matrix + y::matrix = gsl_matrix_add x y $$ x when x = pack x end;
> let x = dmatrix {1,2,3}; let y = dmatrix {2,3,2}; x; y; x+y;
{1.0,2.0,3.0}
{2.0,3.0,2.0}
{3.0,5.0,5.0}

Most GSL matrix routines can be wrapped in this fashion quite easily. A ready-made GSL
interface providing access to all of GSL’s numeric functions is in the works; please check the
Pure website for details.

For convenience, it is also possible to pass any kind of numeric matrix for a char*, short*,
int*, int64*, float* or double* parameter. This requires that the pointer and the matrix
type match up; conversions between char, short, int64 and int data and, likewise, between
float and double are handled automatically, however. For instance, here is how you can call
the puts routine from the C library with an int matrix encoding the string "Hello, world!"
as byte values (ASCII codes):
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> extern int puts(char*);
> puts {72,101,108,108,111,44,32,119,111,114,108,100,33,0};
Hello, world!
14

Pure 0.45 and later also support char**, short**, int**, int64**, float** and double**
parameters which encode a matrix as a vector of row pointers instead. This kind of matrix
representation is often found in audio and video processing software (where the rows of the
matrix might denote different audio channels, display lines or video frames), but it’s also
fairly convenient to do any kind of matrix processing in C. For instance, here’s how to do
matrix multiplication (the naive algorithm):

void matmult(int n, int l, int m, double **x, double **y, double **z)
{

int i, j, k;
for (i = 0; i < n; i++)
for (j = 0; j < m; j++) {
z[i][j] = 0.0;
for (k = 0; k < l; k++)
z[i][j] += x[i][k]*y[k][j];

}
}

As you can see, this multiplies a n times l matrix x with a l times m matrix y and puts the
result into the n times m matrix z:

> extern void matmult(int, int, int, double**, double**, double**);
> let x = {0.11,0.12,0.13;0.21,0.22,0.23};
> let y = {1011.0,1012.0;1021.0,1022.0;1031.0,1032.0};
> let z = dmatrix (2,2);
> matmult 2 3 2 x y z $$ z;
{367.76,368.12;674.06,674.72}

Also new in Pure 0.45 is the support for passing argv-style vectors as arguments. For in-
stance, here is how you can use fork and execvp to implement a poor man’s version of the
C system function. (This is Unix-specific and doesn’t do much error-checking, but you get
the idea.)

extern int fork();
extern int execvp(char *path, char **argv);
extern int waitpid(int pid, int *status, int options);

system cmd::string = case fork of
// child: execute the program, bail out if error
0 = execvp "/bin/sh" {"/bin/sh","-c",cmd} $$ exit 1;
// parent: wait for the child and return its exit code
pid = waitpid pid status 0 $$ status!0 >> 8

when status = {0} end if pid>=0;
end;

system "echo Hello, world!";
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system "ls -l *.pure";
system "exit 1";

1.10.4 Importing Dynamic Libraries

By default, external C functions are resolved by the LLVM runtime, which first looks for
the symbol in the C library and Pure’s runtime library (or the interpreter executable, if the
interpreter was linked statically). Thus all C library and Pure runtime functions are readily
available in Pure programs. Other functions can be provided by adding them to the runtime,
or by linking them into the runtime or the interpreter executable. Better yet, you can just
“dlopen” shared libraries at runtime with a special form of the using clause:

using "lib:libname[.ext]";

For instance, if you want to call the functions from library libxyz directly from Pure:

using "lib:libxyz";

After this declaration the functions from the given library will be ready to be imported into
your Pure program by means of corresponding extern declarations.

Shared libraries opened with using clauses are searched for in the same way as source scripts
(see section Modules and Imports above), using the -L option and the PURE_LIBRARY envi-
ronment variable in place of -I and PURE_INCLUDE. If the library isn’t found by these means,
the interpreter will also consider other platform-specific locations searched by the dynamic
linker, such as the system library directories and LD_LIBRARY_PATH on Linux. The necessary
filename suffix (e.g., .so on Linux or .dll on Windows) will be supplied automatically when
needed. Of course you can also specify a full pathname for the library if you prefer that. If
a library file cannot be found, or if an extern declaration names a function symbol which
cannot be resolved, an appropriate error message is printed.

1.10.5 Importing LLVM Bitcode

As of Pure 0.44, the interpreter also provides a direct way to import LLVM bitcode modules
in Pure scripts. The main advantage of this method over the “plain” C interface explained
above is that the bitcode loader knows all the call interfaces and generates the necessary
extern declarations automatically. This is more than just a convenience, as it also eliminates
at least some of the mistakes in extern declarations that may arise when importing functions
manually from dynamic libraries.

Note: The facilities described below require that you have an LLVM-capable C/C++ com-
piler installed. The available options right now are clang, llvm-gcc and dragonegg. Please
check the Pure installation instructions on how to get one of these (or all of them) up and run-
ning. Note that clang and llvm-gcc are standalone compilers, while dragonegg is supplied
as a gcc plugin which hooks into your existing system compiler (gcc 4.5 or later is required
for that). Any of these enable you to compile C/C++ source to LLVM assembler or bitcode.
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The clang compiler is recommended for C/C++ development, as it offers faster compilation
times and has much better diagnostics than gcc. On the other hand, llvm-gcc and dragonegg
have the advantage that they also support alternative frontends so that you can compile For-
tran and Ada code as well. (But note that, as of LLVM 3.x, llvm-gcc is not supported any
more.)

LLVM bitcode is loaded in a Pure script using the following special format of the using
clause:

using "bc:modname[.bc]";

(Here the bc tag indicates a bitcode file, and the default .bc bitcode filename extension is
supplied automatically. Also, the bitcode file is searched for on the usual library search
path.)

That’s it, no explicit extern declarations are required on the Pure side. The Pure interpreter
automatically creates extern declarations (in the current namespace) for all the external
functions defined in the LLVM bitcode module, and generates the corresponding wrappers
to make the functions callable from Pure. (This also works when batch-compiling a Pure
script. In this case, the bitcode file actually gets linked into the output code, so the loaded
bitcode module only needs to be present at compile time.)

By default the imported symbols will be public. You can also specify the desired scope of
the symbols explicitly, by placing the public or private keyword before the module name.
For instance:

using private "bc:modname";

You can also import the same bitcode module several times, possibly in different name-
spaces. This will not actually reload the module, but it will create synonyms for the external
functions in different namespaces:

namespace foo;
using "bc:modname";
namespace bar;
using private "bc:modname";

You can load any number of bitcode modules along with shared libraries in a Pure script, in
any order. The JIT will try to satisfy external references in modules and libraries from other
loaded libraries and bitcode modules. This is deferred until the code is actually JIT-compiled,
so that you can make sure beforehand that all required libraries and bitcode modules have
been loaded. If the JIT fails to resolve a function, the interpreter will print its name and also
raise an exception at runtime when the function is being called from other C code. (You can
then run your script in the debugger to locate the external visible in Pure from which the
unresolved function is called.)

Let’s take a look at a concrete example to see how this actually works. Consider the follow-
ing C code which defines a little function to compute the greatest common divisor of two
(machine) integers:
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int mygcd(int x, int y)
{

if (y == 0)
return x;

else
return mygcd(y, x%y);

}

Let’s say that this code is in the file mygcd.c, then you’d compile it to a bitcode module using
clang as follows:

clang -emit-llvm -c mygcd.c -o mygcd.bc

Note that the -emit-llvm -c options instruct clang to build an LLVM bitcode module. Of
course, you can also add optimizations and other options to the compile command as de-
sired.

Using dragonegg is somewhat more involved, as it doesn’t provide a direct way to produce
a bitcode file yet. However, you can create an LLVM assembler file which can then be trans-
lated to bitcode using the llvm-as program as follows:

gcc -fplugin=dragonegg -flto -S mygcd.c -o mygcd.ll
llvm-as mygcd.ll -o mygcd.bc

(Note that the -fplugin option instructs gcc to use the dragonegg plugin, which in conjunc-
tion with the -flto flag switches it to LLVM output. Please check the dragonegg website for
details.)

In either case, you can now load the resulting bitcode module and run the mygcd function in
the Pure interpreter simply as follows:

> using "bc:mygcd";
> mygcd 75 105;
15

To actually see the generated extern declaration of the imported function, you can use the
interactive show command:

> show mygcd
extern int mygcd(int, int);

Some more examples showing how to use the bitcode interface can be found in the Pure
sources. In particular, the interface also works with Fortran (using llvm-gfortran or gfortran
with dragonegg), and there is special support for interfacing to Grame’s functional DSP
programming language Faust (the latter uses a special variant of the bitcode loader, which
is selected with the dsp tag in the using clause). Further details about these can be found
below.

Please note that at this time the LLVM bitcode interface is still somewhat experimental, and
there are some known limitations:

• LLVM doesn’t distinguish between char* and void* in bitcode, so all void* parameters
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and return values in C code will be promoted to char* on the Pure side. Also, pointers
to types which neither have a predefined meaning in Pure nor a proper type name in
the bitcode file, will become a generic pointer type (void*, void**, etc.) in Pure. If this
is a problem then you can just redeclare the corresponding functions under a synonym
after loading the bitcode module, giving the proper argument and result types (see
Extern Declarations above). For instance:

> using "bc:foo";
> show foo
extern char* foo(char*);
> extern void *foo(void*) = myfoo;
> show myfoo
extern void* foo(void*) = myfoo;

• The bitcode interface is limited to the same range of C types as Pure’s plain C interface.
In practice, this should cover most C code, but it’s certainly possible that you run into
unsupported types for arguments and return values. The compiler will then print a
warning; the affected functions will still be linked in, but they will not be callable from
Pure. Also note that calling conventions for passing C structs by value depend on the
host ABI, so you should have a look at the resulting extern declaration (using show) to
determine how the function is actually to be called from Pure.

1.10.6 Inline Code

Instead of manually compiling source files to bitcode modules, you can also just place the
source code into a Pure script, enclosing it in %< ... %>. (Optionally, the opening brace
may also be preceded with a public or private scope specifier, which is used in the same
way as the scope specifier following the using keyword when importing bitcode files.)

For instance, here is a little script showing inline code for the mygcd function from the previ-
ous subsection:

%<
int mygcd(int x, int y)
{

if (y == 0)
return x;

else
return mygcd(y, x%y);

}
%>

mygcd 75 105;

The interpreter automatically compiles the inlined code to LLVM bitcode which is then
loaded as usual. (Of course, this will only work if you have the corresponding LLVM com-
pilers installed.) This method has the advantage that you don’t have to write a Makefile
and you can create self-contained Pure scripts which include all required external functions.
The downside is that the inline code sections will have to be recompiled every time you run
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the script with the interpreter which may considerably increase startup times. If this is a
problem then it’s usually better to import a separate bitcode module instead (see Importing
LLVM Bitcode), or batch-compile your script to an executable (see Batch Compilation).

At present, C, C++, Fortran and Faust are supported as foreign source languages, with clang,
clang++, gfortran (with the dragonegg plugin) and faust as the corresponding (default) com-
pilers. C is the default language. The desired source language can be selected by placing an
appropriate tag into the inline code section, immediately after the opening brace. (The tag is
removed before the code is submitted to compilation.) For instance:

%< -*- Fortran90 -*-
function fact(n) result(p)

integer n, p
p = 1
do i = 1, n

p = p*i
end do

end function fact
%>

fact n::int = fact_ {n};
map fact (1..10);

As indicated, the language tag takes the form -*- lang -*- where lang can currently be any
of c, c++, fortran and dsp (the latter indicates the Faust language). Case is insignificant here,
so you can also write C, C++, Fortran, DSP etc. For the fortran tag, you may also have to
specify the appropriate language standard, such as fortran90 which is used in the example
above. The language tag can also be followed by a module name, using the format -*-
lang:name -*-. This is optional for all languages except Faust (where the module name
specifies the namespace for the interface routines of the Faust module; see Interfacing to
Faust below). So, e.g., a Faust DSP named test would be specified with a dsp:test tag.
Case is significant in the module name.

The Pure interpreter has some built-in knowledge on how to invoke the LLVM compilers
to produce a working bitcode file ready to be loaded by the interpreter, so the examples
above should work out of the box if you have the required compilers installed on your PATH.
However, there are also some environment variables you can set for customization purposes.
Specifically, PURE_CC is the command to invoke the C compiler. This variable lets you specify
the exact name of the executable along with any debugging and optimization options that
you may want to add. Likewise, PURE_CXX, PURE_FC and PURE_FAUST are used for the C++,
Fortran and Faust compilers, respectively.

For instance, if you prefer to use llvm-gcc as your C compiler, and you’d like to invoke it
with the -O3 optimization option, you would set PURE_CC to "llvm-gcc -O3". (To verify
the settings you made, you can have the interpreter echo the compilation commands which
are actually executed, by running Pure with the -v0100 option, see Verbosity and Debug-
ging Options. Also note that the options necessary to produce LLVM bitcode will be added
automatically, so you don’t have to specify these.)

Beginning with Pure 0.48, the dragonegg gcc plugin is also fully supported. To make this
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work, you need to explicitly specify the name of the plugin in the compilation command, so
that the Pure interpreter can add the proper set of options needed for bitcode compilation.
For instance:

PURE_CC="gcc -fplugin=dragonegg -O3"

Some further details on the bitcode support for specific target languages can be found in the
subsections below.

1.10.7 Interfacing to C++

Interfacing to C++ code requires additional preparations because of the name mangling per-
formed by C++ compilers. Usually, you won’t be able to call C++ functions and methods
directly, so you’ll have to expose the required functionality using functions with C binding
(extern "C"). For instance, the following example shows how to work with STL maps from
Pure.

%< -*- C++ -*-

#include <pure/runtime.h>
#include <string>
#include <map>

// An STL map mapping strings to Pure expressions.

using namespace std;
typedef map<string,pure_expr*> exprmap;

// Since we can’t directly deal with C++ classes in Pure, provide some C
// functions to create, destroy and manipulate these objects.

extern "C" exprmap *map_create()
{

return new exprmap;
}

extern "C" void map_add(exprmap *m, const char *key, pure_expr *x)
{

exprmap::iterator it = m->find(string(key));
if (it != m->end()) pure_free(it->second);
(*m)[key] = pure_new(x);

}

extern "C" void map_del(exprmap *m, const char *key)
{

exprmap::iterator it = m->find(key);
if (it != m->end()) {
pure_free(it->second);
m->erase(it);

}
}
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extern "C" pure_expr *map_get(exprmap *m, const char *key)
{

exprmap::iterator it = m->find(key);
return (it != m->end())?it->second:0;

}

extern "C" pure_expr *map_keys(exprmap *m)
{

size_t i = 0, n = m->size();
pure_expr **xs = new pure_expr*[n];
for (exprmap::iterator it = m->begin(); it != m->end(); ++it)
xs[i++] = pure_string_dup(it->first.c_str());

pure_expr *x = pure_listv(n, xs);
delete[] xs;
return x;

}

extern "C" void map_destroy(exprmap *m)
{

for (exprmap::iterator it = m->begin(); it != m->end(); ++it)
pure_free(it->second);

delete m;
}

%>

// Create the STL map and add a sentry so that it garbage-collects itself.
let m = sentry map_destroy map_create;

// Populate the map with some arbitrary Pure data.
do (\(x=>y) -> map_add m x y) ["foo"=>99, "bar"=>bar 4711L, "baz"=>1..5];

// Query the map.
map_keys m; // => ["bar","baz","foo"]
map (map_get m) (map_keys m); // => [bar 4711L,[1,2,3,4,5],99]

// Delete an element.
map_del m "foo";
map_keys m; // => ["bar","baz"]
map (map_get m) (map_keys m); // => [bar 4711L,[1,2,3,4,5]]

1.10.8 Interfacing to Faust

Faust is a functional dsp (digital signal processing) programming language developed at
Grame, which is tailored to the task of generating and transforming streams of numeric data
at the sample level. It is typically used to program sound synthesis and audio effect units,
but can in fact be employed to process any kind of numeric vector and matrix data. The Faust
compiler is capable of generating very efficient code for such tasks which is comparable in
performance with carefully handcrafted C routines. Pure’s Faust interface lets you use these

1.10.8 Interfacing to Faust 181



Pure Language and Library Documentation, Release 0.62

capabilities in order to process sample data stored in Pure matrices.

Pure’s LLVM bitcode loader has some special knowledge about Faust built into it, which
makes interfacing to Faust programs simple and efficient. At present, you’ll need a special
LLVM-capable version of Faust to make this work, which is available under the “faust2”
branch in Faust’s git repository. Some information on how to get this up and running can be
found on the LLVM backend for Faust website.

Note: There’s also an alternative interface to Faust which is available as a separate package
and works with either Faust2 or the stable Faust version. Please check the pure-faust package
for details. This package also provides the faust2 compatibility module which implements
the pure-faust API on top of Pure’s built-in Faust interface, so that you can also use the
operations of this module instead. (The pure-faust API can in fact be more convenient to use
in some cases, especially if you want to load a lot of different Faust modules dynamically at
runtime.)

The -lang llvm option instructs the Faust compiler to output LLVM bitcode. Also, you want
to add the -double option to make the compiled Faust module use double precision floating
point values for samples and control values. So you’d compile an existing Faust module in
the source file example.dsp as follows:

faust -double -lang llvm example.dsp -o example.bc

The -double option isn’t strictly necessary, but it makes interfacing between Pure and Faust
easier and more efficient, since Pure uses double as its native floating point format.

Alternatively, you can also use the Faust pure.c architecture (included in recent Faust2 re-
visions and also in the pure-faust package) to compile a Faust program to corresponding C
source which can then be fed into an LLVM-capable C compiler to produce bitcode which
is compatible with Pure’s Faust bitcode loader. This is useful, in particular, if you want to
make use of special optimization options provided by the C compiler, or if the Faust module
needs to be linked against additional C/C++ code. For instance:

faust -double -a pure.c -lang c example.dsp -o example.c
clang -emit-llvm -O3 -c example.c -o example.bc

A third possibility is to just inline Faust code in a Pure script, as described in the Inline Code
section. The compilation step is then handled by the Pure compiler and the -double option is
added automatically. The PURE_FAUST environment variable can be used to specify a custom
Faust command to be invoked by the Pure interpreter. This is useful if you’d like to invoke
the Faust compiler with some special options, e.g.:

PURE_FAUST="faust -single -vec"

(Note that you do not have to include the -lang llvm option; the inline compiler will supply
it automatically.)

Moreover, you can also set the FAUST_OPT environment variable to specify any needed post-
processing of the output of the Faust compiler; this is typically used to invoke the LLVM
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opt utility in a pipeline, in order to have some additional optimizations performed on the
Faust-generated code:

FAUST_OPT="| opt -O3"

After loading or inlining the Faust module, the Pure compiler makes the interface routines
of the Faust module available in its own namespace. Thus, e.g., the interface routines for the
example.dsp module will end up in the example namespace.

Pure’s Faust interface offers another useful feature not provided by the general bitcode in-
terface, namely the ability to reload Faust modules on the fly. If you repeat the import clause
for a Faust module, the compiler checks whether the module was modified and, if so, re-
places the old module with the new one. Retyping an inline Faust code section has the same
effect. This is mainly intended as a convenience for interactive usage, so that you can test
different versions of a Faust module without having to restart the Pure interpreter. But it is
also put to good use in addon packages like pd-faust which allows Faust dsps to be reloaded
at runtime.

For instance, consider the following little Faust program, which takes a stereo audio signal
as input, mixes the two channels and multiplies the resulting mono signal with a gain value
given by a corresponding Faust control variable:

gain = nentry("gain", 0.3, 0, 10, 0.01);
process = + : *(gain);

The interface routines of this Faust module look as follows on the Pure side:

> show -g example::*
extern void buildUserInterface(struct_dsp_example*, struct_UIGlue*) = example::buildUserInterface;
extern void classInit(int) = example::classInit;
extern void compute(struct_dsp_example*, int, double**, double**) = example::compute;
extern void delete(struct_dsp_example*) = example::delete;
extern void destroy(struct_dsp_example*) = example::destroy;
extern int getNumInputs(struct_dsp_example*) = example::getNumInputs;
extern int getNumOutputs(struct_dsp_example*) = example::getNumOutputs;
extern int getSampleRate(struct_dsp_example*) = example::getSampleRate;
extern expr* info(struct_dsp_example*) = example::info;
extern void init(struct_dsp_example*, int) = example::init;
extern void instanceInit(struct_dsp_example*, int) = example::instanceInit;
extern expr* meta() = example::meta;
extern void metadata(struct_MetaGlue*) = example::metadata;
extern struct_dsp_example* new() = example::new;
extern struct_dsp_example* newinit(int) = example::newinit;

The most important interface routines are new, init and delete (used to create, initialize
and destroy an instance of the dsp) and compute (used to apply the dsp to a given block of
samples). Some useful convenience functions are added by the Pure compiler:

• newinit combines new and init;

• info yields pertinent information about the dsp as a Pure tuple containing the number
of input and output channels and the Faust control descriptions;
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• meta yields metadata about the dsp, as declared in the Faust source.

The latter two are provided in a symbolic format ready to be used in Pure; more about that
below.

Note that there’s usually no need to explicitly invoke the delete routine in Pure pro-
grams; the Pure compiler makes sure that this routine is added automatically as a finalizer
(see sentry) to all dsp pointers created through the new and newinit routines so that dsp
instances are destroyed automatically when the corresponding Pure objects are garbage-
collected. (If you prefer to do the finalization manually then you must also remove the
sentry from the dsp object, so that it doesn’t get deleted twice.)

Another point worth mentioning here is that the Pure compiler always generates code that
ensures that the Faust dsp instances (the struct_dsp pointers) are fully typechecked at run-
time. Thus it is only possible to pass a dsp struct pointer to the interface routines of the Faust
module it was created with.

Let’s have a brief look at how we can actually run a Faust module in Pure to process some
audio samples.

Step 1: Load the Faust dsp. This assumes that the Faust source has already been compiled
to a bitcode file, as shown above. You can then load the module in Pure as follows:

> using "dsp:example";

Note that the .bc bitcode extension is supplied automatically. Also note the special dsp tag;
this tells the compiler that this is a Faust-generated module, so that it does some Faust-
specific processing while linking the module.

Alternatively, you can also just inline the code of the Faust module. For the example above,
the inline code section looks as follows:

%< -*- dsp:example -*-
gain = nentry("gain", 0.3, 0, 10, 0.01);
process = + : *(gain);
%>

You can either add this code to a Pure script, or just type it directly in the Pure interpreter.

Finally, you may want to verify that the module has been properly loaded by typing show
-g example::*. The output should look like the listing above.

Step 2: Create and initialize a dsp instance. After importing the Faust module you can now
create an instance of the Faust signal processor using the newinit routine, and assign it to a
Pure variable as follows:

> let dsp = example::newinit 44100;

Note that the constant 44100 denotes the desired sample rate in Hz. This can be an arbitrary
integer value, which is available in the Faust program by means of the SR variable. It’s
completely up to the dsp whether it actually uses this value in some way (our example
doesn’t, but we need to specify a value anyway).
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The dsp is now fully initialized and we can use it to compute some samples. But before we
can do this, we’ll need to know how many channels of audio data the dsp consumes and
produces, and which control variables it provides. This information can be extracted with
the info function, and be assigned to some Pure variables as follows:

> let k,l,ui = example::info dsp;

(We’ll have a closer look at the contents of the ui variable below.)

In a similar fashion, the meta function provides some “metadata” about the Faust dsp, as
a list of key=>val string pairs. This is static data which doesn’t belong to any particular
dsp instance, so it can be extracted without actually creating an instance. In our case the
metadata will be empty, since we didn’t supply any in the Faust program. If needed, we can
add some metadata as follows:

declare descr "Faust Hello World";
declare author "Faust Guru";
declare version "1.0";
gain = nentry("gain", 0.3, 0, 10, 0.01);
process = + : *(gain);

If we now reload the Faust dsp, we’ll get:

> test::meta;
["descr"=>"Faust Hello World","author"=>"Faust Guru","version"=>"1.0"]

Step 3: Prepare input and output buffers. Pure’s Faust interface allows you to pass Pure
double matrices as sample buffers, which makes this step quite convenient. For given num-
bers k and l of input and output channels, respectively, we’ll need a k x n matrix for the input
and a l x n matrix for the output, where n is the desired block size (the number of samples
to be processed per channel in one go). Note that the matrices have one row per input or
output channel. Here’s how we can create some suitable input and output matrices using a
Pure matrix comprehension and the dmatrix function available in the standard library:

> let n = 10; // the block size
> let in = {i*10.0+j | i = 1..k; j = 1..n};
> let out = dmatrix (l,n);

In our example, k=2 and l=1, thus we obtain the following matrices:

> in;
{11.0,12.0,13.0,14.0,15.0,16.0,17.0,18.0,19.0,20.0;
21.0,22.0,23.0,24.0,25.0,26.0,27.0,28.0,29.0,30.0}
> out;
{0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0}

Step 4: Apply the dsp to compute some samples. With the in and out matrices as given
above, we can now apply the dsp by invoking its compute routine:

> example::compute dsp n in out;

This takes the input samples specified in the in matrix and stores the resulting output in the
out matrix. The output matrix now looks as follows:
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> out;
{9.6,10.2,10.8,11.4,12.0,12.6,13.2,13.8,14.4,15.0}

Note that the compute routine also modifies the internal state of the dsp instance so that a
subsequent call will continue with the output stream where the previous call left off. (This
isn’t relevant in this specific example, but in general a Faust dsp may contain delays and
similar constructions which need a memory of past samples to be maintained between dif-
ferent invocations of compute.) Thus we can now just keep on calling compute (possibly with
different in buffers) to compute as much of the output signal as we need.

Step 5: Inspecting and modifying control variables. Recall that our sample dsp also has
a Faust control variable gain which lets us change the amplification of the output signal.
We’ve already assigned the corresponding information to the ui variable, let’s have a look
at it now:

> ui;
vgroup [] ("test",[nentry #<pointer 0x1611f00> [] ("gain",0.3,0.0,10.0,0.01)])

In general, this data structure takes the form of a tree which corresponds to the hierarchical
layout of the control groups and values in the Faust program. In this case, we just have
one toplevel group containing a single gain parameter, which is represented as a Pure term
containing the relevant information about the type, name, initial value, range and stepsize
of the control, along with a double pointer which can be used to inspect and modify the
control value. While it’s possible to access this information in a direct fashion, there’s also
a faustui.pure module in the standard library which makes this easier. First we extract the
mapping of control variable names to the corresponding double pointers as follows:

> using faustui;
> let ui = control_map $ controls ui; ui;
{"gain"=>#<pointer 0xd81820>}

The result is a record value indexed by control names, thus the pointer which belongs to our
gain control can now be obtained with ui!"gain". The faustui.pure module also provides
convenience functions to inspect a control and change its value:

> let gain = ui!"gain";
> get_control gain;
0.3
> put_control gain 1.0;
()
> get_control gain;
1.0

Let’s rerun compute to get another block of samples from the same input data, using the new
gain value:

> example::compute dsp n in out;
> out;
{32.0,34.0,36.0,38.0,40.0,42.0,44.0,46.0,48.0,50.0}

Faust also allows metadata to be attached to individual controls and control groups, which
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is available in the same form of a list of key=>val string pairs that we have seen already with
the meta operation. This metadata is used to provide auxiliary information about a control
to specific applications. It’s completely up to the application how to interpret this metadata.
Typical examples are style hints about GUI renderings of a control, or the assignment of
external “MIDI” controllers. (MIDI is the “Musical Instruments Digital Interface”, a stan-
dardized hardware and software interface for electronic music instruments and other digital
multimedia equipment.)

In our example these metadata lists are all empty. Control metadata is specified in a Faust
program in the labels of the controls using the syntax [key:val], please see the Faust doc-
umentation for details. For instance, if we’d like to assign MIDI controller 7 (usually the
“volume controller” on MIDI keyboards) to our gain control, this might be done as follows:

gain = nentry("gain [midi:ctrl 7]", 0.3, 0, 10, 0.01);

After reloading the dsp and creating a new instance, this metadata is available in the ui
structure and can be extracted with the control_meta function of the faustui module as
follows:

> let dsp = test::newinit SR;
> let k,l,ui = example::info dsp;
> controls ui!0;
nentry #<pointer 0x1c97070> ["midi"=>"ctrl 7"] ("gain",0.3,0.0,10.0,0.01)
> control_meta ans;
["midi"=>"ctrl 7"]

As you can see, all these steps are rather straightforward. Of course, in a real program we
would probably run compute in a loop which reads some samples from an audio device or
sound file, applies the dsp, and writes back the resulting samples to another audio device or
file. We might also have to process MIDI controller input and change the control variables
accordingly. This can all be done quite easily using the appropriate addon modules available
on the Pure website.

We barely scratched the surface here, but it should be apparent that the programming tech-
niques sketched out in this section open the door to the realm of sophisticated multimedia
and signal processing applications. More Faust-related examples can be found in the Pure
distribution. Also, have a look at the pd-pure and pd-faust packages to see how these facilities
can be used in Pd modules written in Pure.

1.11 Interactive Usage

In interactive mode, the interpreter reads definitions and expressions and processes them as
usual. You can use the -i option to force interactive mode when invoking the interpreter
with some script files. Additional scripts can be loaded interactively using either a using
declaration or the interactive run command (see the description of the run command below
for the differences between these). Or you can just start typing away, entering your own
definitions and expressions to be evaluated.
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The input language is mostly the same as for source scripts, and hence individual defini-
tions and expressions must be terminated with a semicolon before they are processed. For
instance, here is a simple interaction which defines the factorial and then uses that definition
in some evaluations. Input lines begin with “> ”, which is the interpreter’s default command
prompt:

> fact 1 = 1;
> fact n = n*fact (n-1) if n>1;
> let x = fact 10; x;
3628800
> map fact (1..10);
[1,2,6,24,120,720,5040,40320,362880,3628800]

As indicated, in interactive mode the normal forms of toplevel expressions are printed after
each expression is entered. This is also commonly known as the read-eval-print loop. Nor-
mal form expressions are usually printed in the same form as you’d enter them. However,
there are a few special kinds of objects like anonymous closures, thunks (“lazy” values to
be evaluated when needed) and pointers which don’t have a textual representation in the
Pure syntax and will be printed in the format #<object description> by default. It is also possi-
ble to override the print representation of any kind of expression by means of the __show__

function, see Pretty-Printing below for details.

A number of other special features of Pure’s command line interface are discussed in the
following subsections.

1.11.1 Command Syntax

Besides Pure definitions and expressions, the interpreter also understands a number of spe-
cial interactive commands for performing basic maintenance tasks, such as loading source
scripts, exiting and restarting the interpreter, changing the working directory, escaping to
the shell, getting help and displaying definitions. In contrast to the normal input language,
the command language is line-oriented; it consists of special command words to be typed
at the beginning of an input line, which may be followed by some parameters as required
by the command. The command language is intended solely for interactive purposes and
thus doesn’t offer any programming facilities of its own. However, it can be extended with
user-defined commands implemented as ordinary Pure functions; this is described in the
User-Defined Commands section below.

In fact, as of Pure 0.56 the interpreter actually provides two slightly different command
syntaxes, which we’ll refer to as “default” and “escape mode”. The manual assumes that
you’re running the interpreter in its traditional default mode where interactive commands
are typed simply as they are shown in the following subsections, with the command word at
the very beginning of the line. However, this mode has its pitfalls, especially for beginners.
As most of the commands look just like ordinary identifiers, you may run into situations
where the beginning of an expression or definition to be typed at the prompt can be mis-
taken for a command word. In such cases the default mode requires that you insert one
or more spaces at the beginning of the line, so that the interpreter reads the line as normal
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Pure code. Unfortunately, it’s much too easy to forget this if you’re not familiar with the
command language.

Therefore there is an alternative escape mode available which handles special command in-
put more like some other popular programming language interpreters. In escape mode all
interactive commands have to be escaped by prefixing them with a special character at the
very beginning of the line. The command itself must follow the prefix character, without any
intervening whitespace. Any line not prefixed with the prefix character will then be consid-
ered normal Pure code. This mode can be enabled with the --escape option, which takes
the desired prefix character as an argument, or you can just set the PURE_ESCAPE variable in
your environment to enable escape mode by default.

For example, to set the escape character to ‘:‘ you’ll invoke the interpreter as follows:

$ pure --escape=’:’

Alternatively, you could also set the PURE_ESCAPE environment variable like this (using
Bourne shell syntax):

$ export PURE_ESCAPE=’:’

Note that specifying the prefix character with the --escape option overrides the value of the
environment variable, and only the initial character in the value of --escape or PURE_ESCAPE
will be used. If the specified value is empty, the interpreter reverts to the default mode.
The following prefix characters can be used: !$%&*,:<>@\|. Note that these all belong to
7 bit ASCII, and only some of the ASCII punctuation characters are permitted in order to
prevent conflicts with ordinary Pure code. In any case, all of these characters can also occur in
ordinary Pure code, so you should use a prefix that you aren’t likely to type at the beginning
of a line in your usual coding style.

Many Pure programmers prefer escape mode, and in fact we recommend it for Pure novices
even though it’s not the default (yet). Others may prefer default mode because it’s less effort
to type. For the manual we stick to the default mode syntax. This means that if you’re
running the interpreter in escape mode then you’ll have to do the necessary translation of
the command syntax yourself. For instance, if the manual tells you to type the following
command,

> show foldl

and you are using ‘:‘ as the command prefix, then you will have to type this in escape mode
instead:

> :show foldl

Note that in this case ‘!‘ continues to serve as a shell escape:

> ! find . ’*.pure’

This will not work, however, if you use ‘!‘ as your command prefix. In this case you will
have to type two exclamation marks instead (the same caveat applies if you escape a shell
command in the debugger, cf. Debugging):
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> !! find . ’*.pure’

This should be rather straightforward, so in the following we just use the default mode
command syntax throughout without further notice.

Note: Escape mode only applies to the interactive command line. It doesn’t affect the
evalcmd function in any way, so interactive commands in the string argument of evalcmd are
always specified without the escape character prefix no matter which mode the interpreter
is running in.

1.11.2 Online Help

Online help is available in the interpreter with the interactive help command, which gives
you access to all the available documentation in html format; this includes the present man-
ual, the Pure Library Manual, as well as all manuals of the addon modules available from the
Pure website.

You need to have a html browser installed to make this work. By default, the help com-
mand uses w3m, but you can change this by setting either the PURE_HELP or the BROWSER
environment variable accordingly.

When invoked without arguments, the help command displays an overview of the available
documentation, from which you can follow the links to the provided manuals:

> help

(If the interpreter gives you an error message when you do this then you haven’t installed
the documentation yet. The complete set of manuals is provided as a separate package at
the Pure website, please see the Pure installation instructions for details.)

The help command also accepts a parameter which lets you specify a search term which is
looked up in the global index, e.g.:

> help foldl

Besides Pure functions, macros, variables and constants described in the manual you can
also look up program options and environment variables, e.g.:

> help -x
> help pure-gen -x
> help PURE_STACK

(Note that you can specify the program name to disambiguate between options for differ-
ent utilities, such as the -x option which is accepted both by the Pure interpreter and the
pure-gen program.)

If the search term doesn’t appear in the index, it is assumed to be a topic (a link target,
usually a section title) in the Pure manual. Note that the docutils tools used to generate the
html source of the Pure documentation mangle the section titles so that they are in lowercase
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and blanks are replaced with hyphens. So to look up the present section in this manual you’d
have to type:

> help online-help

The help files are in html format and located in the docs subdirectory of the Pure library
directory (i.e., /usr/local/lib/pure/docs by default). You can look up topics in any of the
help files with a command like the following:

> help pure-gsl#matrices

Here pure-gsl is the basename of the help file (library path and .html suffix are supplied
automatically), and matrices is a link target in that document. To just read the pure-gsl.html
file without specifying a target, type the following:

> help pure-gsl#

(Note that just help pure-gsl won’t work, since it would look for a search term in the index
or a topic in the Pure manual.)

Last but not least, you can also point the help browser to any html document (either a local
file or some website) denoted by a proper URL, provided that your browser program can
handle these. For instance:

> help file:mydoc.html#foo
> help http://purelang.bitbucket.org

1.11.3 Interactive Commands

The following built-in commands are always understood by the interpreter. (In addition,
you can define your own commands for frequently-used operations; see User-Defined Com-
mands below.)

! command
Shell escape.

break [symbol ...]
Sets breakpoints on the given function or operator symbols. All symbols must be spec-
ified in fully qualified form, see the remarks below. If invoked without arguments,
prints all currently defined breakpoints. This requires that the interpreter was invoked
with the -g option to enable debugging support. See Debugging below for details.

bt
Prints a full backtrace of the call sequence of the most recent evaluation, if that eval-
uation ended with an unhandled exception. This requires that the interpreter was
invoked with the -g option to enable debugging support. See Debugging below for
details.

cd dir
Change the current working dir.
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clear [option ...] [symbol ...]
Purge the definitions of the given symbols (functions, macros, constants or global vari-
ables). All symbols must be specified in fully qualified form, see the remarks below.
If invoked as clear ans, clears the ans value (see Last Result below). When invoked
without any arguments, clear purges all definitions at the current interactive “level”
(after confirmation) and returns you to the previous level, if any. (It might be a good
idea to first check your current definitions with show or back them up with dump before
you do that.) The desired level can be specified with the -t option. See the description
of the save command and Definition Levels below for further details. A description of
the common options accepted by the clear, dump and show commands can be found in
Specifying Symbol Selections below.

del [-b|-m|-t] [symbol ...]
Deletes breakpoints and tracepoints on the given function or operator symbols. If the
-b option is specified then only breakpoints are deleted; similarly, del -t only deletes
tracepoints. If none of these are specified then both breakpoints and tracepoints are
deleted. All symbols must be specified in fully qualified form, see the remarks below.
If invoked without non-option arguments, del clears all currently defined breakpoints
and/or tracepoints (after confirmation); see Debugging below for details.

The -m option works similarly to -t, but deletes macro rather than function tracepoints,
see the description of the trace command below.

dump [-n filename] [option ...] [symbol ...]
Dump a snapshot of the current function, macro, constant and variable definitions in
Pure syntax to a text file. All symbols must be specified in fully qualified form, see the
remarks below. This works similar to the show command (see below), but writes the
definitions to a file. The default output file is .pure in the current directory, which is
then reloaded automatically the next time the interpreter starts up in interactive mode
in the same directory. This provides a quick-and-dirty way to save an interactive ses-
sion and have it restored later, but note that this isn’t perfect. In particular, declarations
of extern symbols won’t be saved unless they’re specified explicitly, and some objects
like closures, thunks and pointers don’t have a textual representation from which they
could be reconstructed. To handle these, you’ll probably have to prepare a correspond-
ing .purerc file yourself, see Interactive Startup below.

A different filename can be specified with the -n option, which expects the name of the
script to be written in the next argument, e.g: dump -n myscript.pure. You can then
edit that file and use it as a starting point for an ordinary script or a .purerc file, or you
can just run the file with the run command (see below) to restore the definitions in a
subsequent interpreter session.

help [topic]
Display online documentation. If a topic is given, it is looked up in the index. Alterna-
tively, you can also specify a link target in any of the installed help files, or any other
html document denoted by a proper URL. Please see Online Help above for details.

ls [args]
List files (shell ls command).
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mem
Print current memory usage. This reports the number of expression cells currently in
use by the program, along with the size of the freelist (the number of allocated but cur-
rently unused expression cells). Note that the actual size of the expression storage may
be somewhat larger than this, since the runtime always allocates expression memory
in bigger chunks. Also, this figure does not reflect other heap-allocated memory in use
by the program, such as strings or malloc’ed pointers.

override
Enter “override” mode. This allows you to add equations “above” existing definitions
in the source script, possibly overriding existing equations. See Definition Levels be-
low for details.

pwd
Print the current working dir (shell pwd command).

quit
Exits the interpreter.

run [-g|script]
When invoked without arguments or with the -g option, run does a “cold” restart of
the interpreter, with the scripts and options given on the interpreter’s original com-
mand line. If just -g is specified as the argument, the interpreter is run with debugging
enabled. Otherwise the interpreter is invoked without debugging support. (This over-
rides the corresponding option from the interpreter’s command line.) This command
provides a quick way to rerun the interpreter after changes in some of the loaded script
files, or if you want to enable or disable debugging on the fly (which requires a restart
of the interpreter). You’ll also loose any definitions that you entered interactively in
the interpreter, so you may want to back them up with dump beforehand.

When invoked with a script name as argument, run loads the given script file and adds
its definitions to the current environment. This works more or less like a using clause,
but only searches for the script in the current directory and places the definitions in the
script at the current temporary level, so that clear can be used to remove them again.
Also note that namespace and pragma settings of scripts loaded with run stick around
after loading the script. This allows you to quickly set up your environment by just
running a script containing the necessary namespace declarations and compiler direc-
tives. (Alternatively, you can also use the interpreter’s startup files for that purpose,
see Interactive Startup below.)

save
Begin a new level of temporary definitions. A subsequent clear command (see above)
will purge the definitions made since the most recent save command. See Definition
Levels below for details.

show [option ...] [symbol ...]
Show the definitions of symbols in various formats. See The show Command below for
details. All symbols must be specified in fully qualified form, see the remarks below. A
description of the common options accepted by the clear, dump and show commands
can be found in Specifying Symbol Selections below.
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stats [-m] [on|off]
Enables (default) or disables “stats” mode, in which some statistics are printed after
an expression has been evaluated. Invoking just stats or stats on only prints the
cpu time in seconds for each evaluation. If the -m option is specified, memory usage is
printed along with the cpu time, which indicates the maximum amount of expression
memory (in terms of expression cells) used during the computation. Invoking stats
off disables stats mode, while stats -m off just disables the printing of the memory
usage statistics.

trace [-a] [-m] [-r] [-s] [symbol ...]
Sets tracepoints on the given function or operator symbols. Without the -m option,
this works pretty much like the break command (see above) but only prints rule in-
vocations and reductions without actually interrupting the evaluation; see Debugging
below for details.

The -m option allows you to trace macro (rather than function) calls. If this option is
specified, the compiler prints reduction sequences involving the given macro symbol,
which is useful when debugging macros; see the Macros section for details and ex-
amples. Note that macro tracing works even if the interpreter was invoked without
debugging mode.

If the -a option is specified, tracepoints are set on all global function or macro symbols,
respectively (in this case the symbol arguments are ignored). This is convenient if you
want to see any and all reductions performed in a computation.

Tracing can actually be performed in two different modes, recursive mode in which the
trace is triggered by any of the active tracepoints and continues until the corresponding
call is finished, or skip mode in which only calls by the active tracepoints are reported.
The former is usually more helpful and is the default. The -s option allows you to
switch to skip mode, while the -r option switches back to recursive mode.

Finally, if neither symbols nor any of the -a, -r and -s options are specified then the
currently defined tracepoints are printed. Note that, as with the break command, ex-
isting tracepoints can be deleted with the del command (see above).

underride
Exits “override” mode. This returns you to the normal mode of operation, where new
equations are added “below” previous rules of an existing function. See Definition
Levels below for details.

Commands that accept options generally also understand the -h (help) option which prints
a brief summary of the command syntax and the available options.

Note that symbols (identifiers, operators etc.) must always be specified in fully qualified
form. No form of namespace lookup is performed by commands like break, clear, show
etc. Thus the specified symbols always work the same no matter what namespace and using
namespace declarations are currently in effect.

Besides the commands listed above, the interpreter also provides some special commands
for the benefit of other programs such as emacs driving the interpreter; currently these are
completion_matches, help_matches and help_index. These aren’t supposed to be invoked
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directly by the user, although they may sometimes be useful to implement custom function-
ality, see User-Defined Commands.

1.11.4 Specifying Symbol Selections

The clear, dump and show commands all accept the following options for specifying a subset
of symbols and definitions on which to operate. All symbols must be specified in fully
qualified form. Options may be combined, thus, e.g., show -mft is the same as show -m
-f -t. Some options specify optional numeric parameters; these must follow immediately
behind the option character if present, as in -t0.

-c Select defined constants.

-f Select defined functions.

-g Indicates that the following symbols are actually shell glob patterns and that all match-
ing symbols should be selected.

-m Select defined macros.

-pflag Select only private symbols if flag is nonzero (the default), otherwise (flag is zero) se-
lect only public symbols. If this option is omitted then both private and public symbols
are selected.

-tlevel Select symbols and definitions at the given “level” of definitions and above. This
is described in more detail below. Briefly, the executing program and all imported
modules (including the prelude) are at level 0, while “temporary” definitions made
interactively in the interpreter are at level 1 and above. Thus a level of 1 restricts the
selection to all temporary definitions, whereas 0 indicates all definitions (i.e., every-
thing, including the prelude). If level is omitted, it defaults to the current definitions
level.

-v Select defined variables.

-y Select defined types.

In addition, the -h option prints a short help message describing all available options of the
command at hand.

If none of the -c, -f, -m, -v and -y options are specified, then all kinds of symbols (constants,
functions, macros, variables and types) are selected, otherwise only the specified categories
will be considered.

A reasonable default is used if the -t option is omitted. By default, if no symbols are spec-
ified, only temporary definitions are considered, which corresponds to -t1. Otherwise the
command applies to all corresponding definitions, no matter whether they belong to the ex-
ecuting program, the prelude, or some temporary level, which has the same effect as -t0.
This default choice can be overridden by specifying the desired level explicitly.

As a special case, just clear (without any other options or symbol arguments) always backs
out to the previous definitions level (instead of level #1). This is inconsistent with the rules
set out above, but is implemented this way for convenience and backward compatibility.
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Thus, if you really want to delete all your temporary definitions, use clear -t1 instead.
When used in this way, the clear command will only remove temporary definitions; if you
need to remove definitions at level #0, you must specify those symbols explicitly.

Note that clear -g * will have pretty much the same disastrous consequences as the Unix
command rm -rf *, so don’t do that. Also note that a macro or function symbol may well
have defining equations at different levels, in which case a command like clear -tn foo
might only affect some part of foo‘s definition. The dump and show commands work analo-
gously (albeit less destructively). See Definition Levels below for some examples.

1.11.5 The show Command

The show command can be used to obtain information about defined symbols in various
formats. Besides the common selection options discussed above, this command recognizes
the following additional options for specifying the content to be listed and the format to use.

-a Disassembles pattern matching automata. Works like the -v4 option of the interpreter.

-d Disassembles LLVM IR, showing the generated LLVM assembler code of a function.
Works like the -v8 option of the interpreter.

-e Annotate printed definitions with lexical environment information (de Bruijn indices,
subterm paths). Works like the -v2 option of the interpreter.

-l Long format, prints definitions along with the summary symbol information. This
implies -s.

-s Summary format, print just summary information about listed symbols.

Symbols are always listed in lexicographic order. Note that some of the options (in partic-
ular, -a and -d) may produce excessive amounts of information. By setting the PURE_MORE
environment variable, you can specify a shell command to be used for paging, usually more
or less.

For instance, to list all temporary definitions made in an interactive session, simply say:

> show

You can also list a specific symbol, no matter whether it comes from the interactive command
line, the executing script or the prelude:

> show foldl
foldl f a x::matrix = foldl f a (list x);
foldl f a s::string = foldl f a (chars s);
foldl f a [] = a;
foldl f a (x:xs) = foldl f (f a x) xs;

Wildcards can be used with the -g option, which is useful if you want to print an entire
family of related functions, e.g.:

> show -g foldl*
foldl f a x::matrix = foldl f a (list x);
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foldl f a s::string = foldl f a (chars s);
foldl f a [] = a;
foldl f a (x:xs) = foldl f (f a x) xs;
foldl1 f x::matrix = foldl1 f (list x);
foldl1 f s::string = foldl1 f (chars s);
foldl1 f (x:xs) = foldl f x xs;

Or you can just specify multiple symbols as follows (this also works with multiple glob
patterns when you add the -g option):

> show min max
max x y = if x>=y then x else y;
min x y = if x<=y then x else y;

You can also select symbols by category. E.g., the following command shows summary
information about all the variable symbols along with their current values (using the “long”
format):

> show -lvg *
argc var argc = 0;
argv var argv = [];
compiling var compiling = 0;
sysinfo var sysinfo = "x86_64-unknown-linux-gnu";
version var version = "0.62";
5 variables

Or you can list just private symbols of the namespace foo, as follows:

> show -pg foo::*

The following command will list each and every symbol that’s currently defined (instead of
-g * you can also use the -t0 option):

> show -g *

This usually produces a lot of output and is rarely needed, unless you’d like to browse
through an entire program including all library imports. (In that case you might consider
to use the dump command instead, which writes the definitions to a file which can then be
loaded into a text editor for easier viewing. This may occasionally be useful for debugging
purposes.)

The show command also has the following alternate forms which are used for special pur-
poses:

• show interface lists the actual type rules for an interface type. This is useful if you
want to verify which patterns will be matched by an interface type, see Interface Types
for details. For instance:

> interface stack with
> push xs::stack x;
> pop xs::stack;
> top xs::stack;
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> end;
> push xs@[] x |
> push xs@(_:_) x = x:xs;
> pop (x:xs) = xs;
> top (x:xs) = x;
> show interface stack
type stack xs@(_:_);
> pop [] = throw "empty stack";
> top [] = throw "empty stack";
> show interface stack
type stack xs@[];
type stack xs@(_:_);

• show namespace lists the current and search namespaces, while show namespaces lists
all declared namespaces. These come in handy if you have forgotten what namespaces
are currently active and which other namespaces are available in your program. For
instance:

> show namespace
> show namespaces
namespace C;
namespace matrix;
> using namespace C;
> namespace my;
> show namespace
namespace my;
using namespace C;

1.11.6 Definition Levels

To help with incremental development, the interpreter offers some commands to manipu-
late the current set of definitions interactively. To these ends, definitions are organized into
different subsets called levels. As already mentioned, the prelude, as well as other source
programs specified when invoking the interpreter, are always at level 0, while the interactive
environment starts at level 1. Each save command introduces a new temporary level, and
each subsequent clear command (without any arguments) “pops” the definitions on the
current level and returns you to the previous one (if any). This gives you a “stack” of tem-
porary environments which enables you to “plug and play” in a (more or less) safe fashion,
without affecting the rest of your program.

For all practical purposes, this stack is unlimited, so that you can create as many levels as you
like. However, this facility also has its limitations. The interpreter doesn’t really keep a full
history of everything you entered interactively, it only records the level a variable, constant,
and function or macro rule belongs to so that the corresponding definitions can be removed
again when the level is popped. On the other hand, intermediate changes in variable values
are not recorded anywhere and cannot be undone. Moreover, global declarations (which
encompasses using clauses, extern declarations and special symbol declarations) always
apply to all levels, so they can’t be undone either.
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That said, the temporary levels can still be pretty useful when you’re playing around with
the interpreter. Here’s a little example which shows how to use clear to quickly get rid of a
definition that you entered interactively:

> foo (x:xs) = x+foo xs;
> foo [] = 0;
> show
foo (x:xs) = x+foo xs;
foo [] = 0;
> foo (1..10);
55
> clear
This will clear all temporary definitions at level #1.
Continue (y/n)? y
> show
> foo (1..10);
foo [1,2,3,4,5,6,7,8,9,10]

We’ve seen already that normally, if you enter a sequence of equations, they will be recorded
in the order in which they were written. However, it is also possible to override definitions
in lower levels with the override command:

> foo (x:xs) = x+foo xs;
> foo [] = 0;
> show
foo (x:xs) = x+foo xs;
foo [] = 0;
> foo (1..10);
55
> save
save: now at temporary definitions level #2
> override
> foo (x:xs) = x*foo xs;
> show
foo (x:xs) = x*foo xs;
foo (x:xs) = x+foo xs;
foo [] = 0;
> foo (1..10);
warning: rule never reduced: foo (x:xs) = x+foo xs;
0

Note that the equation foo (x:xs) = x*foo xs was inserted before the previous rule foo
(x:xs) = x+foo xs, which is at level #1. (The latter equation is now “shadowed” by the
rule we just entered, hence the compiler warns us that this rule can’t be reduced any more.)

Even in override mode, new definitions will be added after other definitions at the current
level. This allows us to just continue adding more high-priority definitions overriding lower-
priority ones:

> foo [] = 1;
> show
foo (x:xs) = x*foo xs;
foo [] = 1;
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foo (x:xs) = x+foo xs;
foo [] = 0;
> foo (1..10);
warning: rule never reduced: foo (x:xs) = x+foo xs;
warning: rule never reduced: foo [] = 0;
3628800

Again, the new equation was inserted above the existing lower-priority rules, but below our
previous equation foo (x:xs) = x*foo xs entered at the same level. As you can see, we
have now effectively replaced our original definition of foo with a version that calculates
list products instead of sums, but of course we can easily go back one level to restore the
previous definition:

> clear
This will clear all temporary definitions at level #2.
Continue (y/n)? y
clear: now at temporary definitions level #1
clear: override mode is on
> show
foo (x:xs) = x+foo xs;
foo [] = 0;
> foo (1..10);
55

Note that clear reminded us that override mode is still enabled (save will do the same if
override mode is on while pushing a new definitions level). To turn it off again, use the
underride command. This will revert to the normal behaviour of adding new equations
below existing ones:

> underride

It’s also possible to use clear to back out multiple levels at once, if you specify the target
level to be cleared with the -t option. For instance:

> save
save: now at temporary definitions level #2
> let bar = 99;
> show
let bar = 99;
foo (x:xs) = x+foo xs;
foo [] = 0;
> // this scraps all our scribblings!
> clear -t1
This will clear all temporary definitions at level #1 and above.
Continue (y/n)? y
clear: now at temporary definitions level #1
> show
>

The facilities described above are also available to Pure programs, as the save and clear
commands can also be executed under program control using the evalcmd primitive. Con-
versely, the library provides its own functions for inspecting and manipulating the source
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program, which may also be useful in custom command definitions; see the Pure Library
Manual for details.

1.11.7 Debugging

The interpreter provides a simple but reasonably convenient symbolic debugging facility
when running interactively. To make this work, you have to specify the -g option when
invoking the interpreter (pure -g). If you’re already at the interpreter’s command line, you
can also use the run -g command to enable the debugger. The -g option disables tail call
optimization (see Stack Size and Tail Recursion) to make it easier to debug programs. It also
causes special debugging code to be generated which will make your program run much
slower. Therefore the -g option should only be used if you actually need the debugger.

One common use of the debugger is “post mortem” debugging after an evaluation ended
with an unhandled exception. In such a case, the bt command of the interpreter prints a
backtrace of the call sequence which caused the exception. Note that this only works if
debugging mode was enabled. For instance:

> [1,2]!3;
<stdin>, line 2: unhandled exception ’out_of_bounds’ while evaluating ’[1,2]!3’
> bt

[1] (!): (x:xs)!n::int = xs!(n-1) if n>0;
n = 3; x = 1; xs = [2]

[2] (!): (x:xs)!n::int = xs!(n-1) if n>0;
n = 2; x = 2; xs = []

[3] (!): []!n::int = throw out_of_bounds;
n = 1

>> [4] throw: extern void pure_throw(expr*) = throw;
x1 = out_of_bounds

The last call, which is also marked with the >> symbol, is the call that raised the exception.
The format is similar to the p command of the debugger, see below, but bt always prints a
full backtrace. (As with the show command of the interpreter, you can set the PURE_MORE en-
vironment variable to pipe the output through the corresponding command, or use evalcmd
to capture the output of bt in a string.)

The debugger can also be used interactively. To these ends, you can set breakpoints on
functions with the break command. The debugger then gets invoked as soon as a rule for
one of the given functions is executed. Example:

> fact n::int = if n>0 then n*fact (n-1) else 1;
> break fact
> fact 1;

** [1] fact: fact n::int = if n>0 then n*fact (n-1) else 1;
n = 1

(Type ’h’ for help.)
:

** [2] fact: fact n::int = if n>0 then n*fact (n-1) else 1;
n = 0

:
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++ [2] fact: fact n::int = if n>0 then n*fact (n-1) else 1;
n = 0
--> 1

** [2] (*): x::int*y::int = x*y;
x = 1; y = 1

:
++ [2] (*): x::int*y::int = x*y;

x = 1; y = 1
--> 1

++ [1] fact: fact n::int = if n>0 then n*fact (n-1) else 1;
n = 1
--> 1

1

Lines beginning with ** indicate that the evaluation was interrupted to show the rule (or
external) which is currently being considered, along with the current depth of the call stack,
the invoked function and the values of parameters and other local variables in the current
lexical environment. In contrast, the prefix ++ denotes reductions which were actually per-
formed during the evaluation and the results that were returned by the function call (printed
as --> return value).

Sometimes you might also see funny symbols like #<closure>, #<case> or #<when> instead
of the function name. These indicate lambdas and the special variable-binding environ-
ments, which are all implemented as anonymous closures in Pure. Also note that the de-
bugger doesn’t know about the argument names of external functions (which are optional
in Pure and not recorded anywhere), so it will display the generic names x1, x2 etc. instead.

At the debugger prompt ‘:‘ you can enter various special debugger commands, or just keep
on hitting the carriage return key to walk through an evaluation step by step, as we did in
the example above. (Command line editing works as usual at the debugger prompt, if it
is enabled.) The usual commands are provided to walk through an evaluation, print and
navigate the call stack, step over the current call, or continue the evaluation unattended
until you hit another breakpoint. If you know other source level debuggers like gdb then
you should feel right at home. You can type h at the debugger prompt to print the following
list:

: h
Debugger commands:
a auto: step through the entire program, run unattended
c [f] continue until next breakpoint, or given function f
h help: print this list
n next step: step over reduction
p [n] print rule stack (n = number of frames)
r run: finish evaluation without debugger
s single step: step into reduction
t, b move to the top or bottom of the rule stack
u, d move up or down one level in the rule stack
x exit the interpreter (after confirmation)
. reprint current rule
! cmd execute interpreter command
? expr evaluate expression
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<cr> single step (same as ’s’)
<eof> step through program, run unattended (same as ’a’)

Note: If you specified an --escape prefix other than ‘!‘ (cf. Command Syntax), that prefix
will be used to execute interpreter commands instead, see below. The help message will tell
you which command prefix is in effect.

The command syntax is very simple. Besides the commands listed above you can also en-
ter comment lines (// comment text) which will just be ignored. Extra arguments on com-
mands which don’t expect any will generally be ignored as well. The single letter commands
all have to be separated from any additional parameters with whitespace, whereas the ‘!‘,
‘?‘ and ‘.‘ commands count as word delimiters and can thus be followed immediately by
an argument. For convenience, the ‘?‘ command can also be omitted if the expression to be
evaluated doesn’t start with a single letter or one of the special punctuation commands.

The debugger can be exited or suspended in the following ways:

• You can type c to continue the evaluation until the next breakpoint, or c foo in order
to proceed until the debugger hits an invocation of the function foo.

• You can type r to run the rest of the evaluation without the debugger.

• The a (“auto”) command single-steps through the rest of the evaluation, running unat-
tended. This command can also be entered by just hitting the end-of-file key (Ctrl-d
on Unix systems) at the debugger prompt.

• You can also type x to exit from the debugger and the interpreter immediately (after
confirmation).

In addition, you can use the ! command (or whatever command prefix has been set with the
--escape option) to run any interpreter command while in the debugger. For instance:

: !ls

This is particularly useful to invoke the break and del commands to change breakpoints.
Note that you can actually escape any valid input to the interpreter that way, not just the
special interactive commands. However, you shouldn’t try to modify the program while
you’re debugging it. This may work in some cases, but will have nasty consequences if you
happen to change a function which is currently being executed.

The interpreter’s shell escape can also be used from the debugger. In default mode or when
using ! as the --escape prefix, you’ll have to escape shell commands with !!, otherwise a
single ! suffices.

At the debugger prompt, you can use the u (“up”), d (“down”), t (“top”) and b (“bottom”)
commands to move around on the current call stack. The p command prints a range of the
call stack centered around the currently selected stack frame, which is indicated with the
>> tag, whereas ** denotes the current bottom of the stack (which is the rule to be executed
with the single step command). The p command can also be followed by a numeric argument
which indicates the number of stack frames to be printed (this will then become the default
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for subsequent invocations of p). The n command steps over the call selected with the stack
navigation commands. For instance:

> fact 3;

** [1] fact: fact n::int = if n>0 then n*fact (n-1) else 1;
n = 3

: c *
** [4] (*): x::int*y::int = x*y;

x = 1; y = 1
: p

[1] fact: fact n::int = if n>0 then n*fact (n-1) else 1;
n = 3

[2] fact: fact n::int = if n>0 then n*fact (n-1) else 1;
n = 2

[3] fact: fact n::int = if n>0 then n*fact (n-1) else 1;
n = 1

** [4] (*): x::int*y::int = x*y;
x = 1; y = 1

: u
>> [3] fact: fact n::int = if n>0 then n*fact (n-1) else 1;

n = 1
: u
>> [2] fact: fact n::int = if n>0 then n*fact (n-1) else 1;

n = 2
: p

[1] fact: fact n::int = if n>0 then n*fact (n-1) else 1;
n = 3

>> [2] fact: fact n::int = if n>0 then n*fact (n-1) else 1;
n = 2

[3] fact: fact n::int = if n>0 then n*fact (n-1) else 1;
n = 1

** [4] (*): x::int*y::int = x*y;
x = 1; y = 1

: n
++ [2] fact: fact n::int = if n>0 then n*fact (n-1) else 1;

n = 2
--> 2

** [2] (*): x::int*y::int = x*y;
x = 3; y = 2

:

If you ever get lost, you can reprint the current rule with the ‘.‘ command:

: .

** [2] (*): x::int*y::int = x*y;
x = 3; y = 2

Another useful feature is the ? command which lets you evaluate any Pure expression, with
the local variables of the current rule bound to their corresponding values. Like the n com-
mand, ? applies to the current stack frame as selected with the stack navigation commands.
The expression must be entered on a single line, and the trailing semicolon is optional. For
instance:
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> fact 3;

** [1] fact: fact n::int = if n>0 then n*fact (n-1) else 1;
n = 3

: c *
** [4] (*): x::int*y::int = x*y;

x = 1; y = 1
: ?x+y
2
: u
>> [3] fact: fact n::int = if n>0 then n*fact (n-1) else 1;

n = 1
: n>0, fact n
1,1

A third use of the debugger is to trace function calls. For that the interpreter provides the
trace command which works similarly to break, but sets so-called “tracepoints” which only
print rule invocations and reductions instead of actually interrupting the evaluation. For
instance, assuming the same example as above, let’s first remove the breakpoint on fact
(using the del command) and then set it as a tracepoint instead:

> del fact
> trace fact
> fact 1;

** [1] fact: fact n::int = if n>0 then n*fact (n-1) else 1;
n = 1

** [2] fact: fact n::int = if n>0 then n*fact (n-1) else 1;
n = 0

++ [2] fact: fact n::int = if n>0 then n*fact (n-1) else 1;
n = 0
--> 1

** [2] (*): x::int*y::int = x*y;
x = 1; y = 1

++ [2] (*): x::int*y::int = x*y;
x = 1; y = 1
--> 1

++ [1] fact: fact n::int = if n>0 then n*fact (n-1) else 1;
n = 1
--> 1

1

The break and trace commands can also be used in concert if you want to debug some
functions while only tracing others.

Note that the trace command can actually be run in two different modes: recursive mode
in which the trace is triggered by any of the active tracepoints and continues until the cor-
responding call is finished, or skip mode in which only calls by the active tracepoints are
reported. The former is the default and is often preferable, because it gives you a complete
transcript of the reductions performed during a function call.

If you don’t need that much detail, you can also switch to skip mode by invoking the trace
command with the -s option. This allows you to see a quick summary of the computation
which only shows reductions by rules directly involving the active tracepoints. For instance:
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> trace -s
> fact 1;

** [1] fact: fact n::int = if n>0 then n*fact (n-1) else 1;
n = 1

** [2] fact: fact n::int = if n>0 then n*fact (n-1) else 1;
n = 0

++ [2] fact: fact n::int = if n>0 then n*fact (n-1) else 1;
n = 0
--> 1

++ [1] fact: fact n::int = if n>0 then n*fact (n-1) else 1;
n = 1
--> 1

1

Moreover, the trace command can also be invoked with the -a option to trace all function
calls, which is convenient to quickly obtain a full transcript of a reduction sequence. The
same options also work in an analogous fashion with macro calls, see the Macros section for
some examples.

The current sets of breakpoints and tracepoints can be changed with the break, trace and
del commands, as shown above, and just break or trace without any arguments lists the
currently defined breakpoints or tracepoints, respectively. Please see Interactive Commands
above for details. Also note that these are really interpreter commands, so to invoke them
in the debugger you have to escape them with the ! command (or whatever other --escape
prefix you specified).

The debugger can also be triggered programmatically with the built-in parameter-less func-
tions __break__ and __trace__. This gives you much better control over the precise loca-
tion and the conditions under which the debugger should be invoked. Just place a call to
__break__ or __trace__ near the point where you’d like to start debugging or tracing; this
can be done either with the sequencing operator ‘$$‘ or with a when clause. The debugger
will then be invoked at the next opportunity (usually when a function is called or a reduction
is completed). For instance:

> fact n::int = if n>0 then __break__ $$ n*fact (n-1) else 1;
> fact 10;
++ [2] __break__: extern void pure_break() = __break__;

--> ()

** [2] fact: fact n::int = if n>0 then __break__$$n*fact (n-1) else 1;
n = 9

:

Here the debugger is invoked right after the call to __break__, when the n*fact (n-1) ex-
pression in the then branch is about to be evaluated. The debugger thus stops at the re-
cursive invocation of fact 9. Tracing works in a similar fashion, using __trace__ in lieu
of __break__, and continues until the current stack frame is exited. One major advantage
of this method is that it is possible to invoke __break__ or __trace__ only under certain
conditions, so that you can focus on interesting “events” during evaluation, which can make
debugging much less tedious. In our example, in order to stop when n becomes 1, we might
invoke __break__ as follows:
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> fact n::int = if n>0 then n>1||__break__ $$ n*fact (n-1) else 1;
> fact 3;
++ [4] __break__: extern void pure_break() = __break__;

--> ()

** [4] fact: fact n::int = if n>0 then n>1||__break__$$n*fact (n-1) else 1;
n = 0

: p
[1] fact: fact n::int = if n>0 then n>1||__break__$$n*fact (n-1) else 1;
n = 3

[2] fact: fact n::int = if n>0 then n>1||__break__$$n*fact (n-1) else 1;
n = 2

[3] fact: fact n::int = if n>0 then n>1||__break__$$n*fact (n-1) else 1;
n = 1

** [4] fact: fact n::int = if n>0 then n>1||__break__$$n*fact (n-1) else 1;
n = 0

:

1.11.8 Last Result

Another convenience for interactive usage is the ans function, which retrieves the most re-
cent result printed in interactive mode. For instance:

> fact n = if n<=1 then 1 else n*fact (n-1);
> map fact (1..10);
[1,2,6,24,120,720,5040,40320,362880,3628800]
> scanl (+) 0 ans;
[0,1,3,9,33,153,873,5913,46233,409113,4037913]

Note that ans is just an ordinary function, defined in the prelude, not a special command.
However, there is a special clear ans command which purges the ans value. This is useful,
e.g., if you got a huge result which you want to erase from memory before starting the next
computation.

> clear ans
> ans;
ans

1.11.9 Pretty-Printing

The interpreter provides the following “hook” to override the print representations of ex-
pressions. This works in a fashion similar to Haskell’s show function.

__show__ x
The programmer may define this function to supply custom print representations for
certain expressions.

__show__ is just an ordinary Pure function expected to return a string with the desired cus-
tom representation of a normal form value given as the function’s single argument. The
interpreter prints the strings returned by __show__ just as they are. It will not check whether
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they conform to Pure syntax and/or semantics, or modify them in any way. Also, the library
doesn’t define this function anywhere, so you are free to add any rules that you want.

Custom print representations are most useful for interactive purposes, if you’re not happy
with the default print syntax of some kinds of objects. One particularly useful application of
__show__ is to change the format of numeric values. Here are some examples:

> using system;
> __show__ x::double = sprintf "%0.6f" x;
> 1/7;
0.142857
> __show__ x::int = sprintf "0x%0x" x;
> 1786;
0x6fa
> using math;
> __show__ (x::double +: y::double) = sprintf "%0.6f+%0.6fi" (x,y);
> cis (-pi/2);
0.000000+-1.000000i

The prelude function str, which returns the print representation of any Pure expression,
calls __show__ as well:

> str (1/7);
"0.142857"

Conversely, you can call the str function from __show__, but in this case it always returns
the default representation of an expression. This prevents the expression printer from going
recursive, and allows you to define your custom representation in terms of the default one.
E.g., the following rule removes the L suffixes from bigint values:

> __show__ x::bigint = init (str x);
> fact n = foldl (*) 1L (1..n);
> fact 30;
265252859812191058636308480000000

Of course, your definition of __show__ can also call __show__ itself recursively to determine
the custom representation of an object.

One case which needs special consideration are thunks (futures). The printer will never use
__show__ for those, to prevent them from being forced inadvertently. In fact, you can use
__show__ to define custom representations for thunks, but only in the context of a rule for
other kinds of objects, such as lists. For instance:

> nonfix ...;
> __show__ (x:xs) = str (x:...) if thunkp xs;
> 1:2:(3..inf);
1:2:3:...

Another case which needs special consideration are numeric matrices. For efficiency, the
expression printer will always use the default representation for these, unless you override
the representation of the matrix as a whole. E.g., the following rule for double matrices
mimics Octave’s default output format (for the sake of simplicity, this isn’t perfect, but you
get the idea):
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> __show__ x::matrix =
> strcat [printd j (x!(i,j))|i=0..n-1; j=0..m-1] + "\n"
> with printd 0 = sprintf "\n%10.5f"; printd _ = sprintf "%10.5f" end
> when n,m = dim x end if dmatrixp x;
> {1.0,1/2;1/3,4.0};

1.00000 0.50000
0.33333 4.00000

Finally, by just purging the definition of the __show__ function you can easily go back to the
standard print syntax:

> clear __show__

> 1/7; 1786; cis (-pi/2);
0.142857142857143
1786
6.12303176911189e-17+:-1.0

Note that if you have a set of definitions for the __show__ function which should always
be loaded at startup, you can put them into the interpreter’s interactive startup files, see
Interactive Startup below.

1.11.10 User-Defined Commands

It is possible to extend the interpreter with your own interactive commands. To these ends,
all you have to do is provide some corresponding public function definitions in the special
__cmd__ namespace (cf. Namespaces). These definitions are typically placed in one of the
interpreter’s startup files (see Interactive Startup below) so that they are always available
when running the interpreter interactively.

A command function is invoked with one string argument which contains the rest of the
command line (with leading and trailing whitespace stripped off). It may return a string
result which is printed on standard output (appending a newline if needed). Thus a simple
command which just prints its arguments as is can be implemented as follows:

> namespace __cmd__;
> echo s = s;
> echo Hello, world!
Hello, world!

You can split arguments and do any required processing of the arguments with the usual
string processing functions. For instance, let’s change our echo command so that it prints
each whitespace-delimited token on a line of its own:

> clear __cmd__::echo
> echo s = join "\n" args when
> args = [a | a = split " " s; ~null a];
> end;
> echo Hello, world!
Hello,
world!
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A command function may in fact return any kind of value. However, only string results are
printed by the interpreter, other results are silently ignored. Thus we might implement the
echo command in a direct fashion, using the C puts function:

> clear __cmd__::echo
> private extern int puts(char*);
> echo s = puts s;
> echo Hello, world!
Hello, world!

Note that we declared puts as a private symbol here. In general, the interpreter only exposes
public functions in the __cmd__ namespace as commands, private symbols are hidden. On
the other hand, we might also just expose the external function puts itself under the (public)
alias echo, so here’s yet another possible implementation of the echo command:

> clear __cmd__::echo
> extern int puts(char*) = echo;
warning: external ’echo’ shadows previous undefined use of this symbol
> echo Hello, world!
Hello, world!

Instead of returning a result, a command function may also throw an exception. If the ex-
ception value is a string, it will be printed as an error message on standard error, using the
same format as the built-in commands:

> error s = throw s;
> error Hello, world!
error: Hello, world!

You can also override a built-in command in order to provide custom functionality. In this
case, the original builtin can still be executed by escaping the command name with a leading
‘^‘. The same syntax works with the evalcmd function, so that a custom command can be
defined in terms of the builtin that it replaces. E.g., if we always want to invoke the ls
command with the -l option, we can redefine the ls command as follows:

> ls examples/*.c
examples/poor.c examples/sort.c
> ls s = evalcmd $ "^ls -l "+s;
> ls examples/*.c
-rw-r--r-- 1 ag users 1883 2011-01-07 16:35 examples/poor.c
-rw-r--r-- 1 ag users 3885 2011-01-07 16:35 examples/sort.c

(Note that since we entered the definition of the ls function interactively, we need to escape
the second input line above with leading whitespace, so that it’s not mistaken for an invoca-
tion of the built-in ls command. This isn’t necessary if you’re using the alternative “escape”
command syntax described in Command Syntax.)

To do more interesting things, you should take a look at the reflection capabilities discussed
in the Macros section, which open up endless possibilities for commands to inspect and ma-
nipulate the running program in an interactive fashion. For instance, let’s define a variation
of the built-in clear command which allows us to delete a specific rule rather than an entire
function definition:
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namespace __cmd__;

clr s = case val $ "’(0 with "+s+" end)" of
’(0 __with__ [r]) = del_fundef r;
_ = throw "bad rule syntax";

end;

Note that we employ a little trick here to have val do all the hard work of parsing the rule
specified as argument to the command, in order to translate the Pure rule syntax to the
special meta representation used by del_fundef. The following example shows our clr
command in action:

> namespace;
> fact n = 1 if n<=0;
> = n*fact (n-1) otherwise;
> show fact
fact n = 1 if n<=0;
fact n = n*fact (n-1);
> clr fact n = 1 if n<=0;
> show fact
fact n = n*fact (n-1);

Here’s another useful command apropos which quickly summarizes the information avail-
able on a given symbol (as reported by the show and help_index commands):

namespace __cmd__;

apropos s = case catmap descr $ split "\n" $ evalcmd $ "show -s "+s of
[] = throw $ "undefined symbol ’"+s+"’";
info = s+" is a "+join " and a " info+". \

Type ’show "+s+"’ for more information."+
(if null (evalcmd $ "help_index "+s) then "" else
"\nDocumentation for this symbol is available. Type ’help "+s+"’.");
end with

descr info = case [x | x = split " " info; ~null x] of
t:c:_ = [symtypes!c] if s==t when

symtypes = {"fun"=>"function","mac"=>"macro","var"=>"variable",
"cst"=>"constant"};

end;
_ = [];

end;
end;

This command can be used as follows:

> apropos foldl
foldl is a function. Type ’show foldl’ for more information.
Documentation for this symbol is available. Type ’help foldl’.
> apropos $
$ is a macro and a function. Type ’show $’ for more information.
Documentation for this symbol is available. Type ’help $’.
> let x = 11;
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> apropos x
x is a variable. Type ’show x’ for more information.
> apropos y
apropos: undefined symbol ’y’

More examples can be found in the sample.purerc file distributed with the Pure interpreter.

1.11.11 Interactive Startup

In interactive mode, the interpreter runs some additional scripts at startup, after loading the
prelude and the scripts specified on the command line. This lets you tailor the interactive
environment to your liking.

The interpreter first looks for a .purerc file in the user’s home directory (as given by the HOME
environment variable) and then for a .purerc file in the current working directory. These
are just ordinary Pure scripts which may contain any additional definitions (including com-
mand definitions, as described in the previous section) that you need. The .purerc file in
the home directory is for global definitions which should always be available when running
interactively, while the .purerc file in the current directory can be used for project-specific
definitions.

Finally, you can also have a .pure initialization file in the current directory, which is usually
created with the dump command (see above). This file is loaded after the .purerc files if it is
present.

The interpreter processes all these files in the same way as with the run command (see Inter-
active Commands above). When invoking the interpreter, you can specify the --norc option
on the command line if you wish to skip these initializations.

1.12 Batch Compilation

The interpreter’s -c option provides a means to turn Pure scripts into standalone executa-
bles. This feature is still a bit experimental. In particular, note that the compiled executable is
essentially a static snapshot of your program which is executed on the “bare metal”, without a
hosting interpreter. Only a minimal runtime system is provided. This considerably reduces
startup times, but also implies some quirks and limitations as detailed below.

First and foremost, the batch compiler always reorders the code so that all toplevel expres-
sions and let bindings are evaluated after all functions have been defined. This is done to
reduce the size of the output executable, so that there’s only a single snapshot of each func-
tion which will be used by all toplevel expressions and global variable definitions invoking
the function. Therefore you should avoid code like the following:

let x = foo 99;
foo x = x+1;
let y = foo 99;
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Note that if you run this through the interpreter, x and y are bound to foo 99 and 100,
respectively, because expressions and variable definitions are executed immediately, as the
program is being processed. In contrast, if the same program is batch-compiled, both vari-
ables will be defined after the definition of foo and thus refer to the same value 100 instead.
This will rarely be a problem in practice (the above example is really rather pathological and
won’t usually occur in real-world programs), but to avoid these semantic differences, you’ll
have to make sure that expressions are evaluated after all functions used in the evaluation
have been defined completely. (However, the batch compiler currently doesn’t check this
condition and will happily generate code for programs which violate it.)

Plain toplevel expressions won’t be of much use in a batch-compiled program, unless, of
course, they are evaluated for their side-effects. Your program will have to include at least
one of these to play the role of the “main program” in your script. In most cases these
expressions are best placed after all the function and variable definitions, at the end of your
program.

Also note that during a batch compilation, the compiled program is actually executed as
usual, i.e., the script is also run at compile time. This might first seem to be a big annoyance,
but it actually opens the door for some powerful programming techniques like partial eval-
uation. It is also a necessity because of Pure’s highly dynamic nature. For instance, Pure
allows you to define constants by evaluating an arbitrary expression (cf. Constant Defini-
tions), and using eval a program can easily modify itself in even more unforeseeable ways.
Therefore pretty much anything in your program can actually depend on previous computa-
tions performed while the program is being executed. To make this work in batch-compiled
scripts, the batch compiler thus executes the script as usual. The compiling variable can be
used to check whether the script is being batch-compiled, so you can adjust to that by se-
lectively enabling or disabling parts of the code. For instance, you will usually want to skip
execution of the “main program” during batch compilation.

Last but not least, note that some parts of Pure’s metaprogramming capabilities and other
compile time features are disabled in batch-compiled programs:

• The eval function can only be used to evaluate plain toplevel expressions. You can
define local functions and variables in with and when clauses inside an expression, but
you can’t use eval to define new global variables and functions. In other words, any-
thing which changes the executing program is “verboten”. Moreover, the introspective
capabilities provided by evalcmd and similar operations (discussed under Reflection
in the Macros section) are all disabled. If you need any of these capabilities, you have
to run your program with the interpreter.

• Constant and macro definitions, being compile time features, aren’t available in the
compiled program. If you need to use these with eval at run time, you have to provide
them through variable and function definitions instead. Also, the compiler usually
strips unused functions from the output code, so that only functions which are actually
called somewhere in the static program text are available to eval. (The -u option and
the --required pragma can be used to avoid this, see Options Affecting Code Size
below.)

• Code which gets executed to compute constant values at compile time will generally
not be executed in the compiled executable, so your program shouldn’t rely on side-
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effects of such computations (this would be bad practice anyway). There is an excep-
tion to this rule, however, namely if a constant value contains run time data such as
pointers and local functions which requires an initialization at run time, then the batch
compiler will generate code for that. (The same happens if the --noconst option is
used to force computation of constant values at run time, see Options Affecting Code
Size.)

What this boils down to is that in the batch-compiled program you will have to avoid any-
thing which requires the compile time or interactive facilities of the interpreter. These re-
strictions only apply at run time, of course. At compile time the program is being executed
by the full version of the interpreter so you can use eval and evalcmd in any desired way.

For most kinds of scripts, the above restrictions aren’t really that much of an obstacle, or
can easily be worked around. For the few scripts which actually need the full dynamic
capabilities of Pure you’ll just have to run the script with the interpreter. This isn’t a big
deal either, only the startup will be somewhat slower because the script is compiled on the
fly. Once the JIT has done its thing the “interpreted” script will run every bit as fast as the
“compiled” one, since in fact both are compiled (only at different times) to exactly the same
code!

1.12.1 Example

For the sake of a concrete example, consider the following little script:

using system;

fact n = if n>0 then n*fact (n-1) else 1;

main n = do puts ["Hello, world!", str (map fact (1..n))];

if argc<=1 then () else main (sscanf (argv!1) "%d");

When invoked from the command line, with the number n as the first parameter, this pro-
gram will print the string "Hello, world!" and the list of the first n factorials:

$ pure hello.pure 10
Hello, world!
[1,2,6,24,120,720,5040,40320,362880,3628800]

Note the condition on argc in the last line of the script. This prevents the program from
producing an exception if no command line parameters are specified, so that the program
can also be run interactively:

$ pure -i -q hello.pure
> main 10;
Hello, world!
[1,2,6,24,120,720,5040,40320,362880,3628800]
()
> quit
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To turn the script into an executable, we just invoke the Pure interpreter with the -c option,
using the -o option to specify the desired output file name:

$ pure -c hello.pure -o hello
$ ./hello 10
Hello, world!
[1,2,6,24,120,720,5040,40320,362880,3628800]

Next suppose that we’d like to supply the value n at compile rather than run time. To these
ends we want to turn the value passed to the main function into a compile time constant,
which can be done as follows:

const n = if argc>1 then sscanf (argv!1) "%d" else 10;

(Note that we provide 10 as a default if n isn’t specified on the command line.)

Moreover, in such a case we usually want to skip the execution of the main function at com-
pile time. To these ends, the predefined compiling variable holds a truth value indicating
whether the program is actually running under the auspices of the batch compiler, so that it
can adjust accordingly. In our example, the evaluation of main becomes:

if compiling then () else main n;

Our program now looks as follows:

using system;

fact n = if n>0 then n*fact (n-1) else 1;

main n = do puts ["Hello, world!", str (map fact (1..n))];

const n = if argc>1 then sscanf (argv!1) "%d" else 10;
if compiling then () else main n;

This script “specializes” n to the first (compile time) parameter when being batch-compiled,
and it still works as before when we run it through the interpreter in both batch and interac-
tive mode, too:

$ pure -i -q hello.pure
Hello, world!
[1,2,6,24,120,720,5040,40320,362880,3628800]
> main 5;
Hello, world!
[1,2,6,24,120]
()
> quit

$ pure hello.pure 7
Hello, world!
[1,2,6,24,120,720,5040]

$ pure -o hello -c -x hello.pure 7
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$ ./hello
Hello, world!
[1,2,6,24,120,720,5040]

In addition, there’s also a compile time check analogous to the compiling variable, which
indicates whether the source script is being run normally or in a batch compilation; see
Conditional Compilation. We might employ this as follows, replacing the last line of the
script with this:

#! --if compiled
if compiling then () else main n;
#! --else
if argc>1 then main n else puts "Try ’main n’ where n is a number.";
#! --endif

The code in the --if compiled section, which is the same as before, is now only executed
during batch compilation and in the compiled executable. If we run the script normally,
in the interpreter, the code in the --else section, which just prints a welcome message if
no arguments are given on the command line, is executed instead. So we now actually
have four different code paths, depending on whether the script is run normally, with or
without arguments, or in a batch compilation, or as a native executable. This kind of setup
is useful if the script is to be run both interactively and non-interactively in the interpreter
while developing it, but once the script is finished it gets compiled and installed as a native
executable.

$ pure -i -q hello.pure
Try ’main n’ where n is a number.
> main 5;
Hello, world!
[1,2,6,24,120]
()
> quit

$ pure hello.pure 7
Hello, world!
[1,2,6,24,120,720,5040]

$ pure -o hello -c hello.pure

$ ./hello
Hello, world!
[1,2,6,24,120,720,5040,40320,362880,3628800]

You’ll rarely need an elaborate setup like this, most of the time something like our simple
first example will do the trick. But, as you’ve seen, Pure can easily do it.

1.12.2 Options Affecting Code Size

By default, the batch compiler strips unused functions from the output code, to keep the code
size small. You can disable this with the -u option, in which case the output code includes
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all functions defined in the compiled program, the prelude and any other module imported
with a using clause, even if they don’t seem to be used anywhere. This considerably in-
creases compilation times and makes the compiled executable much larger. For instance, on
a 64 bit Linux systems with ELF binaries the executable of our hello.pure example is about
thrice as large:

$ pure -o hello -c -x hello.pure 7 && ls -l hello
-rwxr-xr-x 1 ag users 178484 2010-01-12 06:21 hello
$ pure -o hello -c -u -x hello.pure 7 && ls -l hello
-rwxr-xr-x 1 ag users 541941 2010-01-12 06:21 hello

(Note that even the stripped executable is fairly large when compared to compiled C code,
as it still contains the symbol table of the entire program, which is needed by the runtime
environment.)

Stripped executables should be fine for most purposes, but you have to be careful when
using eval in your compiled program. The compiler only does a static analysis of which
functions might be reached from the initialization code (i.e., toplevel expressions and let
bindings). It does not take into account code run via the eval routine. Thus, functions used
only in evaled code will be stripped from the executable, as if they were never defined at
all. If such a function is then being called using eval at runtime, it will evaluate to a plain
constructor symbol.

If this is a problem then you can either use the -u option to produce an unstripped exe-
cutable, or you can force specific functions to be included in the stripped executable with the
--required pragma (cf. Code Generation Options). For instance:

#! --required foo
foo x = bar (x-1);
eval "foo 99";

There is another code generation option which may have a substantial effect on code size,
namely the --noconst option. Normally, constant values defined in a const definition are
precomputed at compile time and then stored in the generated executable; this reduces
startup times but may increase the code size considerably if your program contains big con-
stant values such as lists. If you prefer smaller executables then you can use the --noconst
option to force the value of the constant to be recomputed at run time (which effectively
turns the constant into a kind of read-only variable). For instance:

#! --noconst
const xs = 1L..100000L;
sum = foldl (+) 0;

using system;
puts $ str $ sum xs;

On my 64 bit Linux system this produces a 187115 bytes executable. Without --noconst the
code becomes almost an order of magnitude larger in this case (1788699 bytes). On the other
hand, the smaller executable also takes a little longer to run since it must first recompute the
value of the list constant at startup. So you have to consider the tradeoffs in a given situation.
Usually big executables aren’t much of a problem on modern operating systems, but if your
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program contains a lot of big constants then this may become an important consideration.
However, if a constant value takes a long time to compute then you’ll be better off with the
default behaviour of precomputing the value at compile time.

1.12.3 Other Output Code Formats

Note that while the batch compiler generates native executables by default, it can just as well
create object files which can be linked into other C/C++ programs and libraries:

$ pure -o hello.o -c -x hello.pure 7

The .o extension tells the compiler that you want an object file. When linking the object
module, you also need to supply an initialization routine which calls the __pure_main__

function in hello.o to initialize the compiled module. This routine is declared in C/C++
code as follows:

extern "C" void __pure_main__(int argc, char** argv);

As indicated, __pure_main__ is to be invoked with two parameters, the argument count
and NULL-terminated argument vector which become the argc and the argv of the Pure pro-
gram, respectively. (You can also just pass 0 for both arguments if you don’t need to supply
command line parameters.) The purpose of __pure_main__ is to initialize a shell instance
of the Pure interpreter which provides the minimal runtime support necessary to execute
the Pure program, and to invoke all “initialization code” (variable definitions and toplevel
expressions) of the program itself.

A minimal C main function which does the job of initializing the Pure module looks as fol-
lows:

extern void __pure_main__(int argc, char** argv);

int main(int argc, char** argv)
{

__pure_main__(argc, argv);
return 0;

}

If you link the main routine with the Pure module, don’t forget to also pull in the Pure
runtime library. Assuming that the above C code is in pure_main.c:

$ gcc -c pure_main.c -o pure_main.o
$ g++ -o hello hello.o pure_main.o -lpure
$ ./hello
Hello, world!
[1,2,6,24,120,720,5040]

(The C++ compiler is used as the linker here so that the standard C++ library gets linked in,
too. This is necessary because Pure’s runtime library is actually written in C++.)

In fact, this is pretty much what pure -c actually does for you when creating an executable.
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If your script loads dynamic libraries (using "lib:...";) then you’ll also have to link with
those; all external references have to be resolved at compile time. This is taken care of au-
tomatically when creating executables. Otherwise it is a good idea to run pure -c with the
-v0100 verbosity option so that it prints the libraries to be linked (in addition to the com-
mands which are invoked in the compilation process):

$ pure -v0100 -c hello.pure -o hello.o
opt -f -std-compile-opts hello.o.bc | llc -f -o hello.o.s
gcc -c hello.o.s -o hello.o
Link with: g++ hello.o -lpure

Well, we already knew that, so let’s consider a slightly more interesting example from Pure’s
ODBC module:

$ pure -v0100 -c pure-odbc/examples/menagerie.pure -o menagerie.o
opt -f -std-compile-opts menagerie.o.bc | llc -f -o menagerie.o.s
gcc -c menagerie.o.s -o menagerie.o
Link with: g++ menagerie.o /usr/local/lib/pure/odbc.so -lpure
$ g++ -shared -o menagerie.so menagerie.o /usr/local/lib/pure/odbc.so -lpure

Note that the listed link options are necessary but might not be sufficient; pure -c just makes
a best guess based on the Pure source. On most systems this will be good enough, but if it
isn’t, you can just add options to the linker command as needed to pull in additional required
libraries.

As this last example shows, you can also create shared libraries from Pure modules. How-
ever, on some systems (most notably x86_64), this requires that you pass the -fPIC option
when batch-compiling the module, so that position-independent code is generated:

$ pure -c -fPIC pure-odbc/examples/menagerie.pure -o menagerie.o

Note that even when building a shared module, you’ll have to supply an initialization rou-
tine which calls __pure_main__ somewhere.

Also note that since Pure doesn’t support separate compilation in the present implementa-
tion, if you create different shared modules like this, each will contain their own copy all the
required Pure functions from the prelude and other imported Pure modules. This becomes
a problem when trying to link several separate batch-compiled modules into the same ex-
ecutable or library, because you’ll get many name clashes for routines present in different
modules (including the __pure_main__ entry point). To prevent this, the batch compiler can
be invoked with the --main option to explicitly set a name for the main entry point. For
instance:

$ pure -c hello.pure -o hello.o --main __hello_main__

This has two effects. First, the main entry point will be called whatever you specified with
--main, so you have to call this function instead of __pure_main__ to initialize the module.
Second, if --main is specified, then all Pure functions in the module will be changed to
internal linkage (like static functions in C) to prevent any possible name clashes between
different modules. (Alas, this also makes it impossible to employ pure_funcall to call Pure
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functions directly from C, as described in the following section, so you’ll have to use other
runtime routines such as pure_eval or pure_appl to achieve this in an indirect way.)

The batch compiler also lets you pass some special options to the llc program when creating
a native assembler or object file. The present implementation understands options of the
form -mopt=val which can be used to select the desired target architecture and cpu type. For
instance:

$ pure -march=x86-64 -mcpu=generic -c hello.pure -o hello

This is useful, in particular, in cross compilation and if you need to select a specific processor
variant. If you do not specify these options, llc will pick a suitable default based on the char-
acteristics of the host system on which the code is compiled. Please check the documentation
of the llc program for further information.

For more elaborate uses not covered by the options discussed above, pure -c can also gen-
erate just plain LLVM assembler code:

pure -c hello.pure -o hello.ll

Note the .ll extension; this tells the compiler that you want an LLVM assembler file. An
LLVM bitcode file can be created just as easily:

pure -c hello.pure -o hello.bc

In these cases you’ll have to have to handle the rest of the compilation yourself. This gives
you the opportunity, e.g., to play with more advanced optimization and code generation
options provided by the LLVM toolchain. Please refer to the LLVM documentation (in par-
ticular, the description of the opt and llc programs) for details.

1.12.4 Calling Pure Functions From C

Another point worth mentioning here is that you can’t just call Pure functions in a batch-
compiled module directly. That’s because in order to call a Pure function, at least in the
current implementation, you have to set up a Pure stack frame for the function. However,
there’s a convenience function called pure_funcall in the runtime API to handle this. This
function takes a pointer to the Pure function, the argument count and the arguments them-
selves (as pure_expr* objects) as parameters. For instance, here is a pure_main.c module
which can be linked against the hello.pure program from above, which calls the fact func-
tion from the Pure program:

#include <stdio.h>
#include <pure/runtime.h>

extern void __pure_main__(int argc, char** argv);
extern pure_expr *fact(pure_expr *x);

int main()
{

int n = 10, m;
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__pure_main__(0, NULL);
if (pure_is_int(pure_funcall(fact, 1, pure_int(n)), &m))
printf("fact %d = %d\n", n, m);

return 0;
}

And here’s how you can compile, link and run this program:

$ pure -o hello.o -c -x hello.pure 7
$ gcc -o pure_main.o -c pure_main.c
$ g++ -o myhello hello.o pure_main.o -lpure
$ ./myhello
Hello, world!
[1,2,6,24,120,720,5040]
fact 10 = 3628800

Note that the first two lines are output from the Pure program; the last line is what gets
printed by the main routine in pure_main.c.

1.13 Caveats and Notes

This section is a grab bag of casual remarks, useful tips and tricks, and information on com-
mon pitfalls, quirks and limitations of the current implementation and how to deal with
them.

1.13.1 Etymology

People keep asking me what’s so “pure” about Pure. The long and apologetic answer is
that Pure tries to stay as close as possible to the spirit of term rewriting without sacrificing
practicality. Pure’s term rewriting core is in fact purely functional. It’s thus possible and in
fact quite easy to write purely functional programs in Pure, and you’re encouraged to do so
whenever this is reasonable. On the other hand, Pure doesn’t get in your way if you want to
call external operations with side effects; after all, it does allow you to call any C function at
any point in a Pure program.

The short answer is that I simply liked the name, and there wasn’t any programming lan-
guage named “Pure” yet (quite a feat nowadays), so there’s one now. If you insist on a
(recursive) backronym, just take “Pure” to stand for the “Pure universal rewriting engine”.

1.13.2 Backward Compatibility

Pure is based on the author’s earlier Q language, but it offers many new and powerful
features and programs run much faster than their Q equivalents. The language also went
through a thorough facelift in order to modernize the syntax and make it more similar to
other modern-style functional languages, in particular Miranda and Haskell. Thus porting
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Q scripts to Pure often involves a substantial amount of manual work, but it can (and has)
been done.

Since its modest beginnings in April 2008, Pure has gone through a lot of major and mi-
nor revisions which raise various backward compatibility issues. We document these in the
following, in order to facilitate the porting of older Pure scripts. (Note that this isn’t in-
tended to be a full history of Pure development, so you may want to consult the NEWS and
ChangeLog files included in the distribution for more details.)

Pure 0.7 introduced built-in matrix structures, which called for some minor changes in the
syntax of comprehensions and arithmetic sequences. Specifically, the template expression
and generator/filter clauses of a comprehension are now separated with | instead of ;.
Moreover, arithmetic sequences with arbitrary stepsize are now written x:y..z instead of
x,y..z, and the ‘..‘ operator now has a higher precedence than the ‘,‘ operator. This makes
writing matrix slices like x!!(i..j,k..l) much more convenient.

In Pure 0.13 the naming of the logical and bitwise operations was changed, so that these are
now called ~, &&, || and not/and/or, respectively. (Previously, ~ was used for bitwise, not
for logical negation, which was rather inconsistent, albeit compatible with the naming of the
not operation in Haskell and ML.) Also, to stay in line with this naming scheme, inequality
was renamed to ~= (previously !=).

Pure 0.14 introduced the namespaces feature. Consequently, the scope of private symbols
is now confined to a namespace rather than a source module; scripts making use of private
symbols need to be adapted accordingly. Also note that syntax like foo::int may now also
denote a qualified symbol rather than a tagged variable, if foo has been declared as a name-
space. You can work around such ambiguities by renaming the variable, or by placing spaces
around the ‘::‘ delimiter (these aren’t permitted in a qualified symbol, so the construct foo
:: int is always interpreted as a tagged variable, no matter whether foo is also a valid
namespace).

Pure 0.26 extended the namespaces feature to add support for hierarchical namespaces. This
means that name lookup works in a slightly different fashion now (see Hierarchical Name-
spaces for details), but old code which doesn’t use the new feature should continue to work
unchanged.

Pure 0.26 also changed the nullary keyword to nonfix, which is more consistent with the
other kinds of fixity declarations. Moreover, the parser was enhanced so that it can cope
with a theoretically unbounded number of precedence levels, and the system of standard
operators in the prelude was modified so that it becomes possible to sneak in new operator
symbols with ease; details can be found in the Symbol Declarations section.

Pure 0.41 added support for optimization of indirect tail calls, so that any previous restric-
tions on the use of tail recursion in indirect function calls and mutually recursive globals
have been removed. Moreover, the logical operators && and || are now tail-recursive in
their second operand and can also be extended with user-defined equations, just like the
other builtins. Note that this implies that the values returned by && and || aren’t normal-
ized to the values 0 and 1 any more (this isn’t possible with tail call semantics). If you need
this then you’ll have to make sure that either the operands are already normalized, or you’ll
have to normalize the result yourself.
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Also, as of Pure 0.41 the batch compiler produces stripped executables by default. To create
unstripped executables you now have to use the -u option, see Options Affecting Code Size
for details. The -s option to produce stripped executables is still provided for backward
compatibility, but it won’t have any effect unless you use it to override a previous -u option.

Pure 0.43 changed the rules for looking up symbols in user-defined namespaces. Unquali-
fied symbols are now created in the current (rather than the global) namespace by default,
see Symbol Lookup and Creation for details. The -w option can be used to get warnings
about unqualified symbols which are resolved to a different namespace than previously. It
also provides a means to check your scripts for implicit declarations which might indicate
missing or mistyped function symbols.

Pure 0.45 added support for checking arbitrary pointer types in the C interface, so that you
don’t have to worry about passing the wrong kinds of pointers to system and library rou-
tines any more. Moreover, the interpretation of numeric pointer arguments (int* etc.) was
changed to bring them in line with the other new numeric matrix conversions (int** etc.).
In particular, the matrix data can now be modified in-place and type checking is more strict
(int* requires an int matrix, etc.). Also, there’s now support for argv-style vector arguments
(char** and void**). Please see the C Types section for details.

Pure 0.47 added a bunch of new features which have been on the wishlist for the forthcoming
1.0 release:

• You can now define your own interactive commands by placing suitable function def-
initions in the special __cmd__ namespace; see User-Defined Commands for details.

• The syntax used to denote inline code sections was changed from %{...%} to %<...%>.
This resolves an ambiguity in the syntax (note that %{ is legal Pure syntax; it could
denote a % operator followed by a matrix value), and also makes it easier to properly
support this construct in Emacs Pure mode.

• It is now possible to declare variadic externs, so that functions like printf can be called
without much ado; see Variadic C Functions.

• Support for simple kinds of matrix patterns like {x,y}, {x::int,y}, {x,y;z,t},
{{x,y},z} was added.

• The meaning of quoted specials such as lambdas and local definitions was changed.
Previously these would be evaluated even in the middle of a quoted expression. Now
they will produce a special meta representation in terms of built-in macros, in order to
support the advanced metaprogramming capabilities discussed in Built-in Macros and
Special Expressions and Reflection.

• Last but not least, Pure 0.47 sports a new, more flexible type tag feature which defines
type tags as unary predicates implemented using normal rewriting rules; cf. section
Type Rules for details. To these ends, a new keyword type was added (if you used this
as an ordinary identifier, you will have to rename these). Note that the old-style type
tags, which were just a syntactic shortcut for “as” patterns involving unary constructor
symbols, aren’t supported any more, so you’ll have to fix up your old scripts accord-
ingly. To assist with this, the Pure interpreter can be run with the -w option in order to
identify occurrences of undefined (presumably old-style) type tags. You should either

1.13.2 Backward Compatibility 223



Pure Language and Library Documentation, Release 0.62

change these to the corresponding “as” pattern (i.e., x::foo to x@(foo _)), or just add
a proper type definition for the tag (like type foo (foo _);).

Pure 0.48 moved pointer arithmetic and the regex functions into separate pointers and
regex modules, so you now have to import these modules if you need this functionality.
It also introduced the --defined pragma which lets you have “defined” functions in Pure
which throw an exception if they can’t be applied, e.g., because they are invoked with the
wrong arguments.

Pure 0.49 introduced the conditional compilation pragmas, so that simple version and sys-
tem dependencies can now be handled in a more convenient way.

Pure 0.50 introduced the declaration of interface types, which make it possible to create the
definition of a type from a description of its operations. To these ends, a new keyword
interface was added to the language.

Pure 0.55 changed the default compilers for inline C, C++ and Fortran code to clang, clang++
and gfortran (with the dragonegg plugin), respectively. This was done in order to support
LLVM 3.x which does not have llvm-gcc (the previous default) any more. If you’re still
running an older LLVM version and would like to keep using llvm-gcc, you will have to set
some environment variables; please see the installation instructions for details.

Pure 0.56 fixed the meaning of patterns in comprehensions so that unmatched elements are
now filtered out automatically, like in Haskell. The previous behaviour of raising an ex-
ception in such cases offered no real benefits and was in fact very inconvenient in most
situations. Pure 0.56 also enables stack checks by default (see Stack Size and Tail Recursion
for details), and interactive commands can optionally be escaped by prefixing them with a
special character (see Command Syntax). The true and false constants are now declared as
nonfix symbols in the prelude so that they can be used in patterns.

Pure 0.58 made the -x option optional, so that a script can now be invoked with argu-
ments simply as pure script arg1 arg2 ..., which matches the default behaviour of most
other command language interpreters. This also has the advantage that shebangs like
#!/usr/bin/env pure can now be used without any caveats. If you do want to execute
multiple script files in batch mode then you now have to explicitly indicate this with the
new -b option; please see Invoking Pure for details. Pure 0.58 also adds two new code gen-
eration options --symbolic and --nosymbolic to set the default evaluation mode of global
functions; these are discussed in Defined Functions below.

1.13.3 Error Recovery

The parser uses a fairly simplistic panic mode error recovery which tries to catch syntax
errors at the toplevel only. This seems to work reasonably well, but might catch some errors
much too late. Unfortunately, Pure’s terseness makes it rather difficult to design a better
scheme. As a remedy, the parser accepts an empty definition (just ; by itself) at the toplevel
only. Thus, in interactive usage, if the parser seems to eat away your input without doing
anything, entering an extra semicolon or two should break the spell, putting you back at the
toplevel where you can start typing the definition again.
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1.13.4 Splicing Tuples and Matrices

The “splicing” of tuples and matrices is probably one of Pure’s most controversial features.
By this we mean that tuples and matrices get flattened out when they are combined. For
instance:

> (1,2,3),4,(5,6);
1,2,3,4,5,6
> {{1,2,3},4,{5,6}};
{1,2,3,4,5,6}
> {{a,b;c,d},{x;y}}
{a,b,x;c,d,y}

This kind of behaviour is also known from Perl and MATLAB/Octave. Users familiar with
these languages often find it convenient, but it certainly gets in the way if you want to nest
these structures. Fortunately, there are some remedies for the most common cases where
you’d want to do this. Specifically, for the case of vectors the prelude defines the non-splicing
vector brackets which make it easy to construct nested vectors; these are often used to repre-
sent multi-dimensional indexable collections in Pure. For instance:

> {|{1,2,3},4,{5,6}|};
{{1,2,3},4,{5,6}}
> {|{a,b;c,d},{x;y}|};
{{a,b;c,d},{x;y}}
> ans!0!(1,1);
d

Nothing like this is available for tuples, though, so you’ll have to use lists instead if you
need nestability. Note that the deeper reason behind the non-nestability of tuples is the
right-recursive nature of tuples combined with the fact that there aren’t any real 1-tuples in
Pure ((x) is just x). This implies that you can’t have a nested tuple in the last component
of a tuple, no matter how hard you try to prevent the splicing, e.g., by quoting. x,(y,z) is
always just the triple x,y,z.

One might consider this a defect in Pure’s tuple data structure. But Pure already has a
nestable kind of tuples (lists), so it would be rather pointless to have yet another isomorphic
data structure with just slightly different syntax. Instead Pure gives you the choice between
two kinds of list-like data structures, one which nests, and one which doesn’t but has other
interesting properties.

1.13.5 With and when

Another common source of confusion is that Pure provides two different constructs to bind
local function and variable symbols, respectively. This distinction is necessary because Pure
does not segregate defined functions and constructors, and thus there is no magic to figure
out whether an equation like foo x = y by itself is meant as a definition of a function foo
with formal parameter x and return value y, or a pattern binding defining the local variable
x by matching the pattern foo x against the value of y. The with construct does the former,
when the latter.
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Also note that the function definitions in a with clause are all done simultaneously (and can
thus be mutually recursive), while the individual variable definitions and expressions in a
when clause are executed in order. This works in exactly the same fashion as letrec and
let in Scheme. (As a mnemonic, consider that when conveys a sense of time, so its parts are
“executed in sequence”.)

The sequential execution aspect of when is rather important in Pure, because it enables you
to do a series of “actions” (variable bindings and expression evaluations) in sequence by
simply enclosing it in a when clause. This provides the Pure programmer with a useful and
familiar bit of imperative “look and feel” (even though the when clause itself works in a
purely functional way). For instance, suppose that we’d like to define a function which
opens a file, checks that the file was opened successfully and throws an exception otherwise,
outputs a message to indicate which file was opened, and finally returns the contents of the
file as a string. The easiest way to do this in Pure is as follows:

using system;

read_file name::string = s when
fp = fopen name "r";
pointerp fp || throw (sprintf "%s: %s" (name,strerror errno));
printf "opened file %s\n" name;
s = fget fp;

end;

Another bit of syntax that may take getting used to is that with and when clauses are tacked
on to the end of the expression they belong to. This mimics mathematical language and
supposedly makes it easier to read and understand a definition, because you’re told right
up front what is to be computed, before going into the details of how the computation is
performed. Unfortunately, this style differs considerably from other block-structured pro-
gramming languages, which often place local definitions in front of the code they apply to.
Pure doesn’t offer any special syntax for this, but note that you can always write a when or
with clause in the following style which places the “body” at the bottom:

result when
y = foo (x+1);
z = bar y;
result = baz z;

end;

This can be read and written more or less like a let expression in Scheme or ML, except that
the name of the result is given explicitly at the beginning. However, this style doesn’t really
save you either if you need several sections with both local functions and variables. In this
case you’ll just have to bite the bullet and arrange the with and when clauses the way that
Pure wants them. That is, first come the local variables used in the right-hand side, then
the local functions needed to compute those variables, then maybe another section with
local variables needed by those functions, etc. When looking at such a complicated series
of definitions, it sometimes helps to read the with and when blocks “in reverse”, i.e., from
bottom to top, which is the order in which they will actually be executed.
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1.13.6 Non-Linear Patterns

As explained in section Patterns, Pure allows multiple occurrences of the same variable in a
pattern (so-called non-linearities):

foo x x = x;

This rule will only be matched if both occurrences of x are bound to the same value. More
precisely, the two instances of x will checked for syntactic equality during pattern matching,
using the same primitive provided by the prelude. This may need time proportional to the
sizes of both argument terms, and thus become quite costly for big terms. In fact, same might
not even terminate at all if the compared terms are both infinite lazy data structures, such as
in foo (1..inf) (1..inf). So you have to be careful to avoid such uses.

When using non-linearities in conjunction with “as” patterns, you also have to make sure
that the “as” variable does not occur inside the corresponding subpattern. Thus a definition
like the following is illegal:

> foo xs@(x:xs) = x;
<stdin>, line 1: error in pattern (recursive variable ’xs’)

The explanation is that such a pattern couldn’t possibly be matched by a finite list anyway.
Indeed, the only match for xs@(x:xs) would be an infinite list of x‘s, and there’s no way that
this condition could be verified in a finite amount of time. Therefore the interpreter reports
a “recursive variable” error in such situations.

1.13.7 “As” Patterns

In the current implementation, “as” patterns cannot be placed on the “spine” of a function
definition. Thus rules like the following, which have the pattern somewhere in the head of
the left-hand side, will all provoke an error message from the compiler:

a@foo x y = a,x,y;
a@(foo x) y = a,x,y;
a@(foo x y) = a,x,y;

This is because the spine of a function application is not available when the function is called
at runtime. “As” patterns in pattern bindings (let, const, case, when) are not affected by this
restriction since the entire value to be matched is available at runtime. For instance:

> case bar 99 of y@(bar x) = y,x+1; end;
bar 99,100

1.13.8 “Head = Function” Pitfalls

The “head = function” rule stipulates that the head symbol f of an application f x1 ...
xn occurring on (or inside) the left-hand side of an equation, variable binding, or pattern-
matching lambda expression, is always interpreted as a literal function symbol (not a vari-
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able). This implies that you cannot match the “function” component of an application
against a variable, at least not directly. An anonymous “as” pattern like f@_ does the trick,
however, since the anonymous variable is always recognized, even if it occurs as the head
symbol of a function application. Here’s a little example which demonstrates how you can
convert a function application to a list containing the function and all arguments:

> foo x = a [] x with a xs (x@_ y) = a (y:xs) x; a xs x = x:xs end;
> foo (a b c d);
[a,b,c,d]

This may seem a little awkward, but as a matter of fact the “head = function” rule is quite
convenient, since it covers the common cases without forcing the programmer to declare
variable or constructor symbols (other than nonfix symbols). On the other hand, generic
rules operating on arbitrary function applications are not all that common, so having to
“escape” a variable using the anonymous “as” pattern trick is a small price to pay for that
convenience.

Sometimes you may also run into the complementary problem, i.e., to match a function
argument against a given function. Consider this code fragment:

foo x = x+1;
foop f = case f of foo = 1; _ = 0 end;

You might expect foop to return true for foo, and false on all other values, but in reality foop
will always return true! In fact, the Pure compiler will warn you about the second rule of
the case expression not being used at all:

> foop 99;
warning: rule never reduced: _ = 0;
1

This is again due to the “head = function” rule; foo is neither the head symbol of a function
application nor a nonfix symbol here, so it is considered a variable, even though it is defined
as a global function elsewhere. (As a matter of fact, this is rather useful, since otherwise a
rule like f g = g+1 would suddenly change meaning if you happen to add a definition like
g x = x-1 somewhere else in your program, which certainly isn’t desirable.)

A possible workaround is to “escape” the function symbol using an empty namespace qual-
ifier:

foop f = case f of ::foo = 1; _ = 0 end;

This trick works in case expressions and function definitions, but fails in circumstances in
which qualified variable symbols are permitted (i.e., in variable and constant definitions).
A better solution is to employ the syntactic equality operator === defined in the prelude
to match the target value against the function symbol. This allows you to define the foop
predicate as follows:

> foop f = f===foo;
> foop foo, foop 99;
1,0
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Another way to deal with the situation would be to just declare foo as a nonfix symbol.
However, this makes the foo symbol “precious”, i.e., after such a declaration it cannot be
used as a local variable anymore. It’s usually a good idea to avoid that kind of thing, at least
for generic symbols, so the above solution is preferred in this case.

1.13.9 Defined Functions

As explained in Definitions and Expression Evaluation, Pure doesn’t really distinguish “con-
structors” from “defined functions” and thus allows any function symbol to become part of
a normal form expression yielded by an evaluation. This behaviour follows the usual se-
mantics of (typeless) term rewriting and is essential if you also want to evaluate expressions
symbolically.

However, this becomes a nuisance if you really expect the given function to reduce to some-
thing else, and just accidentally supplied the wrong arguments to the function. Especially
annoying in this respect are functions involving side effects:

> using system;
> puts 99;
puts 99

Here we accidentally specified a number (rather than a string) as the argument of the puts
function. This kind of error can easily be spotted if the function is invoked interactively, but
it may well go unnoticed if the call is buried deeply in a big program which runs unattended
(in batch mode).

As a remedy, Pure 0.48 introduces the --defined pragma (cf. Code Generation Options)
which allows you to explicitly declare a function symbol as a “defined” function, so that
it will raise a proper exception when the defining equations (or, as it were, the external
definition) of the function are not applicable to the subject expression:

> #! --defined puts
> puts 99;
<stdin>, line 4: unhandled exception ’failed_match’ while evaluating ’puts 99’

This is the same kind of failed_match exception that you’ll get, e.g., if the subject term fails
to match all patterns in a case construct, cf. Exception Handling.

Note that the --defined pragma only has an effect on global functions; local functions in
a with expression will always be evaluated in Pure’s default symbolic mode. Thus, if you
need the above behaviour with a local function then you’ll either have to add the exception
handling yourself or turn the local function into a global one.

Also note that an exception will only be generated if the symbol actually has any defining
equations, so a “pure constructor” (i.e., a symbol without defining equations) will still return
a normal form even if it is also declared --defined:

> #! --defined foo
> foo bar;
foo bar
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Nevertheless, the --defined pragma will be recorded and take effect as soon as you add an
equation for the function:

> foo x::int = x+1;
> foo bar;
<stdin>, line 4: unhandled exception ’failed_match’ while evaluating ’foo bar’

There’s also a --nodefined pragma which reverts the function to the default behaviour of
returning normal forms:

> #! --nodefined foo
> foo bar;
foo bar

As indicated, the --defined and --nodefined pragmas can be invoked freely at any time,
and the interpreter takes care that the affected function is recompiled automatically as
needed.

Pure 0.58 and later also provide a --nosymbolic compilation option which lets you switch
the interpreter to the non-symbolic mode of operation, so that every global function with
equations becomes a defined function. This option is most commonly used as a pragma
to delineate code sections with defined functions, so that you don’t have to write out the
--defined pragmas for each function. The --symbolic pragma is then used to switch back
to the default symbolic mode. For instance:

> run
> #! --nosymbolic
> extern int puts(char*);
> foo x::int = x+1;
> puts 99;
<stdin>, line 4: unhandled exception ’failed_match’ while evaluating ’puts 99’
> foo bar;
<stdin>, line 5: unhandled exception ’failed_match’ while evaluating ’foo bar’
> #! --symbolic
> bar x::int = x-1;
> bar foo;
bar foo

Note that these pragmas only adjust the default behaviour of functions. It is still possible to
change the status of individual functions with the --defined and --nodefined pragmas:

> #! --nodefined foo
> foo bar;
foo bar
> #! --defined bar
> bar foo;
<stdin>, line 12: unhandled exception ’failed_match’ while evaluating ’bar foo’

You can even invoke the interpreter with the --nosymbolic command line option so that
the non-symbolic mode becomes the global default. However, this affects all functions in a
program, including the library functions used by your program. It isn’t really advisable to
do this, because at the time of this writing many library modules still assume Pure’s default
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mode of symbolic evaluation, and so a global switch to --nosymbolic may well break some
of these functions.

At this time, the --defined and --nosymbolic pragmas are still considered experimental.
They interfere with Pure’s symbolic evaluation capabilities, so they aren’t currently used in
the standard library and we recommend that programmers shouldn’t use them in a careless
fashion either. However, while most error conditions stemming from unexpected normal
forms can also be caught with diligent unit testing, these pragmas can save you time and
trouble, especially when testing programs which are to be executed mostly in batch mode.
Future versions of the interpreter might also make good use of these pragmas for static
checks and optimization purposes.

1.13.10 Stack Size and Tail Recursion

Pure programs may need a considerable amount of stack space to handle recursive function
and macro calls, and the interpreter itself also takes its toll. So you should configure your
system accordingly (8 MB of stack space is recommended for 32 bit systems, systems with
64 bit pointers probably need more). The interpreter automatically performs advisory stack
checks on function entry and raises a Pure exception if the current stack size exceeds a given
limit. A reasonable default for the stack limit is defined by the implementation, please check
the description of the PURE_STACK environment variable for details.

You can also change this limit if needed, by setting the PURE_STACK environment variable
accordingly. The value of PURE_STACK should be the maximum stack size in kilobytes. Please
note that this is only an advisory limit which does not change the program’s physical stack
size, so you can set this to any value that seems appropriate. (You can also set PURE_STACK to
zero to completely disable the checks, but this isn’t recommended.) Your operating system
should supply you with a command such as ulimit(1) to set the real process stack size. (The
PURE_STACK limit should be a little less than that, to account for temporary stack usage by
the interpreter itself.)

Like Scheme, Pure does proper tail calls (if LLVM provides that feature on the platform at
hand), so tail-recursive definitions should work fine in limited stack space. For instance, the
following little program will loop forever if your platform supports the required optimiza-
tions:

loop with loop = loop end;

This also works if your definition involves function parameters, guards and multiple equa-
tions, of course. Moreover, conditional expressions (if-then-else) are tail-recursive in both
branches, and the logical operators && and ||, as well as the sequence operator $$, are tail-
recursive in their second operand.

In addition, the Pure compiler also does a specialized form of tail recursion optimization
for type definition rules. Due to the special way in which type tags are processed, however,
the amount of optimization performed in this case is somewhat limited; see Recursive Types
below.
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Finally, note that tail call optimization is always disabled if the debugger is enabled (-g). This
makes it much easier to debug programs, but means that you may run into stack overflows
when debugging a program that does deep tail recursion.

1.13.11 Handling of Asynchronous Signals

As described in section Exception Handling, signals delivered to the process can be caught
and handled with Pure’s exception handling facilities. This has its limitations, however.
Since Pure code cannot be executed directly from a C signal handler, checks for pending
signals are only done on function entry. This means that in certain situations (such as the
execution of an external C routine), delivery of a signal may be delayed by an arbitrary
amount of time. Moreover, if more than one signal arrives between two successive signal
checks, only the last one will be reported in the current implementation.

When delivering a signal which has been remapped to a Pure exception, the corresponding
exception handler (if any) will be invoked as usual. Further signals are blocked while the
exception handler is being executed.

A fairly typical case is that you have to handle signals in a tail-recursive function. This can
be done with code like the following:

using system;

// Remap some common POSIX signals.
do (trap SIG_TRAP) [SIGHUP, SIGINT, SIGTERM];

loop = catch handler process $$ loop
with handler (signal k) = printf "Hey, I got signal %d.\n" k end;
process = sleep 1; // do something

Running the above loop function enters an endless loop reporting all signals delivered to the
process. Note that to make this work, the tail-recursive invocation of loop must immediately
follow the signal-handling code, so that signals don’t escape the exception handler.

Of course, in a real application you’d probably want the loop function to carry around some
data to be processed by the process routine, which then returns an updated value for the
next iteration. This can be implemented as follows:

loop x = loop (catch handler (process x))
with handler (signal k) = printf "Hey, I got signal %d.\n" k $$ 0 end;
process x = printf "counting: %d\n" x $$ sleep 1 $$ x+1;

1.13.12 Recursive Types

Using the facilities described in Type Rules, type tags can easily be defined in a recursive
fashion. In simple cases, the compiler can optimize such definitions so that they are executed
in constant stack space, just like ordinary tail-recursive functions. The main difference here
is that the recursion already takes place during matching, i.e., on the left-hand side of a rule,
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since this is where type predicates are normally invoked. This also limits the amount of tail
recursion optimization available on type rules, as detailed below.

For instance, the following rlist type from the prelude is defined in such a way that it only
matches “proper” lists which have list values in all their tails (and are thus terminated by
the empty list).

type rlist [] | rlist (x : xs::rlist);

Note that this type definition recurses in the last rlist tag of the last rule of the type. If tail
calls are supported by the host implementation (cf. Stack Size and Tail Recursion), the com-
piler makes sure that such definitions are safe to use even if the recursion may go arbitrarily
deep. For instance:

> typep rlist (1..10000000);
1

The precise rules for tail-recursive type definitions are as follows:

• The last rule of the type must have a trivial right-hand side (either just true or missing)
and must be directly recursive in the last type tag on the left-hand side of the rule.

• The rule may not contain any non-linearities. (That’s because these are always checked
after the type guards for efficiency.)

While these are rather strict requirements, they work reasonably well for simple recursive
types such as the recursive list type above. More general recursion in types will not be op-
timized by the compiler, however, and may thus be subject to stack overflows. For instance,
consider the following binary tree type:

nonfix nil;
type tree nil | tree (bin x l::tree r::tree);

This is a perfectly legal type definition, and the recursion in the last tree tag of the second
rule will indeed be optimized away. However, the second rule also recurses on the first tree
tag which will cause trouble if there are long chains of left branches in a tree. For instance:

> mktree xs = foldr (\x t->bin x t nil) nil xs;
> mktree [];
nil
> mktree [1,2,3];
bin 1 (bin 2 (bin 3 nil nil) nil) nil
> typep tree (mktree []);
1
> typep tree (mktree [1,2,3]);
1
> typep tree (mktree (1..10000));
<stdin>, line 6: unhandled exception ’stack_fault’ while evaluating
’typep tree (mktree (1..10000))’

To avoid deep recursion in such cases it is necessary to implement the type using a general
predicate, which handles the recursion by transforming it into a tail-recursive form using a
technique like continuation passing.
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There’s yet another important issue with recursive type definitions, namely the time it takes
to check the definition. In the above example, checking rlist takes O(n) time, where n is
the size of the list. This will have dire consequences if you do this check repeatedly while
traversing a list, as in the following sum function:

sum xs::rlist = if null xs then 0 else head xs+sum (tail xs);

As this function repeatedly checks its entire argument, the total time it takes to compute
the sum of a list this way becomes O(n2). To see how slow this function is, just try it on
successively larger lists 1..1000, 1..2000, etc. One way to work around this is to write
a “wrapper” function which simply checks the type of its argument in advance and then
invokes a “worker” function to do the actual computation:

sum xs::rlist = sum xs with
sum xs = if null xs then 0 else head xs+sum (tail xs);

end;

This “wrapper-worker” design is quite common and useful in many situations, but it is a bit
cumbersome in this specific case. An easier way is to just do the type checking in a piecemeal
fashion, as the list is being traversed. To these ends, the prelude also provides a basic list
type which is defined as follows:

type list [] | list (x:xs);

Note that the recursion is missing here and thus this type can always be checked in O(1)
time, performing just a single pattern match, which is efficient. Hence, if we replace rlist
with the list type in our original definition then sum will now run in O(n) time, as desired.
On the other hand, this approach also has its drawbacks. For instance, consider:

> sum xs::list = if null xs then 0 else head xs+sum (tail xs);
> sum (1:2:3);
1+(2+sum 3)

In contrast, our wrapper-worker definition of sum from above returns a somewhat prettier
normal form instead:

> clear sum
> sum xs::rlist = sum xs with
> sum xs = if null xs then 0 else head xs+sum (tail xs);
> end;
> sum (1:2:3);
sum (1:2:3)

Thus the wrapper-worker approach also has its merits, and whether to use one or the other
depends on the situation. Similar techniques and tradeoffs also apply to other recursive
types such as trees.
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1.13.13 Interfaces

Pure’s implementation of interface types has some notable differences to interfaces in a stat-
ically typed language like Go. These are mostly due to Pure’s dynamically typed nature.

• Nothing is known about the return type of an interface operation, but this is no real
impediment since Pure types are all about restricting the kind of arguments which can
be passed to a function, not their result types, so return types are irrelevant to Pure’s
interface types anyway.

• Pure interfaces aren’t based on the notion of “methods” and therefore don’t provide
any kind of “method dispatch”. Interface operations are just ordinary Pure functions
which rely on Pure’s usual pattern-matching mechanism to do the dynamic dispatch.

• Membership in interface types is decided by considering the left-hand sides of the
definitions of the interface functions only. Guards are not taken into account, and thus
there’s no real guarantee that a member of an interface type will always be valid input
to an interface function.

• Interface types work best if all interface operations are completely defined on the target
data domain. This may sometimes force you to add default or error rules raising ex-
ceptions, as shown in the Interface Types section, which may interfere with symbolic
evaluation (cf. Exception Handling and Defined Functions). If this is not desirable,
you can also just include the missing members manually. To these ends, Pure allows
an interface type to be augmented with ordinary type rules as described in Type Rules.
For instance, we might also have implemented the stack type discussed in the Interface
Types section as follows:

interface stack with
push s::stack x;
pop s::stack;
top s::stack;

end;

type stack [];

push xs@[] x | push xs@(_:_) x = x:xs;
pop (x:xs) = xs;
top (x:xs) = x;

Pure’s interface types are really a compromise between theoretical soundness and practical-
ity. From the theoretical point of view, we’d like an interface type to be the intersection of the
interface types for the individual interface functions. Unfortunately, the pattern set for such
an intersection type might well be exponential in size. Hence the approach taken in Pure
is to eliminate those candidate patterns which aren’t supported by all interface functions.
This can be done much more efficiently, but will in general only produce a subtype of the
intersection type. (On the other hand, this method also has the advantage that the compiler
can warn about potentially missing rules in some of the interface operations. We’ve seen in
the Interface Types section that this can be fairly useful at times.)
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Another issue arises with interface operations which allow the interface type in multiple
arguments. A typical example are operators:

interface addable with x::addable + y::addable; end;

In the present implementation, the pattern set will be the union of the pattern sets for each
argument, so the above definition is in fact equivalent to:

interface addable with x::addable + y; x + y::addable; end;

This makes sense in many situations, but of course this depends on the particular operation.
In some cases, you might have to decide on which argument you want to place the interface
type tag, or even have different types for each possible argument position.

1.13.14 Numeric Calculations

If possible, you should decorate numeric variables on the left-hand sides of function defi-
nitions with the appropriate type tags, like int or double. This often helps the compiler to
generate better code and makes your programs run faster. The | syntax makes it easy to add
the necessary specializations of existing rules to your program. E.g., taking the polymorphic
implementation of the factorial as an example, you only have to add a left-hand side with
the appropriate type tag to make that definition go as fast as possible for the special case of
machine integers:

fact n::int |
fact n = n*fact(n-1) if n>0;

= 1 otherwise;

(This obviously becomes unwieldy if you have to deal with several numeric arguments of
different types, however, so in this case it is usually better to just use a polymorphic rule.)

Also note that int (the machine integers), bigint (the GMP “big” integers) and double (float-
ing point numbers) are all different kinds of objects. While they can be used in mixed op-
erations (such as multiplying an int with a bigint which produces a bigint, or a bigint with
a double which produces a double), the int tag will only ever match a machine int, not a
bigint or a double. Likewise, bigint only matches bigints (never int or double values), and
double only doubles. Thus, if you want to define a function operating on different kinds of
numbers, you’ll also have to provide equations for all the types that you need (or a polymor-
phic rule which catches them all). This also applies to equations matching against constant
values of these types. In particular, a small integer constant like 0 only matches machine
integers, not bigints; for the latter you’ll have to use the “big L” notation 0L. Similarly, the
constant 0.0 only matches doubles, but not ints or bigints.

1.13.15 Constant Definitions

Constants differ from variables in that they cannot be redefined (that’s their main purpose
after all) so that their values, once defined, can be substituted into other definitions which
use them. For instance:

236 1.13 Caveats and Notes



Pure Language and Library Documentation, Release 0.62

> const c = 2;
> foo x = c*x;
> show foo
foo x = 2*x;
> foo 99;
198

While a variable can be rebound to a new value at any time, you will get an error message if
you try to do this with a constant:

> const c = 3;
<stdin>, line 5: symbol ’c’ is already defined as a constant

Note that in interactive mode you can work around this by purging the old definition with
the clear command. However, this won’t affect any earlier uses of the symbol:

> clear c
> const c = 3;
> bar x = c*x;
> show foo bar
bar x = 3*x;
foo x = 2*x;

(You’ll also have to purge any existing definition of a variable if you want to redefine it as a
constant, or vice versa, since Pure won’t let you redefine an existing constant or variable as a
different kind of symbol. The same also holds if a symbol is currently defined as a function
or a macro.)

Constants can also be used in patterns (i.e., on the left-hand side of a rule in a definition or a
case expression), but only if they’re also declared as nonfix. The prelude already does this
for the truth values true and false (which are in fact just 1 and 0), so that you can write,
e.g.:

> check false = "no"; check true = "yes";
> show check
check 0 = "no";
check 1 = "yes";
> check (5>0);
"yes"

Note that if true and false weren’t nonfix, the above definition of check wouldn’t work
as intended, because the true and false symbols on the left-hand side of the two equations
would be interpreted as local variables. Also note that true and false are really an excep-
tional case; they aren’t likely to be used as variables, so the prelude can make them nonfix
by default. In most cases the standard library refrains from declaring constant symbols as
nonfix, so that they don’t accidentally clobber variables in user code. This is the case, in
particular, for constants in the math module such as e, pi and i which are much more likely
to be used as variable symbols.

As the value of a constant is known at compile time, the compiler can apply various opti-
mizations to uses of such values. In particular, the Pure compiler inlines constant scalars
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(numbers, strings and pointers) by literally substituting their values into the output code. It
also precomputes simple constant expressions involving only (machine) integer and double
values. (The latter is called constant folding and can also be disabled, see the description of
the --fold and --nofold pragmas for details.) Example:

> extern double atan(double);
> const pi = 4*atan 1.0;
> show pi
const pi = 3.14159265358979;
> foo x = 2*pi*x;
> show foo
foo x = 6.28318530717959*x;

Constant folding also works with conditional expressions. E.g., consider:

const win = index sysinfo "mingw32" >= 0;
check boy = if win then bad boy else good boy;

On a Linux system, this gives:

> show check
check boy = good boy;

By these means, you can employ a constant to configure your code for different environ-
ments, without any runtime penalties. Note that this only works with conditional expres-
sions, not with guarded equations. However, in the latter case the LLVM backend still elim-
inates dead code automatically, so the check function from above could also be defined as
follows:

check boy = bad boy if win;
= good boy otherwise;

In this case the code for one of the branches of check will be completely eliminated, depend-
ing on the outcome of the configuration check. (The interpreter will still print both equations
if you type show check, but only one of the branches will actually be present in the assembler
code of the function; you can verify this with show -d check.)

For efficiency, constant aggregates (lists, tuples, matrices and other kinds of non-scalar
terms) receive special treatment. Here, the constant is computed once and stored in a read-
only variable which then gets looked up at runtime, just like an ordinary global variable.
However, there’s an important difference: If a script is batch-compiled (cf. Batch Com-
pilation), the constant value is normally computed at compile time only; when running the
compiled executable, the constant value is simply reconstructed, which is often much more
efficient than recomputing its value. For instance, you might use this to precompute a large
table whose computation may be costly or involve functions with side effects:

const table = [foo x | x = 1..1000000];
process table;

Note that this only works with const values which are completely determined at compile
time. If a constant contains run time objects such as (non-null) pointers and (local) functions,
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this is impossible, and the batch compiler will instead create code to recompute the value of
the constant at run time. For instance, consider:

const p = malloc 100;
foo p;

Here, the value of the pointer p of course critically depends on its computation (involving a
side effect which sets aside a corresponding chunk of memory). It would become unusable
without actually executing the initialization, so the compiler generates the appropriate run
time initialization code in this case. For all practical purposes, this turns the constant into a
read-only variable. (There’s also a code generation option to force this behaviour even for
“normal” constants for which it’s not strictly necessary, in order to create smaller executa-
bles; see Options Affecting Code Size for details.)

1.13.16 External C Functions

The interpreter always takes your extern declarations of C routines at face value. It will
not go and read any C header files to determine whether you actually declared the function
correctly! So you have to be careful to give the proper declarations, otherwise your program
might well give a segfault when calling the function. This problem can to some extent be
alleviated by using the bitcode interface, see Importing LLVM Bitcode and Inline Code in
the C Interface section. However, you always have to be careful when calling variadic C
functions, as the compiler has no way of checking which combinations of extra parameters a
function like printf is to be invoked with. (As a remedy, the standard library provides safe
implementations of printf and other commonly used variadic functions from the C library,
see the Pure Library Manual for details.)

Another limitation of the C interface is that it does not offer any special support for C structs
and C function parameters. However, an optional addon module is available which inter-
faces to the libffi library to provide that kind of functionality, please see pure-ffi for details.

Last but not least, to make it easier to create Pure interfaces to large C libraries, there’s a
separate pure-gen program available at the Pure website. This program takes a C header
(.h) file and creates a corresponding Pure module with definitions and extern declarations
for the constants and functions declared in the header. Please refer to pure-gen: Pure interface
generator for details.

1.13.17 Calling Special Forms

Special forms are recognized at compile time only. Thus the catch function, as well as quote
and the operators &&, ||, $$ and &, are only treated as special forms in direct (saturated) calls.
They can still be used if you pass them around as function values or in partial applications,
but in this case they lose all their special call-by-name argument processing.
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1.13.18 Laziness

Pure does lazy evaluation in the same way as Alice ML, providing an explicit operation
(&) to defer evaluation and create a “future” which is called by need. However, note that
like any language with a basically eager evaluation strategy, Pure cannot really support lazy
evaluation in a fully automatic way. That is, coding an operation so that it works with
infinite data structures usually requires additional thought, and sometimes special code will
be needed to recognize futures in the input and handle them accordingly. This can be hard,
but of course in the case of the prelude operations this work has already been done for you,
so as long as you stick to these, you’ll never have to think about these issues. (It should
be noted here that lazy evaluation has its pitfalls even in fully lazy FPLs, such as hidden
memory leaks and other kinds of subtle inefficiencies or non-termination issues resulting
from definitions being too lazy or not lazy enough. You can read about that in any good
textbook on Haskell.)

The prelude goes to great lengths to implement all standard list operations in a way that
properly deals with streams (a.k.a. lazy lists). What this all boils down to is that all list
operations which can reasonably be expected to operate in a lazy way on streams, will do
so. (Exceptions are inherently eager operations such as #, reverse and foldl.) Only those
portions of an input stream will be traversed which are strictly required to produce the result.
For most purposes, this works just like in fully lazy FPLs such as Haskell. However, there
are some notable differences:

• Since Pure uses dynamic typing, some of the list functions may have to peek ahead
one element in input streams to check their arguments for validity, meaning that these
functions will be slightly more eager than their Haskell counterparts.

• Pure’s list functions never produce truly cyclic list structures such as the ones you get,
e.g., with Haskell’s cycle operation. (This is actually a good thing, because the current
implementation of the interpreter cannot garbage-collect cyclic expression data; please
see the corresponding remarks in Expression References for details.) Cyclic streams such
as cycle [1] or fix (1:) will of course work as expected, but, depending on the
algorithm, memory usage may increase linearly as they are traversed.

• Pattern matching is always refutable (and therefore eager) in Pure. If you need some-
thing like Haskell’s irrefutable matches, you’ll have to code them explicitly using fu-
tures. See the definition of the unzip function in the prelude for an example showing
how to do this.

There are two other pitfalls with lazy data structures that you should be aware of:

• Laziness and side effects don’t go well together, as most of the time you can’t be sure
when a given thunk will be executed. So as a general guideline you should avoid
side effects in thunked data structures. If you can’t avoid them, then at least make
sure that all accesses to the affected resources are done through a single instance of
the thunked data structure. E.g., the following definition lets you create a stream of
random numbers:

> using math;
> let xs = [random | _ = 1..inf];
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This works as expected if only a single stream created with random exists in your pro-
gram. However, as the random function in the math module modifies an internal data
structure to produce a sequence of pseudorandom numbers, using two or more such
streams in your program will in fact modify the same underlying data structure and
thus produce two disjoint subsequences of the same underlying pseudorandom se-
quence which might not be distributed uniformly any more.

• You should avoid keeping references to potentially big (or even infinite) thunked data
structures when traversing them (unless you specifically need to memoize the entire
data structure). In particular, if you assign such a data structure to a local variable, the
traversal of the data structure should then be invoked as a tail call. If you fail to do this,
it forces the entire memoized part of the data structure to stay in main memory while
it is being traversed, leading to rather nasty memory leaks. Please see the all_primes
function in Lazy Evaluation and Streams for an example.

1.13.19 Name Capture

As explained in the Macro Hygiene section, Pure macros are lexically scoped and thus “hy-
gienic”. So in principle Pure macros are not susceptible to name capture. However, this
principle only applies to “real” block constructs, not their quoted “placeholder” representa-
tions described in Built-in Macros and Special Expressions. One (rather obscure) case which
deserves special attention is the case of macros involving free variables which are being
called inside quoted block constructs. Note that this corresponds to the “mild” first form of
name capture described in the Macro Hygiene section. For instance, consider the following
example:

> def G x = x+y;
> ’(G 10 when y = 99 end);
G 10 __when__ [y-->99]
> eval ans;
109

Here the free y variable of the macro G got captured by the quoted when clause when the
quoted expression is evaluated. This happens because, using call by value, the call G 10 gets
evaluated before the __when__ macro. So the behaviour of the macro evaluator in this case
is in fact correct; the only remedy here is to avoid macros involving free variables inside a
quoted block construct. The same applies to “quoteargs” macros which quote their argu-
ments automatically, as described in Built-in Macros and Special Expressions. On the other
hand, the described behaviour might even be useful at times, to forcibly rebind a free macro
variable. The following little helper macro illustrates this trick:

> #! --quoteargs invoke
> def invoke x = x;
> foo = invoke (G 10 when y = 99 end);
> show foo
foo = 10+y when y = 99 end;
> foo;
109
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Besides the above form of real name capture in quoted specials, there’s also a case of appar-
ent name capture in the expression printer which isn’t actually real name capture, but just
looks like it was. The reason for this is that the expression printer currently doesn’t check for
different bindings of the same variable identifier when it prints a (compile time) expression.
For instance, consider:

> def F x = x+y when y = x+1 end;
> foo y = F y;
> show foo
foo y = y+y when y = y+1 end;

This looks as if y got captured, but in fact it’s not, it’s just the show command which displays
the definition in an incorrect way. You can add the -e option to show which prints the de-
Bruijn indices of locally bound symbols, then you see that the actual bindings are all right
anyway:

> show -e foo
foo y/*0:1*/ = y/*1:1*/+y/*0:*/ when y/*0:*/ = y/*0:1*/+1 end;

Note that the number before the colon is the actual deBruijn index, the sequence of bits
behind it is the subterm path. Thus the first instance of y in y+y (which has a deBruijn index
of 1, indicating “one environment up”) actually refers to the y in the left-hand side foo y,
while the second instance refers to the local binding y = y+1 in the when clause.

Alas, this means that if you use dump to write such a definition to a text file and read it back
with run later, then the apparent name capture becomes a real one and you’ll get the wrong
definition. This is an outright bug in the expression printer which will hopefully be fixed
some time. But for the time being you will have to correct such glitches manually.

1.14 Author
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1.16 Copying

(The following explanations are not legal advice. Please read the full text of the licenses and
consult qualified professional counsel for an interpretation of the license terms as they apply
to you.)

Pure comes with a fairly liberal license which lets you distribute your own Pure programs
and extensions under a license of your choice and permits linking of commercial applications
against the Pure runtime and the Pure standard library without requiring special permission.
The Pure interpreter (the pure main program), the Pure runtime library (libpure) and the
Pure standard library (the Pure scripts in the lib folder distributed with the software) are
distributed as free software, and you are welcome to modify and redistribute them under
the appropriate license terms, as detailed below.

The Pure interpreter is free software: you can redistribute it and/or modify it under the terms
of the GNU General Public License as published by the Free Software Foundation, either
version 3 of the License, or (at your option) any later version.

The Pure runtime library and the Pure standard library are also free software: you can redis-
tribute them and/or modify them under the terms of the GNU Lesser General Public License
as published by the Free Software Foundation, either version 3 of the License, or (at your
option) any later version.

Pure is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; with-
out even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE.

One thing to note here is that the interpreter program is distributed under the GNU General
Public License and is thus subject to stricter license terms than the runtime library and the
standard library which are licensed under the GNU Lesser General Public License. The main
reason for these conditions is that the interpreter program includes support for the readline
library which is GPL-licensed software. If this is a problem for your application then you’re
welcome to use pure_norl.cc instead. This is a readline-free replacement for the interpreter
main program included in the distribution, which is licensed under a 3-clause BSD-style
license.

Please see the GNU General Public License and the GNU Lesser General Public License for
the precise license terms. You can also find the license conditions in the COPYING and
COPYING.LESSER files accompanying the software. Also, please see the source code for
the copyright and license notes pertaining to individual source files which are part of this
software.

Third party software licensing notes:
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Pure uses LLVM as its compiler backend. LLVM is under Copyright (c) 2003-2012 by the Uni-
versity of Illinois at Urbana-Champaign, and is licensed under a 3-clause BSD-style license,
please read COPYING.LLVM included in the distribution for the exact licensing terms. You
can also find the LLVM license at the LLVM website.

1.17 References and Links

Aardappel Wouter van Oortmerssen’s functional programming language based on term
rewriting, http://wouter.fov120.com/aardappel.

Alice ML A version of ML (see below) from which Pure borrows its model of lazy evalua-
tion, http://www.ps.uni-sb.de/alice.

Franz Baader and Tobias Nipkow Term Rewriting and All That. Cambridge University Press,
Cambridge, 1998.

Bertrand Wm Leler’s constraint programming language based on term rewriting,
http://groups.google.com/group/bertrand-constraint. See Wm Leler: Constraint Pro-
gramming Languages: Their Specification and Generation. Addison-Wesley, 1988.

Clang The new C/C++/Objective C compiler designed specifically to work on top of LLVM,
http://clang.llvm.org. Clang provides a comparatively light-weight alternative to gcc
which is faster and has better and more friendly diagnostics.

DragonEgg An LLVM backend for gcc 4.5 and later, http://dragonegg.llvm.org. In contrast
to llvm-gcc, DragonEgg is implemented as a plugin which hooks into your system
compiler.

Faust Grame’s functional DSP programming language, http://faust.grame.fr.

GNU Multiprecision Library Free library for arbitrary precision arithmetic,
http://gmplib.org.

GNU Octave A popular high-level language for numeric applications and free MATLAB
replacement, http://www.gnu.org/software/octave.

GNU Scientific Library A free software library for numeric applications, can be used with
Pure’s numeric matrices, http://www.gnu.org/software/gsl.

Go Google’s Go programming language, http://golang.org.

Haskell A popular non-strict FPL, http://www.haskell.org.

LLVM The LLVM code generator framework, http://llvm.org.

LLVM-GCC An LLVM-capable compiler based on gcc, see http://llvm.org. This is based
on a fairly old gcc version (4.2) and has been replaced by the DragonEgg plugin in the
LLVM 3.x series.

Miranda David Turner’s non-strict FPL, http://miranda.org.uk. Miranda was fairly suc-
cessful in its time and one of the forerunners of Haskell.
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ML A popular strict FPL. See Robin Milner, Mads Tofte, Robert Harper, D. MacQueen: The
Definition of Standard ML (Revised). MIT Press, 1997.

Michael O’Donnell Equational Logic as a Programming Language. Series in the Foundations
of Computing. MIT Press, Cambridge, Mass., 1985.

Q Another term rewriting language by yours truly, http://q-lang.sf.net.

TeXmacs A powerful editor for scientific documents. With the appropriate plugin (in-
luded in the Pure distribution as of Pure 0.56) it can also run Pure sessions. See
http://www.texmacs.org.
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Chapter 2
Pure Library Manual

Version 0.62, September 17, 2014

Albert Gräf <aggraef@gmail.com>

Copyright (c) 2009-2014 by Albert Gräf. This document is available under the GNU Free
Documentation License.

This manual describes the operations in the standard Pure library, including the prelude and
the other library modules which come bundled with the interpreter.

There is a companion to this manual, The Pure Manual which describes the Pure language
and the operation of the Pure interpreter.

2.1 Prelude

The prelude defines the basic operations of the Pure language. This includes the basic
arithmetic and logical operations, string, list and matrix functions, as well as the support
operations required to implement list and matrix comprehensions. The string, matrix and
record operations are in separate modules strings.pure, matrices.pure and records.pure, the
primitive arithmetic and logical operations can be found in primitives.pure. Note that since
the prelude module gets imported automatically (unless the interpreter is invoked with the
--no-prelude option), all operations discussed in this section are normally available in Pure
programs without requiring any explicit import declarations, unless explicitly noted other-
wise.

2.1.1 Constants and Operators

The prelude also declares a signature of commonly used constant and operator symbols.
This includes the truth values true and false.

constant true = 1
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constant false = 0
These are actually just integers in Pure, but sometimes it’s convenient to refer to them
using these symbolic constants.

In addition, the following special exception symbols are provided:

constructor failed_cond
constructor failed_match
constructor stack_fault
constructor malloc_error

These are the built-in exception values. failed_cond denotes a failed conditional in
guard or if-then-else; failed_match signals a failed pattern match in lambda, case
expression, etc.; stack_fault means not enough stack space (PURE_STACK limit ex-
ceeded); and malloc_error indicates a memory allocation error.

constructor bad_list_value x
constructor bad_tuple_value x
constructor bad_string_value x
constructor bad_matrix_value x

These denote value mismatches a.k.a. dynamic typing errors. They are thrown by
some operations when they fail to find an expected value of the corresponding type.

constructor out_of_bounds
This exception is thrown by the index operator ! if a list, tuple or matrix index is out
of bounds.

Here’s the list of predefined operator symbols. Note that the parser will automagically give
unary minus the same precedence level as the corresponding binary operator.

infixl 1000 $$ ; // sequence operator
infixr 1100 $ ; // right-associative application
infixr 1200 , ; // pair (tuple)
infix 1300 => ; // key=>value pairs ("hash rocket")
infix 1400 .. ; // arithmetic sequences
infixr 1500 || ; // logical or (short-circuit)
infixr 1600 && ; // logical and (short-circuit)
prefix 1700 ~ ; // logical negation
infix 1800 < > <= >= == ~= ; // relations
infix 1800 === ~== ; // syntactic equality
infixr 1900 : ; // list cons
infix 2000 +: <: ; // complex numbers (cf. math.pure)
infixl 2100 << >> ; // bit shifts
infixl 2200 + - or ; // addition, bitwise or
infixl 2300 * / div mod and ; // multiplication, bitwise and
infixl 2300 % ; // exact division (cf. math.pure)
prefix 2400 not ; // bitwise not
infixr 2500 ^ ; // exponentiation
prefix 2600 # ; // size operator
infixl 2700 ! !! ; // indexing, slicing
infixr 2800 . ; // function composition
prefix 2900 ’ ; // quote
postfix 3000 & ; // thunk
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2.1.2 Prelude Types

Some additional type symbols are provided which can be used as type tags on the left-hand
side of equations, see Type Tags in the Pure Manual.

type number
type complex
type real
type rational
type integer
type bool

Additional number types.

These types are defined in a purely syntactic way, by checking the builtin-type or the con-
structor symbol of a number. Some semantic number types can be found in the math module,
see Semantic Number Predicates and Types.

integer is the union of Pure’s built-in integer types, i.e., it comprises all int and bigint
values. bool is a subtype of int which denotes just the normalized truth values 0 and 1
(a.k.a. false and true).

rational and complex are the rational and complex types, while real is the union of the
double, integer and rational types (i.e., anything that can represent a real number and be
used for the real and imaginary parts of a complex number). Finally, number is the union of
all numeric types, i.e., this type can be used to match any kind of number.

Note that the operations of the rational and complex types are actually defined in the math
module which isn’t part of the prelude, so you have to import this module in order to do
computations with these types of values. However, the type tags and constructors for these
types are defined in the prelude so that these kinds of values can be parsed and recognized
without having the math module loaded.

The prelude also provides a subtype of the built-in string type which represents single-
character strings:

type char
A single character string. This matches any string value of length 1.

Lists and tuples can be matched with the following types:

type list
type rlist

The list and “proper” (or “recursive”) list types. Note that the former comprises both
the empty list [] and all list nodes of the form x:xs (no matter whether the tail xs is a
proper list value or not), whereas the latter only matches proper list values of the form
x1:...:xn:[]. Thus the list type can be checked in O(1) time, while the rlist type
is defined recursively and requires linear time (with respect to the size of the list) to be
checked. This should be considered when deciding whether to use one or the other in
a given situation; see Type Rules for further explanation.

type tuple
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The type of all tuples, comprises the empty tuple () and all tuples (x,xs) with at least
two members. This is analogous to the list type above, but no “proper” tuple type is
needed here since any tuple of this form is always a proper tuple.

There are some other, more specialized types representing various kinds of applications,
function objects and other named entities. These are useful, in particular, for the definition
of higher-order functions and for performing symbolic manipulations on unevaluated sym-
bolic terms.

type appl
This type represents all unevaluated function or constructor applications of the form x
y. This comprises constructor terms and quoted or partial function applications.

type function
This type represents any term which may be called as a function. This may be a closure
(global or local function, or a lambda function) which takes at least one argument, or
a partial application of a closure to some arguments which is still “unsaturated”, i.e.,
expects some further arguments to be “ready to go”.

type fun
A named function object (global or local function, but not a partial application).

type lambda
An anonymous (lambda) function.

type closure
Any kind of function object (named function or lambda). This is the union of the fun
and lambda types.

type thunk
This is a special kind of unevaluated parameterless function object used in lazy evalu-
ation. See Lazy Evaluation and Streams in the Pure Manual.

type var
A free variable. This can be any kind of symbol that could in principle be bound to a
value (excluding operator and nonfix symbols).

type symbol
Any kind of symbol (this also includes operator and nonfix symbols).

Corresponding type predicates are provided for all of the above, see Predicates. Some fur-
ther types and predicates for matrices and records can be found under Matrix Inspection
and Manipulation and Record Functions.

2.1.3 Basic Combinators

The prelude implements the following important function combinators.

f $ g
f . g

Like in Haskell, these denote right-associative application and function composition.
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They are also defined as macros so that saturated calls of them are eliminated automat-
ically. Examples:

> foo $ bar 99;
foo (bar 99)
> (foo.bar) 99;
foo (bar 99)

id x
cst x y

These are the customary identity and constant combinators from the combinatorial
calculus:

> map id (1..5);
[1,2,3,4,5]
> map (cst 0) (1..5);
[0,0,0,0,0]

void x
This combinator is basically equivalent to cst (), but with the special twist that it is
also defined as a macro optimizing the case of “throwaway” list and matrix compre-
hensions. This is useful if a comprehension is evaluated solely for its side effects. E.g.:

> using system;
> extern int rand();
> foo = void [printf "%d\n" rand | _ = 1..3];
> show foo
foo = do (\_ -> printf "%d\n" rand) (1..3);
> foo;
1714636915
1957747793
424238335
()

Note that the above list comprehension is actually implemented using do (instead of
map, which would normally be the case), so that the intermediate list value of the com-
prehension is never constructed. This is described in more detail in section Optimiza-
tion Rules of the Pure Manual.

In addition, the prelude also provides the following combinators adopted from Haskell:

flip f
Swaps arguments of a binary function f, e.g.:

> map (flip (/) 2) (1..3);
[0.5,1.0,1.5]

This combinator is also used by the compiler to implement right operator sections,
which allows you to write the above simply as:

> map (/2) (1..3);
[0.5,1.0,1.5]
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curry f
Turns a function f expecting a pair of values into a curried function of two arguments:

> using system;
> dowith (curry (printf "%d: %g\n")) (0..2) [0.0,2.718,3.14];
0: 0
1: 2.718
2: 3.14
()

uncurry f
The inverse of curry. Turns a curried function f expecting two arguments into a func-
tion processing a single pair argument:

> map (uncurry (*)) [(2,3),(4,5),(6,7)];
[6,20,42]

curry3 f
uncurry3 f

These work analogously, but are used to convert between ternary curried functions
and functions operating on triples.

fix f
This is the (normal order) fixed point combinator which allows you to create recursive
anonymous functions. It takes another function f as its argument and applies f to fix
f itself:

> let fact = fix (\f n -> if n<=0 then 1 else n*f (n-1));
> map fact (1..5);
[1,2,6,24,120]

See Fixed point combinator at Wikipedia for an explanation of how this magic works.
Just like in Haskell, fix can be used to produce least fixed points of arbitrary functions.
For instance:

> fix (cst bar);
bar
> let xs = fix (1:);
> xs;
1:#<thunk 0x7fe537fe2f90>
> xs!!(0..10);
[1,1,1,1,1,1,1,1,1,1,1]

2.1.4 Lists and Tuples

The prelude defines the list and tuple constructors, as well as equality and inequality on
these structures. It also provides a number of other useful basic operations on lists and
tuples. These are all described below.

constructor []
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constructor ()
Empty list and tuple.

constructor x : y
constructor x , y

List and tuple constructors. These are right-associative in Pure.

Lists are the usual right-recursive aggregates of the form x:xs, where x denotes the head
and xs the tail of the list, pretty much the same as in Lisp or Prolog except that they use a
Haskell-like syntax. In contrast to Haskell, list concatenation is denoted ‘+‘ (see below), and
lists may contain an arbitrary mixture of arguments, i.e., they are fully polymorphic:

> 1:2:3:[];
[1,2,3]
> [1,2,3]+[u,v,w]+[3.14];
[1,2,3,u,v,w,3.14]

Lists are eager in Pure by default, but they can also be made lazy (in the latter case they
are also called streams). This is accomplished by turning the tail of a list into a “thunk”
(a.k.a. “future”) which defers evaluation until the list tail is actually needed, see section Lazy
Evaluation and Streams in the Pure Manual. For instance, an infinite arithmetic sequence (see
below) will always produce a list with a thunked tail:

> 1:3..inf;
1:#<thunk 0x7f696cd2dbd8>

Pure also distinguishes proper and improper lists. The former are always terminated by an
empty list in the final tail and can thus be written using the conventional [x1,x2,...,xn]
syntax:

> 1:2:3:[];
[1,2,3]

In contrast, improper lists are terminated with a non-list value and can only be represented
using the ‘:‘ operator:

> 1:2:3;
1:2:3

These aren’t of much use as ordinary list values, but are frequently encountered as patterns
on the left-hand side of an equation, where the final tail is usually a variable. Also note that
technically, a lazy list is also an improper list (although it may expand to a proper list value
as it is traversed).

Tuples work in a similar fashion, but with the special twist that the pairing constructor ‘,‘
is associative (it always produces right-recursive pairs) and ‘()‘ acts as a neutral element
on these constructs, so that ‘,‘ and ‘()‘ define a complete monoid structure. Note that this
means that ‘,‘ is actually a “constructor with equations” since it obeys the laws (x,y),z ==
x,(y,z) and (),x == x,() == x. Also note that there isn’t a separate operation for concate-
nating tuples, since the pairing operator already does this:
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> (1,2,3),(10,9,8);
1,2,3,10,9,8
> (),(a,b,c);
a,b,c
> (a,b,c),();
a,b,c

This also implies that tuples are always flat in Pure and can’t be nested; if you need this, you
should use lists instead. Also, tuples are always eager in Pure.

Some important basic operations on lists and tuples are listed below.

x + y
List concatenation. This non-destructively appends the elements of y to x.

> [1,2,3]+[u,v,w];
[1,2,3,u,v,w]

Note that this operation in fact just recurses into x and replaces the empty list marking
the “end” of x with y, as if defined by the following equations (however, the prelude
actually defines this operation in a tail-recursive fashion):

[] + ys = ys;
(x:xs) + ys = x : xs+ys;

To make this work, both operands should be proper lists, otherwise you may get some-
what surprising (but correct) improper list results like the following:

> [1,2,3]+99;
1:2:3:99
> (1:2:3)+33;
1:2:36

This happens because Pure is dynamically typed and places no limits on ad hoc poly-
morphism. Note that the latter result is due to the fact that ‘+‘ also denotes the addition
of numbers, and the improper tail of the first operand is a number in this case, as is
the second operand. Otherwise you might have got an unreduced instance of the ‘+‘
operator instead.

x == y
x ~= y

Equality and inequality of lists and tuples. These compare two lists or tuples by recur-
sively comparing their members, so ‘==‘ must be defined on the list or tuple members if
you want to use these operations. Also note that these operations are inherently eager,
so applying them to two infinite lists may take an infinite amount of time.

> reverse [a,b,c] == [c,b,a];
1
> (a,b,c) == ();
0

# x
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List and tuple size. This operation counts the number of elements in a list or tuple:

> #[a,b,c];
3
> #(a,b,c);
3

Please note that for obvious reasons this operation is inherently eager, so trying to
compute the size of an infinite list will take forever.

x ! i
Indexing of lists and tuples is always zero-based (i.e., indices run from 0 to #x-1), and
an exception will be raised if the index is out of bounds:

> [1,2,3]!2;
3
> [1,2,3]!4;
<stdin>, line 34: unhandled exception ’out_of_bounds’ while evaluating
’[1,2,3]!4’

x !! is
The slicing operation takes a list or tuple and a list of indices and returns the list or
tuple of the corresponding elements, respectively. Indices which are out of the valid
range are silently ignored:

> (1..5)!!(3..10);
[4,5]
> (1,2,3,4,5)!!(3..10);
4,5

The case of contiguous index ranges, as shown above, is optimized so that it always
works in linear time, see Slicing below for details. But indices can actually be speci-
fied in any order, so that you can retrieve any permutation of the members, also with
duplicates. E.g.:

> (1..5)!![2,4,4,1];
[3,5,5,2]

This is less efficient than the case of contiguous index ranges, because it requires re-
peated traversals of the list for each index. For larger lists you should hence use vectors
or matrices instead, to avoid the quadratic complexity.

x .. y
Arithmetic sequences. Note that the Pure syntax differs from Haskell in that there are
no brackets around the construct and a step width is indicated by specifying the first
two elements as x:y instead of x,y.

> 1..5;
[1,2,3,4,5]
> 1:3..11;
[1,3,5,7,9,11]
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To prevent unwanted artifacts due to rounding errors, the upper bound in a floating
point sequence is always rounded to the nearest grid point:

> 0.0:0.1..0.29;
[0.0,0.1,0.2,0.3]
> 0.0:0.1..0.31;
[0.0,0.1,0.2,0.3]

Last but not least, you can specify infinite sequences with an infinite upper bound (inf
or -inf):

> 1:3..inf;
1:#<thunk 0x7f696cd2dbd8>
> -1:-3..-inf;
-1:#<thunk 0x7f696cd2fde8>

The lower bounds of an arithmetic sequence must always be finite.

null x
Test for the empty list and tuple.

> null [];
1
> null (a,b,c);
0

reverse x
Reverse a list or tuple.

> reverse (1..5);
[5,4,3,2,1]
> reverse (a,b,c);
(c,b,a)

In addition, the prelude provides the following conversion operations.

list x
tuple x

Convert between (finite) lists and tuples.

> tuple (1..5);
1,2,3,4,5
> list (a,b,c);
[a,b,c]

The list function can be used to turn a finite lazy list into an eager one:

> list $ take 10 (-1:-3..-inf);
[-1,-3,-5,-7,-9,-11,-13,-15,-17,-19]

You can also achieve the same effect somewhat more conveniently by slicing a finite
part from a stream:
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> (-1:-3..-inf)!!(0..9);
[-1,-3,-5,-7,-9,-11,-13,-15,-17,-19]

Conversely, it is also possible to convert an (eager) list to a lazy one (a stream).

stream x
Convert a list to a stream.

> stream (1..10);
1:#<thunk 0x7fe537fe2b58>

This might appear a bit useless at first sight, since all elements of the stream are in fact
already known. However, this operation then allows you to apply other functions to the list
and have them evaluated in a lazy fashion.

2.1.5 Slicing

Indexing and slicing are actually fairly general operations in Pure which are used not only
in the context of lists and tuples, but for any type of container data structure which can
be “indexed” in some way. Other examples in the standard library are the array and dict
containers.

The prelude therefore implements slicing in a generic way, so that it works with any kind of
container data structure which defines ‘!‘ in such a manner that it throws an exception when
the index is out of bounds. It also works with any kind of index container that implements
the catmap operation.

The prelude also optimizes the case of contiguous integer ranges so that slices like
xs!!(i..j) are computed in linear time if possible. This works, in particular, with lists,
strings and matrices.

Moreover, the prelude includes some optimization rules and corresponding helper functions
to optimize the most common cases at compile time, so that the index range is never actually
constructed. To these ends, the slicing expression xs!!(i..j) is translated to a call subseq
xs i j of the special subseq function:

subseq x i j
If x is a list, matrix or string, and i and j are int values, compute the slice xs!!(i..j)
in the most efficient manner possible. This generally avoids constructing the index list
i..j. Otherwise i..j is computed and subseq falls back to the slice function below
to compute the slice in the usual way.

slice x ys
Compute the slice x!!ys using the standard slicing operation, without any special com-
pile time tricks. (Runtime optimizations are still applied if possible.)

You can readily see the effects of this optimization by running the slicing operator against
slice:
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> let xs = 1..1000000;
> stats -m
> #slice xs (100000..299990);
199991
0.34s, 999957 cells
> #xs!!(100000..299990);
199991
0.14s, 399984 cells

Even more drastic improvements in both running time and memory usage can be seen in
the case of matrix slices:

> let x = rowvector xs;
> #slice x (100000..299990);
199991
0.19s, 599990 cells
> #x!!(100000..299990);
199991
0s, 10 cells

2.1.6 Hash Pairs

The prelude provides another special kind of pairs called “hash pairs”, which take the form
key=>value. These are used in various contexts to denote key-value associations. The only
operations on hash pairs provided by the prelude are equality testing (which recursively
compares the components) and the functions key and val:

constructor x => y
The hash pair constructor, also known as the “hash rocket”.

x == y
x ~= y

Equality and inequality of hash pairs.

> ("foo"=>99) == ("bar"=>99);
0

key (x=>y)
val (x=>y)

Extract the components of a hash pair.

> key ("foo"=>99), val ("foo"=>99);
"foo",99

Note that in difference to the tuple operator ‘,‘, the hash rocket ‘=>‘ is non-associative,
so nested applications must be parenthesized, and (x=>y)=>z is generally not the same as
x=>(y=>z). Also note that ‘,‘ has lower precedence than ‘=>‘, so to include a tuple as
key or value in a hash pair, the tuple must be parenthesized, as in "foo"=>(1,2) (whereas
"foo"=>1,2 denotes a tuple whose first element happens to be a hash pair).
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2.1.7 List Functions

This mostly comes straight from the Q prelude which in turn was based on the first edition
of the Bird/Wadler book, and is very similar to what you can find in the Haskell prelude.
Some functions have slightly different names, though, and of course everything is typed
dynamically.

Common List Functions

any p xs
test whether the predicate p holds for any of the members of xs

all p xs
test whether the predicate p holds for all of the members of xs

cat xs
concatenate a list of lists

catmap f xs
convenience function which combines cat and map; this is also used to implement list
comprehensions

do f xs
apply f to all members of xs, like map, but throw away all intermediate results and
return ()

drop n xs
remove n elements from the front of xs

dropwhile p xs
remove elements from the front of xs while the predicate p is satisfied

filter p xs
return the list of all members of xs satisfying the predicate p

foldl f a xs
accumulate the binary function f over all members of xs, starting from the initial value
a and working from the front of the list towards its end

foldl1 f xs
accumulate the binary function f over all members of xs, starting from the value head
xs and working from the front of the list towards its end; xs must be nonempty

foldr f a xs
accumulate the binary function f over all members of xs, starting from the initial value
a and working from the end of the list towards its front

foldr1 f xs
accumulate the binary function f over all members of xs, starting from the value last
xs and working from the end of the list towards its front; xs must be nonempty
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head xs
return the first element of xs; xs must be nonempty

index xs x
search for an occurrence of x in xs and return the index of the first occurrence, if any,
-1 otherwise

Note: This uses equality == to decide whether a member of xs is an occurrence of x, so
== must have an appropriate definition on the list members.

init xs
return all but the last element of xs; xs must be nonempty

last xs
return the last element of xs; xs must be nonempty

listmap f xs
convenience function which works like map, but also deals with matrix and string argu-
ments while ensuring that the result is always a list; this is primarily used to implement
list comprehensions

map f xs
apply f to each member of xs

scanl f a xs
accumulate the binary function f over all members of xs, as with foldl, but return all
intermediate results as a list

scanl1 f xs
accumulate the binary function f over all members of xs, as with foldl1, but return all
intermediate results as a list

scanr f a xs
accumulate the binary function f over all members of xs, as with foldr, but return all
intermediate results as a list

scanr1 f xs
accumulate the binary function f over all members of xs, as with foldr1, but return all
intermediate results as a list

sort p xs
Sorts the elements of the list xs in ascending order according to the given predicate
p, using the C qsort function. The predicate p is invoked with two arguments and
should return a truth value indicating whether the first argument is “less than” the
second. (An exception is raised if the result of a comparison is not a machine integer.)

> sort (>) (1..10);
[10,9,8,7,6,5,4,3,2,1]
> sort (<) ans;
[1,2,3,4,5,6,7,8,9,10]

tail xs
return all but the first element of xs; xs must be nonempty
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take n xs
take n elements from the front of xs

takewhile p xs
take elements from the front of xs while the predicate p is satisfied

List Generators

Some useful (infinite) list generators, as well as some finite (and eager) variations of these.
The latter work like a combination of take or takewhile and the former, but are implemented
directly for better efficiency.

cycle xs
cycles through the elements of the nonempty list xs, ad infinitum

cyclen n xs
eager version of cycle, returns the first n elements of cycle xs

iterate f x
returns the stream containing x, f x, f (f x), etc., ad infinitum

iteraten n f x
eager version of iterate, returns the first n elements of iterate f x

iterwhile p f x
another eager version of iterate, returns the list of all elements from the front of
iterate f x for which the predicate p holds

repeat x
returns an infinite stream of xs

repeatn n x
eager version of repeat, returns a list with n xs

Zip and Friends

unzip xys
takes a list of pairs to a pair of lists of corresponding elements

unzip3 xyzs
unzip with triples

zip xs ys
return the list of corresponding pairs (x,y) where x runs through the elements of xs
and y runs through the elements of ys

zip3 xs ys zs
zip with three lists, returns a list of triples

zipwith f xs ys
apply the binary function f to corresponding elements of xs and ys
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zipwith3 f xs ys zs
apply the ternary function f to corresponding elements of xs, ys and zs

Pure also has the following variations of zipwith and zipwith3 which throw away all inter-
mediate results and return the empty tuple (). That is, these work like do but pull arguments
from two or three lists, respectively:

dowith f xs ys
apply the binary function f to corresponding elements of xs and ys, return ()

dowith3 f xs ys zs
apply the ternary function f to corresponding elements of xs, ys and zs, return ()

2.1.8 String Functions

Pure strings are null-terminated character strings encoded in UTF-8, see the Pure Manual
for details. The prelude provides various operations on strings, including a complete set of
list-like operations, so that strings can be used mostly as if they were lists, although they
are really implemented as C character arrays for reasons of efficiency. Pure also has some
powerful operations to convert between Pure expressions and their string representation,
see Eval and Friends for those.

Basic String Functions

s + t
s ! i
s !! is

String concatenation, indexing and slicing works just like with lists:

> "abc"+"xyz";
"abcxyz"
> let s = "The quick brown fox jumps over the lazy dog.";
> s!5;
"u"
> s!!(20..24);
"jumps"

null s
# s

Checking for empty strings and determining the size of a string also works as expected:

> null "";
1
> null s;
0
> #s;
44

s == t
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s ~= t
s <= t
s >= t
s < t
s > t

String equality and comparisons. This employs the usual lexicographic order based on
the (UTF-8) character codes.

> "awe">"awesome";
0
> "foo">="bar";
1
> "foo"=="bar";
0

You can search for the location of a substring in a string, and extract a substring of a given
length:

index s u
Returns the (zero-based) index of the first occurrence of the substring u in s, or -1 if u
is not found in s.

substr s i n
Extracts a substring of (at most) n characters at position i in s. This takes care of all
corner cases, adjusting index and number of characters so that the index range stays
confined to the source string.

Example:

> index s "jumps";
20
> substr s 20 10;
"jumps over"

Note that Pure doesn’t have a separate type for individual characters. Instead, these are
represented as strings c containing exactly one (UTF-8) character (i.e., #c==1). It is possible
to convert such single character strings to the corresponding integer character codes, and
vice versa:

ord c
Ordinal number of a single character string c. This is the character’s code point in the
Unicode character set.

chr n
Converts an integer back to the character with the corresponding code point.

In addition, the usual character arithmetic works, including arithmetic sequences of charac-
ters, so that you can write stuff like the following:

> "a"-"A";
32
> "u"-32;

2.1.8 String Functions 263



Pure Language and Library Documentation, Release 0.62

"U"
> "a".."k";
["a","b","c","d","e","f","g","h","i","j","k"]

For convenience, the prelude provides the following functions to convert between strings
and lists (or other aggregates) of characters.

chars s
list s

Convert a string s to a list of characters.

tuple s
matrix s

Convert a string s to a tuple or (symbolic) matrix of characters, respectively.

strcat xs
Concatenate a list xs of strings (in particular, this converts a list of characters back to a
string).

string xs
Convert a list, tuple or (symbolic) matrix of strings to a string. In the case of a list, this
is synonymous with strcat, but it also works with the other types of aggregates.

For instance:

> list "abc";
["a","b","c"]
> string ("a".."z");
"abcdefghijklmnopqrstuvwxyz"

The following functions are provided to deal with strings of “tokens” separated by a given
delimiter string.

split delim s
Splits s into a list of substrings delimited by delim.

join delim xs
Joins the list of strings xs to a single string, interpolating the given delim string.

Example:

> let xs = split " " s; xs;
["The","quick","brown","fox","jumps","over","the","lazy","dog."]
> join ":" xs;
"The:quick:brown:fox:jumps:over:the:lazy:dog."

We mention in passing here that more elaborate string matching, splitting and replacement
operations based on regular expressions are provided by the system module, see Regex
Matching.

If that isn’t enough already, most generic list operations carry over to strings in the obvious
way, treating the string like a list of characters. (Polymorphic operations such as map, which
aren’t guaranteed to yield string results under all circumstances, will actually return lists in
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that case, so you might have to apply string explicitly to convert these back to a string.) For
instance:

> filter (>="k") s;
"qukrownoxumpsovrtlzyo"
> string $ map pred "ibm";
"hal"

List comprehensions can draw values from strings, too:

> string [x+1 | x="HAL"];
"IBM"

Low-Level Operations

The following routines are provided by the runtime to turn raw C char* pointers (also called
byte strings in Pure parlance, to distinguish them from Pure’s “cooked” UTF-8 string values)
into corresponding Pure strings. Normally you don’t have to worry about this, because the
C interface already takes care of the necessary marshalling, but in some low-level code these
operations are useful. Also note that here and in the following, the cstring routines also
convert the string between the system encoding and Pure’s internal UTF-8 representation.

string s
cstring s

Convert a pointer s to a Pure string. s must point to a null-terminated C string. These
routines take ownership of the original string value, assuming it to be malloced, so you
should only use these for C strings which are specifically intended to be freed by the
user.

string_dup s
cstring_dup s

Convert a pointer s to a Pure string. Like above, but these functions take a copy of the
string, leaving the original C string untouched.

The reverse transformations are also provided. These take a Pure string to a byte string (raw
char*).

byte_string s
byte_cstring s

Construct a byte string from a Pure string s. The result is a raw pointer object pointing
to the converted string. The original Pure string is always copied (and, in the case
of byte_cstring, converted to the system encoding). The resulting byte string is a
malloced pointer which can be used like a C char*, and has to be freed explicitly by
the caller when no longer needed.

It is also possible to convert Pure string lists or symbolic vectors of strings to byte string
vectors and vice versa. These are useful if you need to pass an argv-like string vector (i.e.,
a char** or char*[]) to C routines. The computed C vectors are malloced pointers which
have an extra NULL pointer as the last entry, and should thus be usable for almost any pur-
pose which requires such a string vector in C. They also take care of garbage-collecting
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themselves. The original string data is always copied. As usual, the cstring variants do
automatic conversions to the system encoding.

byte_string_pointer xs
byte_cstring_pointer xs

Convert a list or vector of Pure strings to a C char**.

string_list n p
cstring_list n p

Convert a C char** to a list of Pure strings.

string_vector n p
cstring_vector n p

Convert a C char** to a symbolic vector of Pure strings.

Note that the back conversions take an additional first argument which denotes the number
of strings to retrieve. If you know that the vector is NULL-terminated then this can also be an
infinite value (inf) in which case the number of elements will be figured out automatically.
Processing always stops at the first NULL pointer encountered.

Also note that, as of version 0.45, Pure has built-in support for passing argv-style vectors
as arguments by means of the char** and void** pointer types. However, the operations
provided here are more general in that they allow you to both encode and decode such
values in an explicit fashion. This is useful, e.g., for operations like getoptwhich may mutate
the given char** vector.

If you have getopt in your C library, you can try the following example. First enter these
definitions:

extern int getopt(int argc, char **argv, char *optstring);
optind = get_int $ addr "optind";
optarg = cstring_dup $ get_pointer $ addr "optarg";

Now let’s run getopt on a byte string vector constructed from an argument vector (which
includes the “program name” in the first element):

> let args = byte_cstring_pointer {"progname","boo","-n","-tfoo","bar"};
> getopt 5 args "nt:", optarg;
110,#<pointer 0x0>
> getopt 5 args "nt:", optarg;
116,"foo"
> getopt 5 args "nt:", optarg;
-1,#<pointer 0x0>

Note that 110 and 116 are the character codes of the option characters n and t, where the
latter option takes an argument, as returned by optarg. Finally, getopt returns -1 to indicate
that there are no more options, and we can retrieve the current optindex value and the
mutated argument vector to see which non-option arguments remain to be processed, as
follows:

> optind, cstring_vector 5 args;
3,{"progname","-n","-tfoo","boo","bar"}

266 2.1 Prelude



Pure Language and Library Documentation, Release 0.62

It is now an easy exercise to design your own high-level wrapper around getopt to process
command line arguments in Pure. However, this isn’t really necessary since the Pure library
already offers such an operation which doesn’t rely on any special system functions, see
Option Parsing in the System Interface section.

2.1.9 Matrix Functions

Matrices are provided as an alternative to the list and tuple aggregates which provide con-
tant time access to their members and are tailored for use in numeric computations.

# x
dim x

Determine the size of a matrix (number of elements) and its dimensions (number of
rows and columns).

> let x = {1,2,3;4,5,6}; #x;
6
> dim x;
2,3

null
Check for empty matrices. Note that there are various kinds of these, as a matrix may
have zero rows or columns, or both.

x == y
x ~= y

Matrix equality and inequality. These check the dimensions and the matrix elements
for equality:

> x == transpose x;
0

x ! i
x !! is

Indexing and slicing.

Indexing and slicing employ the standard Pure operators ‘!‘ and ‘!!‘. They work pretty
much like in MATLAB and Octave, but note that Pure matrices are in row-major order and
the indices are zero-based. It is possible to access elements with a one-dimensional index (in
row-major oder):

> x!3;
4

Or you can specify a pair of row and column index:

> x!(1,0);
4

Slicing works accordingly. You can either specify a list of (one- or two-dimensional) indices,
in which case the result is always a row vector:
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> x!!(2..5);
{3,4,5,6}

Or you can specify a pair of row and column index lists:

> x!!(0..1,1..2);
{2,3;5,6}

The following abbreviations are provided to grab a slice from a row or column:

> x!!(1,1..2);
{5,6}
> x!!(0..1,1);
{2;5}

As in the case of lists, matrix slices are optimized to handle cases with contiguous index
ranges in an efficient manner, see Slicing for details. To these ends, the helper functions
subseq and subseq2 are defined to handle the necessary compile time optimizations.

Most of the generic list operations are implemented on matrices as well, see Common List
Functions. Hence operations like map and zipwith work as expected:

> map succ {1,2,3;4,5,6};
{2,3,4;5,6,7}
> zipwith (+) {1,2,3;4,5,6} {1,0,1;0,2,0};
{2,2,4;4,7,6}

The matrix module also provides a bunch of other specialized matrix operations, including
all the necessary operations for matrix comprehensions. We briefly summarize the most
important operations below; please refer to matrices.pure for all the gory details. Also make
sure you check Matrices and Vectors in the Pure Manual for some more examples, and the
Record Functions section for an implementation of records using symbolic vectors.

Matrix Construction and Conversions

matrix xs
This function converts a list or tuple to a corresponding matrix. matrix also turns a list
of lists or matrices specifying the rows of the matrix to the corresponding rectangular
matrix; otherwise, the result is a row vector. (In the former case, matrix may throw a
bad_matrix_value exception in case of dimension mismatch, with the offending sub-
matrix as argument.)

> matrix [1,2,3];
{1,2,3}
> matrix [[1,2,3],[4,5,6]];
{1,2,3;4,5,6}

rowvector xs
colvector xs

268 2.1 Prelude



Pure Language and Library Documentation, Release 0.62

vector xs
The rowvector and colvector functions work in a similar fashion, but expect a list,
tuple or matrix of elements and always return a row or column vector, respectively
(i.e., a 1× n or n× 1 matrix, where n is the size of the converted aggregate). Also, the
vector function is a synonym for rowvector. These functions can also be used to create
recursive (symbolic) matrix structures of arbitrary depth, which provide a nested array
data structure with efficient (constant time) element access.

> rowvector [1,2,3];
{1,2,3}
> colvector [1,2,3];
{1;2;3}
> vector [rowvector [1,2,3],colvector [4,5,6]];
{{1,2,3},{4;5;6}}

Note that for convenience, there’s also an alternative syntax for entering nested vectors
more easily, see the description of the non-splicing vector brackets below for details.

rowvectorseq x y step
colvectorseq x y step
vectorseq x y step

With these functions you can create a row or column vector from an arithmetic se-
quence. Again, vectorseq is provided as a synonym for rowvectorseq. These opera-
tions are optimized for the case of int and double ranges.

> rowvectorseq 0 10 1;
{0,1,2,3,4,5,6,7,8,9,10}
> colvectorseq 0 10 1;
{0;1;2;3;4;5;6;7;8;9;10}
> vectorseq 0.0 0.9 0.1;
{0.0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9}

The prelude also contains some optimization rules which translate calls to vector et al
on arithmetic sequences to the corresponding calls to vectorseq et al, such as:

def vector (n1:n2..m) = vectorseq n1 m (n2-n1);
def vector (n..m) = vectorseq n m 1;

Example:

> foo = vector (1..10);
> bar = vector (0.0:0.1..0.9);
> show foo bar
bar = vectorseq 0.0 0.9 0.1;
foo = vectorseq 1 10 1;
> foo; bar;
{1,2,3,4,5,6,7,8,9,10}
{0.0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9}

Please note that these optimization rules assume that basic arithmetic works with the
involved elements, which may give you trouble if you try to use vector et al with
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exotic kinds of user-defined arithmetic sequences. To disable them, simply run the
interpreter with the option --disable vectorseq-opt.

dmatrix xs
cmatrix xs
imatrix xs
smatrix xs

These functions convert a list or matrix to a matrix of the corresponding type (integer,
double, complex or symbolic). If the input is a list, the result is always a row vector; this
is usually faster than the matrix and vector operations, but requires that the elements
already are of the appropriate type.

> imatrix [1,2,3];
{1,2,3}
> dmatrix {1,2,3;4,5,6};
{1.0,2.0,3.0;4.0,5.0,6.0}

In addition, these functions can also be invoked with either an int n or a pair (n,m)
of ints as argument, in which case they construct a zero rowvector or matrix with the
corresponding dimensions.

> imatrix 3;
{0,0,0}
> imatrix (2,3);
{0,0,0;0,0,0}

list x
list2 x
tuple x

These convert a matrix back to a flat list or tuple. The list2 function converts a matrix
to a list of lists (one sublist for each row of the matrix).

> tuple {1,2,3;4,5,6};
1,2,3,4,5,6
> list {1,2,3;4,5,6};
[1,2,3,4,5,6]
> list2 {1,2,3;4,5,6};
[[1,2,3],[4,5,6]]
> list2 {1,2,3};
[[1,2,3]]

In addition, the following special syntax is provided as a shorthand notation for nested vec-
tor structures:

macro {| x, y, z, ... |}
Non-splicing vector brackets. These work like {x,y,z,...}, but unlike these they will
not splice submatrices in the arguments x,y,z,... So they work a bit like quoted
vectors ’{x,y,z,...}, but the arguments x,y,z,... will be evaluated as usual.

The non-splicing vector brackets provide a convenient shorthand to enter symbolic vector
values which may contain other vectors or matrices as components. For instance, note how
the ordinary matrix brackets combine the column subvectors in the first example below to
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a 3x2 matrix, while the non-splicing brackets in the second example create a 1x2 row vector
with the column vectors as members instead:

> {{1;2;3},{4;5;6}};
{1,4;2,5;3,6}
> {|{1;2;3},{4;5;6}|};
{{1;2;3},{4;5;6}}

The second example works like a quoted matrix expression such as ’{{1;2;3},{4;5;6}},
but the non-splicing brackets also evaluate their arguments:

> ’{vector (1..3),vector (4..6)};
{vector (1..3),vector (4..6)}
> {|vector (1..3),vector (4..6)|};
{{1,2,3},{4,5,6}}

The {| |} brackets can be nested. Examples:

> {|1,{|vector (1..5),2*3|},{}|};
{1,{{1,2,3,4,5},6},{}}
> {|{|{1,2}|},{|{3,4}|}|};
{{{1,2}},{{3,4}}}

Also note that the {| |} brackets only produce row vectors, but you can just transpose the
result if you need a column vector instead:

> transpose {|{1;2;3},{4;5;6}|};
{{1;2;3};{4;5;6}}

Finally, note that the notation {| |} without any arguments is not supported, simply write
{} for the empty vector instead.

Matrix Inspection and Manipulation

type dmatrix
type cmatrix
type imatrix
type smatrix
type nmatrix

Convenience types for the different subtypes of matrices (double, complex, int, sym-
bolic and numeric, i.e., non-symbolic). These can be used as type tags on the left-hand
side of equations to match specific types of matrices.

dmatrixp x
cmatrixp x
imatrixp x
smatrixp x
nmatrixp x

Corresponding predicates to check for different kinds of matrices.

vectorp x
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rowvectorp x
colvectorp x

Check for different kinds of vectors (these are just matrices with one row or column).

stride x
The stride of a matrix denotes the real row size of the underlying C array, see the
description of the pack function below for further details. There’s little use for this
value in Pure, but it may be needed when interfacing to C.

subseq x i j
subseq2 x i j k l

Helper functions to optimize matrix slices, see Slicing for details. subseq2 is a special
version of subseq which is used to optimize the case of 2-dimensional matrix slices
xs!!(i..j,k..l).

row x i
col x i

Extract the ith row or column of a matrix.

rows x
cols x

Return the list of all rows or columns of a matrix.

diag x
subdiag x k
supdiag x k

Extract (sub-,super-) diagonals from a matrix. Sub- and super-diagonals for k=0 return
the main diagonal. Indices for sub- and super-diagonals can also be negative, in which
case the corresponding super- or sub-diagonal is returned instead. In each case the
result is a row vector.

submat x (i,j) (n,m)
Extract a submatrix of a given size at a given offset. The result shares the underlying
storage with the input matrix (i.e., matrix elements are not copied) and so this is a
comparatively cheap operation.

rowcat xs
colcat xs

Construct matrices from lists of rows and columns. These take either scalars or subma-
trices as inputs; corresponding dimensions must match. rowcat combines submatrices
vertically, like {x;y}; colcat combines them horizontally, like {x,y}. Note: Like the
built-in matrix constructs, these operations may throw a bad_matrix_value exception
in case of dimension mismatch.

matcat xs
Construct a matrix from a (symbolic) matrix of other matrices and/or scalars. This
works like a combination of rowcat and colcat, but draws its input from a matrix
instead of a list of matrices, and preserves the overall layout of the “host” matrix. The
net effect is that the host matrix is flattened out. If all elements of the input matrix are
scalars already, the input matrix is returned unchanged.
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rowcatmap f xs
colcatmap f xs
rowmap f xs
colmap f xs

Various combinations of rowcat, colcat and map. These are used, in particular, for
implementing matrix comprehensions.

diagmat x
subdiagmat x k
supdiagmat x k

Create a (sub-,super-) diagonal matrix from a row vector x of size n. The result is
always a square matrix with dimension (n+k,n+k), which is of the same matrix type
(double, complex, int, symbolic) as the input and has the elements of the vector on its
kth sub- or super-diagonal, with all other elements zero. A negative value for k turns
a sub- into a super-diagonal matrix and vice versa.

re x
im x
conj x

Extract the real and imaginary parts and compute the conjugate of a numeric matrix.

pack x
packed x

Pack a matrix. This creates a copy of the matrix which has the data in contiguous
storage. It also frees up extra memory if the matrix was created as a slice from a bigger
matrix (see submat above) which has since gone the way of the dodo. The packed
predicate can be used to verify whether a matrix is already packed. Note that even if a
matrix is already packed, pack will make a copy of it anyway, so pack also provides a
quick way to copy a matrix, e.g., if you want to pass it as an input/output parameter
to a GSL routine.

redim (n,m) x
redim n x

Change the dimensions of a matrix without changing its size. The total number of
elements must match that of the input matrix. Reuses the underlying storage of the
input matrix if possible (i.e., if the matrix is packed). You can also redim a matrix to a
given row size n. In this case the row size must divide the total size of the matrix.

sort p x
Sorts the elements of a matrix (non-destructively, i.e., without changing the original
matrix) according to the given predicate, using the C qsort function. This works ex-
actly the same as with lists (see Common List Functions), except that it takes and re-
turns a matrix instead of a list. Note that the function sorts all elements of the matrix
in one go (regardless of the dimensions), as if the matrix was a single big vector. The
result matrix has the same dimensions as the input matrix. Example:

> sort (<) {10,9;8,7;6,5};
{5,6;7,8;9,10}

If you’d like to sort the individual rows instead, you can do that as follows:
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> sort_rows p = rowcat . map (sort p) . rows;
> sort_rows (<) {10,9;8,7;6,5};
{9,10;7,8;5,6}

Likewise, to sort the columns of a matrix:

> sort_cols p = colcat . map (sort p) . cols;
> sort_cols (<) {10,9;8,7;6,5};
{6,5;8,7;10,9}

Also note that the pure-gsl module provides an interface to the GSL routines for sorting
numeric (int and double) vectors using the standard order. These will usually be much
faster than sort, whereas sort is more flexible in that it also allows you to sort symbolic
matrices and to choose the order predicate.

transpose x
Transpose a matrix. Example:

> transpose {1,2,3;4,5,6};
{1,4;2,5;3,6}

rowrev x
colrev x
reverse x

Reverse a matrix. rowrev reverses the rows, colrev the columns, reverse both dimen-
sions.

Pointers and Matrices

Last but not least, the matrix module also offers a bunch of low-level operations for con-
verting between matrices and raw pointers. These are typically used to shovel around mas-
sive amounts of numeric data between Pure and external C routines, when performance and
throughput is an important consideration (e.g., graphics, video and audio applications). The
usual caveats concerning direct pointer manipulations apply.

pointer x
Get a pointer to the underlying C array of a matrix. The data is not copied. Hence
you have to be careful when passing such a pointer to C functions if the underlying
data is non-contiguous; when in doubt, first use the pack function to place the data in
contiguous storage, or use one of the matrix-pointer conversion routines below.

double_pointer p x
float_pointer p x
complex_pointer p x
complex_float_pointer p x
int64_pointer p x
int_pointer p x
short_pointer p x
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byte_pointer p x
These operations copy the contents of a matrix to a given pointer and return that
pointer, converting to the target data type on the fly if necessary. The given pointer
may also be NULL, in which case suitable memory is malloced and returned; otherwise
the caller must ensure that the memory pointed to by p is big enough for the contents
of the given matrix. The source matrix x may be an arbitrary numeric matrix. In the
case of int64_pointer, x may also be a symbolic matrix holding bigint values which
are converted to 64 bit machine integers.

double_matrix (n,m) p
float_matrix (n,m) p
complex_matrix (n,m) p
complex_float_matrix (n,m) p
int64_matrix (n,m) p
int_matrix (n,m) p
short_matrix (n,m) p
byte_matrix (n,m) p

These functions allow you to create a matrix from a pointer, copying the data and
converting it from the source type on the fly if necessary. The result will be a numeric
matrix of the appropriate type, except in the case of int64_matrix where the result
is a symbolic matrix consisting of bigint values. The source pointer p may also be
NULL, in which case the new matrix is filled with zeros instead. Otherwise the caller
must ensure that the pointer points to properly initialized memory big enough for the
requested dimensions. The given dimension may also be just an integer n if a row
vector is to be created.

double_matrix_view (n,m) p
complex_matrix_view (n,m) p
int_matrix_view (n,m) p

These operations can be used to create a numeric matrix view of existing data, without
copying the data. The data must be double, complex or int, the pointer must not be
NULL and the caller must also ensure that the memory persists for the entire lifetime of
the matrix object. The given dimension may also be just an integer n if a row vector
view is to be created.

2.1.10 Record Functions

As of Pure 0.41, the prelude also provides a basic record data structure, implemented as
symbolic vectors of key=>value pairs which support a few dictionary-like operations such
as member, insert and indexing. Records may be represented as row, column or empty
vectors (i.e., the number of rows or columns must be zero or one). They must be symbolic
matrices consisting only of “hash pairs” key=>value, where the keys can be either symbols
or strings. The values can be any kind of Pure data; in particular, they may themselves be
records, so records can be nested.

The following operations are provided. Please note that all updates of record members are
non-destructive and thus involve copying, which takes linear time (and space) and thus
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might be slow for large record values; if this is a problem then you should use dictionaries
instead (cf. Dictionaries). Or you can create mutable records by using expression references
(cf. Expression References) as values, which allow you to modify the data in-place. Element
lookup (indexing) uses binary search on an internal index data structure and thus takes
logarithmic time once the index has been constructed (which is done automatically when
needed, or when calling recordp on a fresh record value).

Also note that records with duplicate keys are permitted; in such a case the following oper-
ations will always operate on the last entry for a given key.

type record
The record type. This is functionally equivalent to recordp, but can be used as a type
tag on the left-hand side of equations.

recordp x
Check for record values.

record x
Normalizes a record. This removes duplicate keys and orders the record by keys (using
an apparently random but well-defined order of the key values), so that normalized
records are syntactically equal (===) if and only if they contain the same hash pairs.
For convenience, this function can also be used directly on lists and tuples of hash
pairs to convert them to a normalized record value.

# x
The size of a record (number of entries it contains). Duplicate entries are counted. (This
is in fact just the standard matrix size operation.)

member x y
Check whether x contains the key y.

x ! y
Retrieves the (last) value associated with the key y in x, if any, otherwise throws an
out_of_bounds exception.

x !! ys
Slicing also works as expected, by virtue of the generic definition of slicing provided
by the matrix data structure.

insert x (y=>z)
update x y z

Associate the key y with the value z in x. If x already contains the key y then the corre-
sponding value is updated (the last such value if x contains more than one association
for y), otherwise a new member is inserted at the end of the record.

delete x y
Delete the key y (and its associated value) from x. If x contains more than one entry for
y then the last such entry is removed.

keys x
vals x

List the keys and associated values of x. If the record contains duplicate keys, they are
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all listed in the order in which they are stored in the record.

Here are a few basic examples:

> let r = {x=>5, y=>12};
> r!y; r!![y,x]; // indexing and slicing
12
{12,5}
> keys r; vals r; // keys and values of a record
{x,y}
{5,12}
> insert r (x=>99); // update an existing entry
{x=>99,y=>12}
> insert ans (z=>77); // add a new entry
{x=>99,y=>12,z=>77}
> delete ans z; // delete an existing entry
{x=>99,y=>12}
> let r = {r,x=>7,z=>3}; r; // duplicate key x
{x=>5,y=>12,x=>7,z=>3}
> r!x, r!z; // indexing returns the last value of x
7,3
> delete r x; // delete removes the last entry for x
{x=>5,y=>12,z=>3}
> record r; // normalize (remove dups and sort)
{x=>7,y=>12,z=>3}
> record [x=>5, x=>7, y=>12]; // construct a normalized record from a list
{x=>7,y=>12}
> record (x=>5, x=>7, y=>12); // ... or a tuple
{x=>7,y=>12}

More examples can be found in the Record Data section in the Pure Manual.

2.1.11 Primitives

This prelude module is a collection of various lowlevel operations, which are implemented
either directly by machine instructions or by C functions provided in the runtime. In par-
ticular, this module defines the basic arithmetic and logic operations on machine integers,
bigints and floating point numbers, as well as various type checking predicates and conver-
sions between different types. Some basic pointer operations are also provided, as well as
“sentries” (Pure’s flavour of object finalizers) and “references” (mutable expression point-
ers).

Special Constants

constant inf
constant nan

IEEE floating point infinities and NaNs. You can test for these using the infp and nanp
predicates, see Predicates below.
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constant NULL = pointer 0
Generic null pointer. (This is actually a built-in constant.) You can also check for null
pointers with the null predicate, see Predicates.

Arithmetic

The basic arithmetic and logic operations provided by this module are summarized in the
following table:

Kind Operator Meaning
Arithmetic + - addition, subtraction (also unary minus)

* / multiplication, division (inexact)
div mod exact int/bigint division/modulus
^ exponentiation (inexact)

Comparisons == ~= equality, inequality
< > less than, greater than
<= >= less than or equal, greater than or equal

Logic ~ logical not
&& || and, or (short-circuit)

Bitwise not bitwise not
and or and, or
<< >> bit shifts

Precedence and and associativity of the operators can be found in the operators table at the
beginning of this section.

The names of some operations are at odds with C. Note, in particular, that logical negation
is denoted ~ instead of ! (and, consequently, ~= denotes inequality, rather than !=), and the
bitwise operations are named differently. This is necessary because Pure uses !, & and |
for other purposes. Also, / always denotes inexact (double) division in Pure, whereas the
integer division operators are called div and mod. (%, which is not defined by this module,
also has a different meaning in Pure; it’s the exact division operator, see Rational Numbers.)

The above operations are implemented for int, bigint and, where appropriate, double
operands. (Pointer arithmetic and comparisons are provided in a separate module, see
Pointer Arithmetic.) The math module (see Mathematical Functions) also provides imple-
mentations of the arithmetic and comparison operators for rational, complex and complex
rational numbers.

Note that the logical operations are actually implemented as special forms in order to pro-
vide for short-circuit evaluation. This needs special support from the compiler to work.
The primitives module still provides definitions for these, as well as other special forms like
quote and the thunking operator & so that they may be used as function values and in partial
applications, but when used in this manner they lose all their special call-by-name proper-
ties; see Special Forms in the Pure Manual for details. The rules for the logical connectives
are actually slightly more general than the built-in rules so that an expression of the form
x&&y or x||y will always be simplified in a sensible way if at least one of the operands is a
machine int; e.g., both x&&1 and 1&&x will reduce to just x if x is not a machine int.
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A detailed listing of the basic arithmetic and logical operations follows below.

x + y
x - y
x * y
x / y
x ^ y

Addition, subtraction, multiplication, division and exponentiation. The latter two are
inexact and will yield double results.

- x
Unary minus. This has the same precedence as binary ‘-‘ above.

x div y
x mod y

Exact int and bigint division and modulus.

x == y
x ~= y

Equality and inequality.

x <= y
x >= y
x > y
x < y

Comparisons.

~ x
x && y
x || y

Logical negation, conjunction and disjunction. These work with machine ints only and
are evaluated in short-circuit mode, unless they are invoked as higher-order functions
or with operands which aren’t machine ints. See the explanations above.

not x
x and y
x or y

Bitwise negation, conjunction and disjunction. These work with both machine ints and
bigints.

x << k
x >> k

Arithmetic bit shifts. The left operand x may be a machine int or a bigint. The right
operand k must be a machine int and denotes the (nonnegative) number of bits to shift.

Note: This operation may expand to a single machine instruction in the right circum-
stances, thus the condition that k be nonnegative isn’t always checked. This may lead
to surprising results if you do specify a negative value for k. However, in the current
implementation bigint shifts do check the sign of k and handle it in the appropriate
way, by turning a left shift into a corresponding right shift and vice versa.
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In addition, the following arithmetic and numeric functions are provided:

abs x
sgn x

Absolute value and sign of a number.

min x y
max x y

Minimum and maximum of two values. This works with any kind of values which
have the ordering relations defined on them.

succ x
pred x

Successor (+1) and predecessor (-1) functions.

gcd x y
lcd x y

The greatest common divisor and least common multiple functions from the GMP li-
brary. These return a bigint if at least one of the arguments is a bigint, a machine int
otherwise.

pow x y
Computes exact powers of ints and bigints. The result is always a bigint. Note that y
must always be nonnegative here, but see the math module (Mathematical Functions)
which deals with the case y<0 using rational numbers.

Conversions

These operations convert between various types of Pure values.

hash x
Compute a 32 bit hash code of a Pure expression.

bool x
Convert a machine integer to a normalized truth value (0 or 1).

int x
bigint x
double x

Conversions between the different numeric types.

pointer x
Convert a string, int or bigint to a pointer value. Converting a string returns a pointer
to the underlying UTF8-encoded C string so that it can be passed to the appropriate C
functions. Converting an integer gives a pointer with the given numeric address. This
may be used to construct special pointer values such as the null pointer (pointer 0).

ubyte x
ushort x
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uint x
uint64 x
ulong x

Convert signed (8/16/32/64) bit integers to the corresponding unsigned quantities.
These functions behave as if the value was “cast” to the corresponding unsigned C
type, and are most useful for dealing with unsigned integers returned by external C
routines. The routines always use the smallest Pure int type capable of holding the
result: int for ubyte and ushort, bigint for uint, uint64 and ulong. All routines take
int parameters. In the case of uint64, a bigint parameter is also permitted (which is
what the C interface returns for 64 bit values). Also note that ulong reduces to either
uint or uint64, depending on the size of long for the host architecture.

The following rounding functions work with all kinds of numbers:

floor x
ceil x

Floor and ceil.

round x
trunc x

Round or truncate to an integer.

frac x
Fractional part (x-trunc x).

Note that all these functions return double values for double arguments, so if you need an
integer result then you’ll have to apply a suitable conversion, as in int (floor x).

Predicates

A syntactic equality test is provided, as well as various type checking predicates. Note that
type definitions are provided for most of the type checking predicates which don’t denote
built-in types; see Prelude Types for details.

same x y
x === y
x ~== y

Syntactic equality. In contrast to == and ~=, this is defined on all Pure expressions.
Basically, two expressions are syntactically equal if they print out the same in the inter-
preter. In the special case of pointer objects and closures, which do not always have a
syntactic representation in Pure, x and y must be the same object (same pointer value
or function).

typep ty x
Generic type checking predicate. This checks whether x is of type ty, where ty is a
symbol denoting any of the built-in types (int, bigint etc.) or any type defined in a
type definition. (Note that you may have to quote ty if it happens to be defined as a
variable or parameterless function.)

intp x
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bigintp x
doublep x
stringp x
pointerp x
matrixp x

Predicates to check for the built-in types.

boolp x
Predicate to check for normalized truth values (0 and 1).

charp x
Predicate to check for single character strings.

numberp x
complexp x
realp x
rationalp x
integerp x

Additional number predicates. Note some further “semantic” number predicates are
defined in the math module, see Semantic Number Predicates and Types.

exactp x
inexactp x

Check whether a number is exact (i.e., doesn’t contain any double components).

infp x
nanp x

Check for inf and nan values.

null p
Check for null pointers.

applp x
listp x
rlistp x
tuplep x

Predicates to check for function applications, lists, proper lists and tuples. Note that
listp only checks for a toplevel list constructor, whereas rlistp also recursively
checks the tails of the list; the latter may need time proportional to the list size. The
applp and tuplep predicates look for an application or tuple constructor at the toplevel
only, which can always be done in constant time.

funp x
lambdap x
thunkp x
closurep x

Predicates to check for various kinds of function objects (named, anonymous or thunk).
closurep checks for any kind of “normal” closure (i.e., named functions and lambdas,
but not thunks).

functionp x
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Convenience function to check for “callable” functions. This includes any kind of clo-
sure with a nonzero argument count as well as partial (unsaturated) applications of
these.

symbolp x
varp x

Predicates to check for any kind of symbol (this also includes operator and nonfix
symbols) and for free variable symbols, respectively. Note that varp returns true for
any symbol which is not an operator or nonfix symbol (i.e., for any symbol that could
in principle be bound to a value, either globally or locally). This holds even if the
symbol is currently bound to a function, macro or constant.

Inspection

The following operations let you peek at various internal information that the interpreter
provides to Pure programs either for convenience or for metaprogramming purposes. They
are complemented by the evaluation primitives discussed below, see Eval and Friends.

ans
Retrieve the most recently printed result of a toplevel expression evaluated in the read-
eval-print loop. This is just a convenience for interactive usage. Note that the ans value
will stick around until a new expression is computed. (It is possible to clear the ans
value with the interactive command clear ans, however.) Example:

> 1/3;
0.333333333333333
> ans/2;
0.166666666666667

__func__

Returns the (lexically) innermost function at the point of the call. This can be either a
global function, a local (named) function introduced in a with clause or an anonymous
function (a lambda). Fails (returning just the literal symbol __func__ by default) if
there is no such function (i.e., if the call is at the toplevel). Note that in contrast to the
C99 variable of the same name, this really returns the function value itself in Pure; the
str function can be used if you need the print name of the function. Examples:

> foo x = if x>0 then x else throw __func__;
> foo (-99);
<stdin>, line 2: unhandled exception ’foo’ while evaluating ’foo (-99)’
> (\x->x+": "+str __func__) "test";
"test: #<closure 0x7f4a2411db30>"

If you want, you can add a default rule for __func__ which specifies the behaviour
when __func__ gets called at the global level. E.g.:

> __func__ = throw "__func__ called at global level";
> __func__;
<stdin>, line 5: unhandled exception ’"__func__ called at global level"’ while
evaluating ’__func__’
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macro __namespace__

Returns the current namespace at the point of the call. This is implemented as a built-in
macro which expands to a string. The empty string is returned in the default name-
space. Example:

> namespace foo;
> foo = __namespace__;
> namespace;
> show foo::foo
foo::foo = "foo";
> foo::foo;
"foo"

macro __dir__

macro __file__

Returns the directory and absolute filename of the current script, using the canonical-
ized pathname of the script, as explained in Modules and Imports. The directory name
is always terminated with a trailing slash. These macros are useful, e.g., for debug-
ging purposes or if a script needs to locate other files relative to the script file. Like
__namespace__, these are built-in macros which expand to string values.

The script name is resolved at compile time, so these macros are most useful if a script
is run through the interpreter. Also note that both macros return the empty string if the
code containing the call is not in a script (i.e., if it is executed directly at the interactive
command line or through eval). For instance, assume that the following code is stored
in the file /home/user/test.pure:

foo = __file__,__dir__;
bar = eval "__file__,__dir__";

Then running this script interactively you’ll get the following:

> foo;
"/home/user/test.pure","/home/user/"
> bar;
"",""

macro __list__

This expands a (literal) tuple to a list, preserving embedded tuples in the same way that
list values are parsed in the Pure language, cf. Primary Expressions. This is provided for
the benefit of custom aggregate notations (usually implemented as outfix operators)
which are supposed to be parsed like the built-in list and matrix brackets. Example:

> outfix (: :);
> def (:x:) = __list__ x;
> (:(1,2),(3,4):);
[(1,2),(3,4)]

Note that this macro uses internal information from the parser not available to Pure
programs. Thus there’s no way to actually define this macro in Pure, which is why it
is provided as a builtin instead.
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Another rather obscure point that deserves mentioning here is that the special process-
ing of parenthesized expressions happens also if the macro is applied in prefix form.
This should rarely be a problem in practice, but if it is then you can use $ to pass
arguments without adding an (undesired) extra level of parentheses:

> ((::)) ((1,2),(3,4));
[(1,2,3,4)]
> ((::)) $ (1,2),(3,4);
[(1,2),(3,4)]

Note that the first expression is really equivalent to (:((1,2),(3,4)):), not
(:(1,2),(3,4):) which can be specified in prefix form using $ as shown in the sec-
ond expression. (Remember that $ is also implemented as a macro and so is substituted
away at macro expansion time in the example above.) The same trick works if for some
reason you want to apply __list__ in a direct fashion:

> __list__ ((1,2),(3,4));
[(1,2,3,4)]
> __list__ $ (1,2),(3,4);
[(1,2),(3,4)]

macro __locals__

Built-in macro which expands to a list with the local function bindings (with clauses)
visible at this point in the program. The return value is a list of hash pairs x=>f where
x is the global symbol denoting the function (the symbol is always quoted) and f is the
function value itself. Example:

> __locals__ with foo x = x+1; x = a+b end;
[x=>a+b,foo=>foo]
> f 99 when _=>f = ans!1 end;
100

The __locals__ macro is useful for debugging purposes, as well as to implement dynamic
environments. It is also used internally to implement the reduce macro, see Eval and
Friends. Here are some things that you should keep in mind when working with this macro:

• __locals__ always evaluates parameterless functions and returns the resulting value
instead of a closure (as can be seen in the binding x=>a+b in the example above). Nor-
mally this is what you want, but it can be a problem with parameterless functions
involving side effects. In such a case, if you want to evaluate the function at a later
time, you’ll either have to use a thunk or massage the local function so that it takes a
dummy argument such as ().

• If the call to __locals__ is inside a local function then that local function will itself be
excluded from the constructed environment. This is done in order to prevent infinite
recursion if the calling function does not have any parameters (which is a common
idiom, especially in applications of the reduce macro). If you really want the calling
function to be in the environment, you’ll have to add it to the result of __locals__
yourself. Using the __func__ primitive from above, we can implement this as a macro:

2.1.11 Primitives 285



Pure Language and Library Documentation, Release 0.62

def __mylocals__ = [val (str __func__)=>__func__]+__locals__;

You can then use __mylocals__ instead of __locals__ whenever you want the calling
function to be included in the computed environment.

• __locals__ will use as keys in the resulting list whatever global symbols are in scope
at the point of the call. By default, i.e., if no global symbol with the same print name
as the local is visible at the point of the call, a symbol in the default namespace is used,
as we’ve seen above. Otherwise the result may be also be a qualified symbol if such a
symbol has already been declared or defined at the point of the call. For instance:

> namespace foo;
> public foo;
> __locals__ with foo x = x+1 end;
[foo::foo=>foo]

This behaviour may be a bit surprising at first sight, but is consistent with the way the
interpreter performs its symbol lookup, see Symbol Lookup and Creation for details.

The following functions allow you to inspect or modify the function, type, macro, constant
and variable definitions of the running program. This uses a special meta representation for
rewriting rules and definitions. Please see the Macros section in the Pure manual for details.
Also note that these operations are subject to some limitations, please check the remarks
concerning eval and evalcmd in the following subsection for details.

get_fundef sym
get_typedef sym
get_macdef sym

If the given symbol is defined as a function, type or macro, return the corresponding
list of rewriting rules. Otherwise return the empty list.

get_interface sym
get_interface_typedef sym

If the given symbol is defined as an interface type, return its definition; otherwise re-
turn the empty list. get_interface returns the list of patterns used to declare the type,
while get_interface_typedef returns the actual list of type rules, in the same format
as with get_typedef. Note that the latter may be empty even if the type is defined,
meaning that the type hasn’t been instantiated yet, see Interface Types for details. Also
note that Pure allows you to have both an interface and a regular (concrete) definition
of a type, in which case get_typedef and get_interface_typedef may both return
nonempty (and usually different) results.

get_vardef sym
get_constdef sym

If the given symbol is defined as a variable or constant, return the corresponding def-
inition as a singleton list of the form [sym --> value]. Otherwise return the empty
list.

The following functions may fail in case of error, in which case lasterr is set accordingly
(see Eval and Friends below).
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add_fundef rules
add_typedef rules
add_macdef rules

Add the given rewriting rules (given in the same format as returned by the get_fundef,
get_typedef and get_macdef functions above) to the running program.

add_fundef_at r rules
add_typedef_at r rules
add_macdef_at r rules

Same as above, but add the given rewriting rules at (i.e., before) the given rule r (which
must already exist, otherwise the call fails). Note that all added rules must have the
same head symbol on the left-hand side, which matches the head symbol on the left-
hand side of r.

add_interface sym patterns
Add the given patterns to the interface type sym (given as a symbol). If the interface
type doesn’t exist yet, it will be created.

add_interface_at sym p patterns
Same as above, but add the given patterns at (i.e., before) the given pattern p (the given
interface type must already exist and contain the given pattern, otherwise the call fails).

add_vardef rules
add_constdef rules

Define variables and constants. Each rule must take the form sym --> value with a
symbol on the left-hand side (no pattern matching is performed by these functions).

The following functions may be used to delete individual rewriting rules, interface type
patterns or variable and constant symbols.

del_fundef rule
del_typedef rule
del_macdef rule

Delete the given rewriting rule (given in the same format as returned by the
get_fundef, get_typedef and get_macdef functions) from the running program. Re-
turns () if successful, fails otherwise.

del_interface sym pattern
Delete the given pattern from the given interface type. Returns () if successful, fails
otherwise.

del_vardef sym
del_constdef sym

Delete variables and constants, given by their (quoted) symbols. Returns () if success-
ful, or fails if the symbol isn’t defined (or defined as a different kind of symbol).

The prelude also provides some functions to retrieve various attributes of a function symbol
which determine how the operation is applied to its operands or arguments. These functions
all take a single argument, the symbol or function object to be inspected, and return an
integer value.
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nargs x
Get the argument count of a function object, i.e., the number of arguments it expects.
Returns 0 for thunks and saturated applications, -1 for over-saturated applications and
non-functions.

arity x
Determine the arity of an operator symbol. The returned value is 0, 1 or 2 for nullary,
unary and binary symbols, respectively, -1 for symbols without a fixity declaration or
other kinds of objects.

fixity f
Determine the fixity of an operator symbol. The fixity is encoded as an integer 10*n+m
where n is the precedence level (ranging from 0 to PREC_MAX, where PREC_MAX denotes
the precedence of primary expressions, 16777216 in the current implementation) and m
indicates the actual fixity at each level, in the order of increasing precedence (0 = infix, 1
= infixl, 2 = infixr, 3 = prefix, 4 = postfix). The fixity value of nonfix and outfix symbols,
as well as symbols without a fixity declaration, is always given as 10*PREC_MAX, and the
same value is also reported for non-symbol objects. Infix, prefix and postfix symbols
always have a fixity value less than 10*PREC_MAX. (PREC_MAX isn’t actually defined
as a constant anywhere, but you can easily do that yourself by setting PREC_MAX to
the fixity value of any nonfix symbol or non-symbol value, e.g.: const PREC_MAX =
fixity [];)

Note that only closures (i.e., named and anonymous functions and thunks) have a defined
argument count in Pure, otherwise nargs returns -1 indicating an unknown argument count.
Partial applications of closures return the number of remaining arguments, which may be
zero to indicate a saturated (but unevaluated) application, or -1 for over-saturated and con-
structor applications. (Note that in Pure a saturated application may also remain uneval-
uated because there is no definition for the given combination of arguments and thus the
expression is in normal form, or because the application was quoted. If such a normal form
application is then applied to some “extra” arguments it becomes over-saturated.)

The value returned by nargs always denotes the actual argument count of the given func-
tion, regardless of the declared arity if the function also happens to be an operator symbol.
Often these will coincide (as, e.g., in the case of + which is a binary operator and also expects
two arguments). But this is not necessarily the case, as shown in the following example of a
binary operator which actually takes three arguments:

> infix 0 oops;
> (oops) x y z = x*z+y;
> arity (oops);
2
> nargs (oops);
3
> nargs (5 oops 8);
1
> map (5 oops 8) (1..5);
[13,18,23,28,33]
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Eval and Friends

Pure provides some rather powerful operations to convert between Pure expressions and
their string representation, and to evaluate quoted expressions (’x). The string conversions
str, val and eval also provide a convenient means to serialize Pure expressions, e.g., when
terms are to be transferred to/from persistent storage. (Note, however, that this has its lim-
itations. Specifically, some objects like pointers and anonymous functions do not have a
parsable string representation. Also see the Expression Serialization section for some ded-
icated serialization operations which provide a more compact binary serialization format.)

str x
Yields the print representation of an expression in Pure syntax, as a string.

val s
Parses a single simple expression, specified as a string in Pure syntax, and returns
the result as is, without evaluating it. Note that this is much more limited than the
eval operation below, as the expression must not contain any of the special constructs
(conditional expressions, when, with, etc.), unless they are quoted.

eval x
Parses any expression, specified as a string in Pure syntax, and returns its value. In
fact, eval can also parse and execute arbitrary Pure code. In that case it will return
the last computed expression, if any. Alternatively, eval can also be invoked on a
(quoted) Pure expression, which is recompiled and then evaluated. Exceptions during
evaluation are reported back to the caller.

Note: The use of eval and evalcmd (as well as add_fundef, add_typedef etc. from the
preceding subsection) to modify a running program breaks referential transparency
and hence these functions should be used with care. Also, none of the inspection and
mutation capabilities provided by these operations will work in batch-compiled pro-
grams, please check the Batch Compilation section in the Pure manual for details. More-
over, using these operations to modify or delete a function which is currently being
executed results in undefined behaviour.

evalcmd x
Like eval, but allows execution of interactive commands and returns their captured
output as a string. No other results are returned, so this operation is most useful for
executing Pure definitions and interactive commands for their side-effects. (At this
time, only the regular output of a few commands can be captured, most notably bt,
clear, mem, save and show; otherwise the result string will be empty.)

lasterr
Reports errors in val, eval and evalcmd (as well as in add_fundef et al, described
in the previous subsection). This string value will be nonempty iff a compilation or
execution error was encountered during the most recent invocation of these functions.
In that case each reported error message is terminated with a newline character.
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lasterrpos
Gives more detailed error information. This returns a list of the individual error mes-
sages in lasterr, along with the position of each error (if available). Each list item
is either just a string (the error message, with any trailing newline stripped off) if no
error position is available, or a tuple of the form msg,file,l1,c1,l2,c2 where msg is
the error message, file the name of the file containing the error (which will usually be
"<stdin>" indicating that the error is in the source string, but may also be a proper file-
name of a module imported in the evaluated code), l1,c1 denotes the beginning of the
range with the errorneous construct (given as line and column indices) and l2,c2 its
end (or rather the character position following it). For convenience, both line and col-
umn indices are zero-based, in order to facilitate extraction of the text from the actual
source string.

Note: The indicated error positions are only approximate, and may in many cases
span an entire syntactic construct (such as a subexpression or even an entire function
definition) containing the error. Also, the end of the range may sometimes point one
token past the actual end of the construct. (These limitations are due to technical re-
strictions in the parser; don’t expect them to go away anytime soon.)

Examples:

> str (1/3);
"0.333333333333333"
> val "1/3";
1/3
> eval "1/3";
0.333333333333333
> eval (’(1/3));
0.333333333333333
> evalcmd "show evalcmd";
"extern expr* evalcmd(expr*);\n"
> eval "1/3)";
eval "1/3)"
> lasterr;
"<stdin>, line 1: syntax error, unexpected ’)’, expecting ’=’ or ’|’\n"
> lasterrpos;
[("<stdin>, line 1: syntax error, unexpected ’)’, expecting ’=’ or ’|’",
"<stdin>",0,3,0,4)]

In addition to str, the prelude also provides the following function for pretty-printing the
internal representation used to denote quoted specials. This is commonly used in conjunc-
tion with the __show__ function, please see the Macros section in the Pure manual for details.

__str__ x
Pretty-prints special expressions.

Example:
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> __str__ (’__lambda__ [x __type__ int] (x+1));
"\\x::int -> x+1"

The evalcmd function is commonly used to invoke the show and clear commands for
metaprogramming purposes. The prelude provides the following two convenience func-
tions to make this easy:

globsym pat level
This uses evalcmd with the show command to list all defined symbols matching the
given glob pattern. A definition level may be specified to restrict the context in which
the symbol is defined; a level of 0 indicates that all symbols are eligible (see the de-
scription of the show command in the Pure manual for details). The result is the list of
all matching (quoted) symbols.

clearsym sym level
This uses evalcmd with the clear command to delete the definition of the given symbol
at the given definition level. No glob patterns are permitted here. The sym argument
may either be a string or a literal (quoted) symbol.

Example:

> let x,y = 77,99;
> let syms = globsym "[a-z]" 0; syms;
[x,y]
> map eval syms;
[77,99]
> do (flip clearsym 0) syms;
()
> globsym "[a-z]" 0;
[]
> x,y;
x,y

The following functions are useful for doing symbolic expression simplification.

macro reduce x
Reevaluates an expression in a local environment. This dynamically rebinds function
symbols in the given expression to whatever local function definitions are in effect at
the point of the reduce call. Note that reduce is actually implemented as a macro
which expands to the reduce_with primitive (see below), using the __locals__ builtin
to enumerate the bindings which are in effect at the call site.

reduce_with env x
Like reduce above, but takes a list of replacements (given as hash pairs u=>v) as the
first argument. The reduce macro expands to reduce_with __locals__.

The reduce macro provides a restricted form of dynamic binding which is useful to imple-
ment local rewriting rules. It is invoked without parameters and expands to the curried
call reduce_with __locals__ of the reduce_with primitive, which takes one additional ar-
gument, the expression to be rewritten. The following example shows how to expand or
factorize an expression using local rules for the laws of distributivity:
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expand = reduce with
(a+b)*c = a*c+b*c;
a*(b+c) = a*b+a*c;

end;

factor = reduce with
a*c+b*c = (a+b)*c;
a*b+a*c = a*(b+c);

end;

expand ((a+b)*2); // yields a*2+b*2
factor (a*2+b*2); // yields (a+b)*2

Note that instances of locally bound functions are substituted back in the computed result,
thus the instances of * and + in the results a*2+b*2 and (a+b)*2 shown above denote the
corresponding globals, not the local incarnations of * and + defined in expand and factor,
respectively.

reduce also adjusts to quoted arguments. In this case, the local rules are applied as usual,
but back-substituted globals are not evaluated in the result:

> expand ((a+1)*2);
a*2+2
> expand (’((a+1)*2));
a*2+1*2

Note that reduce only takes into account local function bindings from with clauses, local
variable bindings do not affect its operation in any way:

> let y = [x,x^2,x^3];
> reduce y when x = u+v end;
[x,x^2,x^3]

However, in such cases you can perform the desired substitution by turning the when into a
with clause:

> reduce y with x = u+v end;
[u+v,(u+v)^2,(u+v)^3]

Or you can just invoke the underlying reduce_with builtin directly, with the desired substi-
tutions given as hash pairs in the first argument:

> reduce_with [x=>u+v] y;
[u+v,(u+v)^2,(u+v)^3]

It is always a good idea to confine calls to reduce to global functions if possible, since this
gives you better control over which local functions are in scope at the point of the call. Oth-
erwise it might be necessary to call __locals__ manually and filter the resulting list before
submitting it to the reduce_with function.
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Expression Serialization

Like str and eval, the following blob and val operations can be used to safely transfer ex-
pression data to/from persistent storage and between different processes (using, e.g., POSIX
shared memory, pipes or sockets). However, blob and val use a binary format which is
usually much more compact and gets processed much faster than the string representations
used by str and eval. Also, val offers some additional protection against transmission er-
rors through a crc check. (The advantage of the string representation, however, is that it’s
readable plain text in Pure syntax.)

blob x
Stores the contents of the given expression as a binary object. The return value is a
cooked pointer which frees itself when garbage-collected.

val p
Reconstructs a serialized expression from the result of a previous invocation of the
blob function.

blobp p
Checks for a valid blob object. (Note that val may fail even if blobp returns true,
because for performance reasons blobp only does a quick plausibility check on the
header information of the blob, whereas val also performs a crc check and verifies
data integrity.)

# p
blob_size p
blob_crc p

Determines the size (in bytes) and crc checksum of a blob, respectively. blob_size
always returns a bigint, blob_crc a machine int (use uint on the latter to get a proper
unsigned 32 bit value). For convenience, #p is defined as an alias for blob_size p on
blob pointers.

Example:

> let b = blob {"Hello, world!", 1/3, 4711, NULL};
> b; #b; uint $ blob_crc b;
#<pointer 0x141dca0>
148L
3249898239L
> val b;
{"Hello, world!",0.333333333333333,4711,#<pointer 0x0>}

Please note that the current implementation has some limitations:

• Just as with str and eval, runtime data (local closures and pointers other than the NULL
pointer) can’t be serialized, causing blob to fail. However, it is possible to transfer a
global function, provided that the function exists (and is the same) in both the sending
and the receiving process. (This condition can’t be verified by val and thus is at the
programmer’s responsibilty.)

• Sharing of subexpressions will in general be preserved, but sharing of list and tuple
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tails will be lost (unless the entire list or tuple is shared).

• The val function may fail to reconstruct the serialized expression even for valid blobs,
if there is a conflict in symbol fixities between the symbol tables of the sending and
the receiving process. To avoid this, make sure that symbol declarations in the sending
and the receiving script match up.

Other Special Primitives

exit status
Terminate the program with the given status code.

throw x
Throw an exception, cf. Exception Handling.

__break__
__trace__

Trigger the debugger from a Pure program, cf. Debugging. Note that these routines
only have an effect if the interpreter is run in debugging mode, otherwise they are no-
ops. The debugger will be invoked at the next opportunity (usually when a function is
called or a reduction is completed).

force x
Force a thunk (x&), cf. Special Forms. This usually happens automagically when the
value of a thunk is needed.

Pointer Operations

The prelude provides a few basic operations on pointers which make it easy to interface to
external C functions. For more advanced uses, the library also includes the pointers module
which can be imported explicitly if needed, see Pointer Arithmetic below.

addr symbol
Get the address of a C symbol (given as a string) at runtime. The library containing
the symbol must already be loaded. Note that this can in fact be any kind of externally
visible C symbol, so it’s also possible to get the addresses of global variables. The result
is returned as a pointer. The function fails if the symbol was not found.

calloc nmembers size
malloc size
realloc ptr size
free ptr

Interface to malloc, free and friends. These let you allocate dynamic buffers (repre-
sented as Pure pointer values) for various purposes.

The following functions perform direct memory accesses through pointers. Their primary
use is to interface to certain C library functions which take or return data through pointers. It
goes without saying that these operations should be used with utmost care. No checking is
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done on the pointer types, so it is the programmer’s responsibility to ensure that the pointers
actually refer to the corresponding type of data.

get_byte ptr
get_short ptr
get_int ptr
get_int64 ptr
get_long ptr
get_float ptr
get_double ptr
get_string ptr
get_pointer ptr

Return the integer, floating point, string or generic pointer value at the memory loca-
tion indicated by ptr.

put_byte ptr x
put_short ptr x
put_int ptr x
put_int64 ptr x
put_long ptr x
put_float ptr x
put_double ptr x
put_string ptr x
put_pointer ptr x

Change the integer, floating point, string or generic pointer value at the memory loca-
tion indicated by ptr to the given value x.

Sentries

Sentries are Pure’s flavour of object finalizers. A sentry is simply an object (usually a func-
tion) which gets applied to the target expression when it is garbage-collected. This is useful
to perform automatic cleanup actions on objects with internal state, such as files. Pure’s
sentries are much more useful than finalizers in other garbage-collected languages, since it
is guaranteed that they are called as soon as an object “goes out of scope”, i.e., becomes
inaccessible.

sentry f x
Places a sentry f at an expression x and returns the modified expression.

clear_sentry x
Removes the sentry from an expression x.

get_sentry x
Returns the sentry of an expression x (if any, fails otherwise).

As of Pure 0.45, sentries can be placed on any Pure expression. The sentry itself can also be
any type of object (but usually it’s a function). Example:
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> using system;
> sentry (\_->puts "I’m done for!") (1..3);
[1,2,3]
> clear ans
I’m done for!

Note that setting a finalizer on a global symbol won’t usually be of much use since such
values are cached by the interpreter. (However, the sentry will be invoked if the symbol gets
recompiled because its definition has changed. This may be useful for some purposes.)

In Pure parlance, we call an expression cooked if a sentry has been attached to it. The follow-
ing predicate can be used to check for this condition. Also, there is a convenience function
to create cooked pointers which take care of freeing themselves when they are no longer
needed.

cookedp x
Check whether a given object has a sentry set on it.

cooked ptr
Create a pointer which disposes itself after use. This is just a shorthand for sentry
free. The given pointer ptr must be malloced to make this work.

Example:

> using system;
> let p = cooked (malloc 1024);
> cookedp p;
1
> get_sentry p;
free
> clear p

Besides their use as finalizers, sentries can also be handy in other circumstances, when you
need to associate an expression with another, “invisible” value. In this case the sentry is
usually some kind of data structure instead of a function to be executed at finalization time.
For instance, here’s how we can employ sentries to implement hashing of function values:

using dict;
hashed f x = case get_sentry f of

h::hdict = h!x if member h x;
_ = y when y = f x; sentry (update h x y) f

when h = case get_sentry f of
h::hdict = h; _ = emptyhdict

end;
end;

end;
end;

E.g., consider the naive recursive definition of the Fibonacci function:

fib n::int = if n<=1 then 1 else fib (n-1)+fib (n-2);

A hashed version of the Fibonacci function can be defined as follows:
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let hfib = hashed f with
f n::int = if n<=1 then 1 else hfib (n-1)+hfib (n-2)

end;

This turns the naive definition of the Fibonacci function (which has exponential time com-
plexity) into a linear time operation:

> stats
> fib 35;
14930352
4.53s
> hfib 35;
14930352
0.25s

Finally, note that there can be only one sentry per expression but, building on the operations
provided here, it’s easy to design a scheme where sentries are chained. For instance:

chain_sentry f x = sentry (h (get_sentry x)) x with
h g x = g x $$ f x;

end;

This invokes the original sentry before the chained one:

> using system;
> f _ = puts "sentry#1"; g _ = puts "sentry#2";
> let p = chain_sentry g $ sentry f $ malloc 10;
> clear p
sentry#1
sentry#2

You can chain any number of sentries that way. This scheme should work in most cases in
which sentries are used just as finalizers. However, there are other uses, like the “hashed
function” example above, where you’d like the original sentry to stay intact. This can be
achieved by placing the new sentry as a sentry on the original sentry rather than the expres-
sion itself:

attach_sentry f x = sentry (sentry f (get_sentry x)) x;

This requires that the sentry will actually be garbage-collected when its hosting expression
gets freed, so it will not work if the original sentry is a global:

> let p = attach_sentry g $ sentry f $ malloc 10;
> clear p
sentry#1

However, the attached sentry will work ok if you can ensure that the original sentry is a
(partial or constructor) application. E.g.:

> let p = attach_sentry g $ sentry (f$) $ malloc 10;
> clear p
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sentry#1
sentry#2

Tagged Pointers

As of Pure 0.45, the C interface now fully checks pointer parameter types at runtime (see the
C Types section in the Pure Manual for details). To these ends, pointer values are internally
tagged to keep track of the pointer types. The operations described in this section give you
access to these tags in Pure programs. At the lowest level, a pointer tag is simply a machine
int associated with a pointer value. The default tag is 0, which denotes a generic pointer
value, i.e., void* in C. The following operations are provided to create such tags, and set, get
or verify the tag of a pointer value.

ptrtag t x
Places an integer tag t at an expression x and returns the modified expression. x must
be a pointer value.

get_ptrtag x
Retrieves the tag associated with x.

check_ptrtag t x
Compares the tag associated with x against t and returns true iff the tags match. If x
is a pointer value, this is equivalent to get_ptrtag x==t || null x && get_ptrtag
x==0.

make_ptrtag
Returns a new, unique tag each time it is invoked.

Examples:

> let p = malloc 10;
> get_ptrtag p; // zero by default
0
> let t = make_ptrtag; t;
12
> ptrtag t p;
#<pointer 0xc42da0>
> get_ptrtag p;
12
> check_ptrtag t p;
1
> check_ptrtag 0 p;
0

Note that in the case of a non-NULL pointer, check_ptrtag just tests the tags for equality. On
the other hand, a generic NULL pointer, like in C, is considered compatible with all pointer
types:

> let t1 = make_ptrtag; t1;
13
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> check_ptrtag t1 p;
0
> check_ptrtag t1 NULL;
1
> get_ptrtag NULL;
0

The operations above are provided so that you can design your own, more elaborate type
systems for pointer values if the need arises. However, you’ll rarely have to deal with pointer
tags at this level yourself. For most applications, it’s enough to inspect the type of a Pure
pointer and maybe modify it by “casting” it to a new target type. The following high-level
operations provide these capabilities.

pointer_tag ty
pointer_tag x

Returns the pointer tag for the given type ty, denoted as a string, or the given pointer
value x. In the former case, the type should be specified in the C-like syntax used in
extern declarations; a new tag will be created using make_ptrtag if needed. In the
latter case, pointer_tag simply acts as a frontend for get_ptrtag above.

pointer_type tag
pointer_type x

Returns the type name associated with the given int value tag or pointer value x.
Please note that this may be NULL in the case of an “anonymous” tag, which may have
been created with make_ptrtag above, or if the tag is simply unknown because it hasn’t
been created yet.

pointer_cast tag x
pointer_cast ty x

Casts x (which must be a pointer value) to the given pointer type, which may be spec-
ified either as a tag or a string denoting the type name. This returns a new pointer
value with the appropriate type tag on it (the tag on the original pointer value x isn’t
affected by this operation).

Example:

> let p = malloc 10;
> let q = pointer_cast "char*" p;
> map pointer_type [p,q];
["void*","char*"]
> map pointer_tag [p,q];
[0,1]
> map pointer_type (0..make_ptrtag-1);
["void*","char*","void**","char**","short*","short**","int*","int**",
"float*","float**","double*","double**"]

(The last command shows a quick and dirty way to retrieve the currently defined type tags
in the interpreter. This won’t work in batch-compiled scripts, however, since in this case the
range of type tags is in general non-contiguous.)
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If you have to do many casts to a given type, you can avoid the overhead of repeatedly
looking up the type name by assigning the tag to a variable, which can then be passed to
pointer_cast instead:

> let ty = pointer_tag "long*";
> pointer_cast ty p, pointer_cast ty q;

Note that you have to be careful when casting a cooked pointer, because pointer_cast may
have to create a copy of the original pointer value in order not to clobber the original type
tag. The sentry will then still be with the original cooked pointer value, thus you have to
ensure that this value survives its type-cast duplicate. It’s usually best to apply the cast right
at the spot where the pointer gets passed to an external function, e.g.:

> extern char *gets(char*);
> let p = cooked $ malloc 1000;
> gets (pointer_cast "char*" p);

Such usage is always safe. If this approach isn’t possible, you might want to use the lowlevel
ptrtag operation instead. (This will clobber the type tag of the pointer, but you can always
change it back afterwards.)

Expression References

Expression references provide a kind of mutable data cells which can hold any Pure expres-
sion. If you need these, then you’re doomed. ;-) However, they can be useful as a last resort
when you need to keep track of some local state or interface to the messy imperative world.
Pure’s references are actually implemented as expression pointers so that you can readily
pass them as pointers to a C function which expects a pure_expr** parameter. This may
even be useful at times.

type ref
The type of expression references. This is a subtype of the pointer type.

ref x
Create a reference pointing to x initially.

put r x
Set a new value x, and return that value.

get r
Retrieve the current value r points to.

unref r
Purge the referenced object and turn the reference into a dangling pointer. (This is used
as a sentry on reference objects and shouldn’t normally be called directly.)

refp x
Predicate to check for reference values.

Note that manually changing or removing the unref sentry of a reference turns the reference
into just a normal pointer object and renders it unusable as a reference. Doing this will also
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leak memory, so don’t!

There is another pitfall with expression references, namely that they can be used to create
cyclic chains which currently can’t be reclaimed by Pure’s reference-counting garbage col-
lector. For instance:

> using system;
> done r = printf "done %s\n" (str r);
> let x = ref ();
> let y = ref (sentry done 2,x);
> put x (sentry done 1,y);
1,#<pointer 0x3036400>

At this point x points to y and vice versa. If you now purge the x and y variables then Pure
won’t be able to reclaim the cycle, resulting in a memory leak (you can verify this by noting
that the sentries are not being called). To prevent this, you’ll have to break the cycle first:

> put y 3;
done 2
3
> clear x y
done 1

Note that, in a way, sentries work similar to expression references and thus the same caveats
apply there. Having a limited amount of cyclic references won’t do any harm. But if they
can grow indefinitely then they may cause problems with long-running programs due to
memory leakage, so it’s a good idea to avoid such cycles if possible.

Pointer Arithmetic

The pointers.pure module provides the usual C-style pointer arithmetic and comparisons
of pointer values. This module normally is not included in the prelude, so to use these
operations, you have to add the following import declaration to your program:

using pointers;

The module overloads the comparison and some of the arithmetic operators (cf. Arithmetic)
so that they can be used to compare pointers and to perform C-style pointer arithmetic. To
these ends, some conversions between pointers and numeric types are also provided.

int p
bigint p

Convert a pointer to an int or bigint, giving its numeric address value, which usually
denotes a byte offset relative to the beginning of the memory of the executing process.
This value can then be used in arithmetic operations and converted back to a pointer
using the pointer function from the prelude. (Note that to make this work on 64 bit
systems, you’ll have to convert the pointer values to bigints.)

p + n
p - n
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p - q
Pointer arithmetic. p+n and p-n offsets a pointer p by the given integer n denoting the
amount of bytes. In addition, p-q returns the byte offset between two pointers p and
q. Note that, in contrast to C pointer arithmetic which also takes into account the base
type of the pointer, the Pure operations always use byte offsets, no matter what type of
pointer (as given by the pointer tag) is passed to these operations.

p == q
p ~= q

Pointer equality and inequality. This is exactly the same as syntactic equality on point-
ers.

p <= q
p >= q
p > q
p < q

Pointer comparisons. One pointer p is considered to be “less” than another pointer q if
it represents a “lower” address in memory, i.e., if the byte offset p-q is negative.

2.2 Mathematical Functions

The math.pure module provides Pure’s basic math routines. It also defines complex and
rational numbers.

2.2.1 Imports

To use the operations of this module, add the following import declaration to your program:

using math;

2.2.2 Basic Math Functions

The module defines the following real-valued constants:

constant e = 2.71828...
Euler’s number.

constant pi = 3.1415...
Ludolph’s number.

It also provides a reasonably comprehensive (pseudo) random number generator which uses
the Mersenne twister to avoid bad generators present in some C libraries.

Please note that as of Pure 0.41, the runtime library includes a newer release of the Mersenne
twister which fixes issues with some kinds of seed values, and will yield different values for
given seeds. Also, the random31 and random53 functions have been added as a convenience
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to compute unsigned 31 bit integers and 53 bit double values, and the srandom function now
also accepts an int matrix as seed value.

random
Return 32 bit pseudo random ints in the range -0x80000000..0x7fffffff.

random31
Return 31 bit pseudo random ints in the range 0..0x7fffffff.

random53
Return pseudo random doubles in the range [0,1) with 53 bits resolution.

srandom seed
Sets the seed of the generator to the given 32 bit integer. You can also specify longer
seeds using a nonempty row vector, e.g.: srandom {0x123, 0x234, 0x345, 0x456}.

The following functions work with both double and int/bigint arguments. The result is
always a double. For further explanations please see the descriptions of the corresponding
functions from the C math library.

sqrt x
The square root function.

exp x
ln x
log x

Exponential function, natural and decadic logarithms.

sin x
cos x
tan x

Trigonometric functions.

asin x
acos x
atan x

Inverse trigonometric functions.

atan2 y x
Computes the arcus tangent of y/x, using the signs of the two arguments to determine
the quadrant of the result.

sinh x
cosh x
tanh x

Hyperbolic trigonometric functions.

asinh x
acosh x
atanh x

Inverse hyperbolic trigonometric functions.
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2.2.3 Complex Numbers

x +: y
r <: t

Complex number constructors.

constant i = 0+:1
Imaginary unit.

We provide both rectangular (x+:y) and polar (r<:a) representations, where (x,y) are the
Cartesian coordinates and (r,t) the radius (absolute value) and angle (in radians) of a com-
plex number, respectively. The +: and <: constructors (declared in the prelude) bind weaker
than all other arithmetic operators and are non-associative.

The polar representation r<:t is normalized so that r is always nonnegative and t falls in
the range -pi<t<=pi.

The constant i is provided to denote the imaginary unit 0+:1.

The arithmetic operations +, * etc. and the equality relations == and ~= work as expected,
and the square root, exponential, logarithms, trigonometric and hyperbolic trigonometric
functions (see Basic Math Functions) are extended to complex numbers accordingly. These
do not rely on complex number support in the C library, but should still conform to IEEE 754
and POSIX, provided that the C library provides a standards-compliant implementation of
the basic math functions.

The following operations all work with both the rectangular and the polar representation,
promoting real (double, int/bigint) inputs to complex where appropriate. When the result
of an operation is again a complex number, it generally uses the same representation as the
input (except for explicit conversions). Mixed rect/polar and polar/rect arithmetic always
returns a rect result, and mixed complex/real and real/complex arithmetic yields a rect or
polar result, depending on what the complex input was.

complex x
Convert any kind of number to a complex value.

polar z
rect z

Convert between polar and rectangular representations.

cis t
Create complex values on the unit circle. Note: To quickly compute exp (x+:y) in
polar form, use exp x <: y.

abs z
arg z

Modulus (absolute value) and argument (angle, a.k.a. phase). Note that you can also
find both of these in one go by converting to polar form.

re z
im z

Real and imaginary part.
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conj z
Complex conjugate.

Examples:

> using math;
> let z = 2^(1/i); z;
0.769238901363972+:-0.638961276313635
> let z = ln z/ln 2; z;
0.0+:-1.0
> abs z, arg z;
1.0,-1.5707963267949
> polar z;
1.0<:-1.5707963267949

Please note that, as the +: and <: constructors bind weaker than the other arithmetic opera-
tors, complex numbers must be parenthesized accordingly, e.g.:

> (1+:2)*(3+:4);
-5+:10

2.2.4 Rational Numbers

x % y
Exact division operator and rational number constructor.

Pure’s rational numbers are constructed with the exact division operator % (declared in the
prelude) which has the same precedence and fixity as the other division operators.

The % operator returns a rational or complex rational for any combination of integer, rational
and complex integer/rational arguments, provided that the denominator is nonzero (oth-
erwise it behaves like x div 0, which will raise an exception). Machine int operands are
always promoted to bigints, thus normalized rationals always take the form x%y where both
the numerator x and the denominator y are bigints. For other numeric operands % works
just like /. Rational results are normalized so that the sign is always in the numerator and
numerator and denominator are relatively prime. In particular, a rational zero is always
represented as 0L%1L.

The usual arithmetic operations and equality/order relations are extended accordingly, as
well as the basic math functions and the rounding functions, and will return exact (rational
or complex rational) results where appropriate. Rational operations are implemented using
the GMP bigint functions where possible, and thus are reasonably fast.

In addition, the module also provides following operations:

rational x
Converts a real or complex value x to a rational or complex rational. Note that the
conversion from double values doesn’t do any rounding, so it is guaranteed that con-
verting the resulting rational back to a double reconstructs the original value.
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Conversely, the int, bigint, double, complex, rect, polar and cis conversion func-
tions are overloaded so that they convert a rational to one of the other number types.

num x
den x

Numerator and denominator of a rational x.

Examples:

> using math;
> 5%7 + 2%3;
29L%21L
> 3%8 - 1%3;
1L%24L
> pow (11%10) 3;
1331L%1000L
> let x = pow 3 (-3); x;
1L%27L
> num x, den x;
1L,27L
> rational (3/4);
3L%4L

Note that doubles can’t represent most rationals exactly, so conversion from double to ratio-
nal will yield funny results in many cases (which are still accurate up to rounding errors).
For instance:

> let x = rational (1/17); x;
4238682002231055L%72057594037927936L
> num x/den x;
0.0588235294117647
> double (1%17);
0.0588235294117647

2.2.5 Semantic Number Predicates and Types

In difference to the syntactic predicates in Primitives, these check whether the given value
can be represented as an object of the given target type (up to rounding errors). Note that if x
is of syntactic type X, then it is also of semantic type X. Moreover, intvalp x => bigintvalp
x => ratvalp x => realvalp x => compvalp x <=> numberp x.

compvalp x
Check for complex values (this is the same as numberp).

realvalp x
Check for real values (im x==0).

ratvalp x
Check for rational values (same as realvalp, except that IEEE 754 infinities and NaNs
are excluded).
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bigintvalp x
Check for “big” integer values which can be represented as a bigint.

intvalp x
Check for “small” integer values which can be represented as a machine int.

type compval
type realval
type ratval
type bigintval
type intval

Convenience types for the above predicates. These can be used as type tags on the
left-hand side of an equation to match numeric values for which the corresponding
predicate yields true.

2.3 Enumerated Types

Enumerated types, or enumerations for short, are algebraic types consisting only of nullary
constructor symbols. The operations of this module equip such types with the necessary
function definitions so that the members of the type can be employed in arithmetic opera-
tions, comparisons, etc. in the same way as the predefined enumerated types such as integers
and characters. This also includes support for arithmetic sequences.

Please note that this module is not included in the prelude by default, so you have to use the
following import declaration to get access to its operations:

using enum;

The following operations are provided:

enum sym
The given symbol must denote an algebraic type consisting only of nonfix symbols.
enum adds the necessary rules for making members of the type work with enumerated
type operations such as ord, succ, pred, comparisons, basic arithmetic and arithmetic
sequences. It also defines sym as an ordinary function, called the enumeration function
of the type, which maps ordinal numbers to the corresponding members of the type
(sym 0 yields the first member of the type, sym 1 the second, etc.). The members of the
type are in the same order as given in the definition of the type.

defenum sym [symbols,...]
A convenience function which declares a type sym with the given elements and invokes
enum on it to make it enumerable in one go.

enumof sym
Given a member of an enumerated type as defined with enum, this returns the enu-
meration function of the type. Rules for this function are generated automatically by
enum.
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type enum
The type of all enumerated type members. This is actually implemented as an interface
type. It matches members of all enumerated types constructed with enum.

enump x
Predicate to check for enumerated type members.

For instance, consider:

nonfix sun mon tue wed thu fri sat;
type day sun | day mon | day tue | day wed | day thu | day fri | day sat;

Once the type is defined, we can turn it into an enumeration simply as follows:

enum day;

There’s also a convenience function defenumwhich defines the type and makes it enumerable
in one go:

defenum day [sun,mon,tue,wed,thu,fri,sat];

In particular, this sets up the functions day and ord so that you can convert between members
of the day type and the corresponding ordinals:

> ord sun;
0
> day (ans+3);
wed

You can also retrieve the type of an enumerated type member (or rather its enumeration
function) with enumof:

> enumof sun;
day
> ans 5;
fri

Basic arithmetic, comparisons and arithmetic sequences also work as usual, provided that
the involved members are all from the same enumeration:

> succ mon;
tue
> pred sat;
fri
> sun+3;
wed
> fri-2;
wed
> fri-tue;
3
> mon..fri;
[mon,tue,wed,thu,fri]
> sun:tue..sat;
[sun,tue,thu,sat]

308 2.3 Enumerated Types



Pure Language and Library Documentation, Release 0.62

> sat:fri..mon;
[sat,fri,thu,wed,tue,mon]

Note that given one member of the enumeration, you can use enumof to quickly enumerate
all members of the type starting at the given member. Here’s a little helper function which
does this:

enumerate x::enum = iterwhile (typep ty) succ x when ty = enumof x end;

For instance:

> enumerate sun;
[sun,mon,tue,wed,thu,fri,sat]

Also note that enum silently skips elements which are already enumerated type members (no
matter whether of the same or another type). Thus if you later add more elements to the day
type, you can just call enum again to update the enumeration accordingly:

> succ sat;
sat+1
> type day doomsday;
> enum day;
()
> succ sat;
doomsday

2.4 Container Types

The standard library provides a variety of efficient container data structures for different
purposes. These are all purely functional, i.e., immutable data structures implemented us-
ing different flavours of binary trees. This means that instead of modifying a data structure
in-place, operations like insertion and deletion return a new instance of the container, keep-
ing the previous instance intact. Nevertheless, all operations are performed efficiently, in
logarithmic time where possible.

The container types are all implemented as abstract data structures, so client modules
shouldn’t rely on the internal representation. Each type provides a corresponding type tag
(cf. Type Tags in the Pure Manual), as given in the description of each type, which can be
used to match values of the type, e.g.:

shift a::array = rmfirst a;

All container types implement the equality predicates == and ~= by recursively comparing
their members. In addition, the dictionary, set and bag data structures also provide the
other comparison predicates (<, <= etc.) which check whether one dictionary, set or bag is
contained in another.
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2.4.1 Arrays

The array.pure module implements an efficient functional array data structure which allows
to access and update individual array members, as well as to add and remove elements at
the beginning and end of an array. All these operations are carried out in logarithmic time.

type array
The array data type.

Imports

To use the operations of this module, add the following import declaration to your program:

using array;

Operations

emptyarray
return the empty array

array xs
create an array from a list xs

array2 xs
create a two-dimensional array from a list of lists

mkarray x n
create an array consisting of n x‘s

mkarray2 x (n,m)
create a two-dimensional array of n*m x‘s

arrayp x
check whether x is an array

# a
size of a

a ! i
return the ith member of a

a ! (i,j)
two-dimensional subscript

null a
test whether a is the empty array

members a
list a

list of values stored in a
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members2 a
list2 a

list of members in a two-dimensional array

first a
last a

first and last member of a

rmfirst a
rmlast a

remove first and last member from a

insert a x
insert x at the beginning of a

append a x
append x to the end of a

update a i x
replace the ith member of a by x

update2 a (i,j) x
update two-dimensional array

Examples

Import the module:

> using array;

A one-dimensional array:

> let a::array = array (0.0:0.1..1.0);
> #a; members a;
11
[0.0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0]

Indexing an array works in the usual way, using Pure’s ! operator. By virtue of the prelude,
slicing an array with !! also works as expected:

> a!5;
0.5
> a!!(3..7);
[0.3,0.4,0.5,0.6,0.7]

Updating a member of an array produces a new array:

> let b::array = update a 1 2.0;
> members b;
[0.0,2.0,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0]

Two-dimensional arrays can be created with array2 from a list of lists:
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> let a2::array = array2 [[i,x | x = [u,v,w]] | i = 1..2];
> members2 a2;
[[(1,u),(1,v),(1,w)],[(2,u),(2,v),(2,w)]]
> a2!(1,2);
2,w
> a2!![(0,1),(1,2)];
[(1,v),(2,w)]
> a2!!(0..1,1..2);
[[(1,v),(1,w)],[(2,v),(2,w)]]

Here’s how to convert an array to a Pure matrix:

> matrix $ members a;
{0.0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0}
> matrix $ members2 a2;
{(1,u),(1,v),(1,w);(2,u),(2,v),(2,w)}

Converting back from a matrix to an array:

> let b2::array = array2 $ list2 {(1,u),(1,v),(1,w);(2,u),(2,v),(2,w)};
> members2 b2;
[[(1,u),(1,v),(1,w)],[(2,u),(2,v),(2,w)]]

2.4.2 Heaps

Heaps are a kind of priority queue data structure which allows quick (constant time) access
to the smallest member, and to remove the smallest member and insert new elements in log-
arithmic time. Our implementation does not allow quick update of arbitrary heap members;
if such functionality is required, bags can be used instead (see Sets and Bags).

Heap members must be ordered by the <= predicate. Multiple instances of the same element
may be stored in a heap; however, the order in which equal elements are retrieved is not
specified.

type heap
The heap data type.

Imports

To use the operations of this module, add the following import declaration to your program:

using heap;

Operations

emptyheap
return the empty heap
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heap xs
create a heap from a list xs

heapp x
check whether x is a heap

# h
size of a heap

null h
test whether h is the empty heap

members h
list h

list the members of h in ascending order

first h
the first (i.e., smallest) member of h

rmfirst h
remove the first (i.e., smallest) member from h

insert h x
insert x into h

Examples

> let h::heap = heap [5,1,3,11,3];
> members h;
[1,3,3,5,11]
> first h;
1
> members $ rmfirst h;
[3,3,5,11]

2.4.3 Dictionaries

The dict.pure module provides Pure’s dictionary data types based on AVL trees. There are
actually four different types to choose from, depending on whether you need ordered or
hashed dictionaries and whether multiple values for the same key should be allowed or not.

type dict
An ordered dictionary. This assumes an ordered key type, i.e., the predicate < must be
defined on the keys.

type hdict
A hashed dictionary which works with any (mixture of) key types but stores members
in an apparently random order.
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type mdict
An ordered dictionary, like dict, which allows multiple values to be associated with
the same key.

type hmdict
A multi-valued dictionary, like mdict, but uses hashed keys like hdict.

type xdict
This is just an abstract supertype for matching any kind of dictionary provided by this
module.

mdict and hmdict are also colloquially referred to as (ordered or hashed) multidicts. This
implementation guarantees that different members for the same key are always kept in the
order in which they were inserted, and this is also the order in which they will be retrieved
by the members, keys, vals and indexing operations.

The usual comparison predicates (==, ~=, <=, < etc.) are defined on all dictionary types, where
two dictionaries are considered “equal” (d1==d2) if they both contain the same key=>value
pairs, and d1<=d2 means that d1 is a sub-dictionary of d2, i.e., all key=>value pairs of d1
are also contained in d2 (taking into account multiplicities in the multidict case). Ordered
dictionaries compare keys using equality (assuming two keys a and b to be equal if neither
a<b nor b<a holds), while hashed dictionaries check for syntactical equality (using ===). The
associated values are compared using the == predicate if it is defined, falling back to syntactic
equality otherwise.

The underlying AVL tree data structure can be found in the avltrees.pure module which is
included in the library, but not to be invoked directly.

The AVL tree algorithm has its origin in the SWI-Prolog implementation of association lists.
The original implementation was created by R. A. O’Keefe and updated for SWI-Prolog by
Jan Wielemaker. For the original source see http://www.swi-prolog.org.

The port from SWI-Prolog and the deletion stuff (rmfirst, rmlast, delete) missing in the
Prolog implementation was provided by Jiri Spitz. The generalization of the code to arbitrary
combinations of ordered/hashed and single-/multi-valued keys was done by Albert Graef.

Imports

To use the operations of this module, add the following import declaration to your program:

using dict;

Operations

emptydict
emptyhdict
emptymdict
emptyhmdict

return an empty dictionary
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dict xs
hdict xs
mdict xs
hmdict xs

create a dictionary of the corresponding type either from a list xs of key-value pairs
in the form key=>value, or from another dictionary; in the latter case the argument is
converted to a dictionary of the desired target type

dictp d
hdictp d
mdictp d
hmdictp d

check whether d is a dictionary of the corresponding type

mkdict y xs
mkhdict y xs
mkmdict y xs
mkhmdict y xs

create a dictionary from a list of keys and a constant value

d1 + d2
sum: d1+d2 adds the members of d2 to d1

d1 - d2
difference: d1-d2 removes the members of d2 from d1

d1 * d2
intersection: d1*d2 removes the members not in d2 from d1

# d
size of a dictionary (the number of members it contains)

d ! x
get the value from d by key x; in the case of a multidict this actually returns a list of
values (which may be empty if d doesn’t contain x)

null d
test whether d is an empty dictionary

member d x
test whether d contains a member with key x

members d
list d

list the members of d (in ascending order for ordered dictionaries)

keys d
list the keys of d (in ascending order for ordered dictionaries)

vals d
list the values of d

first d
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last d
return the first and the last member of d, respectively

rmfirst d
rmlast d

remove the first and the last member from d, respectively

insert d (x=>y)
update d x y

insert x=>y into d (this always adds a new member in a multidict, otherwise it replaces
an existing value if there is one); note that update is just a fully curried version of
insert, so update d x y behaves exactly like insert d (x=>y)

delete d x
remove x from d if present (in the multidict case, only the first member with the given
key x is removed)

delete_val d (x=>y)
remove a specific key-value pair x=>y from d if present (in the multidict case, only
the first instance of x=>y is removed); please also see the notes below regarding this
operation

delete_all d x
remove all instances of x from d (in the non-multidict case, this is just the same as
delete)

Note:

• The infix operators +, - and * work like the corresponding set and bag operations (see
Sets and Bags), treating dictionaries as collections of key=>val pairs. You can mix arbi-
trary operand types with these operations, as well as with the comparison operations;
the necessary conversions from less general dictionary types (ordered, single-valued)
to more general types (hashed, multi-valued) are handled automatically.

• The delete_val function compares values using equality (==) if it is defined, falling
back to syntactic equality (===) otherwise. If there is more than one instance of the
given value under the given key, the first such instance will be removed (which, if ==
is defined on the values, may be any instance that compares equal, not necessarily an
exact match).

• In the multidict case, delete_val may require linear time with respect to the number
of different values stored under the given key. Since this operation is also needed to
implement some other multidict operations like comparisons, difference and intersec-
tion, these may end up requiring quadratic running times in degenerate cases (i.e., if
the majority of members happens to be associated with only very few keys).

Examples

A normal (ordered) dictionary:
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> using dict;
> let d::dict = dict ["foo"=>77,"bar"=>99.1];
> keys d; vals d; members d;
["bar","foo"]
[99.1,77]
["bar"=>99.1,"foo"=>77]

Indexing a dictionary works in the usual way, using Pure’s ! operator. An out_of_bounds
exception is thrown if the key is not in the dictionary:

> d!"foo";
77
> d!"baz";
<stdin>, line 5: unhandled exception ’out_of_bounds’ while evaluating
’d!"baz"’

By virtue of the prelude, slicing a dictionary with !! also works as expected:

> d!!["foo","bar","baz"];
[77,99.1]

A hashed dictionary can be used with any key values, which are stored in a seemingly ran-
dom order:

> let h::hdict = hdict [foo=>77,42=>99.1];
> keys h; vals h; members h;
[42,foo]
[99.1,77]
[42=>99.1,foo=>77]
> h!foo;
77
> h!!keys h;
[99.1,77]

Multidicts work in pretty much the same fashion, but allow more than one value for a given
key to be stored in the dictionary. In this case, the indexing operation returns a list of all
values for the given key, which may be empty if the key is not in the dictionary (rather than
throwing an out_of_bounds exception):

> let d::mdict = mdict ["foo"=>77,"bar"=>99.1,"foo"=>99];
> d!"foo"; d!"baz";
[77,99]
[]

Slicing thus returns a list of lists of values here:

> d!!["foo","bar","baz"];
[[77,99],[99.1],[]]

To obtain a flat list you can just concatenate the results:

> cat $ d!!["foo","bar","baz"];
[77,99,99.1]
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Hashed multidicts provide both key hashing and multiple values per key:

> let h::hmdict = hmdict [foo=>77,42=>99.1,42=>77];
> keys h; vals h; members h;
[42,42,foo]
[99.1,77,77]
[42=>99.1,42=>77,foo=>77]
> h!42;
[99.1,77]

There are also some set-like operations which allow you to add/remove the members
(key=>val pairs) of one dictionary to/from another dictionary, and to compute the inter-
section of two dictionaries. For instance:

> let h1 = hmdict [a=>1,b=>2];
> let h2 = hmdict [b=>2,c=>3];
> members (h1+h2);
[a=>1,c=>3,b=>2,b=>2]
> members (h1-h2);
[a=>1]
> members (h1*h2);
[b=>2]

It’s possible to mix dictionaries of different types in these operations. The necessary conver-
sions are handled automatically:

> let h1 = hmdict [a=>1,b=>2];
> let h2 = hdict [b=>3,c=>4];
> members (h1+h2);
[a=>1,c=>4,b=>2,b=>3]

Note that the result will always be promoted to the most general operand type in such cases
(a hashed multidict in the above example). If this is not what you want, you’ll have to apply
the necessary conversions manually:

> members (hdict h1+h2);
[a=>1,c=>4,b=>3]

2.4.4 Sets and Bags

The set.pure module implements Pure’s set data types based on AVL trees. These work
pretty much like dictionaries (cf. Dictionaries) but only store keys (called “elements” or
“members” here) without any associated data values. Hence sets provide membership tests
like dictionaries, but no indexing operations.

There are four variations of this data structure to choose from, depending on whether the
set members are ordered or hashed, and whether multiple instances of the same element are
allowed (in this case the set is actually called a multiset or a bag).

type set
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type bag
These implement the ordered set types. They require that members be ordered, i.e., the
predicate < must be defined on them.

type hset
type hbag

These implement the hashed set types which don’t require an order of the members.
Distinct members are stored in an apparently random order.

type xset
This is just an abstract supertype for matching any kind of set or bag provided by this
module.

The usual comparison predicates (==, ~=, <=, < etc.) are defined on all set and bag types,
where two sets or bags are considered “equal” (m1==m2) if they both contain the same el-
ements, and m1<=m2 means that m1 is a subset or subbag of m2, i.e., all elements of m1 are
also contained in m2 (taking into account multiplicities in the multiset case). Ordered sets
and bags compare elements using equality (considering two elements a and b to be equal if
neither a<b nor b<a holds), while hashed sets and bags check for syntactical equality (using
===).

The underlying AVL tree data structure can be found in the avltrees.pure module which is
included in the library, but not to be invoked directly. The AVL tree algorithm has its origin
in the SWI-Prolog implementation of association lists and was ported to Pure by Jiri Spitz,
see Dictionaries for details.

Imports

To use the operations of this module, add the following import declaration to your program:

using set;

Operations

emptyset
emptybag
emptyhset
emptyhbag

return an empty set or bag

set xs
bag xs
hset xs
hbag xs

create a set or bag of the corresponding type from a list or another set or bag xs; in the
latter case the argument is converted to a set or bag of the desired target type

setp m
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bagp m
hsetp m
hbagp m

check whether m is a set or bag of the corresponding type

m1 + m2
union/sum: m1+m2 adds the members of m2 to m1

m1 - m2
difference: m1-m2 removes the members of m2 from m1

m1 * m2
intersection: m1*m2 removes the members not in m2 from m1

# m
size of a set or bag m

null m
test whether m is an empty set or bag

member m x
test whether m contains x

members m
list m

list the members of m (in ascending order for ordered sets and bags)

first m
last m

return the first and the last member of m, respectively

rmfirst m
rmlast m

remove the first and the last member from m, respectively

insert m x
insert x into m (replaces an existing element in the case of a set)

delete m x
remove x from m (in the bag case, only the first instance of x is removed)

delete_all m x
remove all instances of x from m (in the set case, this is just the same as delete)

Note: The infix operators (+, -, *, as well as the comparison operations) allow you to mix
arbitrary operand types; the necessary conversions from less general set types (ordered, set)
to more general types (hashed, multiset) are handled automatically.

Also note that in the case of sets, + is just the ordinary set union. There are basically two
generalizations of this operation to bags, multiset union and multiset sum; + implements
the latter. Thus, if a bag m1 contains k1 instances of an element x and a bag m2 contains k2
instances of x, then m1+m2 contains k1+k2 instances of x (rather than max k1 k2 instances,
which would be the case for multiset union). Multiset sum is probably more common in
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practical applications, and also generalizes easily to multidicts (see Dictionaries). However,
if multiset union is needed, it can easily be defined in terms of multiset sum as follows:

union m1 m2 = m1+(m2-m1);

Examples

Some basic set operations:

> let m::set = set [5,1,3,11,3];
> members m;
[1,3,5,11]
> map (member m) (1..5);
[1,0,1,0,1]
> members $ m+set (3..6);
[1,3,4,5,6,11]
> members $ m-set (3..6);
[1,11]
> members $ m*set (3..6);
[3,5]

The bag operations work in a similar fashion, but multiple instances are permitted in this
case, and each instance counts as a separate member:

> let m::bag = bag [5,1,3,11,3];
> members m;
[1,3,3,5,11]
> members $ delete m 3;
[1,3,5,11]
> members $ insert m 1;
[1,1,3,3,5,11]
> members $ m+bag (3..6);
[1,3,3,3,4,5,5,6,11]
> members $ m-bag (3..6);
[1,3,11]
> members $ m*bag (3..6);
[3,5]

As already mentioned, operands of different types can be mixed with the infix operators; the
necessary conversions are handled automatically. E.g., here’s how you add a set to a bag:

> let m1::bag = bag [5,1,3,11,3];
> let m2::set = set (3..6);
> members (m1+m2);
[1,3,3,3,4,5,5,6,11]

Note that the result will always be promoted to the most general operand type in such cases
(a bag in the above example). If this is not what you want, you’ll have to apply the necessary
conversions manually:
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> members (set m1+m2);
[1,3,4,5,6,11]

If set members aren’t ordered then you’ll get an exception when trying to create an ordered
set or bag from them:

> set [a,b,c];
<stdin>, line 5: unhandled exception ’failed_cond’ while evaluating
’set [a,b,c]’

In such a case hashed sets and bags must be used instead. These work analogously to the
ordered sets and bags, but distinct members are stored in an apparently random order:

> members $ hset [a,b,c] * hset [c,d,e];
[c]
> members $ hbag [a,b,c] + hbag [c,d,e];
[a,c,c,b,d,e]

2.5 System Interface

This module offers some useful system routines, straight from the C library, as well as some
convenience functions for wrapping these up in Pure. Even the “purest” program needs to
do some basic I/O every once in a while, and this module provides the necessary stuff to
do just that. The operations provided in this module should work (if necessary by a suit-
able emulation) on all supported systems. Most of the following functions are extensively
documented in the C library manual pages, so we concentrate on the Pure-specific aspects
here.

2.5.1 Imports

To use the operations of this module, add the following import declaration to your program:

using system;

Some functions of the system interface are provided in separate modules; see Regex Match-
ing, Additional POSIX Functions and Option Parsing.

2.5.2 Errno and Friends

errno
set_errno n
perror msg
strerror n

This value and the related routines are indispensable to give proper diagnostics when
system calls fail for some reason. Note that, by its very nature, errno is a fairly volatile
value, don’t expect it to survive a return to the command line in interactive sessions.
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Example:

> using system;
> fopen "junk" "r", perror "junk";
junk: No such file or directory
fopen "junk" "r"

2.5.3 POSIX Locale

setlocale category locale
Set or retrieve the current locale.

Details are platform-specific, but you can expect that at least the categories LC_ALL,
LC_COLLATE, LC_CTYPE, LC_MONETARY, LC_NUMERIC and LC_TIME are defined, as well as the
following values for the locale parameter: "C" or "POSIX" (the default POSIX locale), "" (the
system default locale), and NULL, to just query the current locale.

Other string values which can be passed as the locale argument depend on the implemen-
tation, please check your local setlocale(3) documentation for details. If locale is not NULL,
the current locale is changed accordingly. The return value is the new locale, or the current
locale when passing NULL for the locale parameter. In either case, the string returned by
setlocale is such that it can be passed to setlocale to restore the same locale again. In case
of an error, setlocale fails (rather than returning a null pointer).

Please note that calling this function alters the Pure interpreter’s idea of what the current
locale is. When the interpreter starts up, it always sets the default system locale. Unless
your scripts rely on a specific encoding, setting the locale to either "C" or "" should always
be safe.

Example:

> setlocale LC_ALL NULL;
"en_US.UTF-8"

2.5.4 Signal Handling

trap action sig
Establish or remove Pure signal handlers.

The action parameter of trap can be one of the predefined integer values SIG_TRAP, SIG_IGN
and SIG_DFL. SIG_TRAP causes the given signal to be handled by mapping it to a Pure ex-
ception of the form signal sig. SIG_IGN ignores the signal, SIG_DFL reverts to the system’s
default handling. See show -g SIG* for a list of known signal values on your system.

Note: When the interpreter runs interactively, most standard termination signals (SIGINT,
SIGTERM, etc.) are already set up to report corresponding Pure exceptions; if this is not de-
sired, you can use trap to either ignore these or revert to the default handlers instead.

See Exception Handling in the Pure Manual for details and examples.
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2.5.5 Time Functions

The usual date/time functions from the C library are all provided. This includes some func-
tions to retrieve wallclock and cpu time which usually offer much better resolution than the
venerable time function.

time
Reports the current time in seconds since the epoch, 00:00:00 UTC, Jan 1 1970. The
result is always a bigint (in fact, the time value is already 64 bit on many OSes nowa-
days).

gettimeofday
Returns wallclock time as seconds since the epoch, like time, but theoretically offers
resolutions in the microsec range (actual resolutions vary, but are usually in the msec
range for contemporary systems). The result is returned as a double value (which also
limits precision). This function may actually be implemented through different system
calls, depending on what’s available on the host OS.

clock
Returns the current CPU (not wallclock) time since an arbitrary point in the past, as a
machine int. The number of “ticks” per second is given by the CLOCKS_PER_SEC con-
stant. Note that this value will wrap around approximately every 72 minutes.

sleep t
nanosleep t

Suspend execution for a given time interval in seconds. sleep takes integer (int/bigint)
arguments only and uses the sleep() system function. nanosleep also accepts double
arguments and theoretically supports resolutions down to 1 nanosecond (again, actual
resolutions vary). This function may actually be implemented through different sys-
tem calls, depending on what’s available on the host OS. Both functions usually return
zero, unless the sleep was interrupted by a signal, in which case the time remaining to
be slept is returned.

Examples:

> time,sleep 1,time;
1270241703L,0,1270241704L
> gettimeofday,nanosleep 0.1,gettimeofday;
1270241709.06338,0.0,1270241709.16341

Here’s a little macro which lets you time evaluations:

def timex x = y,(t2-t1)/CLOCKS_PER_SEC when
t1 = clock; y = x; t2 = clock;

end;

Example:

> timex (foldl (+) 0 (1..100000));
705082704,0.07
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tzset
Initialize timezone information.

variable tzname
variable timezone
variable daylight

The timezone information.

The tzset function calls the corresponding routine from the C library and initializes the
(Pure) variables tzname, timezone and daylight accordingly. See the tzset(3) manual page
for details. This routine is also called automatically when the system module is loaded, so
you only have to invoke it to get up-to-date information after changes to the locale or the
timezone. Example:

> tzset;
()
> tzname, timezone, daylight;
["CET","CEST"],-3600,1
> tzname!daylight;
"CEST"

The following functions deal with date/time values in string and “broken-down” time for-
mat. See the ctime(3), gmtime(3), localtime(3), mktime(3), asctime(3), strftime(3) and strp-
time(3) manual pages for details.

ctime t
Convert a time value as returned by the time function to a string in local time.

gmtime t
localtime t

Convert a time value to UTC or local time in “broken-down” form (a static pointer to
a tm struct containing a bunch of int fields) which can then be passed to the asctime
and strftime functions, or to int_matrix if you want to convert the data to a matrix;
see the example below.

mktime tm
Converts broken-down time to a time value (seconds since the epoch). As with time,
the result is always a bigint.

asctime tm
strftime format tm

Format broken-down time as a string. strftime also uses a format string supplied by
the user, see below for a list of the most important conversion specifiers.

strptime s format tm
Parse a date/time string s according to the given format (using more or less the same
format specifiers as the strftime function) and store the broken-down time result in
the given tm struct. This function may fail, e.g., if strptime finds an error in the format
string. Otherwise it returns the part of the string which wasn’t processed, see the
example below.

Examples:
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> let t = time; t;
1270239790L
> let tm = localtime t; tm;
#<pointer 0x7ff97ecbdde0>
> mktime tm;
1270239790L
> asctime tm;
"Fri Apr 2 22:23:10 2010\n"
> int_matrix 9 tm;
{10,23,22,2,3,110,5,91,1}
> strftime "%c" tm;
"Fri 02 Apr 2010 10:23:10 PM CEST"
> strptime ans "%c" tm, int_matrix 9 tm;
"CEST",{10,23,22,2,3,110,5,91,1}

In the above example, strptime was given a static pointer to a tm struct returned by
localtime. This always works, but in some situations it may be preferable to allocate dy-
namic storage instead. This storage should be properly initialized (zeroed out) before pass-
ing it to strptime, since strptime only stores the values specified (at least in principle; please
consult your local C library documentation for details). Also note that while POSIX only
specifies nine int fields in a tm struct, depending on the host operating system the struct
may contain additional public and private fields. The actual size of a tm struct is given by
the SIZEOF_TM constant, so a safe way to allocate suitable dynamic storage for the strptime
function is as follows:

> let tm = pointer_cast "int*" $ calloc 1 SIZEOF_TM;
> strptime "4/2/10" "%D" tm, int_matrix 9 tm;
"",{0,0,0,2,3,110,5,91,0}

Instead of explicitly allocating dynamic storage and converting it to a Pure matrix later, you
can also invoke strptime directly with an int matrix of sufficient size:

> let tm = imatrix (SIZEOF_TM div SIZEOF_INT + 1);
> strptime "4/2/10" "%D" tm, take 9 tm;
"",{0,0,0,2,3,110,5,91,0}

Last but not least, to make calling strptime more convenient, you can supply your own little
wrapper function which takes care of allocating the storage, e.g.:

mystrptime s format = s,take 9 tm when
tm = imatrix (SIZEOF_TM div SIZEOF_INT + 1);
s = strptime s format tm;

end;

> mystrptime "4/2/10" "%D";
"",{0,0,0,2,3,110,5,91,0}

Here is a list of some common format specifiers which can be used with the strftime and
strptime routines. These are all specified by POSIX and should thus be available on most
platforms. Note that many more formats are usually supported than what is listed here, so
please consult your local manual pages for the complete list.
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• %d, %m, %y: Day of the month, month and year as decimal two-digit numbers.

• %Y: The year as a four-digit number which includes the century.

• %H, %M, %S: Hours (range 00 to 23), minutes and seconds as decimal two-digit numbers.

• %I: The hours on a 12-hour clock (range 01 to 12).

The following formats are locale-dependent:

• %a, %A: Abbreviated and full weekday name.

• %b, %B: Abbreviated and full month name.

• %p: AM or PM. %P is the same in lowercase (strftime only).

There are also some useful meta-formats which specify various combinations of the above:

• %c: The preferred date and time representation for the current locale.

• %D: The American date format (%m/%d/%y).

• %F: The ISO 8601 date format (%Y-%m-%d). (This is generally supported by strftime
only, but strptime from GNU libc has it.)

• %r: The time in AM/PM notation (%I:%M:%S %p).

• %R: The time in 24-hour notation (%H:%M).

• %T: The time in 24-hour notation, including seconds (%H:%M:%S).

In addition, %% denotes a literal % character, %n newlines and %t tabs. (For strptime the latter
two are synonymous and match arbitrary whitespace.)

Windows users should note that strptime isn’t natively supported there. A basic emulation
is provided by the Pure runtime, but at present this only supports the C locale.

2.5.6 Process Functions

The following process functions are available on all systems. (Some additional process-
related functions such as fork, kill, wait and waitpid are available in the posix module,
see Additional POSIX Functions.)

system cmd
Execute a shell command.

execv prog argv
execvp prog argv
execve prog argv envp

Execute a new process. prog denotes the name of the executable to be run, argv the
argument vector (which repeats the program name in the first component), and envp
a vector of environment strings of the form "var=value". The execv function executes
the program prog exactly as given, while execvp also performs a path search. The
execve function is like execv, but also specifies an environment to be passed to the
process. In either case, the new process replaces the current process. For convenience,
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both argv and envp can be specified as a Pure string vector or a list, which is automat-
ically translated to the raw, NULL-terminated C string vectors (i.e., char**) required by
the underlying C functions.

spawnv mode prog argv
spawnvp mode prog argv
spawnve mode prog argv envp

Spawn a new child process. These work like the corresponding MS Windows func-
tions; on Un*x systems this functionality is implemented using a combination of fork
and execv. The arguments are the same as for the execv functions, except that there’s
an additional mode argument which specifies how the process is to be executed: P_WAIT
waits for the process to finish, after which spawnv returns with the exit status of the
terminated child process; P_NOWAIT makes spawnv return immediately, returning the
process id; and P_OVERLAY causes the child process to replace its parent, just like with
execv. (On Windows, there’s an additional P_DETACH flag which works like P_NOWAIT
but also turns the child process into a background task.)

Note that, in addition, the prelude provides the exit function which terminates the program
with a given exit code, cf. Other Special Primitives.

Examples:

> system "pwd";
/home/ag/svn/pure-lang/trunk/pure/lib
0
> spawnvp P_WAIT "pwd" ["pwd"];
/home/ag/svn/pure-lang/trunk/pure/lib
0
> spawnv P_WAIT "/bin/sh" ["/bin/sh","-c","pwd"];
/home/ag/svn/pure-lang/trunk/pure/lib
0

2.5.7 Basic I/O Interface

Note that this module also defines the standard I/O streams stdin, stdout and stderr as
variables on startup. These are ready to be used with the operations described below. Also
note that for convenience some of the following routines are actually Pure wrappers, rather
than just providing the raw C library routines.

variable stdin
variable stdout
variable stderr

The standard I/O streams.

fopen name mode
popen cmd mode

Open a file or a pipe. These take care of closing a file object automagically when it’s
garbage-collected, and fail (instead of returning a null pointer) in case of error, so that
you can provide any desired error handling simply by adding suitable equations.
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fdopen fd mode
Associates a file object with a given existing file descriptor. Otherwise works like
fopen, so the resulting file is closed automatically when it’s garbage-collected.

freopen path mode fp
Reopens a file object. The existing file object is closed. Otherwise works like fopen, so
the resulting file is closed automatically when it’s garbage-collected.

fclose fp
pclose fp

Close a file or a pipe.

tmpfile
Creates a unique temporary file (opened in "w+b" mode) which gets deleted automati-
cally when it is closed or the file object gets garbage-collected.

feof fp
ferror fp
clearerr fp

Check the end-of-file and error bits. clearerr clears the error bit.

fileno fp
Returns the file descriptor associated with the given file.

fflush fp
Flushes the given file (or all open files if fp is NULL).

fgets fp
gets

Pure wrappers for the C fgets and gets functions which handle the necessary buffer-
ing automatically.

fget fp
A variation of fgets which slurps in an entire text file at once.

fputs s fp
puts s

Output a string to the given file or stdout, respectively. These are just the plain C
functions. Note that puts automatically adds a newline, while fputs doesn’t. Hmm.

fread ptr size nmemb fp
fwrite ptr size nmemb fp

Binary read/writes. Here you’ll have to manage the buffers yourself. See the corre-
sponding manual pages for details.

fseek fp offset whence
ftell fp
rewind fp

Reposition the file pointer and retrieve its current value. The constants SEEK_SET,
SEEK_CUR and SEEK_END can be used for the whence argument of fseek. The call rewind
fp is equivalent to fseek fp 0 SEEK_SET (except that the latter also returns a result
code). See the corresponding manual pages for details.
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setbuf fp buf
setvbuf fp buf mode size

Set the buffering of a file object, given as the first argument. The second argument
specifies the buffer, which must be a pointer to suitably allocated memory or NULL.
The mode argument of setvbuf specifies the buffering mode, which may be one of the
predefined constants _IONBF, _IOLBF and _IOFBF denoting no buffering, line buffering
and full (a.k.a. block) buffering, respectively; the size argument denotes the buffer
size.

For setbuf, the given buffer must be able to hold BUFSIZ characters, where BUFSIZ is a
constant defined by this module. setbuf fp buf is actually equivalent to the following
call (except that setvbuf also returns an integer return value):

setvbuf fp buf (if null buf then _IONBF else _IOFBF) BUFSIZ

Please see the setbuf(3) manual page for details.

Examples:

> puts "Hello, world!";
Hello, world!
14

> map fileno [stdin,stdout,stderr];
[0,1,2]

> let fp = fopen "/etc/passwd" "r";
> fgets fp;
"at:x:25:25:Batch jobs daemon:/var/spool/atjobs:/bin/bash\n"
> fgets fp;
"avahi:x:103:104:User for Avahi:/var/run/avahi-daemon:/bin/false\n"
> ftell fp;
121L
> rewind fp;
()
> fgets fp;
"at:x:25:25:Batch jobs daemon:/var/spool/atjobs:/bin/bash\n"

> split "\n" $ fget $ popen "ls *.pure" "r";
["array.pure","dict.pure","getopt.pure","heap.pure","math.pure",
"matrices.pure","prelude.pure","primitives.pure","quasiquote.pure",
"set.pure","strings.pure","system.pure",""]

C-style formatted I/O is provided through the following wrappers for the C printf and
scanf functions. These wrapper functions take or return a tuple of values and are fully type-
safe, so they should never segfault. All basic formats derived from %cdioux, %efg, %s and
%p are supported, albeit without the standard length modifiers such as h and l, which aren’t
of much use in Pure. (However, in addition to C printf and scanf, the Pure versions also
support the modifiers Z and R of the GMP and MPFR libraries, which are used for converting
multiprecision integer and floating point values, as shown in the examples below.)

printf format args
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fprintf fp format args
Print a formatted string to stdout or the given file, respectively. Normally, these func-
tions return the result of the underlying C routines (number of characters written, or
negative on error). However, in case of an abnormal condition in the wrapper func-
tion, such as argument mismatch, they will throw an exception. (In particular, an
out_of_bounds exception will be thrown if there are not enough arguments for the
given format string.)

sprintf format args
Print a formatted string to a buffer and return the result as a string. Note that, un-
like the C routine, the Pure version just returns the string result in the case of success;
otherwise, the error handling is the same as with printf and fprintf. The implemen-
tation actually uses the C routine snprintf for safety, and a suitable output buffer is
provided automatically.

scanf format
fscanf fp format

Read formatted input from stdin or the given file, respectively. These normally return
a tuple (or singleton) with the converted values. An exception of the form scanf_error
ret, where ret is the tuple of successfully converted values (which may be less than
the number of requested input items), is thrown if end-of-file was met or another error
occurred while still reading. The handling of other abnormal conditions is analogous
to printf et al. Also note that this implementation doesn’t accept any of the standard
length modifiers; in particular, floating point values will always be read in double pre-
cision and you just specify e, g etc. for these. The “assignment suppression” flag * is
understood, however; the corresponding items will not be returned.

sscanf s format
This works exactly like fscanf, but input comes from a string (first argument) rather
than a file.

Examples:

> do (printf "%s%d\n") [("foo",5),("catch",22)];
foo5
catch22
()
> sscanf "foo 5 22" "%s %d %g";
"foo",5,22.0

As mentioned above, special argument formats are provided for bigints and multiprecision
floats:

> sscanf "a(5) = 1234" "a(%d) = %Zd";
5,1234L
> sprintf "a(%d) = %Zd" ans;
"a(5) = 1234"

> using mpfr;
> mpfr_set_default_prec 113;
()
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> printf "pi = %0.30Rg\n" (4*atan (mpfr 1));
pi = 3.14159265358979323846264338328
37

There are a number of other options for these conversions, please check the GMP and MPFR
documentation for details.

Note: In contrast to bigints, multiprecision floats aren’t directly supported by the Pure
language. If you would like to use these numbers, you’ll have to install the mpfr addon
module which is not included in the standard library yet. Also note that, at the time of this
writing, MPFR only provides formatted output, so multiprecision floats are not supported
by the scanf functions. To work around this limitation, it is possible to read the number as
a string and then convert it using the mpfr function.

2.5.8 Stat and Friends

stat path
Return information about the given file. This is a simple wrapper around the corre-
sponding system call, see the stat(2) manual page for details. The function returns a
tuple with the most important fields from the stat structure, in this order: st_dev,
st_ino, st_mode, st_nlink, st_uid, st_gid, st_rdev, st_size, st_atime, st_mtime,
st_ctime. Among these, st_mode, st_nlink, st_uid and st_gid are simple machine
integers, the rest is encoded as bigints (even on 32 bit platforms).

lstat path
Return information about the given symbolic link (rather than the file it points to). On
systems where this function isn’t supported (e.g., Windows), lstat is identical to stat.

fstat fp
Return information about the given file object. Same as stat, but here the file is given
as a file pointer created with fopen (see Basic I/O Interface above). Note that the corre-
sponding system function actually takes a file descriptor, so the Pure implementation
is equivalent to the C call fstat(fileno(fp)). This function might not be supported
on all platforms.

For average applications, the most interesting fields are st_mode and st_size, which can
be retrieved with stat filename!![2,7]. Note that to facilitate access to the st_mode field,
the usual masks and bits for file types (S_IFMT, S_IFREG, etc.) and permissions (S_ISUID,
S_ISGID, S_IRWXU, etc.) are defined as constants by this module. Use the command show -g
S_* in the interpreter to get a full list of these. Other interesting fields are st_atime, st_mtime
and st_ctime, which can be accessed using stat filename!!(8..10). The values of these
fields are the times of last access, last modification and creation, respectively, which can be
decoded using the appropriate time functions like ctime or strftime, see Time Functions.

Examples:
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> stat "/etc/passwd";
64773L,9726294L,33188,1,0,0,0L,1623L,1250373163L,1242692339L,1242692339L
> stat "/etc/passwd"!7; // file size
1623L
> strftime "%c" $ localtime $ stat "/etc/passwd"!10; // creation time
"Tue 19 May 2009 02:18:59 AM CEST"
> sprintf "0%o" $ stat "/etc/passwd"!2 and not S_IFMT; // permissions
"0644"
> stat "/etc/passwd"!2 and S_IFMT == S_IFREG; // this is a regular file
1
> stat "/etc"!2 and S_IFMT == S_IFDIR; // this is a directory
1

2.5.9 Reading Directories

readdir name
Read the contents of the given directory and return the names of all its entries as a list.

Example:

> readdir "/home";
["ag",".",".."]

2.5.10 Shell Globbing

fnmatch pat s flags
Returns a simple truth value (1 if pat matches s, 0 if it doesn’t), instead of an error code
like the C function.

glob pat flags
Returns a Pure list with the matches (unless there is an error in which case the integer
result code of the underlying C routine is returned).

The available flag values and glob error codes are available as symbolic FNM_* and GLOB_*
constants defined as variables in the global environment. See the fnmatch(3) and glob(3)
manpages for the meaning of these.

Example:

> glob "*.pure" 0;
["array.pure","dict.pure","getopt.pure","heap.pure","math.pure",
"matrices.pure","prelude.pure","primitives.pure","set.pure",
"strings.pure","system.pure"]

2.5.11 Regex Matching

Please note that, as of Pure 0.48, this part of the system interface is not included in the system
module any more, but is provided as a separate regex module which can be used indepen-
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dently of the system module. To use the operations of this module, add the following import
declaration to your program:

using regex;

Since the POSIX regex functions (regcomp and regexec) have a somewhat difficult calling
sequence, this module provides a couple of rather elaborate high-level wrapper functions
for use in Pure programs. These are implemented in terms of a low-level interface provided
in the runtime. (The low-level interface isn’t documented here, but these functions are also
callable if you want to create your own regular expression engines in Pure. You might wish
to take a look at the implementation of the high-level functions in regex.pure to see how this
can be done.)

regex pat cflags s eflags
Compiles and matches a regex in one go, and returns the list of submatches (if any).

Parameters

• pat (string) – the regular expression pattern

• cflags (int) – the compilation flags (bitwise or of any of the flags ac-
cepted by regcomp(3))

• s (string) – the subject string to be matched

• eflags (int) – the matching execution flags (bitwise or of any of the
flags accepted by regexec(3))

Symbolic REG_* constants are provided for the different flag values, see the regcomp(3) man-
page for an explanation of these. Two particularly important compilation flags (to be in-
cluded in the cflags argument) are REG_NOSUB, which prevents submatches to be computed,
and REG_EXTENDED, which switches regex from “basic” to “extended” regular expressions so
that it understands all the regular expression elements of egrep(1) in the pattern argument.

Depending on the flags and the outcome of the operation, the result of this function can take
one of the following forms:

• regerr code msg: This indicates an error during compilation of the pattern (e.g., if
there was a syntax error in the pattern). code is the nonzero integer code returned by
regcomp, and msg is the corresponding error message string, as returned by regerror.
You can redefine the regerr function as appropriate for your application (e.g., if you’d
like to print an error message or throw an exception).

• 0 or 1: Just a truth value indicates whether the pattern matched or not. This will be the
form of the result if the REG_NOSUB flag was specified for compilation, indicating that
no submatch information is to be computed.

• 0 (indicating no match), or 1 (indicating a successful match), where the latter value is
followed by a tuple of (pos,substr) pairs for each submatch. This will be the form of
the result only if the REG_NOSUB flag was not specified for compilation, so that submatch
information is available.
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Note that, according to POSIX semantics, a return value of 1 does not generally mean that
the entire subject string was matched, unless you explicitly tie the pattern to the beginning
(^) and end ($) of the string.

If the result takes the latter form, each (pos,substr) pair indicates a portion of the sub-
ject string which was matched; pos is the position at which the match starts, and substr is
the substring (starting at position pos) which was matched. The first (pos,substr) pair al-
ways indicates which portion of the string was matched by the entire pattern, the remaining
pairs represent submatches for the parenthesized subpatterns of the pattern, as described on
the regcomp(3) manual page. Note that some submatches may be empty (if they matched
the empty string), in which case a pair (pos,"") indicates the (nonnegative) position pos
where the subpattern matched the empty string. Other submatches may not participate in
the match at all, in which case the pair (-1,"") is returned.

The following helper functions are provided to analyze the result returned by regex.

reg_result res
Returns the result of a regex call, i.e., a regerr term if compilation failed, and a flag
indicating whether the match was successful otherwise.

reg_info res
Returns the submatch info if any, otherwise it returns ().

reg n info
Returns the nth submatch of the given submatch info, where info is the result of a
reg_info call.

regs info
Returns all valid submatches, i.e., the list of all triples (n,p,s) for which reg n ==
(p,s) with p>=0.

In addition, the following convenience functions are provided to perform global regex
searches, to perform substitutions, and to tokenize a string according to a given delimiter
regex.

regexg f pat cflags s eflags
Perform a global regular expression search. This routine will scan the entire string for
(non-overlapping) instances of the pattern, applies the given function f to the reg_info
for each match, and collects all results in a list. Note: Never specify the REG_NOSUB flag
with this function, it needs the submatch info.

regexgg f pat cflags s eflags
This works like regexg, but allows overlapping matches.

regsub f pat cflags s eflags
Replaces all non-overlapping instances of a pattern with a computed substitution
string. To these ends, the given function f is applied to the reg_info for each match.
The result string is then obtained by concatenating f info for all matches, with the
unmatched portions of the string in between. To make this work, f must always return
a string value; otherwise, regsub throws a bad_string_value exception.
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regsplit pat cflags s eflags
Splits a string into constituents delimited by substrings matching the given pattern.

Please note that these operations all operate in an eager fashion, i.e., they process the entire
input string in one go. This may be unwieldy or at least inefficient for huge amounts of text.
As a remedy, the following lazy alternatives are available:

regexgs f pat cflags s eflags
regexggs f pat cflags s eflags
regsplits pat cflags s eflags

These work like regexg, regexgg and regsplit above, but return a stream result which
enables you to process the matches one by one, using “call by need” evaluation.

Basic Examples

Let’s have a look at some simple examples:

> let pat = "[[:alpha:]][[:alnum:]]*";
> let s = "1var foo 99 BAR $%&";

Simple match:

> regex pat 0 s 0;
1,1,"var"

Same without match info:

> regex pat REG_NOSUB s 0;
1

Global match, return the list of all matches:

> regexg id pat 0 s 0;
[(1,"var"),(5,"foo"),(12,"BAR")]

Same with overlapping matches:

> regexgg id pat 0 s 0;
[(1,"var"),(2,"ar"),(3,"r"),(5,"foo"),(6,"oo"),(7,"o"),(12,"BAR"),
(13,"AR"),(14,"R")]

Note that id (the identity function) in the examples above can be replaced with an arbitrary
function which processes the matches. For instance, if we only want the matched strings
instead of the full match info:

> regexg (!1) pat 0 s 0;
["var","foo","BAR"]

Lazy versions of both regexg and regexgg are provided which return the result as a stream
instead. These can be processed in a “call by need” fashion:
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> regexgs id pat 0 s 0;
(1,"var"):#<thunk 0x7fb1b7976750>
> last ans;
12,"BAR"

Let’s verify that the processing is really done lazily:

> using system;
> test x = printf "got: %s\n" (str x) $$ x;
> let xs = regexgs test pat 0 s 0;
got: 1,"var"
> xs!1;
got: 5,"foo"
5,"foo"
> last xs;
got: 12,"BAR"
12,"BAR"

As you can see, the first match is produced immediately, while the remaining matches are
processed as the result stream is traversed. This is most useful if you have to deal with
bigger amounts of text. By processing the result stream in a piecemeal fashion, you can
avoid keeping the entire result list in memory. For instance, compare the following:

> let s2 = fget $ fopen "system.pure" "r";
> stats -m
> #regexg id pat 0 s2 0;
7977
0.18s, 55847 cells
> #regexgs id pat 0 s2 0;
7977
0.12s, 20 cells

Regex Substitutions and Splitting

We can also perform substitutions on matches:

> regsub (sprintf "<%d:%s>") pat 0 s 0;
"1<1:var> <5:foo> 99 <12:BAR> $%&"

Or split a string using a delimiter pattern (this uses an egrep pattern):

> let delim = "[[:space:]]+";
> regsplit delim REG_EXTENDED s 0;
["1var","foo","99","BAR","$%&"]
> regsplit delim REG_EXTENDED "The quick brown fox" 0;
["The","quick","brown","fox"]

The regsplit operation also has a lazy variation:

> regsplits "[[:space:]]+" REG_EXTENDED "The quick brown fox" 0;
"The":#<thunk 0x7fb1b79775b0>
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> last ans;
"fox"

Empty Matches

Empty matches are permitted, too, subject to the constraint that at most one match is re-
ported for each position (which also prevents looping). And of course an empty match will
only be reported if nothing else matches. For instance:

> regexg id "" REG_EXTENDED "foo" 0;
[(0,""),(1,""),(2,""),(3,"")]
> regexg id "o*" REG_EXTENDED "foo" 0;
[(0,""),(1,"oo"),(3,"")]
> regexgg id "o*" REG_EXTENDED "foo" 0;
[(0,""),(1,"oo"),(2,"o"),(3,"")]

This also works when substituting or splitting:

> regsub (cst " ") "" REG_EXTENDED "some text" 0;
" s o m e t e x t "
> regsub (cst " ") " ?" REG_EXTENDED "some text" 0;
" s o m e t e x t "
> regsplit "" REG_EXTENDED "some text" 0;
["","s","o","m","e"," ","t","e","x","t",""]
> regsplit " ?" REG_EXTENDED "some text" 0;
["","s","o","m","e","","t","e","x","t",""]

Submatches

Parenthesized subexpressions in a pattern yield corresponding submatch information,
which is useful if we need to retrieve the text matched by a given subexpression. For in-
stance, suppose we want to parse environment lines, such as those returned by the shell’s
set command. These can be dissected using the following regex:

> const env_pat = "^([^=]+)=(.*)$";
> const env_flags = REG_EXTENDED or REG_NEWLINE;
> regex env_pat env_flags "SHELL=/bin/sh" 0;
1,0,"SHELL=/bin/sh",0,"SHELL",6,"/bin/sh"

Note that we again used an extended regex here, and we also added the REG_NEWLINE flag
so that we properly deal with multiline input. The desired information is in the 4th and 6th
element of the submatch info, we can retrieve that as follows:

> parse_env s = regexg (\info -> info!3 => info!5) env_pat env_flags s 0;
> parse_env "SHELL=/bin/sh\nHOME=/home/bar\n";
["SHELL"=>"/bin/sh","HOME"=>"/home/bar"]

We can get hold of the real process environment as follows:
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> using system;
> let env = parse_env $ fget $ popen "set" "r";
> #env;
109
> head env;
"BASH"=>"/usr/bin/sh"

Just for the fun of it, let’s convert this to a record, providing easy random access to the
environment variables:

> let env = record env;
> env!!["SHELL","HOME"];
{"/bin/bash","/home/ag"}

2.5.12 Additional POSIX Functions

Platforms: Mac, Unix The posix module provides some additional POSIX functions not avail-
able on all supported systems. (In particular, none of these functions are provided on MS
Windows.) You can load this module in addition to the system module if you need the
additional functionality. To use the operations of this module, add the following import
declaration to your program:

using posix;

The following operations are provided. Please see the appropriate POSIX manual pages for
a closer description of these functions.

fork
Fork a new process.

getpid
getppid

Get the process id of the current process and its parent process, respectively.

wait status
waitpid pid status options

Wait for any child process, or the given one. The status argument must be a pointer
to an int value, which is used to return the status of the child process.

kill pid sig
Send the given signal to the given process.

raise sig
Raise the given signal in the current process.

pause
Sleep until a signal is caught.
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2.5.13 Option Parsing

This is a quick-and-dirty replacement for the GNU getopt functions, ported from the Q li-
brary. To use the operations of this module, add the following import declaration to your
program:

using getopt;

The following operation is provided:

getopt opts args
Parse options as given by opts in the command line arguments args, return the parsed
options along with a list of the remaining (non-option) command line arguments.

The getopt function takes two arguments: opts, a list of option descriptions in the format
described below, and args, a list of strings containing the command line parameters to be
parsed for options. The result is a pair (opts_return,args_return) where opts_return
is a list of options and their values, and args_return is the list of remaining (non-option)
arguments. Options are parsed using the rules of GNU getopt(1). If an invalid option is
encountered (unrecognized option, missing or extra argument, etc.), getopt throws the of-
fending option string as an exception.

The opts_return value is a list of “hash pairs” opt=>val where opt is the (long) option
name (as given by the long_opt field given in the opts argument, see below) and val is the
corresponding value (() if none). Note that this format is ready to be passed to the dict or
hdict function, cf. Dictionaries, which makes it easy to retrieve option values or check for
the presence of options. (As of Pure 0.41, you can also just convert the list to a record and
employ the record functions to access the option data, cf. Record Functions.)

The opts argument of getopt must be a list of triples (long_opt, short_opt, flag), where
long_opt denotes the long option, short_opt the equivalent short option, and flag is one
of the symbolic integer values NOARG, OPTARG and REQARG which specifies whether the op-
tion has no argument, an optional argument or a required argument, respectively. Either
long_opt or short_opt should be a string value of the form "--abc" or "-x", respectively.
Note that since the long_opt value is always used to denote the corresponding option in the
opts_return list, you always have to specify a sensible value for that field. If no separate
long option name is needed, you can specify the same value as in the short_opt field, or
some other convenient value (e.g., an integer) which designates the option. Conversely, to
indicate that an option has no short option equivalent, simply specify an empty option string
for the short_opt field.

Examples:

> let opts = [("--help", "-h", NOARG), // no argument
> ("--version", "", NOARG), // no short option
> ("--filename", "-f", REQARG), // required argument
> ("--count", "-n", OPTARG)]; // optional argument
> getopt opts ["foo", "-h", "--filename", "bar", "-n0", "baz"];
["--help"=>(),"--filename"=>"bar","--count"=>"0"],["foo","baz"]
> catch invalid_option $ getopt opts ["-h","-v"];
invalid_option "-v"
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> getopt opts [foo, "-h", bar];
["--help"=>()],[foo,bar]

As the last example shows, non-option arguments (as well as option values specified as
separate arguments) can actually be any values which are just copied to the result lists as is.
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Chapter 3
pure-avahi: Pure Avahi Interface

Version 0.3, September 17, 2014

Albert Gräf <aggraef@gmail.com>

This is a simple interface to Avahi, a Zeroconf implementation for Linux and other Un*x
systems. The module lets you publish and query Zeroconf network services using Avahi,
allowing you to establish connections for various kinds of TCP and UDP network services
without having to manually configure network addresses. It is typically used along with the
sockets module which lets you create the network connections discovered with avahi.

To keep things simple and easy to use, the module only exposes the most essential function-
ality of Ahavi right now, but the provided functions should hopefully be sufficient for most
programs which require interoperability with other Avahi or Apple Bonjour applications.
One known limitation is that the module allows you to publish and discover services in the
default Avahi domain only. Typically this is the local domain, limiting you to services in
the local network. However, this should cover most common uses of Zeroconf.

There’s a companion bonjour module which implements the same API for Bonjour, Apple’s
Zeroconf implementation. Since both modules implement the same functions, albeit in dif-
ferent namespaces, they can be used as drop-in replacements for each other. We also offer
a compatibility module named zeroconf which can be used with either pure-avahi or pure-
bonjour in a transparent fashion, so that no source changes are needed when switching the
underlying implementation; please check the zeroconf.pure script included in the sources
for details.

This module is in its early stages, so it may still contain bugs or lack some features. Please
report bugs on the issue tracker at the Pure Bitbucket site, and use the Pure mailing list for
general discussion of the module.

3.1 Copying

Copyright (c) 2014 by Albert Graef.
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pure-avahi is free software: you can redistribute it and/or modify it under the terms of the
GNU Lesser General Public License as published by the Free Software Foundation, either
version 3 of the License, or (at your option) any later version.

pure-avahi is distributed in the hope that it will be useful, but WITHOUT ANY WAR-
RANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with this
program. If not, see <http://www.gnu.org/licenses/>.

3.2 Installation

Get the latest source from https://bitbucket.org/purelang/pure-lang/downloads/pure-
avahi-0.3.tar.gz.

Run make to compile the module and make install (as root) to install it in the Pure library
directory. This requires GNU make, and of course you need to have Pure and Avahi installed.
The latter should be readily available on most Linux systems, and ports are available for BSD
systems as well.

make tries to guess your Pure installation directory and platform-specific setup. If it gets this
wrong, you can set some variables manually, please check the Makefile for details.

Please note that the zeroconf.pure compatibility module is not installed by default, so you
may want to copy it to the Pure library directory if needed.

3.3 Usage

To use the operations of this module, you need to have Avahi installed and the Avahi dae-
mon running on your system. The details of this depend on the particular system that you
use, so please consult the documentation of your Linux or BSD distribution for instructions.

The following import declaration loads the functions of the avahi module in your Pure script:

using avahi;

All operations are in the avahi namespace, so you might want to add the following declara-
tion to access the functions using their unqualified identifiers:

using namespace avahi;

3.4 Publishing Services

These functions allow you to advertise a network service using Avahi, so that the service can
be discovered by other applications participating in the Zeroconf protocol. Each service has
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a name (a string which uniquely identifies the service), a type (indicating the application and
transport protocols utilized by the service) and a port number (TCP or UDP port number,
depending on the service type). The service type normally takes the form _app._tcp (for
TCP services) or _app._udp (for UDP), where _app specifies the protocol of the particular
application (such as _ipp for network-connected printers, or _osc for applications speaking
the OSC a.k.a. Open Sound Control protocol).

avahi::publish name stype port
Advertise a service in the local domain, given by its name (a string), service type (a
string) and (TCP or UDP) port number (an integer). Note that this operation is actually
carried out asynchronously. Use avahi::check below to wait for and report the result
of the operation. The returned result is a pointer to the service object which can be
passed to the following operations, or NULL in case of error. (A NULL pointer can be
passed safely to avahi::check; it will fail in this case.) The service will be unpublished
automatically when the service object is garbage-collected.

avahi::check service
Check for the result of a avahi::publish operation. This blocks until a result is avail-
able. A negative integer value indicates failure (in this case the result is the Avahi error
code). Otherwise the result is a triple with the actual service name, type and port.
Note that the name may be different from the one passed to avahi::publish if there
was a name collision with another service. Such collisions are resolved automatically
by tacking on a suffix of the form #n to the service name.

3.5 Discovering Services

These functions let you discover services of a given service type. For each (resolvable) service
you’ll be able to retrieve the corresponding network address and port, which is what you’ll
need to actually open a network connection to communicate with the service.

avahi::browse stype
Browse available services of a given type in the local domain. This operation is carried
out asynchronously; use avahi::avail below to check whether new information is
available, and avahi::get to retrieve the actual service list. The result returned by
avahi::browse is a pointer to the browser object which can be passed to the following
operations, or NULL in case of error. (A NULL pointer can be passed safely to the other
operations; they will fail in this case.) Any resources allocated to the browser will be
released automatically when the browser object is garbage-collected.

avahi::avail browser
Check whether the service information was updated since the last invocation of
avahi::get. Returns an integer (truth value), which may also be negative (indicating
the Avahi error code) in case of error.

avahi::get browser
Retrieve the current list of services. Each list entry is a tuple with the name, type,
domain, IP address (all string values) and port number (an integer) of a service. The
entries are in the same order as returned by Avahi, but only include services whose
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network addresses can actually be resolved using Avahi. Note that this information
may change over time, as new services are announced on the network or removed
from it. An application will typically call avahi::avail from time to time to check
whether new information is available and then retrieve the updated service list using
avahi::get. The result may also be a negative integer (indicating the Avahi error code)
in case of error.

3.6 Example

Here’s an example showing how to publish an UDP OSC (Open Sound Control) service
which might be used to connect to mobile OSC applications such as hexler’s TouchOSC:

using avahi;
using namespace avahi;

let s = publish "OSC Server" "_osc._udp" 8000;
check s;

The last line checks for the result of the operation and returns the actual service name, type
and port number if all went well. A TouchOSC instance running on the local network will
then offer you to connect to the service.

Continuing the example, here’s how you can obtain a list of OSC services currently available
on your local network:

let t = browse "_osc._udp";
avail t;
get t;

If you’re running TouchOSC somewhere on your local network, it will be listed there, along
with our own service which we published above. The call in the second line can be used
to check whether any new information is available. Applications typically invoke these two
from time to time to update their service list, using code like the following:

avail t && get t;

346 3.6 Example



Chapter 4
pure-bonjour: Pure Bonjour Interface

Version 0.1, September 17, 2014

Albert Gräf <aggraef@gmail.com>

This is a simple interface to Bonjour, Apple’s Zeroconf implementation. The module lets
you publish and query Zeroconf network services using Bonjour, allowing you to establish
connections for various kinds of TCP and UDP network services without having to manually
configure network addresses. It is typically used along with the sockets module which lets
you create the network connections discovered with bonjour.

To keep things simple and easy to use, the module only exposes the most essential func-
tionality of Bonjour right now, but the provided functions should hopefully be sufficient for
most programs which require interoperability with other Zeroconf applications. One known
limitation is that the module allows you to publish and discover services in the default Bon-
jour domain only. Typically this is the local domain, limiting you to services in the local
network. However, this should cover most common uses of Zeroconf.

There’s a companion avahi module which implements the same API for Avahi, the preva-
lent Zeroconf implementation on Linux systems. Since both modules implement the same
functions, albeit in different namespaces, they can be used as drop-in replacements for each
other. We also offer a compatibility module named zeroconf which can be used with either
pure-avahi or pure-bonjour in a transparent fashion, so that no source changes are needed
when switching the underlying implementation; please check the zeroconf.pure script in-
cluded in the sources for details.

This module is in its early stages, so it may still contain bugs or lack some features. Please
report bugs on the issue tracker at the Pure Bitbucket site, and use the Pure mailing list for
general discussion of the module.

4.1 Copying

Copyright (c) 2014 by Albert Graef.
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pure-bonjour is free software: you can redistribute it and/or modify it under the terms of
the GNU Lesser General Public License as published by the Free Software Foundation, either
version 3 of the License, or (at your option) any later version.

pure-bonjour is distributed in the hope that it will be useful, but WITHOUT ANY WAR-
RANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with this
program. If not, see <http://www.gnu.org/licenses/>.

4.2 Installation

Get the latest source from https://bitbucket.org/purelang/pure-lang/downloads/pure-
bonjour-0.1.tar.gz.

Run make to compile the module and make install (as root) to install it in the Pure library
directory. This requires GNU make, and of course you need to have Pure and Bonjour in-
stalled. The latter should be readily available on most Linux systems, and ports are available
for BSD systems as well.

make tries to guess your Pure installation directory and platform-specific setup. If it gets this
wrong, you can set some variables manually, please check the Makefile for details.

Please note that the zeroconf.pure compatibility module is not installed by default, so you
may want to copy it to the Pure library directory if needed.

4.3 Usage

To use the operations of this module, you need to have Bonjour (or a compatible Zeroconf
implementation such as Avahi) installed and the corresponding service running on your
system. If you have a Mac running OS X, then most likely Bonjour is already up and running,
but for other systems you’ll have to consult your system documentation for instructions.

The following import declaration loads the functions of the bonjour module in your Pure
script:

using bonjour;

All operations are in the bonjour namespace, so you might want to add the following decla-
ration to access the functions using their unqualified identifiers:

using namespace bonjour;
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4.4 Publishing Services

These functions allow you to advertise a network service using Bonjour, so that the service
can be discovered by other applications participating in the Zeroconf protocol. Each service
has a name (a string which uniquely identifies the service), a type (indicating the application
and transport protocols utilized by the service) and a port number (TCP or UDP port num-
ber, depending on the service type). The service type normally takes the form _app._tcp (for
TCP services) or _app._udp (for UDP), where _app specifies the protocol of the particular ap-
plication (such as _ipp for network-connected printers, or _osc for applications speaking the
OSC a.k.a. Open Sound Control protocol).

bonjour::publish name stype port
Advertise a service in the local domain, given by its name (a string), service type (a
string) and (TCP or UDP) port number (an integer). Note that this operation is actually
carried out asynchronously. Use bonjour::check below to wait for and report the
result of the operation. The returned result is a pointer to the service object which
can be passed to the following operations, or NULL in case of error. (A NULL pointer
can be passed safely to bonjour::check; it will fail in this case.) The service will be
unpublished automatically when the service object is garbage-collected.

bonjour::check service
Check for the result of a bonjour::publish operation. This blocks until a result is
available. A negative integer value indicates failure (in this case the result is the Bon-
jour error code). Otherwise the result is a triple with the actual service name, type and
port. Note that the name may be different from the one passed to bonjour::publish
if there was a name collision with another service. Such collisions are usually resolved
automatically by tacking on a suffix to the service name.

4.5 Discovering Services

These functions let you discover services of a given service type. For each (resolvable) service
you’ll be able to retrieve the corresponding network address and port, which is what you’ll
need to actually open a network connection to communicate with the service.

bonjour::browse stype
Browse available services of a given type in the local domain. This operation is carried
out asynchronously; use bonjour::avail below to check whether new information
is available, and bonjour::get to retrieve the actual service list. The result returned
by bonjour::browse is a pointer to the browser object which can be passed to the
following operations, or NULL in case of error. (A NULL pointer can be passed safely to
the other operations; they will fail in this case.) Any resources allocated to the browser
will be released automatically when the browser object is garbage-collected.

bonjour::avail browser
Check whether the service information was updated since the last invocation of
bonjour::get. Returns an integer (truth value), which may also be negative (indi-
cating the Bonjour error code) in case of error.
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bonjour::get browser
Retrieve the current list of services. Each list entry is a tuple with the name, type,
domain, IP address (all string values) and port number (an integer) of a service. The
entries are in the same order as returned by Bonjour, but only include services whose
network addresses can actually be resolved using Bonjour. Note that this information
may change over time, as new services are announced on the network or removed
from it. An application will typically call bonjour::avail from time to time to check
whether new information is available and then retrieve the updated service list using
bonjour::get. The result may also be a negative integer (indicating the Bonjour error
code) in case of error.

4.6 Example

Here’s an example showing how to publish an UDP OSC (Open Sound Control) service
which might be used to connect to mobile OSC applications such as hexler’s TouchOSC:

using bonjour;
using namespace bonjour;

let s = publish "OSC Server" "_osc._udp" 8000;
check s;

The last line checks for the result of the operation and returns the actual service name, type
and port number if all went well. A TouchOSC instance running on the local network will
then offer you to connect to the service.

Continuing the example, here’s how you can obtain a list of OSC services currently available
on your local network:

let t = browse "_osc._udp";
avail t;
get t;

If you’re running TouchOSC somewhere on your local network, it will be listed there, along
with our own service which we published above. The call in the second line can be used
to check whether any new information is available. Applications typically invoke these two
from time to time to update their service list, using code like the following:

avail t && get t;
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Chapter 5
pure-doc

Version 0.7, September 17, 2014

Albert Graef <aggraef@gmail.com>

pure-doc is a simple utility for literate programming and documenting source code written
in the Pure programming language. It is designed to be used with the excellent docutils tools
and the gentle markup format supported by these, called RST a.k.a. “reStructuredText”,
usually pronounced “rest”.

The basic idea is that you just comment your code as usual, but using RST markup instead of
plain text. In addition, you can also designate literate programming fragments in your code,
which will be translated to RST literal blocks automatically. You then run pure-doc on your
source files to extract all marked up comments and the literate code blocks. The resulting
RST source can then be processed with the docutils utilities like rst2html.py and rst2latex.py
to create the documentation in a variety of formats.

5.1 Copying

Copyright (c) 2009-2010 by Albert Graef.

pure-doc is free software: you can redistribute it and/or modify it under the terms of the
GNU General Public License as published by the Free Software Foundation, either version 3
of the License, or (at your option) any later version.

pure-doc is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICU-
LAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this pro-
gram. If not, see <http://www.gnu.org/licenses/>.
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5.2 Installation

Get the latest source from https://bitbucket.org/purelang/pure-lang/downloads/pure-
doc-0.7.tar.gz.

Unpack and do the customary make && sudo make install. This only needs flex and a
standards-compliant C++ compiler.

5.3 Usage

First, see the description of the RST format. RST is a very simple markup format, almost like
plain text (in fact, you’re looking at RST right now, this document is written in it!). You can
learn enough of it to start marking up your source in about five minutes.

Second, you’ll have to mark up your source comments. pure-doc recognizes comments in
RST format by looking at the first non-empty line of the comment. A comment (either /*
... */ or a contiguous sequence of // line comments) is assumed to contain RST format if
the first non-empty line starts with :, .. or __. Other comments are taken to be plain text
and are ignored by pure-doc.

Notes:

• pure-doc makes no other assumption about the contents of marked up comments, so
you can include whatever you want: titles, section headers, fields, admonitions, plain
text, whatever. Just make sure that the comment starts with one of the special tokens
listed above. (You can always put just .. at the beginning of the comment to force it to
be recognized, this will be treated as a comment by the docutils tools.)

• Also, pure-doc makes very few assumptions about the source; in fact, any source files
with a C/C++-like comment and string syntax should work. So you could also use it
to document your C/C++ programs, or even plain text files like this one, as long as
they adhere to these standards.

• Indentation in extracted comments is preserved (assuming tabs = 8 spaces by default,
you can change this with the -t option). This is important because indentation conveys
document structure in RST.

For instance, here is a sample RST-formatted comment:

/* :Name: ‘‘rand‘‘ - compute random numbers
:Synopsis: ‘‘rand‘‘
:Description: Computes a (pseudo) random number. Takes no parameters.
:Example: Here is how you can call ‘‘rand‘‘ in Pure:
::

> extern int rand();
> rand;
1804289383

:See Also: rand(3) */
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This will be rendered as follows:

Name rand - compute random numbers

Synopsis rand

Description Computes a (pseudo) random number. Takes no param-
eters.

Example Here is how you can call rand in Pure:

> extern int rand();
> rand;
1804289383

See Also rand(3)

Finally, to extract the documentation you run pure-doc on your source files as follows:

pure-doc source-files ...

If no input files are specfied then the source is read from standard input. Otherwise all input
files are read and processed in the indicated order. The output is written to stdout, so that
you can directly pipe it into one of the docutils programs:

pure-doc source-files ... | rst2html.py

If you prefer to write the output to a file, you can do that as follows:

pure-doc source-files ... > rst-file

pure-doc also understands the following options. These must come before any file argu-
ments.

-h Print a short help message.

-i Automatic index creation (see below).

-s Generate Sphinx-compatible output (see below).

-twidth Set the tab width to the given number of spaces.

There are no other options. By its design pure-doc is just a plain simple “docstring scraping”
utility with no formatting knowledge of its own. All actual formatting is handled by the
docutils programs which offer plenty of options to change the appearance of the generated
output; please refer to the docutils documentation for details.

Note that since Pure 0.46, all Pure documentation is usually formatted using Sphinx, the
RST formatter used by the Python project which provides cross-document indexing and
referencing, and even more elaborate formatting options and prettier output than docutils.
pure-doc versions since 0.6 support this by adding the -s option which makes its output
compatible with Sphinx. (At present this option actually has any effect only when combined
with the -i index generation option, see Hyperlink Targets and Index Generation below.)
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5.4 Literate Programming

pure-doc also recognizes literate code delimited by comments which, besides the comment
delimiters and whitespace, contain nothing but the special start and end “tags” >>> and <<<.
Code between these delimiters (including all comments) is extracted from the source and
output as a RST literal code block.

For instance:

/* ..

pure-doc supports literate programming, too. */

// >>>

// This is a literate comment.
/* .. This too! */

extern int rand();
rand;

// <<<

This will be rendered as follows:

pure-doc supports literate programming, too.

// This is a literate comment.
/* .. This too! */

extern int rand();
rand;

Try it now! You can scrape all the sample “documentation” from this file and format it as
html, as follows:

pure-doc README | rst2html.py --no-doc-title --no-doc-info > test.html

5.5 Hyperlink Targets and Index Generation

Note: This feature is now largely obsolete as Pure uses Sphinx for formatting its documen-
tation these days. Thus, as of version 0.6, the indexing feature must be enabled explicitly
with the -i option.

When run with the -i option, pure-doc supplements the normal hyperlink target processing
by the docutils tools, by recognizing explicit hyperlink targets of the form .. _target:
and automatically creating raw html targets (<a name=...>) for them. This works around
the docutils name mangling (which is undesirable if you’re indexing, say, function names).
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It also resolves a quirk with some w3m versions which don’t pick up all id attributes in the
docutils-generated html source.

In addition, you can also have pure-doc generate an index from all explicit targets. To these
ends, just add the following special directive at the place where you want the index to ap-
pear:

.. makeindex::

The directive will be replaced with a list of references to all targets collected up to that point,
sorted alphabetically. This also resets the list of collected targets, so that you can have mul-
tiple smaller indices in your document instead of one big one.

It goes without saying that this facility is rather simplistic, but it may be useful when you
are working with plain docutils which does not provide its own indexing facility. Note,
however, that docutils doesn’t allow multiple explicit targets with the same name, so you
should take that into consideration when devising your index terms.

Also note that in Sphinx compatibility mode (-s), pure-doc will generate the appropriate
Sphinx markup for index entries (index::) instead, and the makeindex:: directive will be
ignored. You should then use Sphinx to generate the index.

Finally, if the -i option isn’t specified, then all this special processing is disabled and the
makeindex:: directive won’t be recognized at all. This is the recommended way to process
Pure documentation files which have been fully converted to Sphinx.

5.6 Generating and Installing Local Documentation

Note: This section only applies to 3rd party packages with their own bundled documenta-
tion which isn’t part of the “official” Pure documentation. In this case it is possible to use
docutils or some other RST formatting software to generate additional documentation files
for use with the Pure interpreter. Please note that the method sketched out in this section
doesn’t provide full integration with the rest of Pure’s documentation, but at least it makes
it possible to read the local documentation in the interpreter.

If you’re generating some library documentation for which you have to process a bigger col-
lection of source files, then it is often convenient to have a few Makefile rules to automatize
the process. To these ends, simply add rules similar to the following to your Makefile (the
following assumes GNU make and that you’re using docutils to format the documentation):

# The sources. Order matters here. The generated documentation will have the
# comments from each source file in the indicated order.
sources = foo.pure bar.pure

# The basename of the documentation files to be generated.
target = foo

.PHONY: html tex pdf
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html: $(target).html
tex: $(target).tex
pdf: $(target).pdf

$(target).txt: $(sources)
pure-doc $(sources) > $@

# This requires that you have docutils installed.

%.html: %.txt
rst2html.py $< $@

%.tex: %.txt
rst2latex.py $< $@

# This also requires that you have TeX installed.

%.pdf: %.tex
pdflatex $<
rm -f *.aux *.log *.out

clean:
rm -f *.html *.tex *.pdf

You might want to add -i to the pure-doc command line if you want to enable the indexing
feature described in the previous section. If you want to use some other RST formatting
software, please check the corresponding documentation for information on how to format
your documents and adjust the above rules for the html, tex and pdf targets accordingly.

Now you can just type make html to generate the documentation in html format, and make
tex or make pdf to generate the other formats. The clean target removes the generated files.

Having generated the documentation files in html format, you can install them in the docs
subdirectory of the Pure library directory to make it known to the Pure interpreter, so that
you can read your documentation with the help command of the interpreter. (When doing
this, name your documentation files in such a manner that you don’t overwrite any of the
Pure documentation files there.) The following Makefile rule automatizes this process. Add
this to the Makefile in the previous section:

# Try to guess the installation prefix (this needs GNU make):
prefix = $(patsubst %/bin/pure,%,$(shell which pure 2>/dev/null))
ifeq ($(strip $(prefix)),)
# Fall back to /usr/local.
prefix = /usr/local
endif

libdir = $(prefix)/lib
docsdir = $(libdir)/pure/docs

install:
test -d "$(DESTDIR)$(docsdir)" || mkdir -p "$(DESTDIR)$(docsdir)"
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cp $(target).html "$(DESTDIR)$(docsdir)"

After a make install your documentation should now end up in the appropriate place in
the Pure library directory and you can read it in the Pure interpreter using a command like
the following:

> help foo#

Note the hash character. This tells the help command that this is an auxiliary documentation
file, rather than a search term to be looked up in the Pure documentation. You can also look
up a specific section in your manual as follows:

> help foo#section-name

Please also refer to The Pure Manual for more information on how to use the interpreter’s
online help.

5.7 Formatting Tips

If you’re generating documentation in pdf format using plain docutils, you might have to
fiddle with the formatting to get results suitable for publication purposes. Newer versions
of the rts2latex.py program provide some options which let you adjust the formatting of
various document elements. Here are the options that the author found particularly helpful:

• The table of contents that RST produces isn’t all that useful in printed documen-
tation, since it lacks page numbers. As a remedy, you can invoke rst2latex with
--use-latex-toc to have LaTeX handle the formatting of the table of contents, which
looks much nicer.

• Similarly, --use-latex-docinfo can be used to tell rst2latex that you want the title
information (author and date) to be formatted the LaTeX way.

• If you need specific LaTeX document options, these can be specified with
--documentoptions, e.g.: --documentoptions="11pt".

• For more comprehensive formatting changes which require special LaTeX code and/or
packages, you can use the --stylesheet option. E.g., --stylesheet=preamble.tex
will cause a preamble.tex file with your own definitions to be included in the preamble
of the generated document.

• To format literal code blocks using an alternative environment instead of the
default verbatim environment, use the --literal-block-env option. E.g.,
--literal-block-env=lstlisting will use the highlighted code environment from
the listings package. (Note that in this case you’ll also need a preamble which loads
the corresponding package.).

To learn more about this, please consult the rts2latex.py documentation at the docutils web-
site.
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In addition, the pure-doc package contains a little GNU awk script called fixdoc, which
attempts to improve the LaTeX output produced by older svn versions of rst2latex in various
ways. (This isn’t necessary for the latest rst2latex versions, or if you use Sphinx.)
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Chapter 6
pure-ffi

Version 0.14, September 17, 2014

Albert Graef <aggraef@gmail.com>

The libffi library provides a portable, high level programming interface to various calling
conventions. This allows a programmer to call any function specified by a call interface
description at run time. libffi should be present on most gcc-based systems, but it is also
available as a standalone package at http://sourceware.org/libffi/.

This module provides an interface to libffi which enables you to call C functions from Pure
and vice versa. It goes beyond Pure’s built-in C interface in that it also handles C structs and
makes Pure functions callable from C. Moreover, depending on the libffi implementation, it
may also be possible to call foreign languages other than C.

6.1 Copying

Copyright (c) 2008, 2009 by Albert Graef.

pure-ffi is free software: you can redistribute it and/or modify it under the terms of the GNU
Lesser General Public License as published by the Free Software Foundation, either version
3 of the License, or (at your option) any later version.

pure-ffi is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICU-
LAR PURPOSE. See the GNU Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with this
program. If not, see <http://www.gnu.org/licenses/>.
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6.2 Installation

Get the latest source from https://bitbucket.org/purelang/pure-lang/downloads/pure-ffi-
0.14.tar.gz.

Run make to compile the module and make install (as root) to install it in the Pure library
directory. This requires GNU make, and of course you need to have Pure and libffi installed.

make tries to guess your Pure installation directory and platform-specific setup. If it gets
this wrong, you can set some variables manually. In particular, make install prefix=/usr
sets the installation prefix, and make PIC=-fPIC or some similar flag might be needed for
compilation on 64 bit systems. Please see the Makefile for details.

NOTE: This module requires libffi 3.x (3.0.8 has been tested). Old libffi versions (2.x) do not
appear to work (closures are broken). Patches are welcome.

6.3 Usage

The module exposes a simplified interface to libffi tailored to the Pure language. Call in-
terfaces are described using the desired ABI, return type and tuple of argument types. The
ABI is specified using one of the FFI_* constants defined by the module; for most purposes,
FFI_DEFAULT_ABI is all that’s needed. C types are specified using special descriptors void_t,
uint_t etc., see ffi.pure for details. You can also get a list of these values using show -g
FFI_* *_t after importing the ffi module.

The primary interface for calling C from Pure and vice versa is as follows:

fcall name abi rtype atypes
Creates a Pure function from a C function with the given name, specified as a string.
This makes the C function callable in Pure, no matter whether it is already declared as
an extern or not. But note that if the function resides in a shared library, you still have
to import that library using a Pure using declaration, see the Pure manual for details.

fclos fn abi rtype atypes
Creates a pointer to a C function from the given Pure function fn. The resulting pointer
can then be passed to other C functions expecting functions as arguments. This allows
you to create C callbacks from Pure functions without writing a single line of C code.
(This functionality might not be available on some platforms.)

Note that in difference to extern functions, arguments to functions created with libffi are
always passed in uncurried form, as a Pure tuple. E.g.:

> using ffi;
> let fmod = fcall "fmod" FFI_DEFAULT_ABI double_t (double_t,double_t);
> fmod (5.3,0.7);
0.4

C structs are fully supported and are passed in a type-safe manner, see ffi.pure for details.
Note that these are to be used for passing structs by value. (When passing a pointer to a
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struct, you must use pointer_t instead.) For instance:

> let complex_t = struct_t (double_t,double_t);
> let cexp = fcall "cexp" FFI_DEFAULT_ABI complex_t (complex_t);
> members (cexp (struct complex_t (0.0,1.0)));
0.54030230586814,0.841470984807897

See the examples folder in the sources for more examples.

6.4 TODO

The API isn’t perfect yet. In particular, one might consider to implement type descriptors as
structs instead of raw pointers, and support for typed pointers would be useful. Contribu-
tions and suggestions are welcome.
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Chapter 7
pure-gen: Pure interface generator

Version 0.18, September 17, 2014

Albert Gräf <aggraef@gmail.com>

7.1 Name

pure-gen – Pure interface generator

pure-gen is a C interface generator for the Pure language. It takes a C header file as input
and generates a corresponding Pure module with the constant definitions and extern dec-
larations needed to use the C module from Pure. pure-gen can also generate FFI interfaces
rather than externs (using the pure-ffi module), and it can optionally create a C wrapper mod-
ule which allows you to create interfaces to pretty much any code which can be called via
C.

7.2 Synopsis

pure-gen [options ...] input-file

7.3 Options

7.3.1 General Options

-h
--help

Print a brief help message and exit.
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-V
--version

Print version number and exit.

-e
--echo

Echo preprocessor lines. Prints all processed #defines, useful for debugging purposes.

-v
--verbose

Show parameters and progress information. Gives useful information about the con-
version process.

-w[level]
--warnings[=level]

Display warnings, level = 0 (disable most warnings), 1 (default, shows important
warnings only) or 2 (lots of additional warnings useful for debugging purposes).

7.3.2 Preprocessor Options

-I path
--include path

Add include path. Passed to the C preprocessor.

-D name[=value]
--define name[=value]

Define symbol. Passed to the C preprocessor.

-U name
--undefine name

Undefine symbol. Passed to the C preprocessor.

-C option
--cpp option

Pass through other preprocessor options and arguments.

7.3.3 Generator Options

-f iface
--interface iface

Interface type (extern, c, ffi or c-ffi). Default is extern. The extern and c types
generate Pure extern declarations, which is what you want in most cases. ffi and
c-ffi employ Pure’s libffi interface instead. The c and c-ffi types cause an addi-
tional C wrapper module to be created (see Generating C Code). These can also be
combined with the -auto suffix which creates C wrappers only when needed to get C
struct arguments and returns working, see Dealing with C Structs for details.

-l lib
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--lib-name lib
Add dynamic library module to be imported in the Pure output file. Default is -l
c-file (the filename specified with -c, see below, without filename extension) if one
of the -fc options was specified, none otherwise.

-m name
--namespace name

Module namespace in which symbols should be declared.

-p prefix
--prefix prefix

Module name prefix to be removed from C symbols.

-P prefix
--wrap prefix

Prefix to be prepended to C wrapper symbols (-fc and friends). Default is Pure_.

-a
--all

Include “hidden” symbols in the output. Built-in preprocessor symbols and symbols
starting with an underscore are excluded unless this option is specified.

-s pattern
--select pattern

Selection of C symbols to be included in the output. pattern takes the form
[glob-patterns::][regex-pattern], designating a comma separated list of glob pat-
terns matching the source filenames, and an extended regular expression matching the
symbols to be processed. See glob(7) and regex(7). The default pattern is empty which
matches all symbols in all source modules.

-x pattern
--exclude pattern

Like -s, but excludes all matching C symbols from the selection.

-t file
--template file

Specify a C template file to be used with C wrapper generation (-fc). See Generating
C Code for details.

-T file
--alt-template file

Specify an alternate C template file to be used with C wrapper generation (-fc). See
Generating C Code for details.

7.3.4 Output Options

-n
--dry-run

Only parse without generating any output.
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-N
--noclobber

Append output to existing files.

-o file
--output file

Pure output (.pure) filename. Default is input-file with new extension .pure.

-c file
--c-output file

C wrapper (.c) filename (-fc). Default is input-file with new extension .c.

7.4 Description

pure-gen generates Pure bindings for C functions from a C header file. For instance, the
command

pure-gen foo.h

creates a Pure module foo.pure with extern declarations for the constants (#defines and
enums) and C routines declared in the given C header file and (recursively) its includes.

pure-gen only accepts a single header file on the command line. If you need to parse more
than one header in a single run, you can just create a dummy header with all the necessary
#includes in it and pass that to pure-gen instead.

When invoked with the -n option, pure-gen performs a dry run in which it only parses the
input without actually generating any output files. This is useful for checking the input
(possibly in combination with the -e, -v and/or -w options) before generating output. A
particularly useful example is

pure-gen -ne foo.h \
| awk ’$1=="#" && $2~/^[0-9]+$/ && $3!~/^"<.*>"$/ { print $3 }’ \
| sort | uniq

which prints on standard output all headers which are included in the source. This helps
to decide which headers you want to be included in the output, so that you can set up a
corresponding filter patterns (-s and -x options, see below).

The -I, -D and -U options are simply passed to the C preprocessor, as well as any other
option or argument escaped with the -C flag. This is handy if you need to define additional
preprocessor symbols, add directories to the include search path, etc., see cpp(1) for details.

There are some other options which affect the generated output. In particular, -f c generates
a C wrapper module along with the Pure module (see Generating C Code below), and -f
ffi generates a wrapper using Pure’s ffi module. Moreover, -l libfoo generates a using
"lib:libfoo" declaration in the Pure source, for modules which require a shared library to
be loaded. Any number of -l options can be specified.

Other options for more advanced uses are explained in the following sections.
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7.5 Filtering

Note that pure-gen always parses the given header file as well as all its includes. If the
header file includes system headers, by default you will get those declarations as well. This
is often undesirable. As a remedy, pure-gen normally excludes built-in #defines of the C
preprocessor, as well as identifiers with a leading underscore (which are often found in sys-
tem headers) from processing. You can use the -a option to disable this, so that all these
symbols are included as well.

In addition, the -s and -x options enable you to filter C symbols using the source filename
and the symbol as search criteria. For instance, to just generate code for a single header foo.h
and none of the other headers included in foo.h, you can invoke pure-gen as follows:

pure-gen -s foo.h:: foo.h

Note that even in this case all included headers will be parsed so that #defined constants
and enum values can be resolved, but the generated output will only contain definitions and
declarations from the given header file.

In general, the -s option takes an argument of the form glob-patterns::regex-pattern
denoting a comma-separated list of glob patterns to be matched against the source filename
in which the symbol resides, and an extended regex to be matched against the symbol itself.
The glob-patterns:: part can also be omitted in which case it defaults to :: which matches
any source file. The regex can also be empty, in which case it matches any symbol. The
generated output will contain only the constant and function symbols matching the given
regex, from source files matching any of the the glob patterns. Thus, for instance, the option
-s foo.h,bar.h::^(foo|bar)_ pulls all symbols prefixed with either foo_ or bar_ from the
files foo.h and bar.h in the current directory.

Instead of :: you can also use a single semicolon ; to separate glob and regex pattern. This
is mainly for Windows compatibility, where the msys shell sometimes eats the colons or
changes them to ;.

The -x option works exactly the same, but excludes all matching symbols from the selection.
Thus, e.g., the option -x ^bar_ causes all symbols with the prefix bar_ to not be included in
the output module.

Processing of glob patterns is performed using the customary rules for filename matching,
see glob(7) for details. Note that some include files may be specified using a full pathname.
This is the case, in particular, for system includes such as #include <stdio.h>, which are
resolved by the C preprocessor employing a search of the system include directories (as well
as any directories named with the -I option).

Since the * and ? wildcards never match the pathname separator /, you have to specify
the path in the glob patterns in such cases. Thus, e.g., if the foo.h file actually lives in
either /usr/include or /usr/local/include, then it must be matched using a pattern like
/usr/include/*.h,/usr/local/include/*.h::. Just foo.h:: will not work in this case.
On the other hand, if you have set up your C sources in some local directory then specifying
a relative pathname is ok.
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7.6 Name Mangling

The -s option is often used in conjuction with the -p option, which lets you specify a
“module name prefix” which should be stripped off from C symbols. Case is insignificant
and a trailing underscore will be removed as well, so -p foo turns fooBar into Bar and
FOO_BAR into BAR. Moreover, the -m option allows you to specify the name of a Pure name-
space in which the resulting constants and functions are to be declared. So, for instance,
-s "^(foo|FOO)" -p foo -m foo will select all symbols starting with the foo or FOO pre-
fix, stripping the prefix from the selected symbols and finally adding a foo:: namespace
qualifier to them instead.

7.7 Generating C Code

As already mentioned, pure-gen can be invoked with the -fc or -fc-ffi option to create a
C wrapper module along with the Pure module it generates. There are various situations in
which this is preferable, e.g.:

• You are about to create a new module for which you want to generate some boilerplate
code.

• The C routines to be wrapped aren’t available in a shared library, but in some other
form (e.g., object file or static library).

• You need to inject some custom code into the wrapper functions (e.g., to implement
custom argument preprocessing or lazy dynamic loading of functions from a shared
library).

• The C routines can’t be called directly through Pure externs.

The latter case might arise, e.g., if the module uses non-C linkage or calling conventions, or
if some of the operations to be wrapped are actually implemented as C macros. (Note that in
order to wrap macros as functions you’ll have to create a staged header which declares the
macros as C functions, so that they are wrapped in the C module. pure-gen doesn’t do this
automatically.)

Another important case is that some of the C routines pass C structs by value or return them
as results. This is discussed in more detail in the following section.

For instance, let’s say that we want to generate a wrapper foo.c from the foo.h header file
whose operations are implemented in some library libfoo.a or libfoo.so. A command like the
following generates both the C wrapper and the corresponding Pure module:

pure-gen -fc foo.h

This creates foo.pure and foo.c, with an import clause for "lib:foo" at the beginning of the
Pure module. (You can also change the name of the Pure and C output files using the -o and
-c options, respectively.)
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The generated wrapper is just an ordinary C file which should be compiled to a shared object
(dll on Windows) as usual. E.g., using gcc on Linux:

gcc -shared -o foo.so foo.c -lfoo

That’s all. You should now be able to use the foo module by just putting the declaration
using foo; into your programs. The same approach also works with the ffi interface if you
replace the -fc option with -fc-ffi.

You can also adjust the C wrapper code to some extent by providing your own template file,
which has the following format:

/* frontmatter here */
#include %h
%%

/* wrapper here */
%r %w(%p)
{

return %n(%a);
}

Note that the code up to the symbol %% on a line by itself denotes “frontmatter” which gets
inserted at the beginning of the C file. (The frontmatter section can also be empty or missing
altogether if you don’t need it, but usually it will contain at least an #include for the input
header file.)

The rest of the template is the code for each wrapper function. Substitutions of various syn-
tactical fragments of the function definition is performed using the following placeholders:

%h input header file

%r return type of the function

%w the name of the wrapper function

%p declaration of the formal parameters of the wrapper function

%n the real function name (i.e., the name of the target C function to be called)

%a the arguments of the function call (formal parameters with types stripped off)

%% escapes a literal %

A default template is provided if you don’t specify one (which looks pretty much like the
template above, minus the comments). A custom template is specified with the -t option.
(There’s also a -T option to specify an “alternate” template for dealing with routines return-
ing struct values, see Dealing with C Structs.)

For instance, suppose that we place the sample template above into a file foo.templ and
invoke pure-gen on the foo.h header file as follows:

pure-gen -fc -t foo.templ foo.h

Then in foo.c you’d get C output code like the following:
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/* frontmatter here */
#include "foo.h"

/* wrapper here */
void Pure_foo(int arg0, void* arg1)
{

return foo(arg0, arg1);
}

/* wrapper here */
int Pure_bar(int arg0)
{

return bar(arg0);
}

As indicated, the wrapper function names are usually stropped with the Pure_ prefix. You
can change this with the -P option.

This also works great to create boilerplate code for new modules. For this purpose the fol-
lowing template will do the trick:

/* Add #includes etc. here. */
%%

%r %n(%p)
{

/* Enter code of %n here. */
}

7.8 Dealing with C Structs

Modern C compilers allow you to pass C structs by value or return them as results from a
C function. This represents a problem, because Pure doesn’t provide any support for that
in its extern declarations. Even Pure’s libffi interface only has limited support for C structs
(no unions, no bit fields), and at present pure-gen itself does not keep track of the internal
structure of C structs either.

Hence pure-gen will bark if you try to wrap an operation which passes or returns a C struct,
printing a warning message like the following which indicates that the given function could
not be wrapped:

Warning: foo: struct argument or return type, try -fc-auto

What Pure does know is how to pass and return pointers to C structs in its C interface. This
makes it possible to deal with struct arguments and return values in the C wrapper. To
make this work, you need to create a C wrapper module as explained in the previous section.
However, as C wrappers are only needed for functions which actually have struct arguments
or return values, you can also use the -fc-auto option (or -fc-ffi-auto if you prefer the
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ffi interface) to only generate the C wrapper when required. This saves the overhead of an
extra function call if it’s not actually needed.

Struct arguments in the original C function then become struct pointers in the wrapper func-
tion. E.g., if the function is declared in the header as follows:

typedef struct { double x, y; } point;
extern double foo(point p);

Then the generated wrapper code becomes:

double Pure_foo(point* arg0)
{

return foo(*arg0);
}

Which is declared in the Pure interface as:

extern double Pure_foo(point*) = foo;

Struct return values are handled by returning a pointer to a static variable holding the return
value. E.g.,

extern point bar(double x, double y);

becomes:

point* Pure_bar(double arg0, double arg1)
{

static point ret;
ret = bar(arg0, arg1); return &ret;

}

Which is declared in the Pure interface as:

extern point* Pure_bar(double, double) = bar;

(Note that the generated code in this case comes from an alternate template. It’s possible to
configure the alternate template just like the normal one, using the -T option instead of -t.
See the Generating C Code section above for details about code templates.)

In a Pure script you can now call foo and bar as:

> foo (bar 0.0 1.0);

Note, however, that the pointer returned by bar points to static storage which will be over-
written each time you invoke the bar function. Thus in the following example both u and v
will point to the same point struct, namely that defined by the latter call to bar:

> let u = bar 1.0 0.0; let v = bar 0.0 1.0;

Which most likely is not what you want. To avoid this, you’ll have to take dynamic copies
of returned structs. It’s possible to do this manually by fiddling around with malloc and
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memcpy, but the most convenient way is to employ the struct functions provided by Pure’s ffi
module:

> using ffi;
> let point_t = struct_t (double_t, double_t);
> let u = copy_struct point_t (bar 1.0 0.0);
> let v = copy_struct point_t (bar 0.0 1.0);

Now u and v point to different, malloc’d structs which even take care of freeing themselves
when they are no longer needed. Moreover, the ffi module also allows you to access the
members of the structs in a direct fashion. Please refer to the pure-ffi documentation for
further details.

7.9 Notes

pure-gen currently requires gcc (-E) as the C preprocessor. It also needs a version of gcc
which understands the -fdirectives-only option, which means gcc 4.3 or later. It will run
with older versions of gcc, but then you’ll get an error message from gcc indicating that it
doesn’t understand the -fdirectives-only option. pure-gen then won’t be able to extract
any #defined constants from the header files.

pure-gen itself is written in Pure, but uses a C parser implemented in Haskell, based on the
Language.C library written by Manuel Chakravarty and others.

pure-gen can only generate C bindings at this time. Other languages may have their own
calling conventions which make it hard or even impossible to call them directly through
Pure’s extern interface. However, if your C compiler knows how to call the other language,
then it may be possible to interface to modules written in that language by faking a C header
for the module and generating a C wrapper with a custom code template, as described in
Generating C Code. In principle, this approach should even work with behemoths like C++,
although it might be easier to use third-party tools like SWIG for that purpose.

In difference to SWIG and similar tools, pure-gen doesn’t require you to write any special
“interface files”, is controlled entirely by command line options, and the amount of mar-
shalling overhead in C wrappers is negligible. This is possible since pure-gen targets only
the Pure-C interface and Pure has good support for interfacing to C built into the language
already.

pure-gen usually works pretty well if the processed header files are written in a fairly clean
fashion. Nevertheless, some libraries defy fully automatic wrapper generation and may thus
require staged headers and/or manual editing of the generated output to get a nice wrapper
module.

In complex cases it may also be necessary to assemble the output of several runs of pure-
gen for different combinations of header files, symbol selections and/or namespace/prefix
settings. In such a situation it is usually possible to just concatenate the various output files
produced by pure-gen to consolidate them into a single wrapper module. To make this
easier, pure-gen provides the -N a.k.a. --noclobber option which appends the output to
existing files instead of overwriting them. See the example below.
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7.10 Example

For the sake of a substantial, real-world example, here is how you can wrap the entire GNU
Scientific Library in a single Pure module mygsl.pure, with the accompanying C module in
mygsl.c:

rm -f mygsl.pure mygsl.c
DEFS=-DGSL_DISABLE_DEPRECATED
for x in /usr/include/gsl/gsl_*.h; do

pure-gen $DEFS -N -fc-auto -s "$x::" $x -o mygsl.pure -c mygsl.c
done

The C module can then be compiled with:

gcc $DEFS -shared -o mygsl.so mygsl.c -lgsl

Note that the GSL_DISABLE_DEPRECATED symbol must be defined here to avoid some botches
with constants being defined in incompatible ways in different GSL headers. Also, some
GSL versions have broken headers lacking some system includes which causes hiccups in
pure-gen’s C parser. Fixing those errors or working around them through some appropriate
cpp options should be a piece of cake, though.

7.11 License

BSD-like. See the accompanying COPYING file for details.

7.12 Authors

Scott E. Dillard (University of California at Davis), Albert Graef (Johannes Gutenberg Uni-
versity at Mainz, Germany).

7.13 See Also

Language.C A C parser written in Haskell by Manuel Chakravarty et al,
http://www.sivity.net/projects/language.c.

SWIG The Simplified Wrapper and Interface Generator, http://www.swig.org.
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Chapter 8
pure-readline

Version 0.3, September 17, 2014

Albert Graef <aggraef@gmail.com>

Get the latest source from https://bitbucket.org/purelang/pure-lang/downloads/pure-
readline-0.3.tar.gz.

This is a trivial wrapper around GNU readline, which gives Pure scripts access to the most
important facilities of the readline interface. This includes support for the readline function
itself (without custom completion at present) and basic history management. The wrapper
can also be used with the BSD editline a.k.a. libedit library, a readline replacement licensed
under the 3-clause BSD license. You can find these at:

• GNU readline: http://tiswww.tis.case.edu/~chet/readline/rltop.html

• BSD editline/libedit: http://www.thrysoee.dk/editline

We recommend GNU readline because it’s easier to use and has full UTF-8 support, but
in some situations BSD editline/libedit may be preferable for license reasons or because
it’s what the operating system provides. Note that in either case Pure programs using this
module are subject to the license terms of the library that you use (GPLv3+ in case of GNU
readline, BSD license in the case of BSD editline/libedit).

Normally, you should choose the same library that you use with the Pure interpreter, to
avoid having two different versions of the library linked into your program. (This doesn’t
matter if you only use this module with batch-compiled scripts, though, since the Pure run-
time doesn’t depend on readline in any way.) By default, the module will be built with GNU
readline. To select editline/libedit instead, you only have to uncomment a line at the be-
ginning of the Makefile. Also, you might want to check the beginning of readline.c for the
proper location of the corresponding header files.

The module provides the following functions:

readline prompt
Read a line of input from the user, with prompting and command line editing. Returns
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the input line (with the trailing newline removed), or NULL when reaching end of file.

add_history line
Adds the given line (a string) to the command history.

clear_history
Clears the command history.

read_history fname
Reads the command history from the given file. Note that this in fact adds the con-
tents of the history file to the current history, so you may want to call clear_history
beforehand if this function is called multiple times.

write_history fname
Writes the current command history to the given file.

Example:

> using readline;
> readline "input> ";
input> Hello, world!
"Hello, world!"
> add_history ans;
()
> readline "input> ";
input> <EOF>
#<pointer 0x0>
> write_history "history"; // save the history
0
> clear_history;
> read_history "history"; // read the history
0
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Chapter 9
pure-sockets: Pure Sockets Interface

Version 0.7, September 17, 2014

Albert Gräf <aggraef@gmail.com>

This is an interface to the Berkeley socket functions. It provides most of the core functionality,
so you can create sockets for both stream and datagram based protocols and use these to
transmit messages. Unix-style file sockets are also available if the host system supports
them.

9.1 Installation

Get the latest source from https://bitbucket.org/purelang/pure-lang/downloads/pure-
sockets-0.7.tar.gz.

Run make to compile the module and sudo make install to install it in the Pure library
directory. To uninstall the module, use sudo make uninstall. There are a number of other
targets (mostly for maintainers), please see the Makefile for details.

make tries to guess your Pure installation directory and platform-specific setup. If it gets this
wrong, you can set some variables manually. In particular, make install prefix=/usr sets
the installation prefix, and make PIC=-fPIC or some similar flag might be needed for com-
pilation on 64 bit systems. You can also set custom compilation options with the CFLAGS
variable, e.g.: make CFLAGS=-O3. Again, please see the Makefile for details.

9.2 Usage

To use the operations of this module, put the following in your Pure script:

using sockets;
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With the sockets module loaded, all the standard socket functions are available and work
pretty much like in C. The only real difference is that, for convenience, functions taking
socket addresses as parameters (struct_sockaddr* pointers in Pure), are called without the
addrlen parameter; the size of the socket address structure will be inferred automatically
and passed to the underlying C functions. Also, there are some convenience functions which
act as wrappers around getaddrinfo and getnameinfo to create socket addresses from sym-
bolic information (hostname or ip, port names or numbers) and return information about
existing address pointers, see Creating and Inspecting Socket Addresses below.

Below is a list of the provided functions. Please see the corresponding manual pages for
details, and check the Pure scripts in the examples subdirectory for some examples.

9.2.1 Creating and Inspecting Socket Addresses

These functions are Pure-specific. The created socket addresses are malloc’ed and free them-
selves automatically when garbage-collected.

sockaddr ()
Create a pointer to an empty socket address suitable to hold the socket address result
of routines like accept, getsockname, recvfrom, etc. which return a socket address.

sockaddr ([int family,] char *path)
Create a local (a.k.a. file) socket address for the given pathname. The family param-
eter, if specified, must be AF_UNIX here. Please note that AF_UNIX is not supported on
all platforms. You can check for this by testing the HAVE_AF_UNIX constant, which is a
truth value specifying whether AF_UNIX is available on your system.

sockaddr ([int family,] char *host, char *port)
sockaddr ([int family,] char *host, int port)

This uses getaddrinfo to retrieve an AF_INET or AF_INET6 address for the given host-
name (or numeric IP address in string form) and port (specified either as an int or a
string). If family is omitted, it defaults to AF_UNSPEC which matches both AF_INET and
AF_INET6 addresses.

sockaddrs ([int family,] char *host, char *port)
sockaddrs ([int family,] char *host, int port)

This works like sockaddr above, but returns a list with all matching addresses.

sockaddr_family addr
Returns the address family of the given address.

sockaddr_path addr
Returns the pathname for AF_UNIX addresses.

sockaddr_hostname addr
Returns the hostname if available, the IP address otherwise.

sockaddr_ip addr
Returns the IP address.
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sockaddr_service addr
Returns the service (a.k.a. port) name.

sockaddr_port addr
Returns the port number.

sockaddr_info addr
Returns a readable description of a socket address, as a (family,hostname,port) tu-
ple. You should be able to pass this into sockaddr again to get the original address.

9.2.2 Creating and Closing Sockets

socket domain type protocol
Creates a socket for the given protocol family (AF_UNIX, AF_INET or AF_INET6), socket
type (SOCK_STREAM, SOCK_DGRAM, etc.) and protocol. Note that on Linux we also sup-
port the SOCK_NONBLOCK (non-blocking) and SOCK_CLOEXEC (close-on-exec) flags which
can be or’ed with the socket type to get sockets with the corresponding features. The
protocol number is usually 0, denoting the default protocol, but it can also be any of
the prescribed IPPROTO constants (a few common ones are predefined by this module,
try show -g IPPROTO_* for a list of those).

socketpair domain type protocol sv
Create a pair of sockets. The descriptors are returned in the integer vector sv passed in
the last argument.

shutdown fd how
Perform shutdown on a socket. The second argument should be one of SHUT_RD,
SHUT_WR and SHUT_RDWR.

closesocket fd
This is provided for Windows compatibility. On POSIX systems this is just close.

9.2.3 Establishing Connections

accept sockfd addr

bind sockfd addr

connect sockfd addr

listen sockfd backlog

9.2.4 Socket I/O

recv fd buf len flags

send fd buf len flags

recvfrom fd buf len flags addr
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sendto fd buf len flags addr

The usual send/recv flags specified by POSIX (MSG_EOR, MSG_OOB, MSG_PEEK, MSG_WAITALL)
are provided. On Linux we also support MSG_DONTWAIT. Note that on POSIX systems you
can also just fdopen the socket descriptor and use the standard file I/O operations from the
system module instead.

9.2.5 Socket Information

getsockname fd addr

getpeername fd addr

getsockopt fd level name val len

setsockopt fd level name val len

For getsockopt and setsockopt, currently only the SOL_SOCKET level is defined (level ar-
gument) along with the available POSIX socket options (name argument). Try show -g SO_*
to get a list of those. Also note that for most socket level options the val argument is actually
an int*, so you can pass a Pure int vector (with len = SIZEOF_INT) for that parameter.

9.3 Example

Here is a fairly minimal example using Unix stream sockets. To keep things simple, this does
no error checking whatsoever and just keeps sending strings back and forth. More elaborate
examples can be found in the examples directory in the sources.

using sockets, system;

const path = "server_socket";
extern int unlink(char *name);

server = loop with
loop = loop if ~null s && ~response fp s when
// Connect to a client.
cfd = accept fd $ sockaddr ();
// Open the client socket as a FILE* and read a request.
fp = fdopen cfd "r+"; s = fgets fp;

end;
loop = puts "server is exiting" $$ closesocket fd $$

unlink path $$ () otherwise;
response fp s::string = s=="quit\n" when
// Process the request. (Here we just print the received
// message and echo it back to the client.)
printf "server> %s" s;
fputs s fp;

end;
end when
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// Create the server socket and start listening.
unlink path;
fd = socket AF_UNIX SOCK_STREAM 0;
bind fd (sockaddr path); listen fd 5;
printf "server listening at ’%s’\n" path;

end;

client = loop with
// Keep reading requests from stdin.
loop = loop if ~null s && ~request s when
fputs "client> " stdout; s = fgets stdin;

end;
loop = puts "client is exiting" $$ () otherwise;
request s::string = s=="quit\n" when
fd = socket AF_UNIX SOCK_STREAM 0;
connect fd (sockaddr path);
// Send the request to the server.
fp = fdopen fd "r+"; fputs s fp;
// Get the reply.
s = fgets fp;

end;
end;

To use this example, run the server function in one instance of the Pure interpreter and the
client function in another. Enter a line when the client prompts you for input; it will be
printed by the server. Behind the scenes, the server also sends the line back to the client.
After receiving the reply, the client prompts for the next input line. Entering end-of-file at
the client prompt terminates the client but keeps the server running, so that you can start
another client and reconnect to the server. Entering just quit in the client terminates both
server and client. Here is how a typical interaction may look like:

> client;
client> 1+1
client> foo bar
client> quit
client is exiting
()

> server;
server listening at ’server_socket’
server> 1+1
server> foo bar
server> quit
server is exiting
()

Note that while the server processes requests sequentially, it accepts connections from a new
client after each request, so that you can run as many clients as you like.
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Chapter 10
pure-stldict

Version 0.8, September 17, 2014

Albert Graef <aggraef@gmail.com>

This package provides a light-weight, no frills interface to the C++ dictionary containers map
and unordered_map. The stldict module makes these data structures available in Pure land
and equips them with a (more or less) idiomatic Pure container interface.

The C++ containers are part of the standard C++ library, see the C++ standard library docu-
mentation for details. They were originally based on the Standard Template Library, so they
are also sometimes referred to as “STL containers”; hence the name of this package.

10.1 Copying

Copyright (c) 2011 by Albert Graef.

pure-stldict is free software: you can redistribute it and/or modify it under the terms of the
GNU Lesser General Public License as published by the Free Software Foundation, either
version 3 of the License, or (at your option) any later version.

pure-stldict is distributed in the hope that it will be useful, but WITHOUT ANY WAR-
RANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with this
program. If not, see <http://www.gnu.org/licenses/>.

10.2 Installation

Get the latest source from https://bitbucket.org/purelang/pure-lang/downloads/pure-
stldict-0.8.tar.gz.
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Run make to compile the modules and make install (as root) to install them in the Pure
library directory. This requires GNU make, and of course you need to have Pure (and a C++
library which includes the STL) installed.

make tries to guess your Pure installation directory and platform-specific setup. If it gets this
wrong, you can set some variables manually, please check the Makefile for details.

Note: This module requires Pure 0.50 or later and a recent version of the C++ library (GNU
libstdc++ v3 has been tested). All proper C++11 libraries should work out of the box, while
(recent) C++0x implementations may require some fiddling with the sources and/or the
compilation options. Pre C++0x library versions surely require considerably more work,
especially in the hashdict module.

10.3 Usage

After installation, you can use the operations of this package by placing the following import
declaration in your Pure programs:

using stldict;

This imports the whole shebang. If you only need either the hashed or the ordered dictio-
naries, you can also import the corresponding modules separately, i.e.:

using hashdict;

or:

using orddict;

10.4 Types

In Pure land, the C++ map and unordered_map containers and their multimap variants are
made available as a collection of four data structures:

type hashdict
type hashmdict

Hashed (unordered) dictionary data structures. These work with arbitrary key (and
value) types, like the hashed dictionary and set data structures in the standard library,
and can be found in the hashdict.pure module.

type orddict
type ordmdict

Ordered dictionary data structures. These require the keys to be ordered by the stan-
dard < predicate, like the ordered dictionary and set data structures in the standard
library, and can be found in the orddict.pure module.
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Note that hashdict and hashmdict differ in that the former has exactly one key-value asso-
ciation for each key in the dictionary, while the latter is a “multidict” which allows multiple
values to be associated with a key. The same applies to the orddict and ordmdict types.

In addition, there are various supertypes which correspond to different unions of the hashed
and ordered dictionary types. These are:

type hashxdict
type ordxdict

Denotes any kind of hashed or ordered dictionary, respectively.

type stldict
type stlmdict

Denotes any kind of singled-valued or multi-valued dictionary, respectively.

type stlxdict
Denotes any kind of dictionary.

For instance, you can use hashxdict to match both hashdict and hashmdict values. Like-
wise, stlmdict matches both hashmdict and ordmdict values. To match any kind of dictio-
nary, use the stlxdict type.

These data structures are very thin wrappers around the C++ container types; in fact, they
are just pointers to the C++ containers. Memory management of these objects is automatic,
and customizable pretty-printing is provided as well.

All data structures offer most of the usual Pure container interface (as well as some exten-
sions). In contrast to the standard library dictionaries, they can be used both as dictionaries
(holding key => value pairs) and sets (holding only keys, without associated values), even
at the same time.

The other important difference to the standard library containers is that the stldict containers
are mutable data structures; inserting and deleting members really modifies the underlying
C++ containers. (However, it is possible to take copies of the containers in situations where
it’s necessary to preserve value semantics.)

10.5 Operations

All types of dictionaries are simply pointers to the corresponding C++ containers which
hold key-value associations where both keys and values may be arbitrary Pure expressions.
The basic operations described below can be used to create, query and modify these objects.
Comparisons of dictionaries are implemented as well, and the set-like operations let you
combine dictionaries in different ways. These operations provide an interface similar to the
usual Pure container API.

In addition, the stldict module provides some list-like operations on dictionaries, so that
the member data can be processed and aggregated in a convenient fashion (including the
ability to use dictionaries as generators in list and matrix comprehensions), and there’s also
an interface to C++ iterators which enables you to traverse, inspect and modify the contain-
ers in a more C++-like way. Some low-level operations are available to access information
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about the underlying hash table of a hashed dictionary. Last but not least, the module also
offers some operations to customize the pretty-printing of dictionary values.

When working with these data structures, please note the following special properties of this
implementation:

• All dictionary types are mutable. Inserting and deleting members really modifies the
underlying C++ data structure as a side effect of the operation. If you need value
semantics, you should probably use one of the dictionary or set data structures from
the standard Pure library instead. Another possibility is to take a copy of a hashdict
using the copy function if you need to preserve the original value.

• Keys in a hashed dictionary may be stored in an apparently random order (not nec-
essarily in the order in which they were inserted), while they are guaranteed to be in
ascending order (by key) for ordered dictionaries. However, note that even in the latter
case, the order of different members for the same key in a multi-valued dictionary is
not specified. This must be taken into account when comparing dictionaries, see below.
The order of members in a dictionary also matters when listing data from a container
using, e.g., the members, keys and vals operations.

• Two dictionaries are considered syntactically equal iff they contain the same elements
in exactly the same order, using syntactic equality on both the keys and the associated
values. This test can always be done in linear time, but is of limited usefulness for
most kinds of dictionaries, since the exact order of members in the dictionary may
vary depending on how the dictionary was constructed. Semantic equality operations
are provided which check (albeit at the cost of increased running time) whether two
containers contain the same members irrespective of element order, using semantic
equality on the members. Various subset comparisons are provided as well, please
check the Comparisons section for details.

• Values in a dictionary can be omitted, so that a dictionary can also be used as a set data
structure. This obviates the need for a separate set data structure at the cost of some
(small) increase in memory usage. Also note that you can’t really have a hash pair x=>y
as a member of a set, since it always denotes a key-value association. As a remedy, you
may use ordinary pairs (x,y) instead.

10.5.1 Basic Operations

hashdict xs
hashmdict xs
orddict xs
ordmdict xs

Create a dictionary of the corresponding type from a list, tuple or vector of its mem-
bers. Members can be specified as hash pairs x=>y to denote a key-value association.
Any other kind of value denotes a singleton key without associated value. Note that
the ordered dictionaries require that the keys be ordered, i.e., the < predicate must be
defined on them.
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The same operations can also be used to construct a dictionary from another dictionary
of any type. If the given dictionary is already of the corresponding type, this is a no-op
(if you want to copy the dictionary instead, use the copy function below). Otherwise
the given dictionary is converted to a new dictionary of the desired target type.

mkhashdict y xs
mkhashmdict y xs
mkorddict y xs
mkordmdict y xs

Create a dictionary from a list of keys and a constant value. The resulting dictionary
has the given keys and y as the value for each key.

copy m
Create a new dictionary with the same type and content as m. This is useful if you
want to preserve value semantics when using destructive update operations such as
insert and delete. In such a case, copy can be used to take a copy of the dictionary
beforehand, so that the original dictionary remains unmodified.

Note: This operation needs linear time with respect to the size of the dictionary (i.e.,
its number of members). If logarithmic update times are needed while still preserv-
ing value semantics, you should use the dictionary and set data structures from the
standard library instead.

hashdictp m
hashmdictp m
orddictp m
ordmdictp m

Check whether the argument is a dictionary of the corresponding type.

hashxdictp m
ordxdictp m
stldictp m
stlmdictp m
stlxdictp m

Check whether the argument is a dictionary of the corresponding supertype.

# m
The size of a dictionary (the number of members it contains).

m ! x
Get the value stored under key x in the dictionary m. This may be x itself if x is a mem-
ber of m but has no associated value. In the case of a multidict this actually returns a list
of values (which may be empty if m doesn’t contain x). Otherwise an out_of_bounds
exception is thrown if m doesn’t contain x.

null m
Test whether m is empty, i.e., has zero members.

member m x
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Test whether m contains a member with key x.

members m
list m

Return the list of members of m. The member list will be in an apparently random
order in the hashed dictionary case, while it is guaranteed to be in ascending order
(by key) for ordered dictionaries. The same order is also used for the other inspection
operations below.

stream m
Like list, but the member list is returned as a lazy list (cf. Lazy Evaluation and Streams)
whose members will be computed on the fly as the list is being traversed; cf. Iterators.

tuple m
vector m

Return the members as a tuple or vector.

keys m
Return the list of keys in the dictionary.

vals m
Return the list of corresponding values. In the case of a singleton key x without asso-
ciated value, x itself is returned instead.

As already mentioned, the following modification operations are destructive, i.e., they actu-
ally modify the underlying dictionary data structure. If this is not desired, you’ll first have
to take a copy of the target dictionary, see copy.

insert m x
insert m (x=>y)
update m x y

Insert a singleton key x or a key-value pair x=>y into m and return the modified dictio-
nary. This always adds a new member in a multidict, otherwise it replaces an existing
value if there is one. update is provided as a fully curried version of insert, so update
m x y behaves exactly like insert m (x=>y).

delete m x
delete m (x=>y)

Remove the key x or the specific key-value pair x=>y from m (if present) and return the
modified dictionary. In the multidict case, only the first member with the given key x
or key-value pair x=>y is removed.

clear m
Remove all members from m, making m an empty dictionary. Returns ().

10.5.2 Comparisons

The usual comparison predicates (==, ~=, <=, < etc.) are defined on all dictionary types, where
two dictionaries are considered “equal” (m1==m2) if they both contain the same key=>value
pairs, and m1<=m2 means that m1 is a sub-dictionary of m2, i.e., all key=>value pairs of m1
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are also contained in m2 (taking into account multiplicities in the multidict case). Ordered
dictionaries compare keys using equality (assuming two keys a and b to be equal if neither
a<b nor b<a holds), while hashed dictionaries check for syntactical equality (using ===). The
associated values are compared using the == predicate if it is defined, falling back to syntactic
equality otherwise.

The module also defines syntactic equality on all dictionary types, so that two dictionaries
of the same type are considered syntactically equal iff they contain the same (syntactically
equal) members in the same order. This is always guaranteed if two dictionaries are “iden-
tical” (the same C++ pointer), but generally the member order will depend on how the dic-
tionary was constructed. Thus if you need to check that two dictionaries contain the same
members irrespective of the order in which the members are listed, the semantic equality
operation == should be used instead; this will also handle the case of mixed operand types.

Note that if you really need to check whether two dictionaries are the same object rather
than just syntactically equal, you’ll have to cast them to generic C pointers before comparing
them with ===. This can be done with the following little helper function:

same_dict x y = pointer_cast "void*" x === pointer_cast "void*" y;

10.5.3 Set-Like Operations

These operations work with mixed operand types, promoting less general types to more
general ones (i.e., ordered to hashed, and single-valued to multi-valued dictionaries). The
result is always a new dictionary, leaving the operands unmodified.

m1 + m2
Sum: m1+m2 adds the members of m2 to m1.

m1 - m2
Difference: m1-m2 removes the members of m2 from m1.

m1 * m2
Intersection: m1*m2 removes the members not in m2 from m1.

10.5.4 List-Like Operations

The following operations are all overloaded so that they work like their list counterparts,
treating their dictionary argument as if it was the member list of the dictionary:

• do, map, catmap, listmap, rowmap, rowcatmap, colmap, colcatmap

• all, any, filter, foldl, foldl1, foldr, foldr1, scanl, scanl1, scanr, scanr1, sort

Note that this includes the generic comprehension helpers listmap, catmap et al, so that
dictionaries can be used as generators in list and matrix comprehensions as usual (see below
for some examples).
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10.5.5 Iterators

These operations give direct access to C++ iterators on dictionaries which let you query the
elements and do basic manipulations of the container. The operations are available in the
stldict namespace.

The iterator concept is somewhat alien to Pure and there are some pitfalls (most notably,
destructive updates may render iterators invalid), but the operations described here are still
useful in some situations, especially if you need to speed up sequential accesses to large con-
tainers or modify values stored in a container in a direct way. They are also used internally
to compute lazy member lists of containers (stream function).

You should only use these directly if you know what you are doing. In particular, make sure
to consult the C++ standard library documentation for further details on C++ iterator usage.

The following operations are provided to create an iterator for a given dictionary.

stldict::begin m
stldict::end m

Return iterators pointing to the beginning and the end of the container. (Note that
stldict::end must always be specified in qualified form since end is a keyword in the
Pure language.)

stldict::find m x
Locates a key or specific key=>value pair x in the container and returns an iterator
pointing to the corresponding member (or stldict::end m if m doesn’t contain x).

Note that these operations return a new iterator object for each invocation. Also, the cre-
ated iterator object keeps track of the container it belongs to, so that the container isn’t
garbage-collected while the iterator is still being used. However, removing a member from
the container (using either delete or stldict::erase) invalidates all iterators pointing to
that member; the result of trying to access such an invalidated iterator is undefined (most
likely your program will crash).

Similar caveats also apply to the stream function which, as already mentioned, uses iterators
internally to implement lazy list traversal of the members of a dictionary. Thus, if you delete
a member of a dictionary while traversing it using stream, you better make sure that this
member is not the next stream element remaining to be visited; otherwise bad things will
happen.

The following operations on iterators let you query and modify the contents of the underly-
ing container:

stldict::dict i
Return the dictionary to which i belongs.

stldict::endp i
Check whether the iterator i points to the end of the container (i.e., past the last ele-
ment).

stldict::next i
Advance the iterator to the next element. Note that for convenience, in contrast to the
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corresponding C++ operation this operation is non-destructive. Thus it actually creates
a new iterator object, leaving the original iterator i unmodified. The operation fails if i
is already at the end of the container.

stldict::get i
Retrieve the key=>val pair stored in the member pointed to by i (or just the key if there
is no associated value). The operation fails if i is at the end of the container.

stldict::put i y
Change the value associated with the member pointed to by i to y, and return the new
value y. The operation fails if i is at the end of the container. Note that stldict::put
only allows you to set the associated value, not the key of the member.

stldict::erase i
Remove the member pointed to by i (this invalidates i and all other iterators pointing
to this member). The operation fails if i is at the end of the container.

i == j
i ~= j

Semantic equality of iterators. Two iterators are considered equal (i == j) if i and j
point to the same element in the same container, and unequal (i ~= j) if they don’t.
(In contrast, note that iterators are in fact just pointers to a corresponding C++ data
structure, and thus syntactical equality (i === j) holds only if two iterators are the
same object.)

10.5.6 Low-Level Operations

The hashdict module also provides a few specialized low-level operations dealing with
the layouts of buckets and the hash policy of the hashdict and hashmdict containers, such
as bucket_count, load_factor, rehash etc. These operations, which are all kept in their
own separate hashdict namespace, are useful to obtain performance-related information
and modify the setup of the underlying hash table. Please check the hashdict.pure module
and the C++ standard library documentation for further details.

10.5.7 Pretty-Printing

By default, dictionaries are pretty-printed in the format somedict xs, where somedict is the
actual construction function such as hashdict, orddict, etc., and xs is the member list of the
dictionary. This is usually convenient, as the printed expression will evaluate to an equal
container when reentered as Pure code. However, it is also possible to define your own
custom pretty-printing with the following function.

hashdict_symbol f
hashmdict_symbol f
orddict_symbol f
ordmdict_symbol f

Makes the pretty-printer use the format f xs (where xs is the member list) for printing
the corresponding type of dictionary.
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Note that f may also be an operator symbol (nonfix and unary symbols work best). In the
case of an outfix symbol the list brackets around the members are removed; this makes it
possible to render the container in a format similar to Pure’s list syntax. For instance:

> using stldict;
> outfix {$ $};
> orddict_symbol ({$ $});
()
> orddict (1..5);
{$1,2,3,4,5$}

See orddict_examp.pure included in the distribution for a complete example which also
discusses how to make such a custom print representation reparsable.

10.6 Examples

Some basic examples showing hashdict in action:

> using stldict;
> let m = hashdict [foo=>99, bar=>bar 4711L, baz=>1..5]; m;
hashdict [foo=>99,bar=>bar 4711L,baz=>[1,2,3,4,5]]
> m!bar;
bar 4711L
> keys m;
[foo,bar,baz]
> vals m;
[99,bar 4711L,[1,2,3,4,5]]
> list m;
[foo=>99,bar=>bar 4711L,baz=>[1,2,3,4,5]]
> member m foo, member m bar;
1,1

Hashed multidicts (hashmdict):

> let m = hashmdict [foo=>99,baz=>1..5,baz=>bar 4711L]; m;
hashmdict [foo=>99,baz=>[1,2,3,4,5],baz=>bar 4711L]
> m!baz;
[[1,2,3,4,5],bar 4711L]
> m!foo;
[99]

The following example illustrates how to employ ordered dictionaries (orddict) as a set data
structure:

> let m1 = orddict [5,1,3,11,3];
> let m2 = orddict (3..6);
> m1;m2;
orddict [1,3,5,11]
orddict [3,4,5,6]
> m1+m2;
orddict [1,3,4,5,6,11]
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> m1-m2;
orddict [1,11]
> m1*m2;
orddict [3,5]
> m1*m2 <= m1, m1*m2 <= m2;
1,1
> m1 < m1+m2, m2 < m1+m2;
1,1

Of course, the same works with ordered multidicts (ordmdict):

> let m1 = ordmdict [5,1,3,11,3];
> let m2 = ordmdict (3..6);
> m1;m2;
ordmdict [1,3,3,5,11]
ordmdict [3,4,5,6]
> m1+m2;
ordmdict [1,3,3,3,4,5,5,6,11]
> m1-m2;
ordmdict [1,3,11]
> m1*m2;
ordmdict [3,5]
> m1*m2 <= m1, m1*m2 <= m2;
1,1
> m1 < m1+m2, m2 < m1+m2;
1,1

In fact, the binary operations (comparisons as well as the set operations +, - and *) work
with any combination of dictionary operands:

> let m1 = hashdict (1..5);
> let m2 = ordmdict (3..7);
> m1+m2;
hashmdict [1,2,3,3,4,4,5,5,6,7]

Note that the operands are always promoted to the more general operand type, where
hashed beats ordered and multi-valued beats single-valued dictionaries. If this is not what
you want, you can also specify the desired conversions explicitly:

> m1+orddict m2;
hashdict [1,2,3,4,5,6,7]
> orddict m1+m2;
ordmdict [1,2,3,3,4,4,5,5,6,7]

Also note that the “set” operations not only work with proper sets, but also with general
dictionaries:

> hashdict [i=>i+1|i=1..4]+hashdict [i=>i-1|i=3..5];
hashdict [1=>2,2=>3,3=>2,4=>3,5=>4]

All dictionary containers can be used as generators in list and matrix comprehensions:
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> let m = hashmdict [foo=>99,baz=>1..5,baz=>bar 4711L];
> [x y | x=>y = m];
[foo 99,baz [1,2,3,4,5],baz (bar 4711L)]
> {{x;y} | x=>y = m};
{foo,baz,baz;99,[1,2,3,4,5],bar 4711L}

Note that in the current implementation this always computes the full member list of the
dictionary as an intermediate value, which will need considerable extra memory in the case
of large dictionaries. As a remedy, you can also use the stream function to convert the
dictionary to a lazy list instead. This will often be slower, but in the case of big dictionaries
the tradeoff between memory usage and execution speed might be worth considering. For
instance:

> let m = hashdict [foo i => i | i = 1..10000];
> stream m;
(foo 1512=>1512):#<thunk 0x7fa1718350a8>
> stats -m
> #list m;
10000
0.01s, 40001 cells
> #stream m;
10000
0.1s, 16 cells
> #[y | x=>y = m; gcd y 767~=1];
925
0.05s, 61853 cells
> #[y | x=>y = stream m; gcd y 767~=1];
925
0.15s, 10979 cells
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Chapter 11
pure-stllib

Version 0.6, September 17, 2014

Peter Summerland <p.summerland@gmail.com>

pure-stllib is an “umbrella” package that contains a pair of Pure addons, pure-stlvec and pure-
stlmap. These addons provide Pure interfaces to a selection of containers provided by the
C++ Standard Library, specialized to hold pointers to arbitrary Pure expressions. pure-stlvec
is a Pure interface to C++’s vector and the STL algorithms that act on them. pure-stlmap is an
interface to six (of the eight) of C++’s associative containers: map, set, multimap, multiset,
unordered_map and unordered_set.

11.1 Copying

Copyright (c) 2011-2012 by Peter Summerland <p.summerland@gmail.com>.

All rights reserved.

pure-stllib is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICU-
LAR PURPOSE.

pure-stllib is distributed under a BSD-style license, see the COPYING file for details.
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11.2 Installation

pure-stllib-0.6 requires at least Pure 0.50. The latest version of Pure is available at
http://code.google.com/p/pure-lang/downloads/list.

The latest version of the source code for pure-stllib can be downloaded from
https://bitbucket.org/purelang/pure-lang/downloads/pure-stllib-0.6.tar.gz.

To install pure-stllib-0.6 (on Linux), extract the source code (e.g., tar -xzf pure-stllib-
0.6.tar.gz), cd to the pure-stllib-0.6 directory, and run make. After this you can (and should)
also run make check to run a few unit tests to make sure that pure-stlvec and pure-stlmap work
properly on your system. If make check works, run sudo make install to install pure-stlvec
and pure-stlmap. Run sudo make uninstall to remove them.

make tries to guess your Pure installation directory and platform-specific setup. If it gets this
wrong, you can set some variables manually. In particular, make install prefix=/usr sets
the installation prefix. Please see the Makefile for details.

11.3 Usage

pure-stlvec provides functions that act on a single mutable container, stlvec, which is a wrap-
per around C++’s vector, specialized to hold Pure expressions. It also provides functions
that correspond to C++’s STL algorithms specialized to act on stlvecs.

pure-stlmap provides functions that act on six mutable containers, “stlmap”, “stlset”,
“stlmmap”, “stlmset”, “stlhmap” and “stlhset”, that are thin wrappers around the cor-
responding associative containers provided by C++, map, set, multimap, multiset, un-
ordered_map and unordered_set, specialized to hold Pure expressions.

The functions provided by pure-stlvec and pure-stlmap are made available by importing one
or more of the following modules.

stlvec - support for stlvecs

stlvec::algorithms - STL algorithms specialized to act on stlvecs

stlmap - support for stlmap and stlset

stlmmap - support for stlmmap and stlmset

stlhmap - support for stlhmap and stlhset

11.4 Documentation

Please see the documentation for pure-stlvec and pure-stlmap.

For the impatient, the functions that act on containers provided by the stlmap, stlmmap,
stlhmap and stlvec modules are summarized in a rudimentary cheatsheet, pure-stllib-
cheatsheet.pdf, which can be found in the pure-stllib/doc directory.
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11.5 Changes

Version 0.1 - Bundle pure-stlvec-0.3 and pure-stlmap-0.1.

Version 0.2 - Bundle pure-stlvec-0.3 and pure-stlmap-0.2.

Version 0.3 - Bundle pure-stlvec-0.4 and pure-stlmap-0.3.
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Chapter 12
pure-stlmap

Version 0.4, September 17, 2014

Peter Summerland <p.summerland@gmail.com>

pure-stlmap is a Pure interface to six associative containers provided by the C++ Standard
Library: map, set, multimap, multiset, unordered_map and unordered_set.

12.1 Copying

Copyright (c) 2012 by Peter Summerland <p.summerland@gmail.com>.

All rights reserved.

pure-stlmap is distributed in the hope that it will be useful, but WITHOUT ANY WAR-
RANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE.

pure-stlmap is distributed under a BSD-style license, see the COPYING file for details.

12.2 Introduction

This is pure-stlmap-0.1, the first release of pure-stlmap. It is possible that some of the func-
tions might be changed slightly or even removed. Comments and questions would be espe-
cially appreciated at this early stage.
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12.2.1 Supported Containers

The Standard C++ Containers Library, often refered to as the standard template library
(“STL”), provides templates for generic containers and generic algorithms. pure-stlmap
provides six mutable containers, “stlmap”, “stlset”, “stlmmap”, “stlmset”, “stlhmap” and
“stlhset”, that are thin wrappers around the corresponding associative containers provided
by the STL, map, set, multimap, multiset, unordered_map and unordered_set, specialized
to hold pure-expressions. pure-stlmap does not provide wrappers for unordered_multimap
and unordered_multiset.

12.2.2 Interface

pure-stlmap provides a “key-based” interface that can be used to work with the supported
STL containers in a way that should feel natural to Pure programmers. For example, the
(!) function can be used to access values associated with keys and functions like map, foldl,
filter and do can be used to operate on all or part of a container’s elements without using
an explict tail recursive loop. In addition, for the ordered containers, stlmap, stlmmap, stlset
and stlmset, pure-stlmap provides an “interator-based” interface that corresponds to the
C++ interface, mostly on a one-to-one basis.

The interface for the unordered or “hash table” containers, stlhmap and stlhset, is limited
compared to that provided for the ordered containers. In particular iterators, operations on
subsequences (ranges) and set operations are not supported.

In some cases, the STL’s associative containers have different semantics than the the associa-
tive containers provided by the Pure standard library. Where there is a conflict, pure-stlmap
follows the STL.

Many of the functions provided by pure-stlmap, such as the constructors, equivalence and
lexicographical comparison operations, insert and erase operations, and the set operations
are just thin wrappers around the the corresponding C++ functions. Users can consult the
C++ Library documentation to understand the performance characteristics and corner case
behavior of any pure-stlmap function that has a corresponding function in the STL.

The C++ library is sometimes more complicated than the Pure Standard Library. For exam-
ple many of the applicable C++ functions, including set operations and tests for equality, as-
sume that the containers are lexicographically ordered. The reward for playing by the rules
(which occurs automatically for stlmap and stlset) is O(n) time complexity for comparison
and set operations.

12.3 Installation

pure-stlmap-0.4 is included in the “umbrella” addon, pure-stllib which is available at
http://code.google.com/p/pure-lang/downloads/list. After you have downloaded and
installed pure-stllib, you will be able to use pure-stlmap (and pure-stlvec, as well).
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12.4 Examples

The pure-stlmap/uts subdirectory contains Pure scripts that are used to test pure-stlmap.
These scripts contain simple tests, each of which consists of a single line of code followed by
a comment that contains the expected output. E.g.,

let sm1 = stlmap ["a"=>1,"b"=>2,"c"=>3,"d"=>4,"e"=>5];
//- ()

sm1!stl::smbeg, sm1!"a", sm1!"d", sm1!"e"
//- 1,1,4,5

catch id $ sm1!"0";
//- out_of_bounds

You might consider pasting parts of these scripts into a temporary file that you can play with
if you are curious about how something works.

Two short example programs, anagrams.pure and poly.pure, can be found in the pure-
stlmap/examples subdirectory.

12.5 Quick Start

This section introduces the basic functions you need to get up and running with pure-stlmap.
For a quick look at the other functions provided by pure-stlmap, you can refer to pure-stllib-
cheatsheet.pdf, which can be found in the pure-stllib/doc directory.

12.5.1 Example Containers

The code snippets that appear in the examples that follow assume that six containers have
been created by entering the following at the prompt.

$> pure -q
> using stlmap, stlhmap, stlmmap;
> using namespace stl;

> // Make some maps and sets with default characteristics
> let sm = stlmap ["a"=>1,"b"=>2,"c"=>3,"d"=>4,"e"=>5];
> let shm = stlhmap ["a"=>1,"b"=>2,"c"=>3,"d"=>4,"e"=>5];
> let smm = stlmmap ["a"=>1,"b"=>2,"c"=>31,"c"=>32,"d"=>4,"e"=>5];
> let ss = stlset ["a","b","c","d","e"];
> let shs = stlhset ["a","b","c","d","e"];
> let sms = stlmset ["a","b","c","c","d"];

The using statement imports the three modules provided by pure-stlmap: stlmap provides
the interface for the stlmap and stlset containers, stlmmap provides the interface the stlmmap

12.4 Examples 401



Pure Language and Library Documentation, Release 0.62

and stlmset containers, and stlhmap provides the interface to the stlhmap and stlhset con-
tainers. The let statements set up an instance of each of the containers provided by pure-
stlmap, loaded with some sample elements.

To save typing you can run readme-data.pure, a file that contains the corresponding source
code. It can be found in in the pure-stlmap/examples directory.

12.5.2 Constructors

You can construct empty pure-stlmap containers using the emptystlmap, emptystlset,
emptystlmmap, emptystlmset, emptystlhmap and emptystlhset functions.

> let sm1 = emptystlmap; // uses (<) to order keys

You can construct a pure-stlmap container and fill it with elements all in one go using the
stlmap, stlset, stlmmap, stlmset, stlhmap and stlhset functions.

> let shm1 = stlhmap ["a"=>1,"b"=>2,"c"=>3];

> members shm1;
["c"=>3,"a"=>1,"b"=>2]

> smh1!"b";
2

As opposed to the hashed containers (stlhmap and stlhset), the ordered containers (stlmap,
stlset, stlmmap and stlmset) keep their elements ordered by key.

> let sm1 = stlmap ["a"=>1,"b"=>2,"c"=>3]; members sm1;
["a"=>1,"b"=>2,"c"=>3]

12.5.3 Ranges

For the ordered containers (stlmap, stlset, stlmmap and stlmset) you can work with subse-
quences, called “ranges”, of the containers’ elements. A range is specified by a tuple that
consists of a container and two keys. If (sm, first_key, last_key) designates a range, the ele-
ments of the range are all of elements of the container sm whose keys are equivalent to or
greater than first_key and less than last_key. If first_key and last_key are left out of the tuple,
the range consists of all of sm’s elements.

> members sm; // no range keys - the whole container
["a"=>1,"b"=>2,"c"=>3,"d"=>4,"e"=>5]

> members (sm,"b","e"); // a range from "b" up but not including "e"
["b"=>2,"c"=>3,"d"=>4]

> members (sm,"c1","z"); // keys do not have to be stored
["d"=>4,"e"=>5]
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> members shm; // works on a unordered set (with no range keys)
["c"=>3,"d"=>4,"e"=>5,"a"=>1,"b"=>2]

Two special keys, stl::smbeg and stl::smend are reserved for use in ranges to designate
the first element in a container and the imaginary “past-end” element.

> members (sm,smbeg,"d");
["a"=>1,"b"=>2,"c"=>3]

> members (sm,"b",smend);
["b"=>2,"c"=>3,"d"=>4,"e"=>5]

Perhaps it should go without saying, but you cannot use either of these symbols as the keys
of elements stored in a pure-stlmap container.

12.5.4 Inserting and Replacing Elements

You can insert elements and, for the maps (stlmap, stlmmap and stlhmap), replace the val-
ues associated with keys that are already stored in the map, using the insert, replace
and insert_or_replace functions. For the maps, the elements to inserted are specified as
(key=>value) hash-pairs.

> let sm1 = emptystlmap;

> insert sm1 ("e"=>5); // returns number of elements inserted
1
> members sm1;
["e"=>5]

> replace sm1 "e" 15; // returns value
15
> members sm1;
["e"=>15]

> catch id $ replace sm1 "x" 10; // replace never inserts new elements
out_of_bounds

> insert sm1 ("e"=>25); // insert never changes existing elements
0
> members sm1;
["e"=>15]

> insert_or_replace sm1 ("e"=>25); // 1 value changed
1
> members sm1;
["e"=>25]
>

The insert and insert_or_replace functions are overloaded to insert or replace elements
specified in a list, vector, stlvec or another pure-stlmap container (of the same type). E.g.,
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> let sm2 = emptystlmap;

> insert sm2 ["b"=>2,"a"=>1]; // insert from a list
2

> insert sm2 (sm,"c","e"); // insert from a range
2

> members sm2;
["a"=>1,"b"=>2,"c"=>3,"d"=>4]

> insert_or_replace sm2 {"a"=>11,"e"=>15};
2

> members sm2;
["a"=>11,"b"=>2,"c"=>3,"d"=>4,"e"=>15]

12.5.5 Access

If you want to see if a key is stored in a container use the member function. (A key, k, is con-
sidered to be “stored” in a container if there is an element in the container that is equivalent
to k.)

> member sm "x"; // ("x"=>val) is not an element of sm for any val
0

> member sm "a"; // ("a"=>1) is an element with key equivalent to "a"
1

The value (or values for a multi-key container) associated with a key can be accessed using
the (!) function.

> sm!"a"; // return the value associated with "a"
1

> shm!"b"; // try it with a hashed map
2

> smm!"c"; // multimap returns a the list of values associated with "c"
[31,32]

> ss!"a"; // with sets, return the key
"a"

> sms!"c"; // with multisets, return a list of keys
["c","c"]

If the key is not stored in the container, (!) throws an out_of_bounds exception.
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> catch id $ sm!"x"; // "x" is not stored as a key in sm
out_of_bounds

Please note that all access is strictly by keys. For example you cannot use the member function
to determine if (“a”=>1) is an element stored in sm; you can only ask if the key “a” is stored
in sm.

12.5.6 Erasing Elements

For any pure-stlmap container, you can use the erase function to remove all the elements
associated with a given key in the container, all of the elements in the container or, unless
the container is a stlhmap or stlhset, all of the elements in a range defined on the container.

> let shm1 = stlhmap shm; // make some copies of maps
> let smm1 = stlmmap smm;
> let sm1 = stlmap sm;

> members smm1; // smm1 has multiple values for "c"
["a"=>1,"b"=>2,"c"=>31,"c"=>32,"d"=>4,"e"=>5]

> erase (shm1,"c"); // erase "c" keyed elements from a stlmmap
1
> members shm1; // all the "c" keyed elements are gone
["d"=>4,"e"=>5,"a"=>1,"b"=>2]

> erase shm1; // erase all elements
4
> empty shm1;
1

> erase (sm1,"b","d"); // erase a subsequence
2
> members sm1;
["a"=>1,"d"=>4,"e"=>5]

> erase (sm1,"x"); // attempt to erase something not there
0

> erase (smm1,"c"); // erase all elements with key "c"
2
> members smm1;
["a"=>1,"b"=>2,"d"=>4,"e"=>5]

12.5.7 Conversions

The elements of an associated container be copied into a list, vector or stlvec using the
members, stl::vector and stlvec functions. For ordered containers (stlmap, stlset, stlmmap
and stlmset) the list, vector or stlvec can be built from a range.
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> members ss;
["a","b","c","d","e"]

> members (ss,"b","d"); // list subsequence from "b" up to but not "d"
["b","c"]

> members (smm,"c","e");
["c"=>31,"c"=>32,"d"=>4]

> members (shm,"b","d"); // fails - ranges not supported for stlhmaps
stl::members (#<pointer 0x83b4908>,"b","d")

> members shm; // ok - all elements are copied
["d"=>4,"e"=>5,"a"=>1,"b"=>2,"c"=>3]

> vector (sm,smbeg,"d");
{"a"=>1,"b"=>2,"c"=>3}

> using stlvec;
> members $ stlvec sm;
["a"=>1,"b"=>2,"c"=>3,"d"=>4,"e"=>5]

You can convert the contents of an ordered container (stlmap, stlset, stlmmap or stlmset) or
a range defined on one to a stream using the stream function.

> let ss1 = stlhset (0..100000);

> stats -m

> let xx = drop 99998 $ scanl (+) 0 (stream ss);
0.3s, 18 cells

> list xx;
[704782707,704882705,704982704,705082704]
0s, 17 cells

12.5.8 Functional Programming

Most of the Pure list operations, including map, do, filter, catmap, foldl and foldl1 can be
applied to any of pure-stlmap’s associative containers. E.g.,

> map (\x->x-32) shs;
["D","E","A","B","C"]

> using system;

> do (puts . str) (sm,smbeg,"c");
"a"=>1
"b"=>2
()
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List comprehensions also work.

> [k-32=>v+100 | (k=>v) = smm; k>"a" && k<"e"];
["B"=>102,"C"=>131,"C"=>132,"D"=>104]

> {k-32=>v+100 | (k=>v) = (smm,"b","e")};
{"B"=>102,"C"=>131,"C"=>132,"D"=>104}

It is highly recommended that you use the functional programming operations, as opposed
to recursive loops, whenever possible.

12.6 Concepts

This section describes pure-stlmap’s containers, iterators, ranges, elements, keys, values and
how these objects are related to each other. It also describes a group of functions associ-
ated with containers that help define the container’s behavior. E.g., each ordered container
(stlmap, stlset, stlmmap or stlmset) stores a function that it used to order its keys and to
determine if two keys are equivalent.

12.6.1 Containers and Elements

The six associative containers supported by pure-stlmap can be grouped together in terms
of certain defining attributes.

The three “maps” provided by pure-stlmap, stlmap, stlmmap and stlhmap, associate values
with keys. If a value v is associated with a key, k, in an map, m, then we say that (k=>v) is
an element of m, k is a key stored in m and v is a value stored in m.

The three “sets” provided by pure-stlmap, stlset, stlmset and stlhset, hold single elements,
as opposed to key value pairs. If an element e is contained a set, s, we say that e is simulta-
neously an element, key and value stored s. In other words, we sometimes speak of a set as
if it were a map where each element, key and value are the same object.

The “ordered” containers, stlmap, stlset, stlmmap and stlmset, each have a “key-less-than”
function that they use keep their elements in a sequence that is ordered by keys. The default
key-less-than function is (<), but this can be changed when the container is created. The ele-
ments stored in a stlmap or stlset have unique keys, i.e., two elements stored in the container
will never have equivalent keys. For these purposes, two keys are “equivalent” if neither key
is key-less-than the other. In contrast, stlmmap and stlmset do not have unique keys. I.e., it
is possible for different elements stored in a stlmmap or stlmset can have equivalent keys.

The “hashed” containers, sthmap and stlhset do not keep their elements in a sequence. In-
stead they store their elments in a hash table using a “key-hash” function and a “key-equal”
function. Currently the key-hash function is always hash and the key-equal function is al-
ways (===), both of which are defined in the Prelude. The elements stored in a hashed
container have unique keys. I.e., two elements stored in the container will never by “key-
equal”. At times we say that two keys stored in a hashed container are “equivalent” if they
are key-equal.
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The “ordered maps”, stlmap and stlmmap, each have a “value-less-than” function and a
“value-equal” function that is used for lexicographical comparisons. The default functions
are (<) and (==) respectively, but these can customized when the container is created.

As is the case for the underlying C++ functions, set operations (i.e., union, intersection, etc.)
and container equivalence for the ordered containers are based on lexicographical compar-
isons. For these purposes one element, e1, is less than another, e2, if (a) e1’s key is less-than
e2’s key and, (b) if the ordered container is a stlmap or stlmap, e1’s value is value-less-than
e2’s value. Finally, for purposes of determining if two ordered containers are equal, e1 and
e2 are considered to be equal if (a) their keys are equivalent and (b), in the case of stlmap or
stlmmap, their values are value-equal.

Set operations are not provided for the hashed containers, stlhmap and stlhset.

12.6.2 Ranges

For the ordered containers (stlmap, stlset, stlmmap and stlmset), you can work with a sub-
sequence or “range” of a container’s elements. Given an ordered container, oc, and keys f
and l, the range (oc,f,l) consists of all of the elements in oc starting with the first element that
is not less than f up to but not including the first element that is greater or equal to l. Note
that f and l do not have to be stored in oc.

> members (sm,"b","e");
["b"=>2,"c"=>3,"d"=>4]

> members (sm,"c1",smend);
["d"=>4,"e"=>5]

When a range is passed to a function provided by pure-stlmap, the keys can be dropped, in
which case the range consists of all of the container’s elements.

> members sm;
["a"=>1,"b"=>2,"c"=>3,"d"=>4,"e"=>5]

Please note that support for ranges is not provided for the unordered containers (stlhmap
and stlhset). Most pure-stlmap functions that act on ranges can, however, operate on
stlhmaps or stlhsets as well, except that, for stlhmaps and stlhsets, they always operate on all
of the container’s elements. Accordingly, whenever the documentation of a function refers
to a range, and the container in question is a a stlhmap or stlhset, the range simply refers to
the container itself.

12.6.3 Iterators

The native STL interface is based on “iterators” that point to elements in containers. pure-
stlmap provides support for iterators defined on its ordered containers (stlmap, stlmmap,
stlset and stlmset) but not for its unordered containers (stlhmap and stlhset).

Iterators are most useful when dealing with stlmmaps where elements with different values
can have equivalent keys. In most cases, it is recommended that you avoid using iterators.
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The functions that operate on or return iterators are discussed separately at the end of this
document.

12.6.4 Selecting Elements Using Keys

Throughout pure-stlmap, unless you resort to using iterators, you can only specify elements
and ranges of elements using keys. For example you cannot use the member function to see
if a specific key, value pair is an element of a stlmap.

> members sm;
["a"=>1,"b"=>2,"c"=>3,"d"=>4,"e"=>5]

> member sm "a";
1

> catch id $ member sm (a=>1);
bad_argument

In the last line of code, member treats (a=>1) as a key. Because (a=>1) cannot be compared to
a string using (<), the ersatz key is treated as a bad argument.

This “key access only” approach can be an issue for stlmmaps and because multiple elements
can have equivalent keys. I.e., given a stlmmap, smm, that containes multiple element with
keys equivalent to, say, k, which element should (!) return? pure-stlmap dodges this issue
by returning all on them. Thus, for stlmmap and stlmset (!) and replace work with lists of
elements associated with a given key rather than, say, the first elment with the given key.

> members smm;
["a"=>1,"b"=>2,"c"=>31,"c"=>32,"d"=>4];

> smm!"c";
"c"=>[31,32]

> replace smm "c" [31,32,33]; members smm;
["a"=>1,"b"=>2,"c"=>31,"c"=>32,"c"=>33,"d"=>4]

> replace smm "c" []; members smm;
["a"=>1,"b"=>2,"d"=>4,"e"=>5]

If selecting and replacing lists of elements with the same key is not convenient, you can
always use iterators to track down and modify any specific element.

12.6.5 C++ Implementation

For those that want to refer to the C++ standard library documentation, stlmap
is (essentially) map<px*,px*>, stlmmap is multimap<px*,px*> and stlhmap is un-
ordered_map<px*,px*>, where px is defined by “typedef pure_expr px”. I.e., in C++ Con-
tainers library speak, key_type is px*, mapped_type is px* and value_type is pair<px*,px*>.
This might be a bit confusing because pure-stlmap’s (key=>value) “elements” correspond
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to C++ value_types, a pair<key_type,mapped_type>, and pure-stlmap’s values correspond
to mapped_types. The C++ objects for stlset, stlmset and stlhset are the same as stlmap,
stmmap and stlhmap except that pure-stlmap ensures that the second member of the C++
value_type pair is always NULL.

12.7 Modules

pure-stlmap provides three separate modules stlmap, stlmmap and stlhmap.

Importing any one of these modules defines the stl namespace as well as two important
symbols, stl::smbeg and stl::smend.

constructor stl::smbeg
constructor stl::smend

These symbols are used to designate the key of the first element in an ordered container
(stlmap, stlset, stlmmap or stlmset) and the key of an imaginary element that would
come immediately after the last element of in the constainer. They are used to define
ranges over the ordered containers.

E.g.,

> members sm;
["a"=>1,"b"=>2,"c"=>3,"d"=>4,"e"=>5]

> members (sm,"c",smend);
["c"=>3,"d"=>4,"e"=>5]

12.7.1 The stlhmap Module

If all you want is fast insertion and lookup, you don’t care about the order of the
elements stored in the container, and you do not want to use set operations like
stl::map_intersection, then stlhmap is probably your best choice. The supported con-
tainers, stlhmap and stlhset are simpler to use and faster than the other containers provided
by pure-stlmap.

The stlhmap module defines stlhmaps and stlhsets and provides functions for dealing with
them. You can import it by adding the following using statement to your code.

> using stlhmap;

The stlhmap module defines types two types:

type stlhmap
type stlhset

Please note that a stlhset is just a stlhmap where the values associated with keys cannot be
accessed or modified. I.e., a stlhset is a specialized kind of stlhmap.
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12.7.2 The stlmap Module

The stlmap module provides you with stlmaps and stlsets and the functions that op-
erate on them. Consider using these containers if you want their elements to be or-
derd by key, want to use ranges or if you are using any set operations (stl::map_union,
stl::map_intersection, etc).

You can import the stlmap module by adding the following using statement to your code.

> using stlmap;

Importing the stlmap module introduces types to describe stlmap and stlset, their iterators
and ranges defined on them.

type stlmap
type stlset

type stlmap_iter

type stlmap_rng

Please note that a stlset is just a stlmap where the values associated with keys cannot be
accessed or modified. I.e., a stlset is a specialized kind of stlmap. Accordingly, it is not nec-
essary, for example, to define a separate type for iterators on stlsets as opposed to iterators
on stlmaps.

12.7.3 The stlmmap Module

If you need a multi-keyed container, the stlmmap module, which provides support for
stlmaps and stlmsets, is your only choice. Set operations and ranges are supported, but
the semantics are more complicated than is the case for stlmap and stlset. Because the keys
stored in multi-keyed containers are not unique you might have to resort to using iterators
when working with them.

You can import the stlmmap module by adding the following using statement to your code.

> using stlmmap;

Importing the stlmmap module introduces types to describe stlmmap and stlmset, along
with their iterators and ranges defined on them.

type stlmmap
type stlmset

type stlmmap_iter

type stlmmap_rng

Please note that a stlmset is just a stlmmap where the values associated with keys cannot
be accessed or modified. I.e., a stlmset is a specialized kind of stlmmap. Accordingly, it is
not necessary, for example, to define a separate type for iterators on stlmsets as opposed to
iterators on stlmmaps.
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12.8 Container Operations

Each of the six associative containers supported by pure-stlmap has its own set of unique
characteristics. Because of this the description of functions that operate on more than one
type of container can get a little complicated. When reading this section it might be helpful
to consult pure-stllib-cheatsheet.pdf which can be found in the pure-stlib/doc directory.

12.8.1 Container Construction

New empty ordered containers (stlmap, stlset, stlmmap and stlmset) can be constructed
using optional parameters that allow you to specify customized key-less-than functions, de-
fault values, value-less-than and value-equal functions.

mkstlmap (klt,dflt,vlt,veq)
mkstlmmap (klt,dflt,vlt,veq)

Create a new stlmap or stlmmap where klt is the map’s key-less-than function. dflt is
the maps default value (used by replace_with and find_with_default). vlt is the map’s
value-compare function and veq is its value-equal function. Only klt is required, and
the default values for dflt, vlt, veq are [], (<) and (==) respectively.

mkstlset klt
mkstlmset klt

Create a new stlset or stlmset where klt is the set’s key-less-than function.

The internal lookup functions for the ordered containers (stlmap, stlset, stlmmap and stlm-
set) are optimized to avoid callbacks if the container’s key-less-than function is is (>) or (<)
and the keys being compared are a pair of strings, ints, bigints or doubles.

You can create an empty associative container using default values for using emptystlmap
and friends.

emptystlmap
emptystlmmap
emptystlset
emptystlmset

Create a new ordered map or set using default values. I.e., emptystlmap is the same as
mkstlmap (<), and so on.

emptystlhmap
emptystlhset

Create a new stlhmap or stlhset with default values. The hash-function is hash and the
value-equal function is (===).

Convenience functions are also provided to construct an empty container and insert ele-
ments into it in one go. The source of the elements can be a list, vector, a stlvec, or a range
defined on another container of the same type as the new container.

stlmap src
stlmmap src
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stlset src
stlmset src
stlhmap src
stlhset src

Create an associative constructor using default values and insert elements from copied
from src. src can be a list, vector or stlvec of elements or a range defined over a
container of the same type as the new container. If the new container is a stlmap,
stlmmap or stlhmap, the elements of src must be (key=>val) pairs. If the new container
is a stlset, stlmset or stlhset they can be any pure expression that can be used as a key
(i.e., anything except for stl::smbeg or stl::smend).

12.8.2 Information

This group of functions allows you make inquiries regarding the number of elments in a
container, the number of instances of a given key held by a container, the upper and lower
bounds of a range and other information. In addition this group includes a function that can
be used to change the number of slots used by a stlhmap or stlhset.

# acon
Return the number of elements in acon.

stl::empty acon
Return true if acon is empty, else false.

stl::distance rng
Returns the number of elements contained in rng where rng is a range defined on an
ordered container (stlmap, stlmmap, stlset, stlmset).

stl::count acon k
Returns the number of elements in an associative container, acon, that have a key that
is equivalent to k.

stl::bounds rng
Return a pair of keys, first and last, such that first <= k < last for each k, where k is the
key of an element in rng. If there is no such last, the second member of the returned
pair will be stl::smend. If first is the key of the first element of rng’s container, the
first member of the returned pair will stl::smbeg.

Here are two examples using the stl::bounds function. Notice that bounds returns
stl::smbeg instead of “a” in the first example.

> members sm;
["a"=>1,"b"=>2,"c"=>3,"d"=>4,"e"=>5]

> bounds sm;
stl::smbeg,stl::smend

> bounds (sm,"a1","e");
"b","e"
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stl::container_info acon
If acon is a stlmap or stlmmap, returns (0, klt, dflt, vlt, veq) where klt is acon‘s key-
less-than function, dflt is its default value, vlt is its value-less-than function and veq
is its value_equal function. If acon is a stlset or stlmset, returns (1,klt,_,_,_) where
klt is acon‘s key-less-than function. If acon is a stlhmap or stlhset, returns (is_set,
bucket_count, load_factor, max_load_factor).

stl::bucket_size hacon n
Returns the number of elements in hacon‘s nth (zero-based) bucket where hacon is a
stlhmap or stlhset.

stl::hmap_reserve hacon mlf size
Sets hacon‘s max_load_factor to mlf, sets the number of hacon ’s buckets to
‘‘size/mlf‘ and rehashes ‘‘hacon where hacon is a stlhmap or stlhset.

12.8.3 Modification

You can insert new items or, for the maps (stlmap, stlmmap and stlhmap), replace values
associated with keys using the insert, replace or insert_or_replace functions.

Please note that when working with the ordered containers (stlmap, stlset, stlmmap and
stlmset) the keys of elements passed to these functions must be compatible with the con-
tainer’s key-less-than function and keys that are already inserted. E.g.,

> members ss;
["a","b","c","d","e"]

> catch id $ insert ss 1; // e.g., 1<"a" is not defined
bad_argument

Currently there is no similar restriction for stlhmaps and stlhsets because (a) they do not
have a key-less-than function and (b) the function they do use for testing equality, the key-
equal function is always (===), a function that can compare any two objects.

> members shs;
["c","d","e","a","b"]

> insert shs 1;
1
> members shs;
["c",1,"d","e","a","b"]

Elements can be inserted into a pure-stlmap container individually or en masse from a list,
vector, stlvec or another container of the same type. If there is a key in the container that
is equivalent to the key of the element being inserted, the element will not be inserted (un-
less the container is a stlmmap or stlmset, both of which can hold multiple elements with
equivalent keys).

insert acon src
Attempts to copy elements from src a valid “insert source” into acon which can be any
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pure-stlmap container. A valid insert source is (a) a single element, (b) a list, vector,
stlvec of elements or (c), a range over an associative container of the same type as
acon. If acon is an associative map (stlmap, stlmmap or stlhmap), the src itself, or all
the elements of src, must be key value pairs of the form (k=>v). In contrast, if acon
is a stlset, stlmset or stlhset, src or all of its elements can be any pure object (except
stl::smbeg or stl::smend). If acon is a stlmap, stlset, stlhmap or stlhset, the element
will not be inserted if its key is already stored in the target container. Returns the
number of elements inserted, if any.

If you are dealing with a stlmap or stlhmap and want to override the values of elements
have keys that equivalent to the keys of the items you wan to insert you can use the
insert_or_replace function.

insert_or_replace acon src
The same as insert except that (a) acon must be a stlmap or a stlhmap and (b) if an
element (key=>newval) is about to be inserted and the container already contains an
element (key=>oldval) the element in the container will be changed to (key=>newval).
Returns the number of elements inserted or updated.

replace map key x
map must be a stlmap, stlmmap or stlhmap. If key is not stored in map this function
throws out_of_bounds. If map is a stlmap or stlhmap and (oldkey=>oldval) is an ele-
ment of map, where oldkey is equivalent to key, change the element to (oldkey=>‘‘x‘‘).
If map is a stlmmap and key is stored in map, change the values of elements with key
eqivalent to key, one by one, to the elements of x. Add or delete elements as necessary
so that, when the smoke clears, the values of map!‘‘key‘‘ are copies of the elements of x.
In all cases, if key is stored in map returns x.

Here are some examples using replace.

> members sm1;
["a"=>1,"b"=>2,"c"=>3,"d"=>4,"e"=>5]

> replace sm1 "e" 50;
50

> members sm1;
["a"=>1,"b"=>2,"c"=>3,"d"=>4,"e"=>50]

> members smm1;
["a"=>1,"b"=>2,"c"=>31,"c"=>32,"d"=>4,"e"=>5]

> replace smm1 "c" [31,33,35,36] $$ smm1!"c";
[31,33,35,36]

> replace smm1 "c" [] $$ smm1!"c";
[]

> members smm1;
["a"=>1,"b"=>2,"d"=>4,"e"=>5]
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replace_with fun map (k=>v)
map must be a stlmap. The effect of this function is as follows: (a) if ~ member map k then
insert map (k‘‘=>dflt) else (), where dflt is ‘‘map‘s dflt value, (b) replace map
k nv when nv = fun v (map!‘‘k‘‘) end. Returns map.

Here is an example using replace_with in which a stlmmap is converted to a stlmap.

> let sm1 = emptystlmap;

> members smm;
["a"=>1,"b"=>2,"c"=>31,"c"=>32,"d"=>4,"e"=>5]

> do (replace_with (:) sm1) smm;
()

> members sm1;
["a"=>[1],"b"=>[2],"c"=>[32,31],"d"=>[4],"e"=>[5]]

Here is another example in which items are counted.

> let sm1 = mkstlmap ( (<), 0 );

> members sms;
["a","b","c","c","d"]

> do (\x->replace_with (+) sm1 (x=>1)) sms;
()

> members sm1;
["a"=>1,"b"=>1,"c"=>2,"d"=>1]

You can remove all the elements in a container, remove all the elements equivalent to a given
key or a remove a range of elements using the erase function.

erase acon
erase (acon,k)
erase (acon,k1,k2)

The first form erases all elements in acon which can be any container provided by
pure-stlmap. The second erases all elements in acon with key equivalent to k. The
third erases the elements in the range (acon,‘‘k1‘‘,‘‘k2‘‘). The third form only applys
to the ordered containers (stlmap, stlmmap, stlset and stlmset), not stlhmap or stlh-
set (because ranges are not defined for stlhmaps or stlhsets). Returns the number of
elements removed from the container.

Here are some examples using erase.

> members smm;
["a"=>1,"b"=>2,"c"=>31,"c"=>32,"d"=>4,"e"=>5]

> erase (sm,"z");
0

> erase (smm,"c");
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2

> members smm;
["a"=>1,"b"=>2,"d"=>4,"e"=>5]

> erase (smm,"b","e");
2

> members smm;;
["a"=>1,"e"=>5]

stl::swap acon1 acon2
Swaps the elements of the two containers, acon1 and acon2 where acon1 and acon2 are
the same type of container (E.g., both are stlmaps or both are stlmsets).

12.8.4 Accessing Elements

You can test if a key is stored in a container and access the value associated with a key using
the familiar member and (!) functions.

member acon k
Returns true if acon, any container provided by pure-stlmap, contains an element that
has a key that is equivalent to k.

acon ! k
If acon is not a stlmmap then (a) if acon has an element with key equivalent to k return
its value, otherwise (b) throw an out_of_bounds exception. If acon is a stlmmap then
(a) if acon has as least one element with key equivalent to k return a list of values of all
the elements with key equivalent to k, otherwise (b) return an null list.

E.g.:

> sm!"c";
3

> catch id $ sm!"f"; // "f" is not stored in sm
out_of_bounds

> catch id $ sm!100; // 100 cannot be compared to strings using (<)
bad_argument

> smm!"c"; // for stlmmap, return list of values
[31,32]

> smm!"f"; // stlmmap returns null list if key is not stored
[]

You can access a sequence of elements in an ordered container (stlmap, stlset, stlmmap or
stlmset) without resorting to iterators using the next_key and prev_key functions.

stl::next_key acon k
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stl::prev_key acon k
acon must be a stlmap, stlset, stlmmap or stlmmap. Also if k is not stl::smbeg,
stl::smend or an element of acon an out_of_bounds exception will be throw. next_key
returns the key of the first element in acon that has a key that is greater than k. If no
such element exists or if k is stl::smend, returns stl::smend. prev_key returns the last
element in acon that has a key that is less that k, or, if no such element exists, throws
an out_of_bounds exception.

For various reasons, it is very common to see a call to (!) or replace preceded by a call to
member with the same container and key. E.g.,

> bump_wc sm w = if member sm w then replace sm w (sm!w + 1)
else insert sm (w=>1);

In general, this function would require two lookups to add a new word and three lookups
to bump the count for an existing word. For the ordered containers, lookups have O(log N)
complexity which can be relatively slow for large containers.

To speed things up, each stlmap or stlset maintains a small cache of (key, C++ iterator) pairs
for recently accessed keys. During lookup, the cache is checked for a matching key, and if the
key is found, the element pointed to by the C++ iterator is used immediately. Thus, when
applied to a stlmap or stlset bump_wc will use only one O(log N) search, rather than two or
three. For these purposes, a key matches a key in the cache only if it is the same Pure object
(i.e., the test is C++ pointer equality, not Pure’s (===) or (==) functions). For example, the
following will result in two O(log N) lookups.

> if member sm "a" then sm!"a" else insert sm ("a"=>10);

Here each “a” is a distinct Pure object. The two “a”s satisfy (==) and even (===) but they are
not the same internally and the caching mechanism will not help.

Almost any pure-stlmap function that accepts a stlmap or stlset as an argument will check
the container’s cache before doing an O(log N) lookup. Currently the cache is limited to hold
only the most recently used key.

Here are some examples produced by compiling pure-stlmap with a trace function that
shows caching in action.

> let a_key = "a";

> members sm;
["a"=>1,"b"=>2,"c"=>3,"d"=>4,"e"=>5]

> member sm a_key; // a_key is not yet in the cache
1

> sm!a_key; // a_key is found in the cache
found iterator for: "a"
1

> replace sm a_key 10;
found iterator for: "a"
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10

> sm!"a"; // "a" is a new key, not same C++ pointer as k or a_key
1

> let k = next_key sm a_key; // now k is in the cache, in front of a_key
found iterator for: "a"

> let k1 = next_key sm k; // now k1 is at the head of the queue
found iterator for: "b"

> replace sm k1 30;
found iterator for: "c"
30

> members sm;
["a"=>10,"b"=>2,"c"=>30,"d"=>4,"e"=>5]

These examples show that caching can be effective wnen visiting elements of a stlmap or
stlset in order using next_key or prev_key.

12.8.5 Conversions

The contents of a pure-stlmap container can be copied to a list, vector, stlvec. For stlmaps,
stlsets, stlmmaps and stlmsets, these operations act on ranges as well as on the entire con-
tainer.

members rng
Returns a list of the elments in the range, rng.

keys rng
vals rng

Return the keys and vals of the range’s elements.

Here are some examples using the members, keys and vals functions.

> members shm; // must do all of shm elements because shm is a stlhmap
["d"=>4,"e"=>5,"a"=>1,"b"=>2,"c"=>3]

> keys (sm,"b","e"); // can ask for a range - sm is an ordered container
["b","c","d"]

> vals (sm,"b","e");
[2,3,4]

stl::vector rng
Return a vector containing the elments of in the range, rng.

stlvec rng
returns a stlvec containing the elments of in the range, rng.
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You can also convert an ordered container (stlmap, stlset, stlmmap or stlmset) into a stream
of elements.

stream rng
Returns a stream consisting of the range’s elements.

Here is an example using the stream function on a stlmmap.

> members smm;
["a"=>1,"b"=>2,"c"=>31,"c"=>32,"d"=>4,"e"=>5]

> take 3 $ stream smm;
("a"=>1):#<thunk 0xb70f438c>

> list ans;
["a"=>1,"b"=>2,"c"=>31]

12.8.6 Functional Programming

pure-stlmap provides the most commonly used functional programming operations, imple-
mented to act on ranges as if they were lists.

do fun rng
map fun rng
filter pred rng
foldl fun x rng
foldl1 fun rng
foldr fun x rng
foldr1 fun rng

These functions are the same as the corresponding functions provided in the Prelude
for lists. rng is a rng defined on a stlmap, stlset, stlmmap or stlmset or rng is simply a
stlhmap or stlhset. foldr and foldr1 are not defined for stlhmaps or stlhsets.

Here are some examples.

> members sm;
["a"=>1,"b"=>2,"c"=>3,"d"=>4,"e"=>5]

> map (\(k=>v)->k+str v) (sm,"b","e");
["b2","c3","d4"]

> foldr1 (\(k=>v) (ks=>sum)-> (k+ks=>v+sum)) (sm,"b","e");
"bcd"=>9

> filter (\(k=>v)->v mod 2) sm;
["a"=>1,"c"=>3,"e"=>5]

listmap fun rng
catmap fun rng
rowmap fun rng
rowcatmap fun rng
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colmap fun rng
colcatmap fun rng

These functions are the same as the corresponding functions provided in the Prelude
for lists. rng is a rng defined on a stlmap, stlset, stlmmap or stlmset or simply a stlhmap
or stlhset.

These functions are provided primarily to enable the use of list and matrix comprehensions
over pure-stlmap’s containers. E.g.,

> [ k + str v | (k=>v) = (sm,"b","e")];
["b2","c3","d4"]

> [ k=>v | (k=>v) = sm; v mod 2];
["a"=>1,"c"=>3,"e"=>5]

> { {k;v} | (k=>v) = sm; v mod 2};
{"a","c","e";1,3,5}

The functional programming operations work directly on the underlying data structure.

> let ints = 0..10000;

stats -m
> filter (==99) ints;
[99]
0s, 6 cells

12.8.7 Comparison

Two associative containers of the same type are considered to be equal if they contain the
same number of elements and if each pair of their corresponding elements are equal. Two
elements are equal if their keys are equivalent and, if the container is a stlmap, stlmap or
stlhmap, the values associated with equal keys are equal (using the container’s value-equal
function).

stl::map_equal rng1 rng2

rng1 == rng2
rng1 ~= rng2

Test rng1 and rng2 for equality or nonequality where rng1 and rng2 are ranges defined
over containers of the same type.

You need to be careful when using these operators. E.g.,

> members ss;
["a","b","c","d","e"]

> let xx = stlset ss;

> xx == ss;
1

12.8.7 Comparison 421



Pure Language and Library Documentation, Release 0.62

> (xx,"a","c") == (ss,"a","c"); // oops!
0

The second comparison was intended to compare identical ranges and return true. It failed
to do so because (==) is defined in the Prelude to compare tuples element by element, long
before it is defined in the stlmap module to compare ranges. The tuple operation take prece-
dence and determines that the tuples are not equal because xx and ss are different (pointers)
for purposes of this comparison. To avoid this issue when using ranges, you can use the
stl::map_equal function.

> map_equal (xx,"a","c") (ss,"a","c");
1

The other comparison operators (<), (<=), (>) and (>=) are provided only for the ordered
containers (stlmap, stlset, stlmmap and stlmset). These operators reflect lexicographical
comparisons of keys and, then if the keys are equal, lexicographical comparisons of val-
ues. I.e., this is not set inclusion - order matters. Accordingly, these comparison operators
are not defined for a stlhmap or stlhset.

rng1 < rng2
Traverse the ranges comparing pairs of elements e1 and e2. If e1 is less than e2, stop
and return true; if e2 is less than e1 then stop and return false. If rng1 is exhausted but
rng2 is not, return true, else return false. The two ranges must be defined on ordered
associative containers of the same type.

rng1 > rng2
rng1 <= rng2
rng1 >= rng2

The these three operators are the same as rng2 < rng1, ~(rng1>‘‘rng2‘) and
~(rng1‘‘<‘‘rng2) respectively.

You also have to be careful when using equivalence and comparison operators with
stlmmaps because elements with the same key and different values are not necessarily or-
dered by values.

> let smm2 = stlmmap ["a"=>1,"b"=>2,"c"=>32,"c"=>31,"d"=>4];

> members smm;
["a"=>1,"b"=>2,"c"=>31,"c"=>32,"d"=>4]

> members smm2;
["a"=>1,"b"=>2,"c"=>32,"c"=>31,"d"=>4]

> smm == smm2; // probably not what you want
0

These operations do not make much sense for a stlmmap unless elements with equivalent
keys are stored by value, in the order enforced by the stlmmap’s value-comp function. In
this regard it is worth noting that, depending on your implementation, the insert function
may or may not preserve the order of insertion of elements with equivalent keys (C++11
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does preserve the order).

12.8.8 Set Algorithms

pure-stlmap provides wrappers for the STL set algorithms that apply to ranges defined on
the four ordered associative containers (stlmap, stlset, stlmmap and stlmset). These algo-
rithms are very efficient, with linear time complexity, but they do require that the elements
of the two ranges be ordered. Accordingly, the set algorithms are not applicable to stlhmap
or stlhset. Also, when dealing with stlmmaps, care must be taken to ensure that items with
the equivalent keys are ordered by their values.

stl::map_merge rng1 rng2
Constructs a new ordered container from rng1 and then insert the elments of rng2 into
the new container and return it. rng1 and rng2 must be defined on the same type of
ordered container.

stl::map_union rng1 rng2
stl::map_difference rng1 rng2
stl::map_intersection rng1 rng2
stl::map_symmetric_difference rng1 rng2
stl::map_includes rng1 rng2

Returns a new ordered associative container of the same type as the ordered containers
underlying rng1 and rng2. If the ranges are defined over a stlmap or stlmmap elements
of rng1 have priority over the elments of rng2. Uses rng1‘s key-less-than, value-less-
than and value-equal functions.

pure-stlmap’s set functions do not necessarily produce the same results as their Pure
standard library counterparts. In particular, when applied to multi-keyed contaners,
stl::map_union Produces the multiset union of its arguments while (+) in the Pure standard
library produces the multiset sum. If you want the multiset sum of a stlmmap or stlhmap,
use stl::map_merge. Also, in pure-stlmap, as in the STL, the left hand map or set has prior-
ity of elements while in the Pure standard library the right hand set has priority of elements.
This can make a difference when applying set operations to a pair of stlmaps or stlmmaps.
E.g.,

> let smm1 = stlmmap ["a"=>1,"b"=>2,"c"=>31,"c"=>32];
> let smm2 = stlmmap ["c"=>32,"c"=>32,"c"=>33,"d"=>4,"e"=>5];

> members $ map_merge smm1 smm2; // three "c"=>32
["a"=>1,"b"=>2,"c"=>31,"c"=>32,"c"=>32,"c"=>32,"c"=>33,"d"=>4,"e"=>5]

> members $ map_union smm1 smm2; // two "c"=>32
["a"=>1,"b"=>2,"c"=>31,"c"=>32,"c"=>32,"c"=>33,"d"=>4,"e"=>5]

> let sm1 = stlmap ["a"=>1,"b"=>2,"c"=>31];
> let sm2 = stlmap ["c"=>32,"d"=>4,"e"=>5];

> members $ map_union sm1 sm2; // "c"=>31 from sm1, not "c"=>32 from sm2
["a"=>1,"b"=>2,"c"=>31,"d"=>4,"e"=>5]
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> members $ map_intersection sm1 sm2; // "c"=>31 from sm1
["c"=>31]

12.8.9 Direct C Calls

It is common to encounter code that (a) tests if a key is stored in a container using member
and (b) in the case of maps, retreives the value or values associated with the key using (!)
and/or (c) changes the value or values using replace. Depending on what modules have
been loaded, these functions may be heavily overloaded which can cause a small delay when
the functions are called. To avoid this, pure-stlmap exposes the corresponding C functions
so that they can be called directly. The C functions have the same name as the overloaded
functions except for a prefix. E.g.,

stl::sm_member sm key
stl::sm_get sm key
stl::sm_put sm key val

The first two functions are the direct C call equivalents of (::member sm key) and
(sm!key). The third is like (::replace sm key val) except that it will insert (key=>val)
if key is not already stored in sm. Here, sm is a stlmap or a stlset (except that sm_put is
not defined for stlsets).

stl::shm_member shm key
stl::shm_get shm key
stl::shm_put shm key val

The first two functions are the direct C call equivalents of (::member shm key) and
(shm!key). The third is like (::replace shm key val) except that it will insert (key=>val)
if key is not already stored in shm. Here, shm is a stlhmap or a stlhset (except that
shm_put is not defined for stlhsets).

stl::smm_member smm key
stl::smm_get smm key
stl::smm_put smm key vals

The first two functions are the direct C call equivalents of (::member smm key) and
(smm!key). The third is like (::replace smm key val) except that it will insert
(key=>val1, key=>val2, ...) if key is not already stored in smm. Here, smm is a stlmmap
or a stlmset (except that smm_put is not defined for stlmsets).

12.9 Iterators

This section provides a quick overview of pure-stlmap’s “iterator-based” interface.

12.9.1 Concepts

Given a valid iterator you can access, modify or erase the element it points to.
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> let sm1 = stlmap sm; members sm1;
["a"=>1,"b"=>2,"c"=>3,"d"=>4,"e"=>5];

> let i = find sm1 "b"; // use find to get an iterator - like C++

> get_elm i;
"b"=>2

> get_val i;
2

> put_val i 20;
20

> members sm1;
["a"=>1,"b"=>20,"c"=>3,"d"=>4,"e"=>5]

Please note that you can never modify an element’s key, only its value. If you want to change
both key and value, you have to erase the element and insert a new element.

> erase (sm1,i) $$ insert sm1 ("b1"=>21);
1

> members sm1;
["a"=>1,"b1"=>21,"c"=>3,"d"=>4,"e"=>5]

Given two iterators, i and j, pointing into a ordered container oc, the range (i,j), denotes oc’s
elements starting with “oc[i]”, the element pointed to by i, up to but not including oc[j]. In
pure-stlmap, this range is denoted by the tuple (i,j).

> members sm;
["a"=>1,"b"=>2,"c"=>3,"d"=>4,"e"=>5]

> let i = stl::find sm1 "b"; // get the iterator

> let j = stl::find sm1 "e";

> members (i,j); // get the elements in the range
["b"=>2,"c"=>3,"d"=>4]

Perhaps it is worth mentioning that functions that act on ranges do not care if the range is
specified by a pair of iterators or by keys.

> members ss;
["a","b","c","d","e"]

> map (+21) (ss,"c",smend);
["x","y","z"]

> let i = find ss "c";
> let j = pastend ss;
> map (+21) (i,j);
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["x","y","z"]

12.9.2 Exceptions

In pure-stlmap functions that accept iterators throw a bad_argument exception if called with
an invalid iterator. An iterator remains valid until the element it was pointing to has been
erased. These functions also attempt to throw bad argument exceptions for invalid usage
that would otherwise result in undefined behavior. An example of an invalid use would be
a range specified by iterators from different containers. Here are some examples of iterator
errors.

> let i,j = find sm "a", find sm "d";

> get_elm i, get_elm j;
"a"=>1,"d"=>4

> members (i,j);
["a"=>1,"b"=>2,"c"=>3]

> catch id $ members (j,i); // j and i transposed, C++ would segfault
bad_argument

> erase (sm,"b"); // erase "b"=>2, leaving i and j valid
1

> get_elm i; // still valid
"a"=>1

> erase (sm,"a"); // erase "a"=>1 - invalidating i
1

> catch id $ get_elm i; // bad iterator exception
bad_argument

12.9.3 Functions

In this section “acon” always denotes one of the containers that supports interators (stlmap,
stlset, stlmmap and stlmset).

stl::iterator i
Returns a new iterator that points to the same element as i.

stl::begin acon
stl::pastend acon

Returns acon‘s begin or past-end iterator.

stl::find acon k
Creates a new iterator that points to an element in acon with key equivalent to k (if
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any) or acon‘s past-end iterator if no such element exists.

stl::find_with_default map k
Returns an iterator pointing to the element in map, a stlmap, with key equivalent to
k. If no such element existed before the call, one is created and inserted using k and
map‘s default value. This function is pure-stlmap’s version of C++’s [] operator for
associative containers.

stl::insert_elm acon elm
Attempts to insert elm into acon. (If acon is a stlmap or stlmmap, then elm must be a
key value pair, (k=>v)). If acon is a stlmap or stlset (i.e., with unique keys) insert_elm
returns a pair, the first of which is an iterator pointing to the element with key k that
was just inserted (or the pre-existing element that blocked the insertion). The second
element in the pair is a boolean value that is true if a new element was inserted. In
contrast, if acon is a multi-keyed container (stlmmap or stlmset) the insert will always
be successful and insert_elm returns an iterator pointing to the element with key k
that was just inserted, instead of an (iterator, boolean) tuple.

stl::insert_elm acon (elm,i)
This is the same as the previous function except that (a) i is passed in as a hint to where
the new element should be inserted and (b) a single iterator is returned rather than a
iterator,boolean pair. If the new element is inserted just after i, the insertion can have
constant time complexity.

stl::l_bound acon k
Return a new iterator that points to the first element in acon, a stlmap, stlset, stlmmap
or stlmset, that is not less than k, or acon‘s past-end iterator if none exists.

stl::u_bound acon k
Return a new iterator that points to the first element in acon, a stlmap, stlset, stlmmap
or stlmset, that is greater than k, or acon‘s past-end iterator if none exists.

stl::lu_bounds acon k
Return the pair l_bound acon k, u_bound acon k.

E.g.,

> let ok, smx, f, l = stl::range_info (sm1,"b","e");

> ok, smx === sm1, stl::members (f,l);
1,1,["b"=>2,"c"=>3,"d"=>4]

stl::inc i
stl::dec i
stl::move i n::int

Move the iterator i forward one, back one or forward n elements respectively, where
n can be negative. The iterator is mutated by these operations, provided the move is
successful. An attempt to move to a position before the first element’s position causes
an out_of_bounds exception. Moves past the last element return the past-end iterator
for the container that i is defined on.

stl::get_elm i
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stl::get_key i
stl::get_val i

Return the element pointed to by the iterator i, or the element’s key or value. For maps
the element is returned as a key=>value hash rocket pair. For sets, get_elem, get_key
and get_val all return the element (which is the same as its key).

stl::put_val i newvalue
Change the value of the element pointed to by the iterator i to newvalue. The element’s
key cannot be changed. The iterator must point into a stlmap or stlmmap.

stl::beginp i
stl::pastendp i

Returns true if the iterator i is the begin iterator or pastend iterator of the container it
is defined on.

stl::get_info i
Returns a tuple (is_valid,acon,key,val) where is_valid is true if the iterator i is valid or
false if not, acon is the container that i is defined on, and key, val are the key and value
of the element i points to, if any. If i is the past-end iterator, key and val are set to
stl::smend and [], respectively.

i == j
Returns true if the iterators i and j point to the same element.

erase (acon,i)
erase (acon,i,j)

Erases the element pointed to by i or the elements in the range (i, j). Both i and j
must be iterators defined on acon (or a bad_argument exception will be thrown).

12.9.4 Examples

Here are some examples using iterators.

> let b,e = begin smm, pastend smm;

> members (b,e);
["a"=>1,"b"=>2,"c"=>31,"c"=>32,"d"=>4,"e"=>5]

> let i,j = lu_bounds smm "c";

> members (b,i);
["a"=>1,"b"=>2]

> members (i,j);
["c"=>31,"c"=>32]

> members (j,e);
["d"=>4,"e"=>5]

> get_elm i;
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"c"=>31

> get_elm (inc i);
"c"=>32

> put_val i 132;
132

> map (\(k=>_)->k=>ord k) (b,i);
["a"=>97,"b"=>98,"c"=>99]

> let is_set, smm1, k, v = get_info i; is_set, members smm1, k, v;
1,["a"=>1,"b"=>2,"c"=>31,"c"=>132,"d"=>4,"e"=>5],"c",132

> get_elm (dec j);
"c"=>132

> inc j $$ inc j $$ get_elm j;
"e"=>5

> inc j $$ endp j;
1

12.10 Backward Compatibilty

This section documents changes in pure-stlmap.

12.10.1 pure-stlmap-0.2

Optimized common predicates, such as (<) and (>)

12.10.2 pure-stlmap-0.3

Fixed (>) comparisons on plain old data.
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Chapter 13
pure-stlvec

Version 0.4, September 17, 2014

Peter Summerland <p.summerland@gmail.com>

Pure’s interface to C++ vectors, specialized to hold pointers to arbitrary Pure expressions,
and the C++ Standard Template Library algorithms that act on them.

13.1 Copying

Copyright (c) 2011 by Peter Summerland <p.summerland@gmail.com>.

All rights reserved.

pure-stlvec is distributed in the hope that it will be useful, but WITHOUT ANY WAR-
RANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE.

pure-stlvec is distributed under a BSD-style license, see the COPYING file for details.

13.2 Installation

pure-stlvec-0.4 is included in the “umbrella” addon, pure-stllib, which is available at
http://code.google.com/p/pure-lang/downloads/list. After you have downloaded and
installed pure-stllib, you will be able to use pure-stlvec (and pure-stlmap, as well).
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13.3 Overview

The C++ Standard Template Library (“STL”) is a library of generic containers (data structures
designed for storing other objects) and a rich set of generic algorithms that operate on them.
pure-stlvec provides an interface to one of its most useful containers, “vector”, adopted to
hold pointers to Pure expressions. The interface provides Pure programmers with a mutable
container “stlvec”, that, like the STL’s vector, holds a sequence of objects that can be accessed
in constant time according to their position in the sequence.

13.3.1 Modules

The usual operations for creating, accessing and modifying stlvecs are provided by the stlvec
module. Most of the operations are similar in name and function to those provided by the
Pure Library for other containers. As is the case for their Pure Library counterparts, these
operations are in the global namespace. There are a few operations that have been placed in
the stl namespace usually because they do not have Pure Library counterparts.

In addition to the stlvec module, pure-stlvec provides a group of modules, stlvec::modifying,
stlvec::nonmodifying, stlvec::sort, stlvec::merge, stlvec::heap, stlvec::minmax and
stlvec::numeric, that are straight wrappers the STL algorithms (specialized to work
with STL vectors of pointers to Pure expressions). This grouping of the STL algorithms
follows that found at http://www.cplusplus.com/reference/algorithm/. This web page
contains a table that summarizes of all of the algorithms in one place.

pure-stlvec provides an “umbrella” module, stlvec::algorithms, that pulls in all of the
STL algorithm interface modules in one go. The STL algorithm wrapper functions reside in
the stl namespace and have the same names as their counterparts in the STL.

13.3.2 Simple Examples

Here are some examples that use the basic operations provided by the stlvec module.

> using stlvec;

> let sv1 = stlvec (0..4); members sv1;
[0,1,2,3,4]

> insert (sv1,stl::svend) (5..7); members sv1;
STLVEC #<pointer 0xaf4d2c0>
[0,1,2,3,4,5,6,7]

> sv1!3;
3

> sv1!![2,4,6];
[2,4,6]

> replace sv1 3 33; members sv1;
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STLVEC #<pointer 0xaf4d2c0>
[0,1,2,33,4,5,6,7]

> stl::erase (sv1,2,5); members sv1;
STLVEC #<pointer 0xaf4d2c0>
[0,1,5,6,7]

> insert (sv1,2) [2,3,4]; members sv1;
STLVEC #<pointer 0xaf4d2c0>
[0,1,2,3,4,5,6,7]

> let pure_vector = stl::vector (sv1,1,5); pure_vector;
{1,2,3,4}

> stlvec pure_vector;
STLVEC #<pointer 0x9145a38>

> members ans;
[1,2,3,4]

> map (+10) sv1;
[10,11,12,13,14,15,16,17]

> map (+10) (sv1,2,5);
[12,13,14]

> foldl (+) 0 sv1;
28

> [x+10 | x = sv1; x mod 2];
[11,13,15,17]

> {x+10 | x = (sv1,2,6); x mod 2};
{13,15}

Here are some examples that use STL algorithms.

> using stlvec::algorithms;

> stl::reverse (sv1,2,6); members sv1;
()
[0,1,5,4,3,2,6,7]

> stl::stable_sort sv1 (>); members sv1;
()
[7,6,5,4,3,2,1,0]

> stl::random_shuffle sv1; members sv1 1;
()
[1,3,5,4,0,7,6,2]

> stl::partition sv1 (<3); members (sv1,0,ans); members sv1;
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3
[1,2,0]
[1,2,0,4,5,7,6,3]

> stl::transform sv1 (sv1,0) (*2); members sv1;
-1
[2,4,0,8,10,14,12,6]

> let sv2 = emptystlvec;

> stl::transform sv1 (sv2,stl::svback) (div 2); members sv2;
-1
[1,2,0,4,5,7,6,3]

Many more examples can be found in the pure-stlvec/ut directory.

13.3.3 Members and Sequences of Members

Throughout the documentation for pure-stlvec, the member of a stlvec that is at the nth
position in the sequence of expressions stored in the stlvec is referred to as its nth member
or nth element. The nth member of a stlvec, sv, is sometimes denoted by sv!n. The sequence
of members of sv starting at position i up to but not including j is denoted by sv[i,j). There is
a “past-the-end” symbol, stl::svend, that denotes the position after that occupied by the last
member contained by a stlvec.

For example, if sv contains the sequence “a”, “b”, “c” “d” and “e”, sv!0 is “a”, sv[1,3) is the
sequence consisting of “b” followed by “c” and v[3,stl::svend) denotes the sequence consist-
ing of “d” followed by “e”.

13.3.4 STL Iterators and Value Semantics

In C++ a programmer accesses a STL container’s elements by means of “iterators”, which
can be thought of as pointers to the container’s elements. A single iterator can be used to
access a specific element, and a pair of iterators can be used to access a “range” of elements.
By convention, such a range includes the member pointed to by the first iterator and all
succeeding members up to but not including the member pointed to by the second iterator.
Each container has a past-the-end iterator that can be used to specifiy ranges that include the
container’s last member.

In the case of vectors there is an obvious correspondence between an iterator that points to
an element and the element’s position (starting at zero) in the vector. pure-stlvec uses this
correspondence to designate a stlvec’s members in a way that makes it relatively easy to see
how pure-stlvec’s functions are acting on the stlvec’s underlying STL vector by referencing
the STL’s documentation. Thus, if sv is a stlvec, and j is an int, “replace sv j x” uses the
STL to replace the element pointed to by the iterator for position j of sv’s underlying STL
vector. If, in addition, k is an int, stl::sort (sv,j,k) (<) uses the STL to sort the elements in the
range designated by the “jth” and “kth” iterators for sv’s underlying STL vector. This range,
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written as sv[j,k), is the subsequence of sv that begins with the element at position j and ends
with the element at position (k-1).

Besides iterators, another cornerstone of the STL is its “value semantics”, i.e., all of the STL
containers are mutable and if a container is copied, all of its elements are copied. pure-stlvec
deals with the STL’s value semantics by introducing mutable and nonmutable stlvecs, and
by storing smart pointers to objects (which have cheap copies) rather than the actual objects.

13.3.5 Iterator Tuples

As mentioned in the previous section, in C++ ranges are specified by a pair of STL iterators.

In pure-stlvec ranges of elements in a stlvec are specified by “iterator tuples” rather than,
say, actual pointers to STL iterators. Iterator tuples consist of the name of a stlvec followed
by one of more ints that indicate positions (starting from zero) of the stlvec’s elements.

To illustrate how iterator tuples are used, consider the STL stable_sort function, which sorts
objects in the range [first, last) in the order imposed by comp. Its C++ signature looks like
this:

void stable_sort ( RandomAccessIterator first, RandomAccessIterator last, Com-
pare comp )

The corresponding pure-stlvec function, from the stlvec::sort module, looks like this:

stable_sort (msv, first, last) comp

where msv is a mutable stlvec, and first and last are ints. The first thing that the Pure sta-
ble_sort does is create a pair of C++ iterators that point to the elements in msv’s underlying
STL vector that occupy the positions designated by first and last. Next it wraps the Pure
comp function in a C++ function object that, along with the two iterators, is passed to the
C++ stable_sort function.

For convenience, (sv,stl::svbeg, stl::svend) can be written simply as sv. Thus, if first were
stl::svbeg (or 0), and last were stl::svend (or #msv, the number of elements in msv), the last
Pure call could be written:

stable_sort msv comp

It should be noted that often the STL library provides a default version of its functions,
which like stable_sort, use a comparator or other callback function provided by the caller.
E.g., the C++ stable_sort has a default version that assumes the “<” operator can be used on
the elements held by the container in question:

void stable_sort ( RandomAccessIterator first, RandomAccessIterator last)

The corresponding functions provided by the pure-stlvec modules rarely, if ever, supply a
default version. A typical example is stlvec::sort’s stable_sort which must be called with a
comparator callback function:

stable_sort msv (<);
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Note also that the comparator (e.g., (<)), or other function being passed to a pure-stlvec algo-
rithm wrapper is almost always the last parameter. This is the opposite of what is required
for similar Pure functions, but is consistent with the STL calling conventions.

13.3.6 Predefined Iterator Tuple Indexes

The following integer constants are defined in the stl namespace for use in iterator tuples.

constant stl::svbeg = 0
constant stl::svend = -1
constant stl::svback = -2

These three symbols are declared as nonfix. svend corresponds to STL’s past-end iterator for
STL vectors. It makes it possible to specify ranges that include the last element of an stlvec.
I.e., the iterator tuple (sv,stl::svbeg,stl::svend) would specify sv[0,n), where n is the number
of elements in sv. In order to understand the purpose of svback, it is necessary to understand
a bit about STL’s “back insert iterators.”

13.3.7 Back Insert Iterators

Many of the STL algorithms insert members into a target range designated by an iterator
that points to the first member of the target range. Consistent with raw C usage, it is ok to
copy over existing elements the target stlvec. E.g.,:

> using stlvec::modifying;

> let v1 = stlvec (0..2);

> let v2 = stlvec ("a".."g");

> stl::copy v1 (v2,2) $$ members v2;
["a","b",0,1,2,"f","g"]

This is great for C++ programmers, but for Pure programmers it is almost always preferable
to append the copied items to the end of a target stlvec, rather than overwriting all or part
or part of it. This can be accomplished using stl::svback. E.g.,:

> stl::copy v1 (v2,stl::svback) $$ members v2;
["a","b",0,1,2,"f","g",0,1,2]

In short, when a pure-stlvec function detects “stl::svback” in a target iterator tuple, it con-
structs a STL “back inserter iterator” and passes it on to the corresponding wrapped STL
function.

13.3.8 Data Structure

Currently, stlvecs are of the form (STLVEC x) or (CONST_STLVEC x), where STLVEC AND
CONST_STLVEC are defined as nonfix symbols in the global namespace and x is a pointer
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to the underlying STL vector. The stlvec module defines corresponding type tags, stlvec and
const_stlvec, so the programmer never needs to worry about the underlying representaton.

This representation may change in the future, and must not be relied upon by client modules.
In particular, one must never attempt to use the embedded pointer directly.

As the names suggest, stlvecs are mutable and const_stlvecs are immutable. Functions that
modify a stlvec will simply fail unless the stlvec is mutable.

> let v = const_stlvec $ stlvec (0..3); v2;
CONST_STLVEC #<pointer 0x8c1dbf0>

> replace v 0 100; // fails
replace (CONST_STLVEC #<pointer 0x9f07690> 0 100

13.3.9 Types

pure-stlvec introduces six type tags, all of which are in the global namespace:

type mutable_stlvec
The type for a mutable stlvec.

type const_stlvec
The type for an immutable stlvec.

type stlvec
The type for a stlvec, mutable or immutable.

type mutable_svit
The type for an iterator tuple whose underlying stlvec is mutable.

type const_svit
The type for an iterator tuple whose underlying stlvec is immutable.

type svit
The type for an iterator tuple. The underlying stlvec can be mutable or immutable.

13.3.10 Copy-On-Write Semantics

The pure-stlvec module functions do not implement automatic copy-on-write semantics.
Functions that modify stlvec parameters will simply fail if they are passed a const_stlvec
when they expect a mutable_stlvec.

For those that prefer immutable data structures, stlvecs can be converted to const_stlvecs
(usually after they have been created and modified within a function) by the const_stlvec
function. This function converts a mutable stlvec to an immutable stlvec without changing
the underlying STL vector.

Typically, a “pure” function that “modifies” a stlvec passed to it as an argument will first
copy the input stlvec to a new locally scoped (mutable) stlvec using the stlvec function. It
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will then modify the new stlvec and use const_stlvec to make the new stlvec immutable
before it is returned. It should be noted that several of the STL algorithms have “copy”
versions which place their results directly into a new stlvec, which can eliminate the need to
copy the input stlvec. E.g.:

> let sv1 = stlvec ("a".."e");

> let sv2 = emptystlvec;

> stl::reverse_copy sv1 (sv2,stl::svback) $$ members sv2;
["e","d","c","b","a"]

Without reverse_copy, one would have had to copy sv1 into sv2 and then reverse sv2.

If desired, in Pure it is easy to write functions that have automatic copy-on-write semantics.
E.g.,

> my_replace csv::const_stlvec i x = my_replace (stlvec csv) i x;
> my_replace sv::stlvec i x = replace sv i x;

13.3.11 Documentation

The pure-stllib/doc directory includes a rudimentary cheatsheet, pure-stllib-cheatsheet.pdf,
that shows the signatures of all of the functions provided by pure-stlvec (and by pure-stlmap
as well).

The documentation of the functions provided by the stlvec module are reasonably complete.
In contrast, the descriptions of functions provided by the STL algorithm modules are pur-
posely simplified (and may not, therefore, be technically accurate). This reflects that fact that
the functions provided by pure-stlvec have an obvious correspondence to the functions pro-
vided by the STL, and the STL is extremely well documented. Furthermore, using the Pure
interpreter, it is very easy to simply play around with with any of the pure-stlvec functions
if there are doubts, especially with respect to “corner cases.” Often this leads to a deeper
understanding compared to reading a precise technical description.

A good book on the STL is STL Tutorial and Reference Guide, Second Edition, by David R.
Musser, Gillmer J. Derge and Atul Saini. A summary of all of the STL algorithms can be
found at http://www.cplusplus.com/reference/stl/.

13.3.12 Parameter Names

In the descriptions of functions that follow, parameter names used in function descriptions
represent specific types of Pure objects:

sv stlvec (mutable or immutable)

csv const (i.e., immutable) stlvec

msv mutable stlvec
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x an arbitrary Pure expression

xs a list of arbitrary Pure expressions

count, sz, n whole numbers to indicate a number of elements, size of a vector, etc

i,j whole numbers used to designate indexes into a stlvec

f,m,l whole numbers (or stl::beg or stl::svend) designating the “first”, “middle” or “last”
iterators in a stlvec iterator tuple

p a whole number (or other iterator constant such as stl::svend or stl::svback) used in a two
element iterator tuple (e.g., (sv,p))

(sv,p) an iterator tuple that will be mapped to an iterator that points to the pth position of
sv’s underlying STL vector, v, (or to a back iterator on v if p is stl::svback)

(sv,f,l) an iterator tuple that will be mapped to the pair of iterators that are designated by
(sv,f) and (sv,l)

(sv,f,m,l) an iterator tuple that will be mapped to the iterators that are designated by (sv,f),
(sv,m) and (sv,l)

sv[f,l) the range of members beginning with that at (sv,f) up to but not including that at
(con,l)

comp a function that accepts two objects and returns true if the first argument is less than
the second (in the strict weak ordering defined by comp), and false otherwise

unary_pred a function that accepts one object and returns true or false

bin_pred a function that accepts two objects and returns true or false

unary_fun a function that accepts one objects and returns another

bin_fun a function that accepts two objects and returns another

gen_fun a function of one parameter that produces a sequence of objects, one for each call

For readability, and to correspond with the STL documentation, the words “first”, “middle”,
and “last”, or variants such as “first1” are often used instead of f,m,l.

13.4 Error Handling

The functions provided this module handle errors by throwing exceptions.

13.4.1 Exception Symbols

constructor bad_argument
This exception is thrown when a function is passed an unexpected value. A subtle
error to watch for is a malformed iterator tuple (e.g., one with the wrong number of
elements).
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constructor bad_function
This exception is thrown when a purported Pure call-back function is not even callable.

constructor failed_cond
This exception is thrown when a Pure call-back predicate returns a value that is not an
int.

constructor out_of_bounds
This exception is thrown if the specified index is out of bounds.

constructor range_overflow
This exception is thrown by functions that write over part of a target stlvec (e.g., copy)
when the target range too small to accommodate the result.

constructor range_overlap
This exception is thrown by algorithm functions that write over part of a target stlvec
when the target and source ranges overlap in a way that is not allowed.

In addition, any exception thrown by a Pure callback function passed to a pure-stlvec func-
tion will be caught and be rethrown by the pure-stlvec function.

13.4.2 Examples

> using stlvec, stlvec::modifying;

> let sv1 = stlvec (0..4); members sv1;
[0,1,2,3,4]

> let sv2 = stlvec ("a".."e"); members sv2;
["a","b","c","d","e"]

> sv1!10;
<stdin>, line 25: unhandled exception ’out_of_bounds’ ...

> stl::copy sv1 (sv2,10);
<stdin>, line 26: unhandled exception ’out_of_bounds’ ...

> stl::copy sv1 (sv2,2,3); // sb (sv2,pos)
<stdin>, line 22: unhandled exception ’bad_argument’ ...

> stl::copy sv1 (sv2,2);
<stdin>, line 23: unhandled exception ’range_overflow’ ...

> stl::copy sv2 (sv2,2);
<stdin>, line 24: unhandled exception ’range_overlap’ ...

> stl::copy (sv1,1,3) (sv2,0); members sv2; // ok
2
[1,2,"c","d","e"]

> stl::sort sv2 (>); // apples and oranges
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<stdin>, line 31: unhandled exception ’failed_cond’

> listmap (\x->throw DOA) sv1; // callback function throws exception
<stdin>, line 34: unhandled exception ’DOA’ ...

13.5 Operations Included in the stlvec Module

The stlvec module provides functions for creating, accessing and modifying stlvecs. In gen-
eral, operations that have the same name as a corresponding function in the Pure standard
library are in the global namespace. The remaining functions, which are usually specific to
stlvecs, are in the stl namespace.

Please note that “stlvec to stlvec” functions are provided by the pure-stl algorithm modules.
Thus, for example, the stlvec module does not provide a function that maps one stlvec onto
a new stlvec. That functionality, and more, is provided by stl::transform, which can be found
in the stlvec::modifying module.

13.5.1 Imports

To use the operations of this module, add the following import declaration to your program:

using stlvec;

13.5.2 Operations in the Global Namespace

When reading the function descriptions that follow, please bear in mind that whenever a
function is passed an iterator tuple of the form (sv,first, last), first and last can be dropped,
leaving (sv), or simply sv. The function will treat the “unary” iterator tuple (sv) as (sv,
stl::svbeg, stl::svend).

emptystlvec
return an empty stlvec

stlvec source /stlvec
create a new stlvec that contains the elements of source; source can be a stlvec, an
iterator tuple(sv,first,last), a list or a vector (i.e., a matrix consisting of a single row or
column). The underlying STL vector is always a new STL vector. I.e., if source is a
stlvec the new stlvec does not share source’s underlying STL vector.

mkstlvec x count
create a new stlvec consisting of count x’s.

const_stlvec source
create a new const_stlvec that contains the elements of source; source can be a stlvec,
an iterator tuple(sv,first,last), a list or a vector (i.e., a matrix consisting of a single row
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or column). If source is a stlvec (mutable or const), the new const_stlvec shares source’s
underlying STL vector.

# sv
return the number of elements in sv.

Note that # applied to an iterator tuple like (sv,b,e) will just return the number of elements in
the tuple. Use stl::bounds if you need to know the number of elements in the range denoted
by an iterator tuple.

sv ! i
return the ith member of sv

Note that !k applied to an iterator tuple like (sv,b,e) will just return the kth element of the
tuple. In addition, in stlvec, integers used to denote postions (as in !k) or in iterators, always,
are relative to the beginning of the underlying vector. So it makes no sense to apply ! to an
iterator tuple.

first sv
last sv

first and last member of sv

members (sv, first, last)
return a list of values stored in sv[first,last)

replace msv i x
replace the ith member of msv by x and return x; throws out_of_bounds if i is less than
0 or great or equal to the number of elements in msv

update msv i x
the same as replace except that update returns msv instead of x. This function is DEP-
RECATED.

append sv x
append x to the end of sv

insert (msv,p) xs
insert (msv,p) (sv,first,last)

insert members of the list xs or the range sv[first, last) into msv, all preceding the pth
member of msv. Members are shifted to make room for the inserted members

rmfirst msv
rmlast msv

remove the first or last member from msv

erase (msv,first,last)
erase (msv,p)
erase msv

remove msv[first,last) from msv, remove msv!p from msv, or make msv empty. Mem-
bers are shifted to occupy vacated slots

sv1 == sv2
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sv1 ~= sv2
(x == y) is the same as stl::allpairs (==) x y and x ~= y is simply ~(allpairs (==) x y)

Note that == and ~== are not defined for iterator tuples (the rules would never be executed
because == is defined on tuples in the Prelude).

The stlvec module provides convenience functions that apply map, catmap, foldl, etc, to
directly access Pure expressions stored in a stlvec.

map unary_fun (sv, first, last)
one pass equivalent of map unary_fun $ members (sv, first, last)

listmap unary_fun (sv, first, last)
same as map, used in list comprehensions

catmap unary_fun (sv, first, last)
one pass equivalent of catmap unary_fun $ members (sv, first, last)

do unary_fun (sv, first, last)
one pass equivalent of do unary_fun $ members (sv, first, last)

foldl bin_fun x (sv, first, last)
one pass equivalent of foldl bin_fun x $ members (sv, first, last)

foldl1 bin_fun (sv, first, last)
one pass equivalent of foldl1 bin_fun $ members (sv, first, last)

filter unary_pred (sv, first, last)
one pass equivalent of filter unary_pred $ members (sv, first, last)

The following four functions map (or catmap) stlvecs onto row and col matrixes, primarily
for use in matrix comprehensions.

rowmap unary_fun (sv, first, last)

rowcatmap unary_fun (sv, first, last)

colmap unary_fun (sv, first, last)

colcatmap unary_fun (sv, first, last)

13.5.3 Operations in the stl Namespace

stl::empty sv
test whether sv is empty

stl::vector (sv,first,last)
create a Pure vector that contains the members of sv[first,last)

stl::allpairs bin_pred (sv1, first1, last1) (sv2, first2, last2)
returns true if bin_pred is true for all corresponding members of sv1[first1, last1) and
sv2[first2, last2)
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stl::bounds (sv,first,last)
throws out-of-bounds if first or last is out of bounds. returns the tuple (sv,first,last)
except that if first is stl::begin it will be replaced by 0 and if last is stl::svend it will be
replaced by the number of elements in sv.

stl::reserve msv count
modify the underlying STL vector to have at least count slots, useful for packing data
into a fixed size vector and possibly to speed up the addition of new members

stl::capacity sv
return the number of slots (as opposed to the number of elements) held by the under-
lying STL vector

13.5.4 Examples

See ut_stlvec.pure and ut_global_stlvec.pure in the pure-stlvec/ut directory.

13.6 STL Nonmodifying Algorithms

The stlvec::nonmodifying module provides an interface to the STL’s non-modifying se-
quence operations.

13.6.1 Imports

To use the operations of this module, add the following import declaration to your program:

using stlvec::nonmodifying;

All of the functions are in the stl namespace.

13.6.2 Operations

stl::for_each (sv, first, last) unary_fun
applies unary_fun to each of the elements in sv[first,last)

stl::find (sv, first, last) x
returns the position of the first element in sv[first,last) for which (==x) is true (or
stl::svend if not found)

stl::find_if (sv, first, last) unary_pred
returns the position of the first element in sv[first,last) for which unary_pred is true (or
stl::svend if not found)

stl::find_first_of (sv1, first1, last1) (sv2, first2, last2) bin_pred
Returns the position of the first element, x, in sv1[first1,last1) for which there exists y
in sv2[first2,last2) and (bin_pred x y) is true (or stl::svend if no such x exists).
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stl::adjacent_find (sv, first, last) bin_pred
search sv[first,last) for the first occurrence of two consecutive elements (x,y) for which
(bin_pred x y) is true. Returns the position of x, if found, or stl::svend if not found)

stl::count (sv, first, last) x
returns the number of elements in the range sv[first,last) for which (x==) is true

stl::count_if (sv, first, last) unary_pred
returns the number of elements in the range sv[first,last) for which unary_pred is true

stl::mismatch (sv1, first1, last1) (sv2, first2) bin_pred
applies bin_pred pairwise to the elements of sv1[first1,last1) and (sv2,first2,first2 + n),
with n equal to last1-first1 until it finds i and j such that bin_pred (sv1!i) (sv2!j) is false
and returns (i,j). If bin_pred is true for all of the pairs of elements, i will be stl::svend
and j will be first2 + n (or stl::svend)

stl::equal (sv1, first1, last1) (sv2, first2) bin_pred
applies bin_pred pairwise to the elements of sv1[first1,last1) and (sv2,first2,first2 + n),
with n equal to last1-first1, and returns true if bin_pred is true for each pair

stl::search (sv1, first1, last1) (sv2, first2) bin_pred
using bin_pred to determine equality of the elements, searches sv1[first1,last1) for the
first occurrence of the sequence defined by sv2[first2,last2), and returns the position in
sv1 of its first element (or stl::svend if not found)

stl::search_n (sv, first, last) count x bin_pred
using bin_pred to determine equality of the elements, searches sv[first,last) for a se-
quence of count elements that equal x. If such a sequence is found, it returns the posi-
tion of the first of its elements, otherwise it returns stl::svend

stl::find_end (sv1, first1, last1) (sv2, first2, last2) bin_pred
using bin_pred to determine equality of the elements, searches sv1[first1,last1) for the
last occurrence of sv2[first2,last2). Returns the position of the first element in sv1 of the
occurrence (or stl::svend if not found).

13.6.3 Examples

See ut_nonmodifying.pure in the pure-stlvec/ut directory.

13.7 STL Modifying Algorithms

The stlvec::modifying module provides an interface to the STL’s modifying algorithms.

13.7.1 Imports

To use the operations of this module, add the following import declaration to your program:
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using stlvec::modifying;

All of the functions are in the stl namespace.

13.7.2 Operations

stl::copy (sv, first1, last1) (msv, first2)
copies the elements in sv[first1,last1) into the range whose first element is (msv,first2)

stl::copy_backward (sv,first1,last1) (msv,last2)
copies the elements in sv[first1,last1), moving backward from (last1), into the range
msv[first2,last2) where first2 is last2 minus the number of elements in sv[first1,last1)

stl::swap_ranges (sv,first,last) (msv, p)
exchanges the elements in sv[first, last) with those in msv[p, p+n) where n is last - first

stl::transform (sv,first,last) (msv, p) unary_fun
applies unary_fun to the elements of sv[first,last) and places the resulting sequence in
msv[p, p+n) where n is last - first. If sv is mutable, msv and sv can be the same stlvec.
Returns (msv,p+n)

stl::transform_2 (sv1,first1,last1) (sv2,first2) (msv, p) bin_fun
applies bin_fun to corresponding pairs of elements of sv1[first1,last1) sv2[first2,n) and
and places the resulting sequence in msv[p, p+n) where n is last1 - first1. Returns
(msv,p+n)

stl::replace_if (msv,first,last) unary_pred x
replace the elements of msv[first,last) that satistfy unary_pred with x

stl::replace_copy (sv,first,last) (msv,p) x y
same as replace (msv,first,last) x y except that the modified sequence is placed in
msv[p,p+last-first)

stl::replace_copy_if (sv,first,last) (msv,p) unary_pred x
same as replace_if except that the modified sequence is placed in msv[p,p+last-first)

stl::fill (msv,first,last) x
replace all elements in msv[first,last) with x

stl::fill_n (msv,first) n x
replace the elements of msv[first,first+n) with x

stl::generate (msv,first,last) gen_fun
replace the elements in msv[first,last) with the sequence generated by successive calls
to gen_fun (), e.g.,

> let count = ref 0;

> g _ = n when n = get count + 1; put count n; end;

> let sv = mkstlvec 0 10;
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> stl::generate sv g $$ members sv;
[1,2,3,4,5,6,7,8,9,10]

stl::generate_n (msv,first) n gen_fun
replace all elements in msv[first,first+n) with the sequence generated by successive
calls to gen_fen

stl::remove (msv,first,last) x
same as remove_if (msv,first,last) (==x).

stl::remove_if (msv,first,last) unary_pred
remove elements in msv[first,last) that satisfy unary_pred. If n elements do not satisfy
unary_pred, they are moved to msv[first,first+n), preserving their relative order. The
content of msv[first+n,svend) is undefined. Returns first+n, or stl::svend if first+n is
greater than the number of elements in msv

stl::remove_copy (sv,first,last) (msv,first) x
same as remove except that the purged sequence is copied to (msv,first) and sv[first,last)
is not changed

stl::remove_copy_if (sv,first,last) (msv,first) unary_pred
same as remove_if except that the purged sequence is copied to (msv,first) and
sv[first,last) is not changed

stl::unique (msv,first,last) bin_pred
eliminates consecutive duplicates from sv[first,last), using bin_pred to test for equality.
The purged sequence is moved to sv[first,first+n) preserving their relative order, where
n is the size of the purged sequence. Returns first+n or stl::svend if first+n is greater
than the number of elements in msv

stl::unique_copy (sv,first,last) (msv,first) bin_pred
same as unique except that the purged sequence is copied to (msv,first) and sv[first,last)
is not changed

stl::reverse (msv,first,last)
Reverses the order of the elements in sv[first,last).

stl::reverse_copy (sv,first,last) (msv,first)
same as reverse except that the reversed sequence is copied to (msv,first) and
sv[first,last) is not changed.

stl::rotate (msv,first,middle,last)
rotates the elements of msv[first,middle,last] so that middle becomes the first element
of msv[first,last].

stl::rotate_copy (msv,first,middle,last) (msv,first)
same as rotate except that the rotated sequence is copied to (msv,first) and sv[first,last)
is not changed.

stl::random_shuffle (msv,first,last) int::seed
randomly reorders the elements in msv[first,last)
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stl::partition (msv,first,last) unary_pred
places the elements in msv[first,last) that satisfy unary_pred before those that don’t.
Returns middle, where msv [first,middle) contains all of the elements that satisfy
unary_pre, and msv [middle, last) contains those that do not

stl::stable_partition (msv,first,last) unary_pred
same as partition except that the relative positions of the elements in each group are
preserved

13.7.3 Examples

See ut_modifying.pure in the pure-stlvec/ut directory.

13.8 STL Sort Algorithms

The stlvec::sort module provides an interface to the STL’s sorting and binary search algo-
rithms.

13.8.1 Imports

To use the operations of this module, add the following import declaration to your program:

using stlvec::sort;

All of the functions are in the stl namespace.

13.8.2 Operations

All of the functions in this module require the caller to supply an ordering function, comp.
The functions (<) and (>) are commonly passed as comp.

stl::sort (msv, first, last) comp
sorts msv[first, last)

stl::stable_sort (msv, first, last) comp
sorts msv[first, last), preserving the relative order of equal members

stl::partial_sort (msv, first, middle, last) comp
fills msv[first, middle) with the elements of msv[first,last) that would appear there if
msv[first,last) were sorted using comp and fills msv[middle,last) with the remaining
elements in unspecified order

stl::partial_sort_copy (sv, first1, last1) (msv, first2, last2) comp
let n be the number of elements in sv[first1, last1) and r be the number of elements
in msv[first2, last2). If r < n, partial_sort_copy fills msv[first2, last2) with the first
r elements of what sv[first1, last1) would be if it had been sorted. If r >= n, it fills
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msv[first2, first2+n) with the elements of sv[first1, last1) in sorted order. sv[first1,last1)
is unchanged

stl::nth_element (msv, first, middle, last) comp
rearranges the elements of msv[first, last) as follows. Let n be middle - first, and let x
be the nth smallest element of msv[first, last). After the function is called, sv!middle
will be x. All of the elements of msv[first, middle) will be less than x and all of the
elements of msv[middle+1, last) will be greater than x

The next four functions assume that sv[first, last) is ordered by comp.

stl::lower_bound (sv, first, last) x comp
returns an int designating the first position into which x can be inserted into sv[first,
last) while maintaining the sorted ordering

stl::upper_bound (sv, first, last) x comp
returns an int designating the last position into which x can be inserted into sv[first,
last) while maintaining the sorted ordering

stl::equal_range (sv, first, last) x comp
returns a pair of ints, (lower, upper) where lower and upper would have been returned
by separate calls to lower_bound and upper_bound.

stl::binary_search (sv, first, last) x comp
returns true if x is an element of sv[first, last)

13.8.3 Examples

See ut_sort.pure in the pure-stlvec/ut directory.

13.9 STL Merge Algorithms

The stlvec::merge module provides an interface to the STL’s merge algorithms. These algo-
rithms operate on sorted ranges.

13.9.1 Imports

To use the operations of this module, add the following import declaration to your program:

using stlvec::merge;

All of the functions are in the stl namespace.
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13.9.2 Operations

All of the functions in this module require the caller to supply an ordering function, comp (as
for the Pure library sort function). They only work properly on input ranges that have been
previously sorted using comp. The set operations generally do not check for range overflow
because it is not generally possible to determine the length of the result of a set operation
until after it is completed. In most cases you will get a nasty segmentation fault if the result
is bigger than the target range. The best way to avoid this possibility it to use a back iterator
to specifify the target range.

See parameter naming conventions at ..

stl::merge (sv1,first1,last1) (sv2,first2,last2) (msv,p) comp
merges the two sorted ranges into the sorted range msv[p,p+n) where n is the total
length of the merged sequence

stl::inplace_merge (msv,first, middle, last) comp
merges msv[first,middle) and msv[middle,last) into the sorted range msv[first,last)

stl::includes (sv1,first1,last1) (sv2,first2,last2) comp
returns true if every element of sv2[first2,last2) is an element of sv1[first1,last1)

stl::set_union (sv1,first1,last1) (sv2,first2,last2) (msv,p) comp
places the sorted union of sv1[first1,last1) and sv2[first2,last2) into msv[p,p+n) where
n is the number of elements in the sorted union, and returns the past-the-end position
of the sorted union

stl::set_intersection (sv1,first1,last1) (sv2,first2,last2) (msv,p) comp
places the sorted intersection of sv1[first1,last1) and sv2[first2,last2) into msv[p,p+n)
where n is the number of elements in the sorted intersection, and returns p+n (or
stl::svend, if applicable)

stl::set_difference (sv1,first1,last1) (sv2,first2,last2) (msv,p) comp
places the sorted difference of sv1[first1,last1) and sv2[first2,last2) into msv[p,p+n)
where n is the number of elements in the sorted difference, and returns p+n (or
stl::svend, if applicable)

stl::set_symmetric_difference (sv1,first1,last1) (sv2,first2,last2) (msv,p) comp
places the sorted symmetric_difference of sv1[first1,last1) and sv2[first2,last2) into
msv[p,p+n) where n is the number of elements in the sorted symmetric_difference,
and returns returns p+n (or stl::svend, if applicable)

13.9.3 Examples

See ut_merge.pure in the pure-stlvec/ut directory.
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13.10 STL Heap Algorithms

The stlvec::heap module provides an interface to the STL’s heap operations.

13.10.1 Imports

To use the operations of this module, add the following import declaration to your program:

using stlvec::heap;

All of the functions are in the stl namespace.

13.10.2 Operations

All of the functions in this module require the caller to supply an ordering function, comp
(as for the Pure library sort function). The functions (<) and (>) are commonly passed as
comp.

stl::make_heap (msv,first,last) comp
rearranges the elements of msv[first,last) so that they are a heap, i.e., after this msv!first
will be the largest element in msv[first,last), and push_heap and pop_heap will work
properly

stl::push_heap (msv,first,last) comp
makes msv[first,last) a heap (assuming that msv[first,last-1) was a heap)

stl::pop_heap (msv,first,last) comp
swaps msv!first with msv!(last-1), and makes msv[first,last-1) a heap (assuming that
msv[first,last) was a heap)

stl::sort_heap (msv,first,last) comp
sorts the elements in msv[first,last)

13.10.3 Examples

See ut_heap.pure in the pure-stlvec/ut directory.

13.11 Min/Max STL Algorithms

The stlvec::minmax module provides an interface to a few additional STL algorithms.
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13.11.1 Imports

To use the operations of this module, add the following import declaration to your program:

using stlvec::minmax;

All of the functions are in the stl namespace.

13.11.2 Operations

All of the functions in this module require the caller to supply an ordering function, comp
(as for the Pure library sort function). The functions (<) and (>) are commonly passed as
comp.

stl::min_element (sv,first,last) comp
returns the position of the minimal element of sv[first,last) under the ordering defined
by comp

stl::max_element (sv,first,last) comp
returns the position of the maximal element of sv[first,last) under the ordering defined
by comp

stl::lexicographical_compare (sv1,first1,last1) (sv2,first2,last2) comp
compares sv1[first1,last1) and sv2[first2,last2) element by element according to the or-
dering defined by comp, and returns true if the first sequence is less than the second

Algorithms are provided for stepping through all the permutations the elements of a stlvec.
For these purposes, the first permutation has the elements of msv[first,last) sorted in ascend-
ing order and the last has the elements sorted in descending order.

stl::next_permutation (msv,first,last) comp
rearranges msv[first,last) to produce the next permutation, in the ordering imposed by
comp. If the elements of the next permutation is ordered (ascending or decending) by
comp, return false. Otherwise return true.

stl::prev_permutation (msv,first,last) comp
next_permutation in reverse

13.11.3 Examples

See ut_minmax.pure in the pure-stlvec/ut directory.

13.12 STL Numeric Algorithms

The stlvec::numeric module provides an interface to the STL’s numeric algorithms.
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13.12.1 Imports

To use the operations of this module, add the following import declaration to your program:

using stlvec::numeric;

All of the functions are in the stl namespace.

13.12.2 Operations

stl::accumulate (sv,first,last) x bin_fun
accumulate bin_fun over x and the members of sv[first,last), like foldl

stl::inner_product (sv1,first1,last1) (sv2,first2,last2) x bin_fun1 bin_fun2
initialize ret with x. Traverse pairs of elements of sv1[first1,last1) and sv2[first2,last2),
denoted by (e1, e2), replacing ret with (bin_fun1 ret $ bin_fun2 e1 e2). The number
pairs traversed is equal to the size of sv1[first1,last1)

stl::partial_sum (sv,first,last) (msv, p) bin_fun
accumulate bin_fun f over the elements of sv1[first1,last1), placing itermediate results
in msv[p,p+n), where n is last - first, and returns q where m is q - n and msv[m,q) is
the intermediate sequence

stl::adjacent_difference (sv,first,last) (msv, p) bin_fun
produce a sequence of new elements by applying bin_fun to adjacent elements of
sv[first,last), placing the new elements in msv[p,p+n), where n is last - first, with the
intermediate results, and returns q where m is q - n and msv[m,q) is the new sequence

13.12.3 Examples

See ut_numeric.pure in the pure-stlvec/ut directory.

13.13 Reference Counting

The following function, also in the stl namespace, is available if you want to observe how
pure-stlvec maintains reference counts for items in its containers.

stl::refc x
returns the x’s reference count (maintained by the Pure runtime for garbage collection
purposes)

13.14 Backward Compatibilty

This section documents changes in pure-stlvec that might have introduced backward com-
patiblity issues.
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13.14.1 pure-stlvec-0.2

Bug fixes.

13.14.2 pure-stlvec-0.3

Version 0.3 reflects some changes made to make pure-stlvec consistent with its sister package,
pure-stlmap.

The update function was deprecated. Please use replace instead.

The replace function was added to the stlvec module. This function is the same as update
except that “replace sv i x” returns x instead of sv.

The stl::replace function was removed from the stlvec/modifying module. You can use
“stl::replace_if (sv,first,last) (x==) y” instead of “stl::replace (sv,first,last) x y” to re-
place all instances of x in the specified range.

The function null was removed and stl::empty was added to replace it.

The function list was removed. You can use members instead.

The function stl::random_shuffle was changed to take a seed as a second parameter.

All of the tracing functions were removed.

13.14.3 pure-stlvec-0.4

Fixed (>) predicate operating on plain old data when passed to STL algorithms.
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Chapter 14
Gnumeric/Pure: A Pure Plugin for Gnumeric

Version 0.14, September 17, 2014

Albert Gräf <aggraef@gmail.com>

Gnumeric/Pure is a Gnumeric extension which lets you use Pure functions in Gnumeric,
the Gnome spreadsheet. It offers better execution speed than the existing Perl and Python
plugins, and provides some powerful features not found in other Gnumeric scripting plug-
ins, such as asynchronous data sources created from Pure streams and OpenGL rendering in
Gnumeric frame widgets via Pure’s OpenGL module.

14.1 Introduction

This package provides a Gnumeric extension which gives you access to the Pure program-
ming language in Gnumeric. It works pretty much like the Perl and Python plugin loaders
which are distributed with Gnumeric, but Gnumeric/Pure offers some powerful features
which aren’t found in other Gnumeric scripting plugins:

• Pure is a functional programming language which fits the computational model of
spreadsheet programs very well.

• Pure is based on term rewriting and thus enables you to do symbolic computations in
addition to the usual numeric calculations.

• Pure has a built-in MATLAB/Octave-like matrix data structure which makes it easy to
deal with cell ranges in a spreadsheet in an efficient manner.

• Pure also provides a bridge to Octave so that you can call arbitrary Octave functions
using this extension.

• Gnumeric/Pure offers support for rendering OpenGL scenes in Gnumeric frame wid-
gets, via Pure’s own OpenGL interface.
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• Pure also has built-in support for lazy data structures and thus allows you to han-
dle potentially infinite amounts of data such as the list of all prime numbers. Gnu-
meric/Pure lets you turn such lazy values into asynchronous data sources computed in
the background, which update the spreadsheet automatically as results become avail-
able.

• Last but not least, Pure is compiled to native code on the fly. This means that, while
startup times are a bit longer due to Pure’s JIT compiler kicking in (you’ll notice this
if you open a spreadsheet with Pure functions), the resulting compiled code then typi-
cally executes much faster than equivalent interpreted Perl and Python code.

Once the plugin loader is installed and enabled, you can try the Pure functions in the pro-
vided examples and start adding your own plugin scripts. As of version 0.12, there’s a new
helper script pure-gnm which generates the required plugin.xml files to make this easy. Var-
ious examples can be found in the examples folder in the distribution, which should help
you to get started with Gnumeric/Pure fairly quickly.

For more advanced uses, Gnumeric/Pure also provides a programming interface which lets
you do various special tasks such as modifying entire ranges of cells with one Pure call, call-
ing Gnumeric functions from Pure, and setting up asynchronous data sources and OpenGL
frames. The manual explains all this in detail.

Note: This manual assumes that you’re already familiar with Gnumeric as well as the Pure
language and its programming environment. If not then you should consult the correspond-
ing documentation to learn more about these.

14.2 Copying

Copyright (c) 2009-2013 by Albert Graef.

Gnumeric/Pure is free software: you can redistribute it and/or modify it under the terms
of the GNU General Public License as published by the Free Software Foundation, either
version 2 of the License, or (at your option) any later version.

Gnumeric/Pure is distributed in the hope that it will be useful, but WITHOUT ANY WAR-
RANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this pro-
gram. If not, see <http://www.gnu.org/licenses/>.

14.3 Installation

Obviously, you need to have both Pure and Gnumeric installed. Pure 0.36 and Gnumeric
1.9.13 or later are known to work. The current version of this module (0.13, currently only
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available in Pure’s Mercurial repository) will work with the latest, GTK3-based versions of
Gnumeric (Gnumeric 1.11 and later, 1.12 has been tested). To obtain this version, clone the
Pure repository or download it as a zip file at https://bitbucket.org/purelang/pure-lang;
the module can be found in the gnumeric-pure subdirectory of the repository.

Unfortunately, the Gnumeric plugin interface changed in recent releases, so if you are still
running Gnumeric 1.10 or earlier then you should use version 0.12 of the module instead:

https://bitbucket.org/purelang/pure-lang/downloads/gnumeric-pure-
0.12.tar.gz

In the 0.12 version of the module, the Makefile is set up to build Gnumeric/Pure with
OpenGL support, which requires that you have the OpenGL libraries as well as GtkGLExt
(the Gtk OpenGL extension) for GTK2 installed. These should be readily available on most
systems, but you can also disable this feature by invoking make as make GLDEPS=.

For version 0.13 and later, you’ll need a GTK3-compatible version of GtkGLExt which can be
found at https://github.com/tdz/gtkglext. The OpenGL support under GTK3 is still under
development and currently has some issues, however, so it is disabled by default. If you
want to give it a try then you’ll have to uncomment the GLDEPS line at the beginning of the
Makefile.

Run make to compile the software. You might have to adjust the settings at the beginning
of the Makefile to make this work. Once the compile goes through, you should now have a
pure_loader.so file in the pure-loader subdirectory. You can install the plugin and related
stuff with sudo make install in the global Gnumeric plugin directory, or if you prefer to
install it into your personal plugin directory then run make install-local instead. (The
latter is recommended if you plan to customize any of the sample plugin scripts included in
the distribution for your purposes.)

Typically, make install and make install-local will install the plugins into the following
directories by default (here and in the following <version> denotes the version of Gnumeric
you have installed):

• System-wide installations go into /usr/local/lib/gnumeric/<version>/plugins or
similar, depending on Gnumeric’s installation prefix (usually either /usr/local or
/usr).

• User-specific installations go into ~/.gnumeric/<version>/plugins.

The Makefile tries to guess the installation path and version number of Gnumeric on its
own. If it guesses wrong, you can change these using the Makefile variables prefix and
gnmversion, respectively. For instance:

$ make prefix=/usr gnmversion=1.12.4

In either case, make install also installs the pure-gnm helper script under the Pure instal-
lation prefix. (This is a little convenience script to generate the plugin.xml files used by
Gnumeric to load a plugin; see Defining Your Own Functions for details.)

If make install doesn’t work for some reason, you can also just copy the pure-func,
pure-glfunc and pure-loader directories manually to your Gnumeric plugin directory. You
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can still run make install in the pure-gnm subdirectory to get the pure-gnm script installed
in this case.

14.4 Setup

Once Gnumeric/Pure has been properly installed, you should see it in Gnumeric’s
Tools/Plug-ins dialog. There are actually two main entries, one labelled “Pure functions”
and the other one labelled “Pure plugin loader”. You need to enable both before you can
start using Pure functions in your Gnumeric spreadsheets. There’s also a third entry labelled
“Pure OpenGL functions” which you might want to enable if you want to try the OpenGL
capabilities (this will only work if you built Gnumeric/Pure with OpenGL support and have
Pure’s OpenGL module installed; see OpenGL Interface for details).

Gnumeric doesn’t provide much in the way of GUI customization options right now, but at
least it’s possible for plugins to install and configure additional menu and toolbar options.
Gnumeric/Pure adds three additional options to the Tools menu which allow you to stop
asynchronous data sources, reload Pure scripts and edit them. After installation, the defi-
nitions of these items can be found in the pure-loader/pure-ui.xml file in your Gnumeric
plugin directory. Have a look at this file and edit is as desired. E.g., if you want to put the
Pure-related options into a submenu and enable toolbar buttons for these options, then your
pure-ui.xml file should look as follows:

<ui>
<menubar>
<menu name="Tools" action="MenuTools">

<separator/>
<menu name="Pure" action="PureMenu">
<menuitem action="PureStop"/>
<menuitem action="PureReload"/>
<menuitem action="PureEdit"/>

</menu>
</menu>

</menubar>
<toolbar name="StandardToolbar">
<separator/>
<toolitem action="PureStop"/>
<toolitem action="PureReload"/>
<toolitem action="PureEdit"/>

</toolbar>
</ui>

14.5 Basic Usage

With Pure/Gnumeric installed and enabled, you should be ready to join the fun now. Start
up Gnumeric, click on a cell and invoke the “f(x)” dialog. The Pure functions available for
use are shown in the “Pure” category. E.g., click on pure_hello. Now the Pure interpreter
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will be loaded and the function description displayed. Click “Ok” to select the pure_hello
function and then “Ok” again to actually insert the function call (without arguments) into the
current cell. You should now be able to read the friendly greeting returned by the function.

Of course, you can also enter the function call directly as a formula into a cell as usual. Click
on a cell, then enter the following:

=pure_hello(getenv("USER"))

The greeting should now be displayed with your login name in it.

Play around a bit with the other Pure functions. These functions are nothing special; they
are just ordinary Pure functions which are defined by the pure_func.pure script in the
pure-func subdirectory of your Gnumeric plugin directory. You can have a look at them
by invoking the “Edit Pure Scripts” option which gets added to the Tools/Pure menu once
the Pure plugin loader is enabled. (This will invoke the emacs editor by default, or the editor
named by the EDITOR environment variable. You can set this environment variable in your
shell’s startup files.) The Tools/Pure menu contains a second Pure-related option, “Reload
Pure Scripts” which can be used to quickly reload all loaded Pure scripts after edits; more
about that later.

Please note that most of the functions in pure_func.pure are rather useless, they are only
provided for illustrative purposes. However, there are some useful examples in there, too,
in particular:

• pure_eval lets you evaluate any Pure expression, given as a string in its first argument.
E.g., try something like =pure_eval("foldl (+) 0 (1..100)"). Additional parame-
ters are accessible as x!0, x!1, etc. For instance: =pure_eval("x!0+x!1",A1,B1).

• pure_echo just displays its arguments as a string in Pure syntax, as the interpreter sees
them. This is useful for debugging purposes. E.g., =pure_echo(A1:B10) shows the
given range as a Pure matrix.

• pure_shell is a variation of pure_eval which executes arbitrary Pure code and returns
the last evaluated expression (if any) as a string. This is mainly provided as a conve-
nience to create an “interactive Pure shell” which lets you evaluate Pure code inside
Gnumeric. To these ends, simply prepare a text cell for entering the code to be evalu-
ated, and then apply pure_shell on this text cell in another cell to display the result.

A spreadsheet showing most of the predefined functions in action can be found in
pure-examples.gnumeric example distributed with Gnumeric/Pure.

14.6 Interactive Pure Shell

The pure-examples.gnumeric spreadsheet also includes an instance of pure_shell which
lets you evaluate arbitrary Pure code in the same interpreter instance that executes Gnu-
meric/Pure functions. This is very helpful if you’re developing new Pure functions to be
used in Gnumeric. It also lets you use Gnumeric as a kind of GUI frontend to the Pure inter-
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preter. You can try this now. Open the pure-examples spreadsheet in Gnumeric and enter
the following into the input cell of the Pure shell:

> scanl (+) 0 (1..20)
[0,1,3,6,10,15,21,28,36,45,55,66,78,91,105,120,136,153,171,190,210]

Note that here and in the following the prompt > indicates a Pure expression to be evaluated
in Gnumeric (rather than the standalone Pure interpreter), which is followed by another line
indicating the result (printed in the output cell below the input cell of the Pure shell). You
can find the Pure shell at the bottom of the first sheet in pure-examples, see the screenshot
below. For your convenience, there’s also a second, bigger one on the second sheet. You
might want to copy this over to a separate spreadsheet which you can use as a scratchpad
for experimentation purposes.

Figure 14.1: The Pure shell.

Also note that this is in fact Pure code (not a Gnumeric formula) being evaluated there. You
can execute any Pure code, including Pure declarations, so you can type:

> using system; puts "Hello, world!";
14

This prints the string "Hello, world!" on standard output, visible in the terminal window
where you launched Gnumeric. Here is another example, showing how you can invoke any
function from the C library, by declaring it as a Pure extern function:

> extern int rand(); [rand | i = 1..5];
[1810821799,2106746672,1436605662,1363610028,695042099]

All functions in the Pure prelude are readily available in the Gnumeric Pure shell, as well
as the functions defined in pure_func.pure and its imports, including the programming
interface described in Advanced Features. For instance, here’s how you can retrieve a cell
value from the current sheet:

> get_cell "A1"
"Gnumeric/Pure Examples"

Using call (see Calling Gnumeric from Pure), you can also invoke any Gnumeric function:

> call "product" (1..10)
3628800.0
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14.7 Defining Your Own Functions

After playing around with pure_func.pure and the interactive Pure shell for a while, of
course you will want to write your own functions, that’s what this extension is about after
all! This section shows you how to do this.

14.7.1 Creating a Simple Plugin

Let’s consider a simple example: the factorial function. In Pure this function can be imple-
mented as follows:

factorial [x] = foldl (*) 1 (1..x);

Note the list bracket around the argument x. You wouldn’t normally pass a single numeric
argument that way in Pure, but this is needed here since by default Gnumeric passes ar-
guments as a list to a Pure function. There are other ways to configure the call interface to
Pure functions, but these require that we tell Gnumeric about the number and types of argu-
ments, see Gnumeric/Pure Interface below. For the moment let’s stick to the default scheme,
however, in order to keep things simple.

Put the above definition into a script file, say, myplugin.pure. Next we need to create a
plugin.xml file to tell Gnumeric about our plugin and which functions it provides. While
these files can be written by hand, this is tedious and error-prone. Fortunately, recent Gnu-
meric/Pure versions provide the pure-gnm helper script which makes this quite easy. To use
pure-gnm with our plugin script, we have to add a special “hashbang” comment block to our
script which supplies the needed information. In our case, this might look as follows:

#! N: My Pure functions
#! C: Pure
#! D: My Pure functions.
#! F: factorial

You can add this comment block anywhere in your plugin script, but usually it is placed
near the beginning. The different fields have the following meaning:

• N: the name of the plugin

• C: the function category

• D: a more detailed description of the plugin

• F: a whitespace-delimited list of Pure function names

The contents of the N and D fields (name and description) are visible in Gnumeric’s “Plugin
Manager” dialog. You should specify at least the name field (otherwise the plugin will be
displayed as “Unnamed” in the dialog), while the description is optional (if you don’t specify
one, the description of the plugin will be empty). The C field denotes the category under
which the functions listed in the F field will be shown in Gnumeric’s “f(x)” dialog; if you
don’t specify this, the functions will be in the “Unknown” category. The F field is the most
crucial part. It must contain all Pure functions defined in the plugin script or its imports that
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you want to be visible in Gnumeric, so you have to keep this in sync with the actual function
definitions in the script; if you don’t specify this, the plugin will provide no functions at all.

The D and F fields can also be split into multiple lines (each prefixed with the “hashbang”
comment marker and the corresponding field identifier) if necessary.

So our myplugin.pure script now looks like this:

#! N: My Pure functions
#! C: Pure
#! D: My Pure functions.
#! F: factorial

factorial [x] = foldl (*) 1 (1..x);

Once you’ve added the comment block, you can generate the plugin.xml file for the plugin
simply as follows:

$ pure-gnm myplugin.pure > plugin.xml

Note that by default pure-gnm writes the plugin.xml file to standard output which is useful
if you want to check the generated file first. To actually create the file, we simply redirect the
output to plugin.xml.

You’ll have to redo this every time your plugin changes (i.e., you’ve added new functions or
deleted or renamed old ones, or changed the name or description of the plugin). It’s easy to
automate this step using make. E.g., the following Makefile will do the trick:

myplugin = myplugin.pure

all: plugin.xml

plugin.xml: $(myplugin)
pure-gnm $< > $@

clean:
rm -f plugin.xml

Now you can just run make in the plugin directory and it will rebuild the plugin.xml file as
needed.

14.7.2 The plugin.xml File

The plugin.xml file resulting from the previous step looks like this:

<?xml version="1.0" encoding="UTF-8"?>
<plugin id="Gnumeric_myplugin">

<information>
<name>My Pure functions</name>
<description>My Pure functions.</description>
<require_explicit_enabling/>

</information>
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<loader type="Gnumeric_PureLoader:pure">
<attribute name="module_name" value="myplugin.pure"/>

</loader>
<services>
<service type="function_group" id="myplugin">

<category>Pure</category>
<functions>

<function name="factorial"/>
</functions>

</service>
</services>

</plugin>

You can also edit this file by hand if you know what you’re doing; in that case, please check
the Gnumeric documentation for details about the format of these files. The template used
by pure-gnm to generate these files can be found in the source distribution (see plugin.xml
in the pure-gnm folder) or under /usr/local/lib/pure-gnm after installation. You can edit
this file (carefully!) in order to implement global changes that you want to be in every
plugin.xml file generated by pure-gnm.

Two specific items that you might want to edit by hand are the
<require_explicit_enabling/> tag and the id properties of the <plugin> and <service>
tags:

• The <require_explicit_enabling/> tag indicates that Gnumeric shouldn’t enable the
new plugin until you explicitly tell it to. You can remove that line if you want Gnu-
meric to automatically enable new plugins as they are added to the system.

• The pure-gnm script automatically derives the id properties of the <plugin> and
<service> tags from the name of the plugin script, which is a sensible default in most
cases. However, you might have to change these identifiers if they happen to collide
with other Gnumeric plugins and services. This can be done by either editing the gen-
erated plugin.xml file or by renaming the plugin script accordingly.

Note that the only really Pure-specific part in the xml file is the loader description which also
names the Pure script implementing the plugin in the value of the module_name attribute. In
this case this is just "myplugin.pure". This path is taken relative to the directory containing
the plugin.xml file, but you can also specify an absolute path there if you want to keep
the plugin script elsewhere. To achieve this with pure-gnm, you can just invoke it with an
absolute path name, e.g.:

$ pure-gnm $PWD/myplugin.pure > plugin.xml

Now you can move the plugin.xml file whereever you like and still have Gnumeric find the
script file in its prescribed location. Again, this can be automatized using make fairly easily;
we’ll return to that in the following section.
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14.7.3 Loading the Plugin

We now have the plugin script myplugin.pure and the plugin.xml file in the same directory,
say, /some/path/myplugin. We still need to tell Gnumeric about the new plugin, though, so
that it can find it. Unfortunately, the mechanics of making a plugin known to Gnumeric are
somewhat involved, so we discuss the necessary steps in detail below. There are basically
three ways you can go about this:

• If you want to keep plugin script and the plugin.xml file where they are, you’ll have to
change Gnumeric’s plugin path so that it includes the parent directory /some/path (not
/some/path/myplugin). This is done by adding the directory under the Directories tab
in Gnumeric’s Tools/Plug-ins dialog, after which you’ll have to restart Gnumeric so
that it picks up the changes in the plugin search path.

• Second, you can also move or copy the entire /some/path/myplugin directory to your
personal Gnumeric plugin folder (usually ~/.gnumeric/<version>/plugins). Gnu-
meric will always search this directory for new plugins by default, so modifying the
plugin search path is not necessary. However, keeping the plugin script in a hidden
location in your home directory may not be very convenient if you want to modify the
script later.

• Third, you can get the best of both previous methods by keeping the plugin script
where it is and copying just the plugin.xml file to your personal Gnumeric plugin
folder.

The third method tends to be the easiest, but note that it requires that the plugin script needs
to be specified as an absolute path (as sketched out previously). Fortunately, it’s fairly easy
to automate this with make. The following requires GNU make to work, and you’ll also
need to have the Gnumeric development files installed, so that the Gnumeric version can
be determined easily with a shell command. These rules are to be added to the end of the
Makefile described previously under Creating a Simple Plugin.

gnmversion=$(shell pkg-config --modversion libspreadsheet-1.12)
plugindir=$(HOME)/.gnumeric/$(gnmversion)/plugins/myplugin

install: $(myplugin)
test -d $(plugindir) || mkdir -p $(plugindir)
pure-gnm $(CURDIR)/$< > $(plugindir)/plugin.xml

uninstall:
rm -rf $(plugindir)

Now you can just run make install to make the plugin known to Gnumeric. Note that we
also added a rule that allows you to uninstall the plugin if it isn’t needed any more.

In any case, once you fire up Gnumeric again, the new plugin should be listed as “My Pure
functions” on the Plugin List tab in the Tools/Plug-ins dialog. Check it to enable it. The
factorial function defined in the plugin should now be available and ready to be called
just like any other Gnumeric function. For instance, type this into a cell to have the factorial
of 10 computed:
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=factorial(10)

Also try saving the spreadsheet and loading it again after restarting Gnumeric. The plugin
will now be loaded automatically and the spreadsheet should display the proper value of
the factorial.

Note: Once you start playing around with your own Pure plugins, you may run into one
common mishap: You open an existing spreadsheet without having enabled the plugins it
uses. An easily visible symptom of that is that you’ll see cells showing the #NAME? error. You
will then have to enable those plugins again and reload the spreadsheet afterwards, so that
everything is recalculated properly.

In contrast, just changing the body of a function in a plugin usually needs neither a restart
of Gnumeric nor a reloading of the spreadsheet. In this case it’s often sufficient to reload all
scripts with the “Reload Pure Scripts” option in the Tools/Pure menu, after which you can
use “Recalculate” (F9) to recompute the spreadsheet.

It is also worth mentioning here that the Pure loader can load multiple Pure plugins (and
of course each plugin can provide as many functions as you want). You only need to tell
Gnumeric about them after creating the scripts and plugin.xml files and placing them into
corresponding plugin directories. Just enable the ones that you want in Tools/Plug-ins. All
scripts are loaded in the same Pure interpreter (and thus are treated like one big script)
so that functions in one script can use the function and variable definitions in another. If
you need to access the definitions in the pure_func.pure “mother script”, you can also just
import it into your scripts with a using clause, i.e.: using pure_func;

Another important point is that a Pure plugin script is always loaded in the directory where
it is located, as indicated by the corresponding plugin.xml file, even if it is different from
the plugin directory. That is, the current working directory (which is normally the direc-
tory that Gnumeric was started in) is temporarily set to the directory holding the plugin
script while the script is being loaded. This enables the script to find imported scripts and
other files (such as media files or scripts written in other languages) that it may need at load
time. This wasn’t needed in this simple example, but you can find other examples in the
Gnumeric/Pure distribution which make good use of this feature.

14.7.4 Spicing It Up

Our plugin example is now essentially complete, but in order to make it really convenient
to use, we may want to add some information about how the factorial function is to be
called in Gnumeric. Gnumeric doesn’t keep this kind of information in the plugin.xml file,
but expects it to be provided by the plugin itself. In the Gnumeric/Pure interface this can
be done by adding a rule for the gnm_info function. In our example we tell Gnumeric that
factorial expects a single numeric argument. While we’re at it, we might as well add
some helpful documentation to be displayed in Gnumeric’s “f(x)” dialog. The details of this
are described in the following section, but to give you a sneak preview, here’s a beefed-up
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version of our script which implements all this (you can also find this version of the example
along with a GNU Makefile in the Gnumeric/Pure distribution):

#! N: My Pure functions
#! C: Pure
#! D: My Pure functions.
#! F: factorial

factorial x = foldl (*) 1 (1..x);

using pure_func; // for the gnm_help function
gnm_info "factorial" = "f", gnm_help "factorial:factorial of a number"
["x:number"] "Computes the factorial of @{x}." [] ["=factorial(10)"] [];

Fire up Gnumeric again, press the “f(x)” button and select factorial under the Pure cat-
egory. The “f(x)” dialog should now display the additional information we added above.
Also note that Gnumeric now knows that this function is supposed to be called with exactly
one f (numeric) argument. Therefore the list brackets around the argument of factorial
aren’t needed any more, so don’t forget to remove them, as shown in the above code sam-
ple.

This completes our little example. As an exercise, you’re invited to add more functions on
your own. (Don’t forget to change the #! F line accordingly and rerun pure-gnm when you
do this, so that Gnumeric knows about the new functions.) It also pays off to take a look
at some of the other included examples, you can find these in the examples folder of the
distribution tarball.

14.8 Gnumeric/Pure Interface

We already explained in the previous section that, when a Pure function is called from Gnu-
meric, it receives its arguments in a list by default. However, it is possible to tell Gnumeric
about the expected arguments of the function and also specify a help text to be displayed in
the “f(x)” dialog, by giving a definition of the gnm_info function as explained below.

Note that gnm_info is really an ordinary Pure function. Thus, rather than hardcoding this
information as static text (such as the “docstrings” used in Gnumeric’s Python extension),
the function descriptions can also be constructed dynamically in corresponding Pure code.
This offers an opportunity for programmatic customizations. But note that the gnm_info
function will only be invoked when the plugin script is loaded, so once that is done the
function description remains the same for the entire Gnumeric session.

14.8.1 Function Descriptions

To describe a given function to Gnumeric, define gnm_info "<name>" (where <name> is the
name of the function) as a pair with the following elements:

• The first element, a string, gives the signature of the function. E.g., "" denotes a func-
tion without arguments, "f" a function taking a single float parameter, "fs" a function
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taking a float and a string argument (in that order), etc. Optional parameters can be in-
dicated using |, as in "ff|s" (two non-optional floats, followed by an optional string).
See below for a complete list of the supported parameter types.

• The second element is a list of hash pairs key=>text which together make up the
help text shown in Gnumeric’s “f(x)” dialog. You should at least specify the func-
tion name along with a short synopsis here, e.g. GNM_FUNC_HELP_NAME => "frob:the
frob function". Parameter descriptions take the form GNM_FUNC_HELP_ARG =>
"x:integer". There are a number of other useful elements, see below for details.

Both the signature and the function description are optional. That is, gnm_info may return
either just a signature string, or a list of hash pairs with the function description, or both.
The signature defaults to a variadic function which takes any number of parameters of any
type (see below), and the description defaults to some boilerplate text which says that the
function hasn’t been documented yet.

Note that if no signature is given, then the function accepts any number of parameters of any
type. In that case, or if there are optional parameters, the function becomes variadic and the
(optional) parameters are passed as a Pure list (in addition to the non-optional parameters).

Here’s the list of valid parameter types, as they are documented in the Gnumeric sources:

f : float no errors, string conversion attempted
b : boolean identical to f
s : string no errors
S : scalar any non-error scalar
E : scalar any scalar, including errors

r : cell range content may not be evaluated yet
A : area array, range (as above), or scalar
? : anything any value (scalars, non-scalars, errors, whatever)

The keys used in the function description may be any of the following, along with sample
text for each type of field:

GNM_FUNC_HELP_NAME => "name:synopsis"
GNM_FUNC_HELP_ARG => "name:parameter description"
GNM_FUNC_HELP_DESCRIPTION => "Long description."
GNM_FUNC_HELP_NOTE => "Note."
GNM_FUNC_HELP_EXAMPLES => "=sample_formula()"
GNM_FUNC_HELP_SEEALSO => "foo,bar,..."

The following keys are only supported in the latest Gnumeric versions:

GNM_FUNC_HELP_EXTREF => "wiki:en:Trigonometric_functions"
GNM_FUNC_HELP_EXCEL => "Excel compatibility information."
GNM_FUNC_HELP_ODF => "OpenOffice compatibility information."

Note that inside the descriptions, the notation @{arg} (@arg in older Gnumeric versions) can
be used to refer to a parameter value. For instance, here’s a sample description for a binary
function which also includes a help text:
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gnm_info "pure_max" = "ff",
[GNM_FUNC_HELP_NAME => "pure_max:maximum of two numbers",
GNM_FUNC_HELP_ARG => "x:number",
GNM_FUNC_HELP_ARG => "y:number",
GNM_FUNC_HELP_DESCRIPTION =>
"Computes the maximum of two numbers @{x} and @{y}.",
GNM_FUNC_HELP_EXAMPLES => "=pure_max(17,22)"];

As you can see, the function descriptions are a bit unwieldy, so it’s convenient to construct
them using this little helper function defined in pure_func.pure:

gnm_help name::string args descr::string notes examples see_also =
[GNM_FUNC_HELP_NAME => name] +
[GNM_FUNC_HELP_ARG => x | x::string = args ] +
[GNM_FUNC_HELP_DESCRIPTION => descr ] +
[GNM_FUNC_HELP_NOTE => x | x::string = notes ] +
[GNM_FUNC_HELP_EXAMPLES => x | x::string = examples ] +
(if null see_also then [] else
[GNM_FUNC_HELP_SEEALSO => join "," see_also]);

Now the description can be written simply as follows:

gnm_info "pure_max" = "ff", gnm_help "pure_max:maximum of two numbers"
["x:number", "y:number"]
"Computes the maximum of two numbers @{x} and @{y}."
[] ["=pure_max(17,22)"] [];

Since this function only has fixed arguments, it will be called in curried form, i.e., as
pure_max x y. For instance, the actual definition of pure_max may look as follows:

pure_max x y = max x y;

Conversely, if no signature is given, then the function accepts any number of parameters of
any type, which are passed as a list. For instance:

gnm_info "pure_sum" = gnm_help "pure_sum:sum of a collection of numbers"
[] "Computes the sum of a collection of numbers."
[] ["=pure_sum(1,2,3,4,5,6)"] ["pure_sums"];

Here the function will be called as pure_sum [x1,x2,...], where x1, x2, etc. are the argu-
ments the function is invoked with. Note that in this case there may be any number of argu-
ments (including zero) of any type, so your function definition must be prepared to handle
this. If a function does not have a gnm_info description at all then it is treated in the same
fashion. The pure_func.pure script contains some examples showing how to write func-
tions which can deal with any numbers of scalars, arrays or ranges, see the pure_sum and
pure_sums examples. These employ the following ranges function to “flatten” a parameter
list to a list holding all denoted values:

ranges xs = cat [ case x of _::matrix = list x; _ = [x] end | x = xs ];

E.g., the pure_sum function can now be defined as follows:
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pure_sum xs = foldl (+) 0 (ranges xs);

A function may also have both fixed and optional arguments (note that in what follows we’re
going to omit the detailed function descriptions for brevity):

gnm_info "foo" = "ff|ff";

In this case the fixed arguments are passed in curried form as usual, while the optional
parameters are passed as a list. That is, foo may be called as foo x y [], foo x y [z] or
foo x y [z,t], depending on whether it is invoked with two, three or four arguments.

14.8.2 Conversions Between Pure and Gnumeric Values

The marshalling of types between Gnumeric and Pure is pretty straightforward; basically,
Pure numbers, strings and matrices map to Gnumeric numbers, strings and arrays, respec-
tively. The following table summarizes the available conversions:

Pure Gnumeric
gnm_error "#N/A" error
4711, 4711L, 4711.0 scalar (number)
"Hello world" string
() empty
(1,2,3) array
[1,2,3] array
{1,2,3;4,5,6} array (or cell range)
"A1:B10" cell range ("r" conversion)

These conversions mostly work both ways. Note that on input, cell ranges are usually passed
as matrices to Pure functions (i.e., they are passed “by value”), unless the function signature
specifies a "r" conversion in which case the cell ranges themselves are passed to the function
in string form. (Such values can also be passed on to Gnumeric functions which expect a cell
range ("r" ) parameter, see Calling Gnumeric from Pure below.)

Conversely, matrices, lists and tuples all become Gnumeric arrays on output, so usually
you’ll want to enter these as array functions (Ctrl-Shift-Enter in Gnumeric). As a special
case, the empty tuple can be used to denote empty cell values (but note that empty Gnumeric
values may become zeros when passed as float or array arguments to Pure functions).

Another special case is a term of the form gnm_error msg, where msg is a string value indi-
cating a Gnumeric error value such as "#N/A", "#NAME?", "#NULL!", etc. When returned by a
plugin function, the error text will be displayed in the corresponding Gnumeric cell.

If a Pure function returns a value that doesn’t match any of the above then it is converted
to a string in Pure expression syntax and that string is returned as the result of the function
invocation in Gnumeric. This makes it possible to return any kind of symbolic Pure value,
but note that if such a value is then fed into another Pure function, that function will have to
convert the string value back to the internal representation if needed; this can be done very
conveniently using Pure’s eval function, see the Pure documentation for details.
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14.9 Advanced Features

This section explains various additional features provided by the Gnumeric/Pure interface
that should be useful for writing your own functions. Note that for your convenience all
functions discussed in this section are declared in pure_func.pure.

14.9.1 Calling Gnumeric from Pure

It is possible to call Gnumeric functions from Pure using the call function which takes the
name of the function (a string) as its first, and the parameters as the second (list) argument.
For instance:

gnm_info "gnm_bitand" = "ff";
gnm_bitand x y = call "bitand" [x,y];

Note that call is an external C function provided by Gnumeric/Pure. If you want to use it,
it must be declared in your Pure script as follows:

extern expr* pure_gnmcall(char* name, expr* args) = call;

However, pure_func.pure already contains the above declaration, so you don’t have to do
this yourself if you import pure_func.pure in your scripts.

Also note that call doesn’t do any of Gnumeric’s automatic conversions on the parameters,
so you have to pass the proper types of arguments as required by the function.

14.9.2 Accessing Spreadsheet Cells

Gnumeric/Pure provides the following functions to retrieve and modify the contents of
spreadsheet cells and ranges of such cells:

extern expr* pure_get_cell(char* s) = get_cell;
extern expr* pure_get_cell_text(char* s) = get_cell_text;
extern expr* pure_get_cell_format(char* s) = get_cell_format;
extern expr* pure_set_cell(char* s, expr *x) = set_cell;
extern expr* pure_set_cell_text(char* s, expr *x) = set_cell_text;
extern expr* pure_set_cell_format(char* s, expr *x) = set_cell_format;
extern expr* pure_get_range(char* s) = get_range;
extern expr* pure_get_range_text(char* s) = get_range_text;
extern expr* pure_get_range_format(char* s) = get_range_format;
extern expr* pure_set_range(char* s, expr *x) = set_range;
extern expr* pure_set_range_text(char* s, expr *x) = set_range_text;
extern expr* pure_set_range_format(char* s, expr *x) = set_range_format;

For instance, here’s how you use these functions to write and then read some cell values (try
this in the interactive Pure shell):
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> set_cell "A14" 42
()

> get_cell "A14"
42.0

> set_range "A14:G14" $ scanl (*) 1 (1..6)
()

> get_range "A14:G14"
{1.0,1.0,2.0,6.0,24.0,120.0,720.0}

> set_cell_text "A14" "=sum(B14:G14)"
()

> get_cell "A14"
873.0

> get_cell_text "A14"
"=sum(B14:G14)"

> get_range_text "A14:G14"
{"=sum(B14:G14)","1","2","6","24","120","720"}

Note that while the set_cell function sets the given cell to a constant value, set_cell_text
also allows you to store a formula in a cell which will then be evaluated as usual. Simi-
larly, get_cell retrieves the cell value, while get_cell_text yields the text in the cell, as
entered by the user (which will either be a formula or the textual representation of a con-
stant value). The set_range, set_range_text, get_range and get_range_text functions
work analogously, but are used to manipulate entire ranges of cells, which can be set from
Pure tuples, lists or matrices, and retrieved as Pure matrices.

Functions to retrieve and change the cell format are also provided (watch the contents of the
cell A14 change its color to blue on entering the first expression):

> set_cell_format "A14" "[Blue]0.00"
()

> get_range_format "A14:C14"
{"[Blue]0.00","General","General"}

There are also functions to get the position of the “current” cell (i.e., the cell from which a
Pure function was called), and to translate between cell ranges in Gnumeric syntax and the
corresponding internal representation consisting of a pointer to a Gnumeric sheet and the
cell or range coordinates:

extern expr* pure_this_cell() = this_cell;
extern expr* pure_parse_range(char* s) = parse_range;
extern expr* pure_make_range(expr* x) = make_range;

Examples:

> this_cell
"B4"

> parse_range this_cell
#<pointer 0x875220>,1,3

> make_range (NULL,0,0,10,10)
"Sheet2!A1:K11"
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14.9.3 Asynchronous Data Sources

Gnumeric/Pure makes it easy to set up asynchronous data sources which draw values from
a Pure computation executed in a background process. This facility is useful to carry out
lengthy computations in the background while you can continue to work with your spread-
sheet. It also allows you to process incoming data and asynchronous events from special
devices (MIDI, sensors, stock tickers, etc.) in (soft) realtime.

To do this, you simply pass an expression to the datasource function. This is another ex-
ternal C function provided by Gnumeric/Pure, which is declared in pure_func.pure as fol-
lows:

extern expr* pure_datasource(expr* x) = datasource;

The argument to datasource is typically a thunk or stream (lazy list) which is to be evaluated
in the background. The call to datasource initially returns a #N/A value (gnm_error "#N/A")
while the computation is still in progress. The cell containing the data source then gets up-
dated automatically as soon as the value becomes available, at which point the datasource
call now returns the computed value. E.g., here’s how you would wrap up a lengthy cal-
culation as a thunk and submit it to datasource which carries out the computation as a
background task:

gnm_info "pure_frob" = "f";
pure_frob x = datasource (lengthy_calculation x&);
lengthy_calculation x = sleep 3 $$ foldl (*) 1 (1..x);

Note that a cell value may draw values from as many independent data sources as you want,
so the definition of a cell may also involve multiple invocations of datasource:

gnm_info "pure_frob2" = "ff";
pure_frob2 x y = datasource (lengthy_calculation x&),
datasource (lengthy_calculation y&);

Special treatment is given to (lazy) lists, in this case datasource returns a new value each
time a list element becomes available. For instance, the following function uses an infinite
stream to count off the seconds starting from a given initial value:

gnm_info "pure_counter" = "f";
pure_counter x = datasource [sleep (i>x) $$ i | i = x..inf];

You can also try this interactively in the Pure shell:

> datasource [sleep (i>0) $$ i | i = 0..inf]
0
1
...

Here’s another example for the Pure shell which prints the prime numbers:

> datasource primes with primes = sieve (2..inf);
sieve (p:qs) = p : (sleep 1 $$ sieve [q | q = qs; q mod p])& end

2
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3
5
...

Note that when processing a lazy list, the cell containing the call will keep changing as long
as new values are produced (i.e., forever in this example). The “Stop Data Sources” option
in the Tools/Pure menu can be used to stop all active data sources. “Reload Pure Scripts”
also does this. You can then restart the data sources at any time by using “Recalculate” (F9)
to recompute the spreadsheet.

Also note that because of the special way that datasource handles list values, you cannot
return a list directly as the result of datasource, if it is to be treated as a single result. Instead,
you’ll have to wrap the result in a singleton list (e.g., datasource [[lengthy_calculation
x,lengthy_calculation y]&]), or return another aggregate (i.e., a matrix or a tuple).

Finally, note that when the arguments of a call involving datasource change (because they
depend on other cells which may have been updated), the computation is automatically
restarted with the new parameters. The default behaviour in this case is that the entire com-
putation will be redone from scratch, but it’s also possible to wrap up calls to datasource in
a manner which enables more elaborate communication between Gnumeric and background
tasks initiated with datasource. This is beyond the scope of this manual, however, so we
leave this as an exercise to the interested reader.

14.9.4 Triggers

In addition to asynchronous data sources, the trigger function is provided to compute val-
ues or take actions depending on some external condition, such as the availability of data on
a special device or the creation of some widget (see the next section):

extern expr* pure_trigger(int timeout, expr* cond, expr *val, expr *data)
= trigger;

Thus a typical invocation of the function looks as follows:

trigger timeout condition value data

The condition and value arguments are callback functions which get invoked by trigger,
passing them the given data argument. The trigger reevaluates the given condition in reg-
ular intervals (1 second in the current implementation) and, as soon as it becomes true,
computes the given value and returns that value as the result of the trigger call. As long
as the condition doesn’t hold, trigger returns a #N/A value (gnm_error "#N/A"). Note that,
in difference to datasource, both the condition and the value are computed in Gnumeric
(rather than a child process), so that it is possible to access the current information in the
loaded spreadsheet.

The timeout value determines how often the condition is checked. If it is positive, the condi-
tion will be reevaluated timeout+1 times (once initially, and then once per second for a total
duration of timeout seconds). If it is negative, the trigger never times out and the condition
will be checked repeatedly until the trigger expression is removed (or Gnumeric is exited).
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In either case value data will be recomputed each time condition data yields true. (This
is most useful if the computed value, as a side effect, arranges for the condition to become
false again afterwards.) Finally, if timeout is zero then the trigger fires at most once, as
soon as the condition becomes true, at which point value data is computed just once.

Here’s a (rather useless) example of a trigger which fires exactly once, as soon as a certain
cell goes to a certain value, and then modifies another cell value accordingly:

> trigger 0 (\_->get_cell "A14"==="Hello") (\_->set_cell "A15" "World") ()

Now, as soon as you type Hello in the cell A14, the trigger will print World in cell A15. Note
that the data argument isn’t used here. A more useful example will be discussed in the
following section.

14.9.5 Sheet Objects

Gnumeric offers some kinds of special objects which can be placed on a sheet. This com-
prises the chart and image objects which can be found in the “Insert” menu, as well as a
number of useful graphical elements and GUI widgets on the “Object” toolbar, accessible
via “View/Toolbars”. The latter are also useful for providing control input to Pure func-
tions.

Gnumeric/Pure provides the following function to retrieve information about the special
objects in a spreadsheet:

extern expr* pure_sheet_objects() = sheet_objects;

For instance, with one button object in your spreadsheet, the output of sheet_objects might
look like this:

> sheet_objects
[("Sheet1","button","Push Me!","A11",[#<pointer 0x2a1dcd0>])]

Each object is described by a tuple which lists the name of the sheet on which the object
is located, the type of object, the object’s content or label (if applicable), the cell which the
object is linked to (if applicable), and a list of pointers to the corresponding GtkWidgets (if
any). Note that in general a GUI object may be associated with several widgets, as Gnumeric
allows you to have multiple views on the same spreadsheet, so there will be one widget for
each view an object is visible in. Also note that the content/label information depends on
the particular type of object:

• List and combo widgets return the content link (referring to the cells in the spreadsheet
holding the items shown in the list).

• Frame and button widgets return the label shown on the widget.

• Graphic objects like rectangles and ellipses return the text content of the object.

• Image objects (type "image/xyz", where xyz is the type of image, such as svg or png)
return a pointer to the image data in this field.

474 14.9 Advanced Features



Pure Language and Library Documentation, Release 0.62

The sheet_objects function is a bit tricky to use, since some of the objects or their associated
widgets might not have been created yet when the spreadsheet is loaded. Therefore it is
necessary to use a trigger to make sure that the information is updated once all objects are
fully displayed. The pure_func.pure script contains the following little wrapper around
sheet_objects which does this:

pure_objects = trigger 0 (\_->all realized sheet_objects)
(\_->matrix$map list sheet_objects) ()

with realized (_,_,_,_,w) = ~listp w || ~null w && ~any null w end;

See the widgets.gnumeric spreadsheet in the distribution for an example.

Possible uses of this facility are left to your imagination. Using Gnumeric’s internal APIs
and Pure’s Gtk interface, you might manipulate the GUI widgets in various ways (add icons
to buttons or custom child widgets to frames, etc.). One particularly useful case, for which
Gnumeric/Pure has built-in support, is rendering an OpenGL scene in a Gnumeric frame
widget, see below.

14.9.6 OpenGL Interface

Gnumeric/Pure provides special support for rendering OpenGL scenes into Gnumeric
frame widgets. To actually use this, you must have Pure’s OpenGL module installed. The
following function is provided to equip a Gnumeric frame with the OpenGL rendering ca-
pability:

extern expr *pure_gl_window(char *name, int timeout,
expr *setup_cb, expr *config_cb,
expr *display_cb, expr *timer_cb,
expr *user_data) = gl_window;

The meaning of the parameters is as follows:

• name is a string which specifies the label of the frame widget into which the scene is to
be rendered.

• timeout is a time value in milliseconds (an integer) which specifies the period for in-
vocations of the timer_cb callback, see below. If this value is zero or negative then the
timer callback is disabled.

• setup_cb, config_cb, display_cb and timer_cb are the Pure callback functions which
are invoked by gl_window to actually render the scene. The callbacks are all invoked
with two arguments: the user_data parameter that gl_window was invoked with, and
a second parameter with callback-specific information as described below.

• user_data is any information that the caller wants to be passed as the first argument
to the callback functions.

The different callbacks are:

• setup_cb is called for initializing the scene. It receives the GtkDrawingArea widget as
the second argument. Typically this is used to set the initial projection and modelview
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matrices, enable lighting, etc.

• config_cb is called when the width or height of the frame widget changes so that
the rendering parameters (typically the viewport) can be adjusted accordingly. It is
invoked with a pair of integers (w,h) as the second argument, which denotes the new
dimension allocated to the drawing area.

• display_cb is called whenever the contents of the drawing area needs to be redrawn.
This typically does most of the work necessary to render the scene. The second callback
argument is always ().

• timer_cb is called at regular intervals as specified with the timeout parameter (see
above), unless the timeout value is zero or negative in which case this callback is dis-
abled. The second callback argument is always (). The timer callback is typically used
to incrementally adjust some parameters of the scene in order to render animations.
When invoked, the callback automatically arranges for display_cb to be called after-
wards, so you don’t have to do that manually in your callback definition.

You’ll need at least either the display_cb or the timer_cb function to render anything, but
typically all of these callbacks will be needed for animated scenes. Callback functions which
aren’t needed can be specified as ().

There’s also a related helper function which can be used as a trigger condition to defer ren-
dering until the target frame widget has been realized:

extern bool pure_check_window(char *name) = check_window;

This function returns true as soon as the named frame widget is ready to go, at wich time
gl_windows can be called on the widget. So your call to gl_windows should usually be
wrapped up like this:

trigger 0 check_window
(\frame->gl_window frame timeout setup config display timer user_data) frame

Here’s an example from pure_glfunc.pure which shows how these functions are to be used:

using pure_func, GL, GLU;
extern void gdk_gl_draw_teapot(bool solid, double scale);
gnm_info "gltest" = "sbfff";

gltest frame m a b c = trigger 0 check_window
(\frame->gl_window frame (m*40) setup config display timer ()) frame

with
setup _ _ = () when
// Initialize.
GL::ClearColor 0.1 0.1 0.3 1.0;
GL::ShadeModel GL::SMOOTH;
GL::Enable GL::DEPTH_TEST;
// Initial projection and modelview matrices.
GL::MatrixMode GL::PROJECTION;
GL::LoadIdentity;
GL::Rotatef 20.0 (-1.0) 0.0 0.0;
GL::MatrixMode GL::MODELVIEW;
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GL::LoadIdentity;
// Lighting.
GL::Lightfv GL::LIGHT0 GL::DIFFUSE {1.0,0.0,0.0,1.0};
GL::Lightfv GL::LIGHT0 GL::POSITION {2.0,2.0,-5.0,1.0};
GL::Enable GL::LIGHTING;
GL::Enable GL::LIGHT0;

end;
config _ (w,h) = GL::Viewport 0 0 w h;
display _ _ = () when
GL::Clear (GL::DEPTH_BUFFER_BIT or GL::COLOR_BUFFER_BIT);
gdk_gl_draw_teapot true 0.5;

end if m;
display _ _ = () when
GL::Clear (GL::DEPTH_BUFFER_BIT or GL::COLOR_BUFFER_BIT);
GL::LoadIdentity;
GL::Rotatef (scale 360 a) 0.0 1.0 0.0;
GL::Rotatef (scale 360 b) 1.0 0.0 0.0;
GL::Rotatef (scale 360 c) 0.0 0.0 1.0;
gdk_gl_draw_teapot true 0.5;

end;
timer _ _ = () when
GL::Rotatef (scale 36 a) 0.0 1.0 0.0;
GL::Rotatef (scale 36 b) 1.0 0.0 0.0;
GL::Rotatef (scale 36 c) 0.0 0.0 1.0;

end;
scale step x = (x/100*step);

end;

Have a look at the gl-example.gnumeric spreadsheet included in the distribution to see this
example in action. (You first need to enable the “Pure OpenGL functions” in the Plugin
Manager to make this work.) The screenshot below shows how the example looks like in
Gnumeric.
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Figure 14.2: Gnumeric/Pure OpenGL example.
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Chapter 15
Pure-GLPK - GLPK interface for the Pure
programming language

Version 0.5, September 17, 2014

Jiri Spitz <jiri.spitz@bluetone.cz>

This module provides a feature complete GLPK interface for the Pure programming lan-
guage, which lets you use all capabilities of the GNU Linear Programming Kit (GLPK) di-
rectly from Pure.

GLPK (see http://www.gnu.org/software/glpk) contains an efficient simplex LP solver, a
simplex LP solver in exact arithmetics, an interior-point solver, a branch-and-cut solver for
mixed integer programming and some specialized algorithms for net/grid problems. Using
this interface you can build, modify and solve the problem, retrieve the solution, load and
save the problem and solution data in standard formats and use any of advanced GLPK
features.

The interface uses native Pure data types - lists and tuples - so that you need not perform
any data conversions to/from GLPK internal data structures.

To make this module work, you must have a GLPK installation on your system, the version
4.42 or higher is required.

15.1 Installation

Get the latest source from https://bitbucket.org/purelang/pure-lang/downloads/pure-
glpk-0.5.tar.gz.

Run make to compile the module and make install (as root) to install it in the Pure library
directory. This requires GNU make, and of course you need to have Pure installed.
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The default make options suppose that GLPK was configured with the following options:
--enable-dl --enable-odbc --enable-mysql --with-zlib --with-gmp

The zlib library is a part of the GLPK source distribution from the version 4.46 onwards,
so the the configure options for newer GLPK versions are: --enable-dl --enable-odbc
--enable-mysql --with-gmp

Using the given options the depndencies are:

• GNU Multiprecision Library (GMP) - serves for the exact simplex solver. When dis-
abled, the exact solver still works but it is much slower.

• ODBC library - serves for reading data directly from database tables within the GNU
MathProg language translator through the ODBC interface.

• MySQL client library - serves for reading data directly from MySQL tables within the
GNU MathProg language translator.

• zlib compression library - enables reading and writing gzip compressed problem and
solution files.

• ltdl dlopen library - must be enabled together with any of ODBC or MySQL (or zlib for
GLPK versions 4.45 and earlier).

make tries to guess your Pure installation directory and platform-specific setup. If it gets
this wrong, you can set some variables manually. In particular, make install prefix=/usr
sets the installation prefix, and make PIC=-fPIC or some similar flag might be needed for
compilation on 64 bit systems. The variable ODBCLIB specifies the ODBC library to be linked
with. The default value is ODBCLIB=-lodbc. Please see the Makefile for details.

15.2 Error Handling

When an error condition occurs, the GLPK library itself prints an error mesage and termi-
nates the application. This behaviour is not pleasant when working within an interpreter.
Therefore, the Pure - GLPK bindings catches at least the most common errors like indices
out of bounds. On such an error an appropriate message is returned to the interpreter. The
less common errors are still trapped by the GLPK library.

When one of the most common errors occurs, an error term of the form glp::error message
will be returned, which specifies what kind of error happend. For instance, an index out of
boundsd will cause a report like the following:

glp::error "[Pure GLPK error] row index out of bounds"

You can check for such return values and take some appropriate action. By redefining
glp::error accordingly, you can also have it generate exceptions or print an error message.
For instance:

glp::error message = fprintf stderr "%s\n" message $$ ();

NOTE: When redefining glp::error in this manner, you should be aware that the return
value of glp::error is what will be returned by the other operations of this module in case
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of an error condition. These return values are checked by other functions. Thus the return
value should still indicate that an error has happened, and not be something that might be
interpreted as a legal return value, such as an integer or a nonempty tuple. It is usually safe
to have glp::error return an empty tuple or throw an exception, but other types of return
values should be avoided.

IMPORTANT: It is really good to define a glp::error function, otherwise the errors might
remain unnoticed.

15.3 Further Information and Examples

For further details about the operations provided by this module please see the GLPK Ref-
erence Manual. Sample scripts illustrating the usage of the module can be found in the
examples directory.

15.4 Interface description

Most GLPK functions and symbols live in the namespace glp. There are a few functions and
symbols in the namespace lpx. These functions and symbols are likely to be removed and
replaced by new ones in the future.

In general, when you replace the glp_ prefix from the GLPK Reference Manual with the
namespace specification glp:: then you receive the function name in this module. The
same is valid for lpx_ and lpx::. The symbolic constants are converted into lower case in
this module, again obeying the same prefix rules.

15.5 Descriptions of interface functions

15.5.1 Basic API routines

Problem creating and modifying routines

Create the GLPK problem object Synopsis:

glp::create_prob

Parameters:

none

Returns:

pointer to the LP problem object

Example:
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> let lp = glp::create_prob;
> lp;
#<pointer 0x9de7168>

Set the problem name Synopsis:

glp::set_prob_name lp name

Parameters:

lp pointer to the LP problem object

name problem name

Returns:

()

Example:

> glp::set_prob_name lp "Testing problem";
()

Set objective name Synopsis:

glp::set_obj_name lp name

Parameters:

lp pointer to the LP problem object

name objective name

Returns:

()

Example:

> glp::set_obj_name lp "Total costs";
()

Set the objective direction Synopsis:

glp::set_obj_dir lp direction

Parameters:

lp pointer to the LP problem object

direction one of the following:

glp::min minimize
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glp::max maximize

Returns:

()

Example:

> glp::set_obj_dir lp glp::min;
()

Add new rows to the problem Synopsis:

glp::add_rows lp count

Parameters:

lp pointer to the LP problem object

count number of rows to add

Returns:

index of the first row added

Example:

> let first_added_row = glp_add_rows lp 3;
> first_added_row;
6

Add new columns to the problem Synopsis:

glp::add_cols lp count

Parameters:

lp pointer to the LP problem object

count number of columns to add

Returns:

index of the first column added

Example:

> let first_added_col = glp_add_cols lp 3;
> first_added_col;
5
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Set the row name Synopsis:

glp::set_row_name lp (rowindex, rowname)

Parameters:

lp pointer to the LP problem object

rowindex row index

rowname row name

Returns:

()

Example:

> glp::set_row_name lp (3, "The third row");
()

Set the column name Synopsis:

glp::set_col_name lp (colindex, colname)

Parameters:

lp pointer to the LP problem object

colindex column index

colname column name

Returns:

()

Example:

> glp::set_col_name lp (3, "The third column");
()

Set (change) row bounds Synopsis:

glp::set_row_bnds lp (rowindex, rowtype, lowerbound, upperbound)

Parameters:

lp pointer to the LP problem object

rowindex row index

rowtype one of the following:

glp::fr free variable (both bounds are ignored)
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glp::lo variable with lower bound (upper bound is ig-
nored)

glp::up variable with upper bound (lower bound is ig-
nored)

glp::db double bounded variable

glp::fx fixed variable (lower bound applies, upper bound
is ignored)

lowerbound lower row bound

upperbound upper row bound

Returns: ()

Example:: glp::set_row_bnds lp (3, glp::up, 0.0, 150.0);

Set (change) column bounds Synopsis:

glp::set_col_bnds lp (colindex, coltype, lowerbound, upperbound)

Parameters:

lp pointer to the LP problem object

colindex column index

coltype one of the following:

glp::fr free variable (both bounds are ignored)

glp::lo variable with lower bound (upper bound is ig-
nored)

glp::up variable with upper bound (lower bound is ig-
nored)

glp::db double bounded variable

glp::fx fixed variable (lower bound applies, upper bound
is ignored)

lowerbound lower column bound

upperbound upper column bound

Returns:

()

Example:

> glp::set_col_bnds lp (3, glp::db, 100.0, 150.0);
()
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Set (change) objective coefficient or constant term Synopsis:

glp::set_obj_coef lp (colindex, coefficient)

Parameters:

lp pointer to the LP problem object

colindex column index, zero index denotes the constant term (objec-
tive shift)

Returns:

()

Example:

> glp::set_obj_coef lp (3, 15.8);
()

Load or replace matrix row Synopsis:

glp::set_mat_row lp (rowindex, rowvector)

Parameters:

lp pointer to the LP problem object

rowindex row index

rowvector list of tuples (colindex, coefficient); only non-zero coeffi-
cients have to be specified, the order of column indices is not im-
portant, duplicates are not allowed

Returns:

()

Example:

> glp::set_mat_row lp (3, [(1, 3.0), (4, 5.2)]);
()

Load or replace matrix column Synopsis:

glp::set_mat_col lp (colindex, colvector)

Parameters:

lp pointer to the LP problem object

colindex column index
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colvector list of tuples (rowindex, coefficient); only non-zero coeffi-
cients have to be specified, the order of row indices is not impor-
tant, duplicates are not allowed

Returns:

()

Example:

> glp::set_mat_col lp (2, [(4, 2.0), (2, 1.5)]);
()

Load or replace the whole problem matrix Synopsis:

glp::load_matrix lp matrix

Parameters:

lp pointer to the LP problem object

matrix list of tuples (rowindex, colindex, coefficient); only non-zero
coefficients have to be specified, the order of indices is not impor-
tant, duplicates are not allowed

Returns:

()

Example:

> glp::load_matrix lp [(1, 3, 5.0), (2, 2, 3.5), (3, 1, -2.0), (3, 2, 1.0)];
()

Check for duplicate elements in sparse matrix Synopsis:

glp::check_dup numrows numcols indices

Parameters:

numrows number of rows

numcols number of columns

indices list of tuples (rowindex, colindex); indices of only non-zero co-
efficients have to be specified, the order of indices is not important

Returns:

returns one of the following:

0 the matrix has no duplicate elements

-k rowindex or colindex of the k-th element in indices is out
of range
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+k the k-th element in indices is duplicate

Remark:

Notice, that k counts from 1, whereas list members are counted from 0.

Example:

> glp::check_dup 3 3 [(1, 3), (2, 2), (3, 1), (2, 2)];
4

Sort elements of the constraint matrix Synopsis:

glp::sort_matrix lp

Parameters:

lp pointer to the LP problem object

Returns:

()

Example:

> glp::sort_matrix lp;
()

Delete rows from the matrix Synopsis:

glp::del_rows lp rows

Parameters:

lp pointer to the LP problem object

rows list of indices of rows to be deleted; the order of indices is not
important, duplicates are not allowed

Returns:

()

Remark:

Deleting rows involves changing ordinal numbers of other rows remaining in the
problem object. New ordinal numbers of the remaining rows are assigned under
the assumption that the original order of rows is not changed.

Example:

> glp::del_rows lp [3, 4, 7];
()
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Delete columns from the matrix Synopsis:

glp::del_cols lp cols

Parameters:

lp pointer to the LP problem object

cols list of indices of columns to be deleted; the order of indices is not
important, duplicates are not allowed

Returns:

()

Remark:

Deleting columns involves changing ordinal numbers of other columns remain-
ing in the problem object. New ordinal numbers of the remaining columns are
assigned under the assumption that the original order of columns is not changed.

Example:

> glp::del_cols lp [6, 4, 5];
()

Copy the whole content of the GLPK problem object to another one Synopsis:

glp::copy_prob destination source names

Parameters:

destination pointer to the destination LP problem object (must already
exist)

source pointer to the source LP problem object

names one of the following:

glp::on copy all symbolic names as well

glp::off do not copy the symbolic names

Returns:

()

Example:

> glp::copy_prob lp_dest lp_src glp::on;
()

Erase all data from the GLPK problem object Synopsis:
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glp::erase_prob lp

Parameters:

lp pointer to the LP problem object, it remains still valid after the func-
tion call

Returns:

()

Example:

> glp::erase_prob lp;
()

Delete the GLPK problem object Synopsis:

glp::delete_prob lp

Parameters:

lp pointer to the LP problem object, it is not valid any more after the
function call

Returns:

()

Example:

> glp::delete_prob lp;
()

Problem retrieving routines

Get the problem name Synopsis:

glp::get_prob_name lp

Parameters:

lp pointer to the LP problem object

Returns:

name of the problem

Example:

> glp::get_prob_name lp;
"Testing problem"
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Get the objective name Synopsis:

glp::get_obj_name lp

Parameters:

lp pointer to the LP problem object

Returns:

name of the objective

Example:

> glp::get_obj_name lp;
"Total costs"

Get the objective direction Synopsis:

glp::get_obj_dir lp

Parameters:

lp pointer to the LP problem object

Returns:

returns one of the following:

glp::min minimize

glp::max maximize

Example:

> glp::get_obj_dir lp;
glp::min

Get number of rows Synopsis:

glp::get_num_rows lp

Parameters:

lp pointer to the LP problem object

Returns:

number of rows (constraints)

Example:

> glp::get_num_rows lp;
58
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Get number of columns Synopsis:

glp::get_num_cols lp

Parameters:

lp pointer to the LP problem object

Returns:

number of columns (structural variables)

Example:

> glp::get_num_cols lp;
65

Get name of a row Synopsis:

glp::get_row_name lp rowindex

Parameters:

lp pointer to the LP problem object

rowindex row index

Returns:

name of the given row

Example:

> glp::get_row_name lp 3;
"The third row"

Get name of a column Synopsis:

glp::get_col_name lp colindex

Parameters:

lp pointer to the LP problem object

colindex column index

Returns:

name of the given column

Example:

> glp::get_col_name lp 2;
"The second column"
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Get row type Synopsis:

glp::get_row_type lp rowindex

Parameters:

lp pointer to the LP problem object

rowindex row index

Returns:

returns one of the following:

glp::fr free variable

glp::lo variable with lower bound

glp::up variable with upper bound

glp::db double bounded variable

glp::fx fixed variable

Example:

> glp::get_row_type lp 3;
glp::db

Get row lower bound Synopsis:

glp::get_row_lb lp rowindex

Parameters:

lp pointer to the LP problem object

rowindex row index

Returns:

the row lower bound; if the row has no lower bound then it returns the smallest
double number

Example:

> glp::get_row_lb lp 3;
50.0

Get row upper bound Synopsis:

glp::get_row_ub lp rowindex

Parameters:

lp pointer to the LP problem object
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rowindex row index

Returns:

the row upper bound; if the row has no upper bound then it returns the biggest
double number

Example:

> glp::get_row_ub lp 3;
150.0

Get column type Synopsis:

glp::get_col_type lp colindex

Parameters:

lp pointer to the LP problem object

colindex column index

Returns:

returns one of the following:

glp::fr free variable

glp::lo variable with lower bound

glp::up variable with upper bound

glp::db double bounded variable

glp::fx fixed variable

Example:

> glp::get_col_type lp 2;
glp::up

Get column lower bound Synopsis:

glp::get_col_lb lp colindex

Parameters:

lp pointer to the LP problem object

colindex column index

Returns:

the column lower bound; if the column has no lower bound then it returns the
smallest double number
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Example:

> glp::get_col_lb lp 3;
-1.79769313486232e+308

Get column upper bound Synopsis:

glp::get_col_ub lp colindex

Parameters:

lp pointer to the LP problem object

colindex column index

Returns:

the column upper bound; if the column has no upper bound then it returns the
biggest double number

Example:

> glp::get_col_lb lp 3;
150.0

Get objective coefficient Synopsis:

glp::get_obj_coef lp colindex

Parameters:

lp pointer to the LP problem object

colindex column index; zero index denotes the constant term (objec-
tive shift)

Returns:

the coefficient of given column in the objective

Example:

> glp::get_obj_coef lp 3;
5.8

Get number of nonzero coefficients Synopsis:

glp::get_num_nz lp

Parameters:

lp pointer to the LP problem object
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Returns:

number of non-zero coefficients in the problem matrix

Example:

> glp::get_num_nz lp;
158

Retrive a row from the problem matrix Synopsis:

glp::get_mat_row lp rowindex

Parameters:

lp pointer to the LP problem object

rowindex row index

Returns:

non-zero coefficients of the given row in a list form of tuples (colindex, coeffi-
cient)

Example:

> get_mat_row lp 3;
[(3,6.0),(2,2.0),(1,2.0)]

Retrive a column from the problem matrix Synopsis:

glp::get_mat_col lp colindex

Parameters:

lp pointer to the LP problem object

colindex column index

Returns:

non-zero coefficients of the given column in a list form of tuples (rowindex, coef-
ficient)

Example:

> get_mat_col lp 2;
[(3,2.0),(2,4.0),(1,1.0)]

Row and column searching routines

Create index for searching rows and columns by their names Synopsis:
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glp::create_index lp

Parameters:

lp pointer to the LP problem object

Returns:

()

Example:

> glp::create_index lp;
()

Find a row number by name Synopsis:

glp::find_row lp rowname

Parameters:

lp pointer to the LP problem object

rowname row name

Returns:

ordinal number (index) of the row

Remark:

The search index is automatically created if it does not already exists.

Example:

> glp::find_row lp "The third row";
3

Find a column number by name Synopsis:

glp::find_col lp colname

Parameters:

lp pointer to the LP problem object

colname column name

Returns:

ordinal number (index) of the column

Remark:

The search index is automatically created if it does not already exists.
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Example:

> glp::find_col lp "The second row";
2

Delete index for searching rows and columns by their names Synopsis:

glp::delete_index lp

Parameters:

lp pointer to the LP problem object

Returns:

()

Example:

> glp::delete:index lp;
()

Problem scaling routines

Set the row scale factor Synopsis:

glp::set_rii lp (rowindex, coefficient)

Parameters:

lp pointer to the LP problem object

rowindex row index

coefficient scaling coefficient

Returns:

()

Example:

> glp::set_rii lp (3, 258.6);
()

Set the column scale factor Synopsis:

glp::set_sjj lp (colindex, coefficient)

Parameters:

lp pointer to the LP problem object

498 15.5 Descriptions of interface functions



Pure Language and Library Documentation, Release 0.62

colindex column index

coefficient scaling coefficient

Returns:

()

Example:

> glp::set_sjj lp (2, 12.8);
()

Retrieve the row scale factor Synopsis:

glp::get_rii lp rowindex

Parameters:

lp pointer to the LP problem object

rowindex row index

Returns:

scaling coefficient of given row

Example:

> glp::get_rii lp 3;
258.6

Retrieve the column scale factor Synopsis:

glp::get_sjj lp colindex

Parameters:

lp pointer to the LP problem object

colindex column index

Returns:

scaling coefficient of given column

Example:

> glp::get_sjj lp 2;
12.8

15.5.1 Basic API routines 499



Pure Language and Library Documentation, Release 0.62

Scale the problem data according to supplied flags Synopsis:

glp::scale_prob lp flags

Parameters:

lp pointer to the LP problem object

flags symbolic integer constants which can be combined together by
arithmetic or; the possible constants are:

glp::sf_gm perform geometric mean scaling

glp::sf_eq perform equilibration scaling

glp::sf_2n round scale factors to power of two

glp::sf_skip skip if problem is well scaled

glp::sf_auto choose scaling options automatically

Returns:

()

Example:

> glp::scale_prob lp (glp::sf_gm || glp::sf_2n);
()

Unscale the problem data Synopsis:

glp::unscale_prob lp

Parameters:

lp pointer to the LP problem object

Returns:

()

Example:

> glp::unscale_prob lp;
()

LP basis constructing routines

Set the row status Synopsis:

glp::set_row_stat lp (rowindex, status)

Parameters:
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lp pointer to the LP problem object

rowindex row index

status one of the following:

glp::bs make the row basic (make the constraint inactive)

glp::nl make the row non-basic (make the constraint ac-
tive)

glp::nu make the row non-basic and set it to the upper
bound; if the row is not double-bounded, this status is
equivalent to glp::nl (only in the case of this routine)

glp::nf the same as glp::nl (only in the case of this routine)

glp::ns the same as glp::nl (only in the case of this routine)

Returns:

()

Example:

> glp::set_row_stat lp (3, glp::nu);
()

Set the column status Synopsis:

glp::set_col_stat lp (colindex, status)

Parameters:

lp pointer to the LP problem object

colindex column index

status one of the following:

glp::bs make the column basic

glp::nl make the column non-basic

glp::nu make the column non-basic and set it to the upper
bound; if the column is not double-bounded, this status
is equivalent to glp::nl (only in the case of this routine)

glp::nf the same as glp::nl (only in the case of this routine)

glp::ns the same as glp::nl (only in the case of this routine)

Returns:

()

Example:
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> glp::set_col_stat lp (2, glp::bs);
()

Construct standard problem basis Synopsis:

glp::std_basis lp

Parameters:

lp pointer to the LP problem object

Returns:

()

Example:

> glp::std_basis lp;
()

Construct advanced problem basis Synopsis:

glp::adv_basis lp

Parameters:

lp pointer to the LP problem object

Returns:

()

Example:

> glp::adv_basis lp;
()

Construct Bixby’s problem basis Synopsis:

glp::cpx_basis lp

Parameters:

lp pointer to the LP problem object

Returns:

()

Example:
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> glp::cpx_basis lp;
()

Simplex method routines

Solve the LP problem using simplex method Synopsis:

glp::simplex lp options

Parameters:

lp pointer to the LP problem object

options list of solver options in the form of tuples (option_name,
value):

glp::msg_lev

(default: glp::msg_all) - message level for terminal
output:

glp::msg_off: no output
glp::msg_err: error and warning messages only
glp::msg_on: normal output;
glp::msg_all: full output (including informational
messages)

glp::meth (default: glp::primal) - simplex method option

glp::primal: use two-phase primal simplex
glp::dual: use two-phase dual simplex;
glp::dualp: use two-phase dual simplex, and if it fails,
switch to the primal simplex

glp::pricing (default: glp::pt_pse) - pricing technique

glp::pt_std: standard (textbook)
glp::pt_pse: projected steepest edge

glp::r_test (default: glp::rt_har) - ratio test technique
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glp::rt_std: standard (textbook)
glp::rt_har: Harris’ two-pass ratio test

glp::tol_bnd (default: 1e-7) - tolerance used to check if the
basic solution is primal feasible

glp::tol_dj (default: 1e-7) - tolerance used to check if the
basic solution is dual feasible

glp::tol_piv (default: 1e-10) - tolerance used to choose
eligble pivotal elements of the simplex table

glp::obj_ll (default: -DBL_MAX) - lower limit of the ob-
jective function - if the objective function reaches this
limit and continues decreasing, the solver terminates the
search - used in the dual simplex only

glp::obj_ul (default: +DBL_MAX) - upper limit of the ob-
jective function. If the objective function reaches this
limit and continues increasing, the solver terminates the
search - used in the dual simplex only

glp::it_lim (default: INT_MAX) - simplex iteration limit

glp::tm lim (default: INT_MAX) - searching time limit, in
milliseconds

glp::out_frq (default: 200) - output frequency, in itera-
tions - this parameter specifies how frequently the solver
sends information about the solution process to the ter-
minal

glp::out_dly (default: 0) - output delay, in milliseconds -
this parameter specifies how long the solver should de-
lay sending information about the solution process to the
terminal

glp::presolve (default: glp::off) - LP presolver option:

glp::on: enable using the LP presolver
glp::off: disable using the LP presolver

Returns:

one of the following:

glp::ok the LP problem instance has been successfully solved; this
code does not necessarily mean that the solver has found optimal
solution, it only means that the solution process was successful
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glp::ebadb unable to start the search, because the initial basis specified
in the problem object is invalid - the number of basic (auxiliary and
structural) variables is not the same as the number of rows in the
problem object

glp::esing unable to start the search, because the basis matrix corre-
sponding to the initial basis is singular within the working preci-
sion

glp::econd unable to start the search, because the basis matrix corre-
sponding to the initial basis is ill-conditioned, i.e. its condition
number is too large

glp::ebound unable to start the search, because some double-bounded
(auxiliary or structural) variables have incorrect bounds

glp::efail the search was prematurely terminated due to the solver fail-
ure

glp::eobjll the search was prematurely terminated, because the objec-
tive function being maximized has reached its lower limit and con-
tinues decreasing (the dual simplex only)

glp::eobjul the search was prematurely terminated, because the ob-
jective function being minimized has reached its upper limit and
continues increasing (the dual simplex only)

glp::eitlim the search was prematurely terminated, because the sim-
plex iteration limit has been exceeded

glp::etmlim the search was prematurely terminated, because the time
limit has been exceeded

glp::enopfs the LP problem instance has no primal feasible solution
(only if the LP presolver is used)

glp::enodfs the LP problem instance has no dual feasible solution
(only if the LP presolver is used)

When the list of options contains some bad option(s) then a list of bad options is
returned instead.

Remark:

Options not mentioned in the option list are set to their default values.

Example:

> glp::simplex lp [(glp::presolve, glp::on), (glp::msg_lev, glp::msg_all)];
glp_simplex: original LP has 3 rows, 3 columns, 9 non-zeros
glp_simplex: presolved LP has 3 rows, 3 columns, 9 non-zeros
Scaling...
A: min|aij| = 1,000e+000 max|aij| = 1,000e+001 ratio = 1,000e+001

Problem data seem to be well scaled
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Crashing...
Size of triangular part = 3

* 0: obj = 0,000000000e+000 infeas = 0,000e+000 (0)

* 2: obj = 7,333333333e+002 infeas = 0,000e+000 (0)
OPTIMAL SOLUTION FOUND
glp::ok

Solve the LP problem using simplex method in exact arithmetics Synopsis:

glp::exact lp options

Parameters:

lp pointer to the LP problem object

options list of solver options in the form of tuples (option_name,
value):

glp::it_lim (default: INT_MAX) - simplex iteration limit

glp::tm lim (default: INT_MAX) - searching time limit, in
milliseconds

Returns:

one of the following:

glp::ok the LP problem instance has been successfully solved; this
code does not necessarily mean that the solver has found optimal
solution, it only means that the solution process was successful

glp::ebadb unable to start the search, because the initial basis specified
in the problem object is invalid - the number of basic (auxiliary and
structural) variables is not the same as the number of rows in the
problem object

glp::esing unable to start the search, because the basis matrix corre-
sponding to the initial basis is singular within the working preci-
sion

glp::ebound unable to start the search, because some double-bounded
(auxiliary or structural) variables have incorrect bounds

glp::efail the search was prematurely terminated due to the solver fail-
ure

glp::eitlim the search was prematurely terminated, because the sim-
plex iteration limit has been exceeded

glp::etmlim the search was prematurely terminated, because the time
limit has been exceeded
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When the list of options contains some bad option(s) then a list of bad options is
returned instead.

Remark:

Options not mentioned in the option list are set to their default values.

Example:

> glp::exact lp [];
glp_exact: 3 rows, 3 columns, 9 non-zeros
GNU MP bignum library is being used

* 2: objval = 0 (0)

* 4: objval = 733,333333333333 (0)
OPTIMAL SOLUTION FOUND
glp::ok

Retrieve generic status of basic solution Synopsis:

glp::get_status lp

Parameters:

lp pointer to the LP problem object

Returns:

one of the following:

glp::undef solution is undefined

glp::feas solution is feasible

glp::infeas solution is infeasible

glp::nofeas no feasible solution exists

glp::opt solution is optimal

glp::unbnd solution is unbounded

Example:

> glp::get_status lp;
glp::opt

Retrieve generic status of primal solution Synopsis:

glp::get_prim_stat lp

Parameters:

lp pointer to the LP problem object

Returns:
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one of the following:

glp::undef primal solution is undefined

glp::feas primal solution is feasible

glp::infeas primal solution is infeasible

glp::nofeas no primal feasible solution exists

Example:

> glp::get_prim_stat lp;
glp::feas

Retrieve generic status of dual solution Synopsis:

glp::get_dual_stat lp

Parameters:

lp pointer to the LP problem object

Returns:

one of the following:

glp::undef dual solution is undefined

glp::feas dual solution is feasible

glp::infeas dual solution is infeasible

glp::nofeas no dual feasible solution exists

Example:

> glp::get_dual_stat lp;
glp::feas

Retrieve value of the objective function Synopsis:

glp::get_obj_val lp

Parameters:

lp pointer to the LP problem object

Returns:

value of the objective function

Example:

508 15.5 Descriptions of interface functions



Pure Language and Library Documentation, Release 0.62

> glp::get_obj_val lp
733.333333333333

Retrieve generic status of a row variable Synopsis:

glp::get_row_stat lp rowindex

Parameters:

lp pointer to the LP problem object

rowindex row index

Returns:

one of the following:

glp::bs basic variable

glp::nl non-basic variable on its lower bound

glp::nu non-basic variable on its upper bound

glp::nf non-basic free (unbounded) variable

glp::ns non-basic fixed variable

Example:

> glp::get_row_stat lp 3;
glp::bs

Retrieve row primal value

Synopsis:: glp::get_row_prim lp rowindex

Parameters:

lp pointer to the LP problem object

rowindex row index

Returns:

primal value of the row (auxiliary) variable

Example:

> glp::get_row_prim lp 3;
200.0
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Retrieve row dual value Synopsis:

glp::get_row_dual lp rowindex

Parameters:

lp pointer to the LP problem object

rowindex row index

Returns:

dual value of the row (auxiliary) variable

Example:

> glp::get_row_dual lp 3;
0.0

Retrieve generic status of a column variable Synopsis:

glp::get_col_stat lp colindex

Parameters:

lp pointer to the LP problem object

colindex column index

Returns:

one of the following:

glp::bs basic variable

glp::nl non-basic variable on its lower bound

glp::nu non-basic variable on its upper bound

glp::nf non-basic free (unbounded) variable

glp::ns non-basic fixed variable

Example:

> glp::get_col_stat lp 2;
glp::bs

Retrieve column primal value Synopsis:

glp::get_col_prim lp colindex

Parameters:

lp pointer to the LP problem object
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colindex column index

Returns:

primal value of the column (structural) variable

Example:

> glp::get_col_prim lp 2;
66.6666666666667

Retrieve column dual value Synopsis:

glp::get_col_dual lp colindex

Parameters:

lp pointer to the LP problem object

colindex column index

Returns:

dual value of the column (structural) variable

Example:

> glp::get_col_dual lp 2;
0.0

Determine variable causing unboundedness Synopsis:

glp::get_unbnd_ray lp

Parameters:

lp pointer to the LP problem object

Returns:

The routine glp_get_unbnd_ray returns the number k of a variable, which causes
primal or dual unboundedness. If 1 <= k <= m, it is k-th auxiliary variable, and
if m + 1 <= k <= m + n, it is (k - m)-th structural variable, where m is the number
of rows, n is the number of columns in the problem object. If such variable is not
defined, the routine returns 0.

Remark:

If it is not exactly known which version of the simplex solver detected unbound-
edness, i.e. whether the unboundedness is primal or dual, it is sufficient to check
the status of the variable with the routine glp::get_row_stat or glp::get_col_stat.
If the variable is non-basic, the unboundedness is primal, otherwise, if the vari-
able is basic, the unboundedness is dual (the latter case means that the problem
has no primal feasible dolution).

15.5.1 Basic API routines 511



Pure Language and Library Documentation, Release 0.62

Example:

> glp::get_unbnd_ray lp;
0

Interior-point method routines

Solve the LP problem using interior-point method Synopsis:

glp::interior lp options

Parameters:

lp pointer to the LP problem object

options list of solver options in the form of tuples (option_name,
value):

glp::msg_lev

(default: glp::msg_all) - message level for terminal
output:

glp::msg_off: no output
glp::msg_err: error and warning messages only
glp::msg_on: normal output;
glp::msg_all: full output (including informational
messages)

glp::ord_alg (default: glp::ord_amd) - ordering algorithm
option

glp::ord_none: use natural (original) ordering
glp::ord_qmd: quotient minimum degree (QMD)
glp::ord_amd: approximate minimum degree (AMD)
glp::ord_sysamd: approximate minimum degree
(SYSAMD)

Returns:

one of the following:

glp::ok the LP problem instance has been successfully solved; this
code does not necessarily mean that the solver has found optimal
solution, it only means that the solution process was successful
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glp::efail the problem has no rows/columns

glp::enocvg very slow convergence or divergence

glp::eitlim iteration limit exceeded

glp::einstab numerical instability on solving Newtonian system

Example:

> glp::interior lp [(glp::ord_alg, glp::ord_amd)];
Original LP has 3 row(s), 3 column(s), and 9 non-zero(s)
Working LP has 3 row(s), 6 column(s), and 12 non-zero(s)
Matrix A has 12 non-zeros
Matrix S = A*A’ has 6 non-zeros (upper triangle)
Approximate minimum degree ordering (AMD)...
Computing Cholesky factorization S = L*L’...
Matrix L has 6 non-zeros
Guessing initial point...
Optimization begins...

0: obj = -8,218489503e+002; rpi = 3,6e-001; rdi = 6,8e-001; gap = 2,5e-001
1: obj = -6,719060895e+002; rpi = 3,6e-002; rdi = 1,9e-001; gap = 1,4e-002
2: obj = -6,917210389e+002; rpi = 3,6e-003; rdi = 9,3e-002; gap = 3,0e-002
3: obj = -7,267557732e+002; rpi = 2,1e-003; rdi = 9,3e-003; gap = 4,4e-002
4: obj = -7,323038146e+002; rpi = 2,1e-004; rdi = 1,1e-003; gap = 4,8e-003
5: obj = -7,332295932e+002; rpi = 2,1e-005; rdi = 1,1e-004; gap = 4,8e-004
6: obj = -7,333229585e+002; rpi = 2,1e-006; rdi = 1,1e-005; gap = 4,8e-005
7: obj = -7,333322959e+002; rpi = 2,1e-007; rdi = 1,1e-006; gap = 4,8e-006
8: obj = -7,333332296e+002; rpi = 2,1e-008; rdi = 1,1e-007; gap = 4,8e-007
9: obj = -7,333333230e+002; rpi = 2,1e-009; rdi = 1,1e-008; gap = 4,8e-008

10: obj = -7,333333323e+002; rpi = 2,1e-010; rdi = 1,1e-009; gap = 4,8e-009
OPTIMAL SOLUTION FOUND
glp::ok

Retrieve status of interior-point solution Synopsis:

glp::ipt_status lp

Parameters:

lp pointer to the LP problem object

Returns:

one of the following

glp::undef interior-point solution is undefined

glp::opt interior-point solution is optimal

glp::infeas interior-point solution is infeasible

glp::nofeas no feasible primal-dual solution exists

Example:
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> glp::ipt_status lp;
glp::opt

Retrieve the objective function value of interior-point solution Synopsis:

glp::ipt_obj_val lp

Parameters:

lp pointer to the LP problem object

Returns:

objective function value of interior-point solution

Example:

> glp::ipt_obj_val lp;
733.333332295849

Retrieve row primal value of interior-point solution Synopsis:

glp::ipt_row_prim lp rowindex

Parameters:

lp pointer to the LP problem object

rowindex row index

Returns:

primal value of the row (auxiliary) variable

Example:

> glp::ipt_row_prim lp 3;
200.000000920688

Retrieve row dual value of interior-point solution Synopsis:

glp::ipt_row_dual lp rowindex

Parameters:

lp pointer to the LP problem object

rowindex row index

Returns:

dual value of the row (auxiliary) variable
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Example:

> glp::ipt_row_dual lp 3;
2.50607466186742e-008

Retrieve column primal value of interior-point solution Synopsis:

glp::ipt_col_prim lp colindex

Parameters:

lp pointer to the LP problem object

colindex column index

Returns:

primal value of the column (structural) variable

Example:

> glp::ipt_col_prim lp 2;
66.666666406779

Retrieve column dual value of interior-point solution Synopsis:

glp::ipt_col_dual lp colindex

Parameters:

lp pointer to the LP problem object

colindex column index

Returns:

dual value of the column (structural) variable

Example:

> glp::ipt_col_dual lp 2;
2.00019467655466e-009

Mixed integer programming routines

Set column kind Synopsis:

glp::set_col_kind lp (colindex, colkind)

Parameters:

lp pointer to the LP problem object
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colindex column index

colkind column kind - one of the following:

glp::cv continuous variable

glp::iv integer variable

glp::bv binary variable

Returns:

()

Example:

> glp::set_col_kind lp (1, glp::iv);
()

Retrieve column kind Synopsis:

glp::get_col_kind lp colindex

Parameters:

lp pointer to the LP problem object

colindex column index

Returns:

one of the following:

glp::cv continuous variable

glp::iv integer variable

glp::bv binary variable

Example:

> glp::get_col_kind lp 1;
glp::iv

Retrieve number of integer columns Synopsis:

glp::get_num_int lp

Parameters:

lp pointer to the LP problem object

Returns:

number of integer columns (including binary columns)
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Example:

> glp_get_num_int lp;
1

Retrieve number of binary columns Synopsis:

glp::get_num_bin lp

Parameters:

lp pointer to the LP problem object

Returns:

number of binary columns

Example:

> glp::get_num_bin lp
0

Solve the MIP problem using branch-and-cut method Synopsis:

glp::intopt lp options

Parameters:

lp pointer to the LP problem object

options list of solver options in the form of tuples (option_name,
value):

glp::msg_lev

(default: glp::msg_all) - message level for terminal
output:

glp::msg_off: no output
glp::msg_err: error and warning messages only
glp::msg_on: normal output;
glp::msg_all: full output (including informational
messages)

glp::br_tech (default: glp::bt::blb) - branching technique

glp::br_ffv: first fractional variable
glp::br_lfv: last fractional variable
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glp::br_mfv: most fractional variable
glp::br_dth: heuristic by Driebeck and Tomlin
glp::br_pch: hybrid pseudocost heuristic

glp::bt_tech (default: glp::pt_pse) - backtracking tech-
nique

glp::bt_dfs: depth first search;
glp::bt_bfs: breadth first search;
glp::bt_blb: best local bound;
glp::bt_bph: best projection heuristic.

glp::pp_tech (default: glp::pp_all) - preprocessing tech-
nique

glp::pp_none: disable preprocessing;
glp::pp_root: perform preprocessing only on the root
level
glp::pp_all: perform preprocessing on all levels

glp::fp_heur (default: glp::off) - feasibility pump heuristic:

glp::on: enable applying the feasibility pump heuristic
glp::off: disable applying the feasibility pump heuristic

glp::gmi_cuts

(default: glp::off) - Gomory’s mixed integer cuts:

glp::on: enable generating Gomory’s cuts;
glp::off: disable generating Gomory’s cuts.

glp::mir_cuts

(default: glp::off) - mixed integer rounding (MIR)
cuts:
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glp::on: enable generating MIR cuts;
glp::off: disable generating MIR cuts.

glp::cov_cuts (default: glp::off) - mixed cover cuts:

glp::on: enable generating mixed cover cuts;
glp::off: disable generating mixed cover cuts.

glp::clq_cuts (default glp::off) - clique cuts:

glp::on: enable generating clique cuts;
glp::off: disable generating clique cuts.

glp::tol_int (default: 1e-5) - absolute tolerance used to
check if optimal solution to the current LP relaxation is
integer feasible

glp::tol_obj (default: 1e-7) - relative tolerance used to
check if the objective value in optimal solution to the
current LP relaxation is not better than in the best known
integer feasible solution

glp::mip_gap (default: 0.0) - the relative mip gap toler-
ance; if the relative mip gap for currently known best
integer feasible solution falls below this tolerance, the
solver terminates the search - this allows obtainig sub-
optimal integer feasible solutions if solving the problem
to optimality takes too long time

glp::tm lim (default: INT_MAX) - searching time limit, in
milliseconds

glp::out_frq (default: 5000) - output frequency, in milisec-
onds - this parameter specifies how frequently the solver
sends information about the solution process to the ter-
minal

glp::out_dly (default: 10000) - output delay, in millisec-
onds - this parameter specifies how long the solver
should delay sending information about the solution of
the current LP relaxation with the simplex method to the
terminal

glp::cb_func
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(default: glp::off) - specifies whether to use the user-
defined callback routine

glp::on: use user-defined callback function - the
function glp::mip_cb tree info must be defined by
the user
glp::off: do not use user-defined callback function

glp::cb_info (default: NULL) - transit pointer passed to
the routine glp::mip_cb tree info (see above)

glp::cb_size (default: 0) - the number of extra (up to 256)
bytes allocated for each node of the branch-and-bound
tree to store application-specific data - on creating a node
these bytes are initialized by binary zeros

glp::presolve (default: glp::off) - LP presolver option:

glp::on: enable using the MIP presolver
glp::off: disable using the MIP presolver

glp::binarize

(default: glp::off) - binarization (used only if the pre-
solver is enabled):

glp::on: replace general integer variables by binary ones
glp::off: do not use binarization

Returns:

one of the following:

glp::ok the MIP problem instance has been successfully solved; this
code does not necessarily mean that the solver has found optimal
solution, it only means that the solution process was successful

glp::ebound unable to start the search, because some double-bounded
(auxiliary or structural) variables have incorrect bounds or some
integer variables have non-integer (fractional) bounds

glp::eroot unable to start the search, because optimal basis for initial
LP relaxation is not provided - this code may appear only if the
presolver is disabled
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glp::enopfs unable to start the search, because LP relaxation of the
MIP problem instance has no primal feasible solution - this code
may appear only if the presolver is enabled

glp::enodfs unable to start the search, because LP relaxation of the
MIP problem instance has no dual feasible solution; in other word,
this code means that if the LP relaxation has at least one primal
feasible solution, its optimal solution is unbounded, so if the MIP
problem has at least one integer feasible solution, its (integer) opti-
mal solution is also unbounded - this code may appear only if the
presolver is enabled

glp::efail the search was prematurely terminated due to the solver fail-
ure

glp::emipgap the search was prematurely terminated, because the rel-
ative mip gap tolerance has been reached

glp::etmlim the search was prematurely terminated, because the time
limit has been exceeded

glp::estop the search was prematurely terminated by application - this
code may appear only if the advanced solver interface is used

When the list of options contains some bad option(s) then a list of bad options is
returned instead.

Remark:

Options not mentioned in the option list are set to their default values.

Example:

> glp::intopt lp [(glp::presolve, glp::on)];
ipp_basic_tech: 0 row(s) and 0 column(s) removed
ipp_reduce_bnds: 2 pass(es) made, 3 bound(s) reduced
ipp_basic_tech: 0 row(s) and 0 column(s) removed
ipp_reduce_coef: 1 pass(es) made, 0 coefficient(s) reduced
glp_intopt: presolved MIP has 3 rows, 3 columns, 9 non-zeros
glp_intopt: 3 integer columns, none of which are binary
Scaling...
A: min|aij| = 1,000e+00 max|aij| = 1,000e+01 ratio = 1,000e+01

Problem data seem to be well scaled
Crashing...
Size of triangular part = 3
Solving LP relaxation...

* 2: obj = 0,000000000e+00 infeas = 0,000e+00 (0)

* 5: obj = 7,333333333e+02 infeas = 0,000e+00 (0)
OPTIMAL SOLUTION FOUND
Integer optimization begins...
+ 5: mip = not found yet <= +inf (1; 0)
+ 6: >>>>> 7,320000000e+02 <= 7,320000000e+02 0.0% (2; 0)
+ 6: mip = 7,320000000e+02 <= tree is empty 0.0% (0; 3)
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INTEGER OPTIMAL SOLUTION FOUND
glp::ok

Retrieve status of mip solution Synopsis:

glp::mip_status lp

Parameters:

lp pointer to the LP problem object

Returns:

one of the following:

glp::undef MIP solution is undefined

glp::opt MIP solution is integer optimal

glp::feas MIP solution is integer feasible, however, its optimality (or
non-optimality) has not been proven, perhaps due to premature
termination of the search

glp::nofeas problem has no integer feasible solution (proven by the
solver)

Example:

> glp::mip_status lp;
glp::opt

Retrieve the objective function value of mip solution Synopsis:

glp::mip_obj_val lp

Parameters:

lp pointer to the LP problem object

Returns:

objective function value of mip solution

Example:

> glp::mip_obj_val lp;
732.0

Retrieve row value of mip solution Synopsis:

glp::mip_row_val lp rowindex
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Parameters:

lp pointer to the LP problem object

rowindex row index

Returns:

row value (value of auxiliary variable)

Example:

> glp::mip_row_val lp 3;
200.0

Retrieve column value of mip solution Synopsis:

glp::mip_col_val lp colindex

Parameters:

lp pointer to the LP problem object

colindex column index

Returns:

column value (value of structural variable)

Example:

> glp::mip_col_val lp 2;
67.0

Additional routines

Check Karush-Kuhn-Tucker conditions Synopsis:

glp::check_kkt lp solution condition

Parameters:

lp pointer to the LP problem object

solution one of the following

glp::sol check basic solution

glp::ipt check interior-point solution

glp::mip check mixed integer solution

condition one of the following

glp::kkt_pe check primal equality constraints
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glp::kkt_pb check primal bound constraints

glp::kkt_de check dual equality constraints (not available
for MIP)

glp::kkt_db check dual bound constraints (not available
for MIP)

Returns:

tuple with four members (ae_max, ae_ind, re_max, re_ind) where the variables
indicate:

ae_max largest absolute error

ae_ind number of row (kkt_pe), column (kkt_de), or variable (kkt_pb,
kkt_db) with the largest absolute error

re_max largest relative error

re_ind number of row (kkt_pe), column (kkt_de), or variable (kkt_pb,
kkt_db) with the largest relative error

where the variable index is (1 <= k <= m) for auxiliary variable and (m+1 <= k
<= m+n) for structural variable

Example:

> glp::check_kkt lp glp::sol glp::kkt_pe;
0.0,0,0.0,0
> glp::check_kkt lp glp::mip glp::kkt_pe;
2.23517417907715e-008,1,7.50126764193079e-016,34169
>

15.5.2 Utility API routines

Problem data reading/writing routines

Read LP problem data from a MPS file Synopsis:

glp::read_mps lp format filename

Parameters:

lp pointer to the LP problem object

format one of the following

glp::mps_deck fixed (ancient) MPS file format

glp::mps_file free (modern) MPS file format

filename file name - if the file name ends with suffix .gz, the file is as-
sumed to be compressed, in which case the routine glp::read_mps
decompresses it “on the fly”
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Returns:

0 if reading went OK; non-zero in case of an error

Example:

> glp::read_mps lp glp::mps_deck "examples/plan.mps";
Reading problem data from ‘examples/plan.mps’...
Problem PLAN
Objective R0000000
8 rows, 7 columns, 55 non-zeros
63 records were read
0

Write LP problem data into a MPS file Synopsis:

glp::write_mps lp format filename

Parameters:

lp pointer to the LP problem object

format one of the following

glp::mps_deck fixed (ancient) MPS file format

glp::mps_file free (modern) MPS file format

filename file name - if the file name ends with suffix .gz, the file is as-
sumed to be compressed, in which case the routine glp_write_mps
performs automatic compression on writing it

Returns:

0 if writing went OK; non-zero in case of an error

Example:

> glp::write_mps lp glp::mps_file "examples/plan1.mps";
Writing problem data to ‘examples/plan1.mps’...
63 records were written
0

Read LP problem data from a CPLEX file Synopsis:

glp::read_lp lp filename

Parameters:

lp pointer to the LP problem object

filename file name - if the file name ends with suffix .gz, the file is
assumed to be compressed, in which case the routine glp::read_lp
decompresses it “on the fly”
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Returns:

0 if writing went OK; non-zero in case of an error

Example:

> glp::read_lp lp "examples/plan.lp";
reading problem data from ‘examples/plan.lp’...
8 rows, 7 columns, 48 non-zeros
39 lines were read
0

Write LP problem data into a CPLEX file Synopsis:

glp::write_lp lp filename

Parameters:

lp pointer to the LP problem object

filename file name - if the file name ends with suffix .gz, the file is
assumed to be compressed, in which case the routine glp::write_lp
performs automatic compression on writing it

Returns:

0 if writing went OK; non-zero in case of an error

Example:

> glp::write_lp lp "examples/plan1.lp";
writing problem data to ‘examples/plan1.lp’...
29 lines were written
0

Read LP problem data in GLPK format Synopsis:

glp::read_prob lp filename

Parameters:

lp pointer to the LP problem object

filename file name - if the file name ends with suffix .gz, the file is as-
sumed to be compressed, in which case the routine glp::read_prob
decompresses it “on the fly”

Returns:

0 if writing went OK; non-zero in case of an error

Example:
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> glp::read_prob lp "examples/plan.glpk";
reading problem data from ‘examples/plan.glpk’...
8 rows, 7 columns, 48 non-zeros
86 lines were read
0

Write LP problem data in GLPK format Synopsis:

glp::write_prob lp filename

Parameters:

lp pointer to the LP problem object

filename file name - if the file name ends with suffix .gz, the file is as-
sumed to be compressed, in which case the routine glp::write_prob
performs automatic compression on writing it

Returns:

0 if writing went OK; non-zero in case of an error

Example:

> glp::write_prob lp "examples/plan1.glpk";
writing problem data to ‘examples/plan1.glpk’...
86 lines were written
0

Routines for MathProg models

Create the MathProg translator object Synopsis:

glp::mpl_alloc_wksp

Parameters:

none

Returns:

pointer to the MathProg translator object

Example:

> let mpt = glp::mpl_alloc_wksp;
> mpt;
#<pointer 0xa0d0180>
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Read and translate model section Synopsis:

glp::mpl_read_model tranobject filename skip

Parameters:

tranobject pointer to the MathProg translator object

filename file name

skip if 0 then the data section from the model file is read; if non-zero,
the data section in the data model is skipped

Returns:

0 if reading went OK; non-zero in case of an error

Example:

> mpl_read_model mpt "examples/sudoku.mod" 1;
Reading model section from examples/sudoku.mod...
examples/sudoku.mod:69: warning: data section ignored
69 lines were read
0

Read and translate data section Synopsis:

glp::mpl_read_data tranobject filename

Parameters:

tranobject pointer to the MathProg translator object

filename file name

Returns:

0 if reading went OK; non-zero in case of an error

Example:

> glp::mpl_read_data mpt "examples/sudoku.dat";
Reading data section from examples/sudoku.dat...
16 lines were read
0

Generate the model Synopsis:

glp::mpl_generate tranobject filename

Parameters:

tranobject pointer to the MathProg translator object

filename file name
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Returns:

0 if generating went OK; non-zero in case of an error

Example:

> glp::mpl_generate mpt "examples/sudoku.lst";
Generating fa...
Generating fb...
Generating fc...
Generating fd...
Generating fe...
Model has been successfully generated
0

Build problem instance from the model Synopsis:

glp::mpl_build_prob tranobject lp

Parameters:

tranobject pointer to the MathProg translator object

lp pointer to the LP problem object

Returns:

()

Example:

> glp::mpl_build_prob mpt lp;
()

Postsolve the model Synopsis:

glp::mpl_postsolve tran lp solution

Parameters:

tranobject pointer to the MathProg translator object

lp pointer to the LP problem object

solution one of the following:

glp::sol use the basic solution

glp::ipt use the interior-point solution

glp::mip use mixed integer solution

Returns:

0 if postsolve went OK; non-zero in case of an error
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Example:

> glp::mpl_postsolve mpt lp glp::sol;
Model has been successfully processed
0

Delete the MathProg translator object Synopsis:

glp::mpl_free_wksp tranobject

Parameters:

tranobject pointer to the MathProg translator object

Returns:

()

Example:

> glp::mpl_free_wksp mpt;
()

Problem solution reading/writing routines

Write basic solution in printable format Synopsis:

glp::print_sol lp filename

Parameters:

lp pointer to the LP problem object

filename file name

Returns:

0 if writing went OK; non-zero in case of an error

Example:

> glp::print_sol lp "examples/test.txt";
Writing basic solution to ‘examples/test.txt’...
0

Read basic solution from a text file Synopsis:

glp::read_sol lp filename

Parameters:

lp pointer to the LP problem object
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filename file name

Returns:

0 if reading went OK; non-zero in case of an error

Example:

> glp::read_sol lp "examples/test.txt";
Reading basic solution from ‘examples/test.txt’...
1235 lines were read
0

Write basic solution into a text file Synopsis:

glp::write_sol lp filename

Parameters:

lp pointer to the LP problem object

filename file name

Returns:

0 if writing went OK; non-zero in case of an error

Example:

> glp::write_sol lp "examples/test.txt";
Writing basic solution to ‘examples/test.txt’...
1235 lines were written
0

Print sensitivity analysis report Synopsis:

glp::print_ranges lp indices filename

Parameters:

lp pointer to the LP problem object

indices list indices k of of rows and columns to be included in the
report. If 1 ≤ k ≤ m, the basic variable is k-th auxiliary variable,
and if m + 1 ≤ k ≤ m + n, the non-basic variable is (k − m)-th
structural variable, where m is the number of rows and n is the
number of columns in the specified problem object. An empty lists
means printing report for all rows and columns.

filename file name

Returns:

0 if the operation was successful
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non-zero if the operation failed

Example:

> glp::print_ranges lp [] "sensitivity.rpt";
Write sensitivity analysis report to ‘sensitivity.rpt’...
0

Write interior-point solution in printable format Synopsis:

glp::print_ipt lp filename

Parameters:

lp pointer to the LP problem object

filename file name

Returns:

0 if writing went OK; non-zero in case of an error

Example:

> glp::print_ipt lp "examples/test.txt";
Writing interior-point solution to ‘examples/test.txt’...
0

Read interior-point solution from a text file Synopsis:

glp::read_ipt lp filename

Parameters:

lp pointer to the LP problem object

filename file name

Returns:

0 if reading went OK; non-zero in case of an error

Example:

> glp::read_ipt lp "examples/test.txt";
Reading interior-point solution from ‘examples/test.txt’...
1235 lines were read
0

Write interior-point solution into a text file Synopsis:

glp::write_ipt lp filename
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Parameters:

lp pointer to the LP problem object

filename file name

Returns:

0 if writing went OK; non-zero in case of an error

Example:

> glp::write_ipt lp "examples/test.txt";
Writing interior-point solution to ‘examples/test.txt’...
1235 lines were written
0

Write MIP solution in printable format Synopsis:

glp::print_mip lp filename

Parameters:

lp pointer to the LP problem object

filename file name

Returns:

0 if writing went OK; non-zero in case of an error

Example:

> glp::print_mip lp "examples/test.txt";
Writing MIP solution to ‘examples/test.txt’...
0

Read MIP solution from a text file Synopsis:

glp::read_mip lp filename

Parameters:

lp pointer to the LP problem object

filename file name

Returns:

0 if reading went OK; non-zero in case of an error

Example:
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> glp::read_mip lp "examples/test.txt";
Reading MIP solution from ‘examples/test.txt’...
1235 lines were read
0

Write MIP solution into a text file Synopsis:

glp::write_mip lp filename

Parameters:

lp pointer to the LP problem object

filename file name

Returns:

0 if writing went OK; non-zero in case of an error

Example:

> glp::write_mip lp "examples/test.txt";
Writing MIP solution to ‘examples/test.txt’...
1235 lines were written
0

15.5.3 Advanced API routines

LP basis routines

Check whether basis factorization exists Synopsis:

glp::bf_exists lp

Parameters:

lp pointer to the LP problem object

Returns:

non-zero the basis factorization exists and can be used for calculations

0 the basis factorization does not exist

Example:

> glp::bf:exists lp;
1
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Compute the basis factorization Synopsis:

glp::factorize lp

Parameters:

lp pointer to the LP problem object

Returns:

one of the following:

glp::ok the basis factorization has been successfully computed

glp::ebadb the basis matrix is invalid, because the number of basic
(auxiliary and structural) variables is not the same as the number
of rows in the problem object

glp::esing the basis matrix is singular within the working precision

glp::exond the basis matrix is ill-conditioned, i.e. its condition number
is too large

Example:

> glp::factorize lp;
glp::ok

Check whether basis factorization has been updated Synopsis:

glp::bf_updated lp

Parameters:

lp pointer to the LP problem object

Returns:

0 if the basis factorization has been just computed from “scratch”

non-zero if the factorization has been updated at least once

Example:

> glp::bf_updated lp;
0

Get basis factorization parameters Synopsis:

glp::get_bfcp lp

Parameters:

lp pointer to the LP problem object
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Returns:

complete list of options in a form of tuples (option_name, value):

glp::fact_type basis factorization type:

glp::bf_ft LU + Forrest–Tomlin update

glp::bf_bg LU + Schur complement + Bartels–Golub up-
date

glp::bf_gr LU + Schur complement + Givens rotation up-
date

glp::lu_size the initial size of the Sparse Vector Area, in non-zeros,
used on computing LU-factorization of the basis matrix for the first
time - if this parameter is set to 0, the initial SVA size is determined
automatically

glp::piv_tol threshold pivoting (Markowitz) tolerance, 0 < piv_tol < 1,
used on computing LU-factorization of the basis matrix

glp::piv_lim this parameter is used on computing LU-factorization of
the basis matrix and specifies how many pivot candidates needs to
be considered on choosing a pivot element, piv_lim ≥ 1

glp::suhl this parameter is used on computing LU-factorization of the
basis matrix

glp::on enables applying the heuristic proposed by Uwe
Suhl

glp::off disables this heuristic

glp::eps_tol epsilon tolerance, eps_tol ≥ 0, used on computing LU-
factorization of the basis matrix

glp::max_gro maximal growth of elements of factor U, max_gro ≥ 1,
allowable on computing LU-factorization of the basis matrix

glp::nfs_max maximal number of additional row-like factors (en-
tries of the eta file), nfs_max ≥ 1, which can be added to LU-
factorization of the basis matrix on updating it with the For-
rest–Tomlin technique

glp::upd_tol update tolerance, 0 < upd_tol < 1, used on updating LU-
factorization of the basis matrix with the Forrest–Tomlin technique

glp::nrs_max maximal number of additional rows and columns,
nrs_max ≥ 1, which can be added to LU-factorization of the ba-
sis matrix on updating it with the Schur complement technique

glp::rs_size the initial size of the Sparse Vector Area, in non-zeros,
used to store non-zero elements of additional rows and columns
introduced on updating LU-factorization of the basis matrix with
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the Schur complement technique - if this parameter is set to 0, the
initial SVA size is determined automatically

Example:

> glp::get_bfcp lp;
[(glp::fact_type,glp::bf_ft),(glp::lu_size,0),(glp::piv_tol,0.1),
(glp::piv_lim,4),(glp::suhl,glp::on),(glp::eps_tol,1e-15),
(glp::max_gro,10000000000.0),(glp::nfs_max,50),(glp::upd_tol,1e-06),
(glp::nrs_max,50),(glp::rs_size,0)]

Change basis factorization parameters Synopsis:

glp::set_bfcp lp options

Parameters:

lp pointer to the LP problem object

options list of options in a form of tuples (option_name, value):

glp::fact_type (default: glp::bf_ft) - basis factorization type:

glp::bf_ft LU + Forrest–Tomlin update

glp::bf_bg LU + Schur complement + Bartels–Golub up-
date

glp::bf_gr LU + Schur complement + Givens rotation up-
date

glp::lu_size (default: 0) - the initial size of the Sparse Vector Area, in
non-zeros, used on computing LU-factorization of the basis matrix
for the first time - if this parameter is set to 0, the initial SVA size is
determined automatically

glp::piv_tol (default: 0.10) - threshold pivoting (Markowitz) tolerance,
0 < piv_tol < 1, used on computing LU-factorization of the basis
matrix.

glp::piv_lim (default: 4) - this parameter is used on computing LU-
factorization of the basis matrix and specifies how many pivot
candidates needs to be considered on choosing a pivot element,
piv_lim ≥ 1

glp::suhl (default: glp::on) - this parameter is used on computing LU-
factorization of the basis matrix.

glp::on enables applying the heuristic proposed by Uwe
Suhl

glp::off disables this heuristic
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glp::eps_tol (default: 1e-15) - epsilon tolerance, eps_tol ≥ 0, used on
computing LU -factorization of the basis matrix.

glp::max_gro (default: 1e+10) - maximal growth of elements of factor
U, max_gro ≥ 1, allowable on computing LU-factorization of the
basis matrix.

glp::nfs_max (default: 50) - maximal number of additional row-like
factors (entries of the eta file), nfs_max ≥ 1, which can be added
to LU-factorization of the basis matrix on updating it with the For-
rest–Tomlin technique.

glp::upd_tol (default: 1e-6) - update tolerance, 0 < upd_tol < 1, used
on updating LU -factorization of the basis matrix with the For-
rest–Tomlin technique.

glp::nrs_max (default: 50) - maximal number of additional rows and
columns, nrs_max ≥ 1, which can be added to LU-factorization of
the basis matrix on updating it with the Schur complement tech-
nique.

glp::rs_size (default: 0) - the initial size of the Sparse Vector Area, in
non-zeros, used to store non-zero elements of additional rows and
columns introduced on updating LU-factorization of the basis ma-
trix with the Schur complement technique - if this parameter is set
to 0, the initial SVA size is determined automatically

Remarks:

Options not mentioned in the option list are left unchanged.

All options will be reset to their default values when an empty option list is sup-
plied.

Returns:

() if all options are OK, otherwise returns a list of bad options

Example:

> glp_set_bfcp lp [(glp::fact_type, glp::bf_ft), (glp::piv_tol, 0.15)];
()

Retrieve the basis header information Synopsis:

glp::get_bhead lp k

Parameters:

lp pointer to the LP problem object

k variable index in the basis matrix

Returns:
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If basic variable (xB )k , 1 ≤ k ≤m, is i-th auxiliary variable (1 ≤ i ≤m), the rou-
tine returns i. Otherwise, if (xB )k is j-th structural variable (1≤ j≤ n), the routine
returns m+j. Here m is the number of rows and n is the number of columns in
the problem object.

Example:

> glp::get_bhead lp 3;
5

Retrieve row index in the basis header Synopsis:

glp::get_row_bind lp rowindex

Parameters:

lp pointer to the LP problem object

rowindex row index

Returns:

This routine returns the index k of basic variable (xB )k, 1 ≤ k ≤ m, which is i-th
auxiliary variable (that is, the auxiliary variable corresponding to i-th row), 1 ≤ i
≤m, in the current basis associated with the specified problem object, where m is
the number of rows. However, if i-th auxiliary variable is non-basic, the routine
returns zero.

Example:

> glp::get_row_bind lp 3;
1

Retrieve column index in the basis header Synopsis:

glp::get_col_bind lp colindex

Parameters:

lp pointer to the LP problem object

colindex column index

Returns:

This routine returns the index k of basic variable (xB )k, 1 ≤ k ≤ m, which is j-th
structural variable (that is, the structural variable corresponding to j-th column),
1≤ j≤ n, in the current basis associated with the specified problem object, where
m is the number of rows, n is the number of columns. However, if j-th structural
variable is non-basic, the routine returns zero.

Example:
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> glp::get_col_bind lp 2;
3

Perform forward transformation Synopsis:

glp::ftran lp vector

Parameters:

lp pointer to the LP problem object

vector vector to be transformed - a dense vector in a form of a list of
double numbers has to be supplied and the number of its members
must exactly correspond to the number of LP problem constraints

Returns:

the transformed vector in the same format

Example:

> glp::ftran lp [1.5, 3.2, 4.8];
[1.8,0.466666666666667,-1.96666666666667]

Perform backward transformation Synopsis:

glp::btran lp vector

Parameters:

lp pointer to the LP problem object

vector vector to be transformed - a dense vector in a form of a list of
double numbers has to be supplied and the number of its members
must exactly correspond to the number of LP problem constraints

Returns:

the transformed vector in the same format

Example:

> glp::btran lp [1.5, 3.2, 4.8];
[-8.86666666666667,0.266666666666667,1.5]

Warm up LP basis Synopsis:

glp::warm_up lp

Parameters:

lp pointer to the LP problem object
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Returns:

one of the following:

glp::ok the LP basis has been successfully “warmed up”

glp::ebadb the LP basis is invalid, because the number of basic vari-
ables is not the same as the number of rows

glp::esing the basis matrix is singular within the working precision

glp::econd the basis matrix is ill-conditioned, i.e. its condition number
is too large

Example:

> glp::warm_up lp;
glp::e_ok

Simplex tableau routines

Compute row of the tableau Synopsis:

glp::eval_tab_row lp k

Parameters:

lp pointer to the LP problem object

k variable index such that it corresponds to some basic variable: if 1
≤ k ≤ m, the basic variable is k-th auxiliary variable, and if m + 1
≤ k ≤ m + n, the basic variable is (k − m)-th structural variable,
where m is the number of rows and n is the number of columns in
the specified problem object (the basis factorization must exist)

Returns:

simplex tableau row in a sparse form as a list of tuples (index, value), where
index has the same meaning as k in parameters

Example:

> glp::eval_tab_row lp 3;
[(1,2.0),(6,4.0)]

Compute column of the tableau Synopsis:

glp::eval_tab_col lp k

Parameters:

lp pointer to the LP problem object
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k variable index such that it corresponds to some non-basic variable:
if 1 ≤ k ≤ m, the non-basic variable is k-th auxiliary variable, and
if m + 1 ≤ k ≤ m + n, the non-basic variable is (k − m)-th struc-
tural variable, where m is the number of rows and n is the number
of columns in the specified problem object (the basis factorization
must exist)

Returns:

simplex tableau column in a sparse form as a list of tuples (index, value), where
index has the same meaning as k in parameters

Example:

> glp::eval_tab_col lp 1;
[(3,2.0),(4,-0.666666666666667),(5,1.66666666666667)]

Transform explicitly specified row Synopsis:

glp::transform_row lp rowvector

Parameters:

lp pointer to the LP problem object

rowvector row vector to be transformed in a sparse form as a list of
tuples (k, value): if 1 ≤ k ≤m, the non-basic variable is k-th auxil-
iary variable, and if m + 1≤ k≤m + n, the non-basic variable is (k
− m)-th structural variable, where m is the number of rows and n
is the number of columns in the specified problem object (the basis
factorization must exist)

Returns:

the transformed row in a sparse form as a list of tuples (index, value), where
index has the same meaning as k in parameters

Example:

> glp::transform_row lp [(1, 3.0), (2, 3.5)];
[(1,3.83333333333333),(2,-0.0833333333333333),(6,-3.41666666666667)]

Transform explicitly specified column Synopsis:

glp::transform_col lp colvector

Parameters:

lp pointer to the LP problem object

colvector column vector to be transformed in a sparse form as a list
of tuples (k, value): if 1 ≤ k ≤ m, the non-basic variable is k-th
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auxiliary variable, and if m + 1≤ k≤m + n, the non-basic variable
is (k − m)-th structural variable, where m is the number of rows
and n is the number of columns in the specified problem object (the
basis factorization must exist)

Returns:

the transformed column in a sparse form as a list of tuples (index, value), where
index has the same meaning as k in parameters

Example:

> glp::transform_col lp [(2, 1.0), (3, 2.3)];
[(3,2.3),(4,-0.166666666666667),(5,0.166666666666667)]

Perform primal ratio test Synopsis:

glp::prim_rtest lp colvector dir eps

Parameters:

lp pointer to the LP problem object

colvector simplex tableau column in a sparse form as a list of tuples (k,
value): if 1 ≤ k ≤ m, the basic variable is k-th auxiliary variable,
and if m + 1 ≤ k ≤ m + n, the basic variable is (k − m)-th struc-
tural variable, where m is the number of rows and n is the number
of columns in the specified problem object (the basis factorization
must exist and the primal solution must be feasible)

dir specifies in which direction the variable y changes on entering the
basis: +1 means increasing, −1 means decreasing

eps relative tolerance (small positive number) used to skip small val-
ues in the column

Returns:

The routine returns the index, piv, in the colvector corresponding to the pivot el-
ement chosen, 1 ≤ piv ≤ len. If the adjacent basic solution is primal unbounded,
and therefore the choice cannot be made, the routine returns zero.

Example:

> glp::prim_rtest lp [(3, 2.5), (5, 7.0)] 1 1.0e-5;
3

Perform dual ratio test Synopsis:

glp::dual_rtest lp rowvector dir eps

Parameters:
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lp pointer to the LP problem object

rowvector simplex tableau row in a sparse form as a list of tuples (k,
value): if 1 ≤ k ≤ m, the non-basic variable is k-th auxiliary vari-
able, and if m + 1 ≤ k ≤ m + n, the non-basic variable is (k −
m)-th structural variable, where m is the number of rows and n is
the number of columns in the specified problem object (the basis
factorization must exist and the dual solution must be feasible)

dir specifies in which direction the variable y changes on leaving the
basis: +1 means increasing, −1 means decreasing

eps relative tolerance (small positive number) used to skip small val-
ues in the row

Returns:

The routine returns the index, piv, in the rowvector corresponding to the pivot
element chosen, 1 ≤ piv ≤ len. If the adjacent basic solution is dual unbounded,
and therefore the choice cannot be made, the routine returns zero.

Example:

> glp::dual_rtest lp [(1, 1.5), (6, 4.0)] 1 1.0e-5;
6

Analyze active bound of non-basic variable Synopsis:

glp::analyze_bound lp k

Parameters:

lp pointer to the LP problem object

k if 1 ≤ k ≤ m, the non-basic variable is k-th auxiliary variable, and
if m + 1 ≤ k ≤ m + n, the non-basic variable is (k − m)-th struc-
tural variable, where m is the number of rows and n is the number
of columns in the specified problem object (the basis factorization
must exist and the solution must be optimal)

Returns:

The routine returns a tuple (limit1, var1, limit2 var2) where:

value1 the minimal value of the active bound, at which the basis still
remains primal feasible and thus optimal. -DBL_MAX means that
the active bound has no lower limit.

var1 the ordinal number of an auxiliary (1 to m) or structural (m
+ 1 to m + n) basic variable, which reaches its bound first and
thereby limits further decreasing the active bound being analyzed.
If value1 = -DBL_MAX, var1 is set to 0.
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value2 the maximal value of the active bound, at which the basis still
remains primal feasible and thus optimal. +DBL_MAX means that
the active bound has no upper limit.

var2 the ordinal number of an auxiliary (1 to m) or structural (m
+ 1 to m + n) basic variable, which reaches its bound first and
thereby limits further increasing the active bound being analyzed.
If value2 = +DBL_MAX, var2 is set to 0.

Example:

> analyze_bound lp 2;
1995.06864446899,12,2014.03478832467,4

Analyze objective coefficient at basic variable Synopsis:

glp::analyze_coef lp k

Parameters:

lp pointer to the LP problem object

k if 1 ≤ k ≤ m, the basic variable is k-th auxiliary variable, and if
m + 1 ≤ k ≤ m + n, the non-basic variable is (k − m)-th struc-
tural variable, where m is the number of rows and n is the number
of columns in the specified problem object (the basis factorization
must exist and the solution must be optimal)

Returns:

The routine returns a tuple (coef1, var1, value1, coef2 var2, value2) where:

coef1 the minimal value of the objective coefficient, at which the basis
still remains dual feasible and thus optimal. -DBL_MAX means
that the objective coefficient has no lower limit.

var1 is the ordinal number of an auxiliary (1 to m) or structural (m
+ 1 to m + n) non-basic variable, whose reduced cost reaches its
zero bound first and thereby limits further decreasing the objective
coefficient being analyzed. If coef1 = -DBL_MAX, var1 is set to 0.

value1 value of the basic variable being analyzed in an adjacent basis,
which is defined as follows. Let the objective coefficient reaches
its minimal value (coef1) and continues decreasing. Then the re-
duced cost of the limiting non-basic variable (var1) becomes dual
infeasible and the current basis becomes non-optimal that forces
the limiting non-basic variable to enter the basis replacing there
some basic variable that leaves the basis to keep primal feasibility.
Should note that on determining the adjacent basis current bounds
of the basic variable being analyzed are ignored as if it were free
(unbounded) variable, so it cannot leave the basis. It may happen
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that no dual feasible adjacent basis exists, in which case value1 is
set to -DBL_MAX or +DBL_MAX.

coef2 the maximal value of the objective coefficient, at which the basis
still remains dual feasible and thus optimal. +DBL_MAX means
that the objective coefficient has no upper limit.

var2 the ordinal number of an auxiliary (1 to m) or structural (m + 1
to m + n) non-basic variable, whose reduced cost reaches its zero
bound first and thereby limits further increasing the objective co-
efficient being analyzed. If coef2 = +DBL_MAX, var2 is set to 0.

value2 value of the basic variable being analyzed in an adjacent basis,
which is defined exactly in the same way as value1 above with
exception that now the objective coefficient is increasing.

Example:

> analyze_coef lp 1;
-1.0,3,306.771624713959,1.79769313486232e+308,0,296.216606498195

15.5.4 Branch-and-cut API routines

All branch-and-cut API routines are supposed to be called from the callback rou-
tine. They cannot be called directly.

Basic routines

Determine reason for calling the callback routine Synopsis:

glp::ios_reason tree

Parameters:

tree pointer to the branch-and-cut search tree

Returns:

one of the following:

glp::irowgen request for row generation

glp::ibingo better integer solution found

glp::iheur request for heuristic solution

glp::icutgen request for cut generation

glp::ibranch request for branching

glp::iselect request for subproblem selection

glp::iprepro request for preprocessing
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Example:

glp::ios:reason tree;

Access the problem object Synopsis:

glp::ios_get_prob tree

Parameters:

tree pointer to the branch-and-cut search tree

Returns:

The routine returns a pointer to the problem object used by the MIP solver.

Example:

glp::ios_get_prob tree;

Determine additional row attributes Synopsis:

glp::ios_row_attr tree rowindex

Parameters:

tree pointer to the branch-and-cut search tree

rowindex row index

Returns:

The routine returns a tuple consisting of three values (level, origin, klass):

level subproblem level at which the row was created

origin the row origin flag - one of the following:

glp::rf_reg regular constraint

glp::rf_lazy “lazy” constraint

glp::rf_cut cutting plane constraint

klass the row class descriptor, which is a number passed to the rou-
tine glp_ios_add_row as its third parameter - if the row is a cut-
ting plane constraint generated by the solver, its class may be the
following:

glp::rf_gmi Gomory’s mixed integer cut

glp::rf_mir mixed integer rounding cut

glp::rf_cov mixed cover cut

glp::rf_clq clique cut
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Example:

glp::ios_row_attr tree 3;

Compute relative MIP gap Synopsis:

glp::ios_mip_gap tree

Parameters:

tree pointer to the branch-and-cut search tree

Returns:

The routine returns the relative MIP gap.

Example:

> glp::ios_mip_gap tree;

Access application-specific data Synopsis:

glp::ios_node_data tree node

Parameters:

tree pointer to the branch-and-cut search tree

Returns:

The routine glp_ios_node_data returns a pointer to the memory block for the
specified subproblem. Note that if cb_size = 0 was specified in the call of the
intopt function, the routine returns a null pointer.

Example:

> glp::ios_node_data tree 23;

Select subproblem to continue the search Synopsis:

glp::ios_select_node tree node

Parameters:

tree pointer to the branch-and-cut search tree

node reference number of the subproblem from which the search will
continue

Returns:

()
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Example:

> glp::ios_select_node tree 23;

Provide solution found by heuristic Synopsis:

glp::ios_heur_sol tree colvector

Parameters:

tree pointer to the branch-and-cut search tree

colvector solution found by a primal heuristic. Primal values of all
variables (columns) found by the heuristic should be placed in the
list, i. e. the list must contain n numbers where n is the number of
columns in the original problem object. Note that the routine does
not check primal feasibility of the solution provided.

Returns:

If the provided solution is accepted, the routine returns zero. Otherwise, if the
provided solution is rejected, the routine returns non-zero.

Example:

> glp::ios_heur_sol tree [15.7, (-3.1), 2.2];

Check whether can branch upon specified variable Synopsis:

glp::ios_can_branch tree j

Parameters:

tree pointer to the branch-and-cut search tree

j variable (column) index

Returns:

The function returns non-zero if j-th variable can be used for branching. Other-
wise, it returns zero.

Example:

> glp::ios_can_branch tree 23;

Choose variable to branch upon Synopsis:

glp::ios_branch_upon tree j selection

Parameters:

15.5.4 Branch-and-cut API routines 549



Pure Language and Library Documentation, Release 0.62

tree pointer to the branch-and-cut search tree

j ordinal number of the selected branching variable

selection one of the following:

glp::dn_brnch select down-branch

glp::up_brnch select up-branch

glp::no_brnch use general selection technique

Returns:

()

Example:

> glp::ios_branch_upon tree 23 glp::up_brnch;

Terminate the solution process Synopsis:

glp::ios_terminate tree

Parameters:

tree pointer to the branch-and-cut search tree

Returns:

()

Example:

> glp::ios_terminate tree;

The search tree exploring routines

Determine the search tree size Synopsis:

glp::ios_tree_size tree

Parameters:

tree pointer to the branch-and-cut search tree

Returns:

The routine returns a tuple (a_cnt, n_cnt, t_cnt), where

a_cnt the current number of active nodes

n_cnt the current number of all (active and inactive) nodes
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t_cnt the total number of nodes including those which have been al-
ready removed from the tree. This count is increased whenever a
new node appears in the tree and never decreased.

Example:

> glp::ios_tree_size tree;

Determine current active subproblem Synopsis:

glp::ios_curr_node tree

Parameters:

tree pointer to the branch-and-cut search tree

Returns:

The routine returns the reference number of the current active subproblem. If the
current subproblem does not exist, the routine returns zero.

Example:

> glp::ios_curr_node tree;

Determine next active subproblem Synopsis:

glp::ios_next_node tree node

Parameters:

tree pointer to the branch-and-cut search tree

node reference number of an active subproblem or zero

Returns:

If the parameter p is zero, the routine returns the reference number of the first
active subproblem. If the tree is empty, zero is returned. If the parameter p is not
zero, it must specify the reference number of some active subproblem, in which
case the routine returns the reference number of the next active subproblem. If
there is no next active subproblem in the list, zero is returned. All subproblems
in the active list are ordered chronologically, i.e. subproblem A precedes sub-
problem B if A was created before B.

Example:

> glp::ios_next_node tree 23;
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Determine previous active subproblem Synopsis:

glp::ios_prev_node tree node

Parameters:

tree pointer to the branch-and-cut search tree

node reference number of an active subproblem or zero

Returns:

If the parameter p is zero, the routine returns the reference number of the last
active subproblem. If the tree is empty, zero is returned. If the parameter p
is not zero, it must specify the reference number of some active subproblem,
in which case the routine returns the reference number of the previous active
subproblem. If there is no previous active subproblem in the list, zero is returned.
All subproblems in the active list are ordered chronologically, i.e. subproblem A
precedes subproblem B if A was created before B.

Example:

> glp::ios_prev_node tree 23;

Determine parent active subproblem Synopsis:

glp::ios_up_node tree node

Parameters:

tree pointer to the branch-and-cut search tree

node reference number of an active or inactive subproblem

Returns:

The routine returns the reference number of its parent subproblem. If the speci-
fied subproblem is the root of the tree, the routine returns zero.

Example:

> glp::ios_up_node tree 23;

Determine subproblem level Synopsis:

glp::ios_node_level tree node

Parameters:

tree pointer to the branch-and-cut search tree

node reference number of an active or inactive subproblem

Returns:
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The routine returns the level of the given subproblem in the branch-and-bound
tree. (The root subproblem has level 0.)

Example:

> glp::ios_node_level tree 23;

Determine subproblem local bound Synopsis:

glp::ios_node_bound tree node

Parameters:

tree pointer to the branch-and-cut search tree

node reference number of an active or inactive subproblem

Returns:

The routine returns the local bound for the given subproblem.

Example:

> glp::ios_node_bound tree 23;

Find active subproblem with the best local bound Synopsis:

glp::ios_best_node tree

Parameters:

tree pointer to the branch-and-cut search tree

Returns:

The routine returns the reference number of the active subproblem, whose local
bound is best (i.e. smallest in case of minimization or largest in case of maximiza-
tion). If the tree is empty, the routine returns zero.

Example:

> glp::ios_best_node tree;

The cut pool routines

Determine current size of the cut pool Synopsis:

glp::ios_pool_size tree

Parameters:

tree pointer to the branch-and-cut search tree
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Returns:

The routine returns the current size of the cut pool, that is, the number of cutting
plane constraints currently added to it.

Example:

> glp::ios_pool_size tree;

Add constraint to the cut pool Synopsis:

glp::ios_add_row tree (name, klass, flags, row, rowtype, rhs)

Parameters:

tree pointer to the branch-and-cut search tree

name symbolic name of the constraint

klass specifies the constraint class, which must be either zero or a
number in the range from 101 to 200. The application may use
this attribute to distinguish between cutting plane constraints of
different classes.

flags currently is not used and must be zero

row list of pairs (colindex, coefficient)

rowtype one of the following:

glp::lo ∑(aj.xj) ≥ RHS constraint

glp::up ∑(aj.xj) ≤ RHS constraint

rhs right hand side of the constraint

Returns:

The routine returns the ordinal number of the cutting plane constraint added,
which is the new size of the cut pool.

Example:

> glp::ios_add_row tree ("new_constraint", 101, 0,
[(3, 15.0), (4, 6.7), (8, 1.25)], glp::up, 152.7);

Remove constraint from the cut pool Synopsis:

glp::ios_del_row tree rowindex

Parameters:

tree pointer to the branch-and-cut search tree

rowindex index of row to be deleted from the cut pool
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Returns:

()

Remark:

Note that deleting a constraint from the cut pool leads to changing ordinal num-
bers of other constraints remaining in the pool. New ordinal numbers of the
remaining constraints are assigned under assumption that the original order of
constraints is not changed.

Example:

> glp::ios_del_row tree 5;

Remove all constraints from the cut pool Synopsis:

glp::ios_clear_pool tree

Parameters:

tree pointer to the branch-and-cut search tree

Returns:

()

Example:

> glp::ios_clear_pool tree;

15.5.5 Graph and network API routines

Basic graph routines

Create the GLPK graph object Synopsis:

glp::create_graph v_size a_size

Parameters:

v_size size of vertex data blocks, in bytes, 0 ≤ v size ≤ 256

a_size size of arc data blocks, in bytes, 0 ≤ a size ≤ 256.

Returns:

The routine returns a pointer to the graph created.

Example:

> let g = glp::create_graph 32 64;
> g;
#<pointer 0x9de7168>
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Set the graph name Synopsis:

glp::set_graph_name graph name

Parameters:

graph pointer to the graph object

name the graph name, an empty string erases the current name

Returns:

()

Example:

> glp::set_graph_name graph "MyGraph";
()

Add vertices to a graph Synopsis:

glp::add_vertices graph count

Parameters:

graph pointer to the graph object

count number of vertices to add

Returns:

The routine returns the ordinal number of the first new vertex added to the
graph.

Example:

> glp::add_vertices graph 5;
18

Add arc to a graph Synopsis:

glp::add_arc graph i j

Parameters:

graph pointer to the graph object

i index of the tail vertex

j index of the head vertex

Returns:

()
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Example:

> glp::add_arc graph 7 12;
()

Erase content of the GLPK graph object Synopsis:

glp::erase_graph graph v_size a_size

Parameters:

graph pointer to the graph object

v_size size of vertex data blocks, in bytes, 0 ≤ v size ≤ 256

a_size size of arc data blocks, in bytes, 0 ≤ a size ≤ 256.

Returns:

()

Remark:

The routine reinitialises the graph object. Its efect is equivalent to calling
delete_graph followed by a call to create_graph.

Example:

> glp::erase_graph graph 16 34;
()

Delete the GLPK graph object Synopsis:

glp::delete_graph graph

Parameters:

graph pointer to the graph object

Returns:

()

Remark:

The routine destroys the graph object and invalidates the pointer. This is done
automatically when the graph is not needed anymore, the routine need not be
usually called.

Example:

> glp::delete_graph graph
()
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Read graph in a plain text format Synopsis:

glp::read_graph graph filename

Parameters:

graph pointer to the graph object

filename file name

Returns:

0 if reading went OK; non-zero in case of an error

Example:

> glp::read_graph graph "graph_data.txt";
0

Write graph in a plain text format Synopsis:

glp::write_graph graph filename

Parameters:

graph pointer to the graph object

filename file name

Returns:

0 if reading went OK; non-zero in case of an error

Example:

> glp::write_graph graph "graph_data.txt";
0

Graph analysis routines

Find all weakly connected components of a graph Synopsis:

glp::weak_comp graph v_num

Parameters:

graph pointer to the graph object

v_num offset of the field of type int in the vertex data block, to which
the routine stores the number of a weakly connected component
containing that vertex - if v_num < 0, no component numbers are
stored

Returns:
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The routine returns the total number of components found.

Example:

> glp::weak_comp graph 16;
3

Find all strongly connected components of a graph Synopsis:

glp::strong_comp graph v_num

Parameters:

graph pointer to the graph object

v_num offset of the field of type int in the vertex data block, to which
the routine stores the number of a strongly connected component
containing that vertex - if v_num < 0, no component numbers are
stored

Returns:

The routine returns the total number of components found.

Example:

> glp::strong_comp graph 16;
4

Minimum cost flow problem

Read minimum cost flow problem data in DIMACS format Synopsis:

glp::read_mincost graph v_rhs a_low a_cap a_cost filename

Parameters:

graph pointer to the graph object

v_rhs offset of the field of type double in the vertex data block, to
which the routine stores bi, the supply/demand value - if v_rhs
< 0, the value is not stored

a_low offset of the field of type double in the arc data block, to which
the routine stores lij, the lower bound to the arc flow - if a_low < 0,
the lower bound is not stored

a_cap offset of the field of type double in the arc data block, to which
the routine stores uij, the upper bound to the arc flow (the arc ca-
pacity) - if a_cap < 0, the upper bound is not stored
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a_cost offset of the field of type double in the arc data block, to which
the routine stores cij, the per-unit cost of the arc flow - if a_cost <
0, the cost is not stored

fname the name of a text file to be read in - if the file name name ends
with the suffix ‘.gz’, the file is assumed to be compressed, in which
case the routine decompresses it “on the fly”

Returns:

0 if reading went OK; non-zero in case of an error

Example:

> glp::read_mincost graph 0 8 16 24 "graphdata.txt";
0

Write minimum cost flow problem data in DIMACS format Synopsis:

glp::write_mincost graph v_rhs a_low a_cap a_cost fname

Parameters:

graph pointer to the graph object

v_rhs offset of the field of type double in the vertex data block, to
which the routine stores bi, the supply/demand value - if v_rhs
< 0, the value is not stored

a_low offset of the field of type double in the arc data block, to which
the routine stores lij, the lower bound to the arc flow - if a_low < 0,
the lower bound is not stored

a_cap offset of the field of type double in the arc data block, to which
the routine stores uij, the upper bound to the arc flow (the arc ca-
pacity) - if a_cap < 0, the upper bound is not stored

a_cost offset of the field of type double in the arc data block, to which
the routine stores cij, the per-unit cost of the arc flow - if a_cost <
0, the cost is not stored

fname the name of a text file to be written out - if the file name name
ends with the suffix ‘.gz’, the file is assumed to be compressed, in
which case the routine compresses it “on the fly”

Returns:

0 if reading went OK; non-zero in case of an error

Example:

> glp::write_mincost graph 0 8 16 24 "graphdata.txt";
0
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Convert minimum cost flow problem to LP Synopsis:

glp::mincost_lp lp graph names v_rhs a_low a_cap a_cost

Parameters:

lp pointer to the LP problem object

graph pointer to the graph object

names one of the following:

glp::on assign symbolic names of the graph object compo-
nents to symbolic names of the LP problem object com-
ponents

glp::off no symbolic names are assigned

v_rhs offset of the field of type double in the vertex data block, to
which the routine stores bi, the supply/demand value - if v_rhs
< 0, it is assumed bi = 0 for all nodes

a_low offset of the field of type double in the arc data block, to which
the routine stores lij, the lower bound to the arc flow - if a_low < 0,
it is assumed lij = 0 for all arcs

a_cap offset of the field of type double in the arc data block, to which
the routine stores uij, the upper bound to the arc flow (the arc
capacity) - if a_cap < 0,it is assumed uij = 1 for all arcs, value of
DBL_MAX means an uncapacitated arc

a_cost offset of the field of type double in the arc data block, to which
the routine stores cij, the per-unit cost of the arc flow - if a_cost <
0, it is assumed cij = 0 for all arcs

Returns:

()

Example:

> glp::mincost_lp lp graph glp::on 0 8 16 24;
()

Solve minimum cost flow problem with out-of-kilter algorithm Synopsis:

glp::mincost_okalg graph v_rhs a_low a_cap a_cost a_x v_pi

Parameters:

graph pointer to the graph object

v_rhs offset of the field of type double in the vertex data block, to
which the routine stores bi, the supply/demand value - if v_rhs
< 0, it is assumed bi = 0 for all nodes
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a_low offset of the field of type double in the arc data block, to which
the routine stores lij, the lower bound to the arc flow - if a_low < 0,
it is assumed lij = 0 for all arcs

a_cap offset of the field of type double in the arc data block, to which
the routine stores uij, the upper bound to the arc flow (the arc
capacity) - if a_cap < 0,it is assumed uij = 1 for all arcs, value of
DBL_MAX means an uncapacitated arc

a_cost offset of the field of type double in the arc data block, to which
the routine stores cij, the per-unit cost of the arc flow - if a_cost <
0, it is assumed cij = 0 for all arcs

a_x offset of the field of type double in the arc data block, to which the
routine stores xij, the arc flow found - if a_x < 0, the arc flow value
is not stored

v_pi specifies an offset of the field of type double in the vertex data
block, to which the routine stores pi, the node potential, which is
the Lagrange multiplier for the corresponding flow conservation
equality constraint

Remark:

Note that all solution components (the objective value, arc flows, and node po-
tentials) computed by the routine are always integer-valued.

Returns:

The function returns a tuple in the form (code, obj), where code is one of the
following

glp::ok optimal solution found

glp::enopfs no (primal) feasible solution exists

glp::edata unable to start the search, because some problem data are
either not integer-valued or out of range; this code is also returned
if the total supply, which is the sum of bi over all source nodes
(nodes with bi > 0), exceeds INT_MAX

glp::erange the search was prematurely terminated because of integer
overflow

glp::efail an error has been detected in the program logic - if this
code is returned for your problem instance, please report to <bug-
glpk@gnu.org>

and obj is value of the objective function.

Example:

> glp::mincost_okalg graph 0 8 16 24 32 40;
(glp::ok, 15)
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Klingman’s network problem generator Synopsis:

glp::netgen graph v_rhs a_cap a_cost parameters

Parameters:

graph pointer to the graph object

v_rhs offset of the field of type double in the vertex data block, to
which the routine stores bi, the supply/demand value - if v_rhs
< 0, it is assumed bi = 0 for all nodes

a_cap offset of the field of type double in the arc data block, to which
the routine stores uij, the upper bound to the arc flow (the arc
capacity) - if a_cap < 0,it is assumed uij = 1 for all arcs, value of
DBL_MAX means an uncapacitated arc

a_cost offset of the field of type double in the arc data block, to which
the routine stores cij, the per-unit cost of the arc flow - if a_cost <
0, it is assumed cij = 0 for all arcs

parameters tuple of exactly 15 integer numbers with the following
meaning:

parm[1] iseed 8-digit positive random number seed

parm[2] nprob 8-digit problem id number

parm[3] nodes total number of nodes

parm[4] nsorc total number of source nodes (including
transshipment nodes)

parm[5] nsink total number of sink nodes (including
transshipment nodes)

parm[6] iarcs number of arc

parm[7] mincst minimum cost for arcs

parm[8] maxcst maximum cost for arcs

parm[9] itsup total supply

parm[10] ntsorc number of transshipment source nodes

parm[11] ntsink number of transshipment sink nodes

parm[12] iphic percentage of skeleton arcs to be given the
maximum cost

parm[13] ipcap percentage of arcs to be capacitated

parm[14] mincap minimum upper bound for capacitated
arcs
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parm[15] maxcap maximum upper bound for capacitated
arcs

Returns:

0 if the instance was successfully generated, nonzero otherwise

Example:

> glp::netgen graph 0 8 16 (12345678, 87654321, 20, 12, 8,
25, 5, 20, 300, 6, 5, 15, 100, 1, 30);

0

Grid-like network problem generator Synopsis:

glp::gridgen graph v_rhs a_cap a_cost parameters

Parameters:

graph pointer to the graph object

v_rhs offset of the field of type double in the vertex data block, to
which the routine stores bi, the supply/demand value - if v_rhs
< 0, it is assumed bi = 0 for all nodes

a_cap offset of the field of type double in the arc data block, to which
the routine stores uij, the upper bound to the arc flow (the arc
capacity) - if a_cap < 0,it is assumed uij = 1 for all arcs, value of
DBL_MAX means an uncapacitated arc

a_cost offset of the field of type double in the arc data block, to which
the routine stores cij, the per-unit cost of the arc flow - if a_cost <
0, it is assumed cij = 0 for all arcs

parameters tuple of exactly 14 integer numbers with the following
meaning:

parm[1] two-ways arcs indicator:

1: if links in both direction should be generated
0: otherwise

parm[2] random number seed (a positive integer)

parm[3] number of nodes (the number of nodes generated
might be slightly different to make the network a grid)

parm[4] grid width

parm[5] number of sources

564 15.5 Descriptions of interface functions



Pure Language and Library Documentation, Release 0.62

parm[6] number of sinks

parm[7] average degree

parm[8] total flow

parm[9] distribution of arc costs:

1: uniform
2: exponential

parm[10] lower bound for arc cost (uniform), 100 lambda¸
(exponential)

parm[11] upper bound for arc cost (uniform), not used (ex-
ponential)

parm[12] distribution of arc capacities:

1: uniform
2: exponential

parm[13] lower bound for arc capacity (uniform), 100
lambda (exponential)

parm[14] upper bound for arc capacity (uniform), not
used (exponential)

Returns:

0 if the instance was successfully generated, nonzero otherwise

Example:

> glp::gridgen graph 0 8 16 (1, 123, 20, 4, 7, 5, 3, 300, 1, 1, 5, 1, 5, 30);
0

Maximum flow problem

Read maximum cost flow problem data in DIMACS format Synopsis:

glp::read_maxflow graph a_cap filename

Parameters:

graph pointer to the graph object
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Returns:

Example:

>

Write maximum cost flow problem data in DIMACS format Synopsis:

glp::write_maxflow graph s t a_cap filename

Parameters:

graph pointer to the graph object

Returns:

Example:

>

Convert maximum flow problem to LP Synopsis:

glp::maxflow_lp lp graph names s t a_cap

Parameters:

graph pointer to the graph object

Returns:

Example:

>

Solve maximum flow problem with Ford-Fulkerson algorithm Synopsis:

glp::maxflow_ffalg graph s t a_cap a_x v_cut

Parameters:

graph pointer to the graph object

Returns:

Example:

>

Goldfarb’s maximum flow problem generator Synopsis:

glp::rmfgen graph a_cap parameters

Parameters:
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graph pointer to the graph object

Returns:

Example:

>

15.5.6 Miscellaneous routines

Library environment routines

Determine library version Synopsis:

‘glp::version

Parameters:

none

Returns:

GLPK library version

Example:

> glp::version;
"4.38"

Enable/disable terminal output Synopsis:

glp::term_out switch

Parameters:

switch one of the following:

glp::on enable terminal output from GLPK routines

glp::off disable terminal output from GLPK routines

Returns:

()

Example:

> glp::term_out glp:off;
()
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Enable/disable the terminal hook routine Synopsis:

glp::term_hook switch info

Parameters:

switch one of the following:

glp::on use the terminal callback function

glp::off don’t use the terminal callback function

info pointer to a memory block which can be used for passing addi-
tional information to the terminal callback function

Returns:

()

Example:

> glp::term_hook glp::on NULL;
()

Get memory usage information Synopsis:

glp::mem_usage

Parameters:

none

Returns:

tuple consisting of four numbers:

• count (int) - the number of currently allocated memory blocks

• cpeak (int) - the peak value of count reached since the initialization of the
GLPK library environment

• total (bigint) - the total amount, in bytes, of currently allocated memory
blocks

• tpeak (bigint) - the peak value of total reached since the initialization of
the GLPK library envirionment

Example:

> glp::mem_usage;
7,84,10172L,45304L

Set memory usage limit Synopsis:
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glp::mem_limit limit

Parameters:

limit memory limit in megabytes

Returns:

()

Example:

> glp::mem_limit 200;
()

Free GLPK library environment Synopsis:

glp::free_env

Parameters:

none

Returns:

()

Example:

> glp_free_env;
()
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Chapter 16
Gnuplot bindings

Kay-Uwe Kirstein

16.1 Copying

Copyright (c) 2009, 2010 by Kay-Uwe Kirstein.

pure-gplot is free software: you can redistribute it and/or modify it under the terms of the
GNU Lesser General Public License as published by the Free Software Foundation, either
version 3 of the License, or (at your option) any later version.

16.2 Introduction

This module contains a pure binding to gnuplot. Communication to gnuplot is performed
via pipes. The usual work flow to generate plot via gnuplot is the following:

1. open pipe via open

2. send plot commands, e.g., with plot

3. close pipe with close

16.3 Function Reference

16.3.1 Open / Closing Functions

gplot::open cmd;
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opens a pipe to gnuplot, using cmd. cmd usually is something like gnuplot or
/path/to/gnuplot/bin/gnuplot depending on your path configuration. open returns a
pointer to the actual pipe for later usage, so a typical call to open might look like this:

let gp = gplot::open "/path_to_gnuplot/gnuplot";

gplot::GPLOT_EXE is a predefined variable with the standard Gnuplot executable. It is set to
pgnuplot on Windows and to gnuplot otherwise and can be overridden bythe GPLOT_EXE
environment variable. (pgnuplot.exe is a special executable for Windows, which is capable
of stdin pipes in contrast to the normal gnuplot.exe). Usage of gplot::GPLOT_EXE might
look like this:

let gp = gplot::open gplot::GPLOT_EXE;

gplot::close gp;

closes a gnuplot session, given by the handle gp.

16.3.2 Low-Level Commands

gplot::puts_no_echo string gp;

sends the string to the gnuplot session gp points to. As the name states, there is no
echo read back from gnuplot (Don’t know whether gnuplot or pgnuplot.exe supports read-
ing/bidirectional pipes at all).

gplot::puts string gp;

is a convenience wrapper to gplot::puts_no_echo.

16.3.3 Plot Commands

The main (versatile) function to generate plots is the simple plot command, which expects a
list of the data to be plotted.

gplot::plot gp data opt;

where gp is the pointer to the gnuplot session, data is a list containing the data to be plotted
and opt is a tuple, containing options for the plot. opt might be empty () or DEFAULT for
default options (refer to gnuplot for them).

If data for the x-axis (ordinate) should be explicitely given plotxy should be used instead:

gplot::plotxy_deprecated gp (xdata, ydata) opt;

gplot::plotxy gp (xdata, ydata) opt [];

Multiple datasets can be plotted into a single graph by combining them to tuples of lists:

gplot::plotxy gp (xdata, y1data, y2data, ..) opt;

gplot::plotxy gp (xdata, y1data, y2data, ..) opt [];
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gplot::plotxy gp (xdata, y1data, y2data, ..) opt titles;

where the latter form gives additional titles for each y-data set.

16.3.4 Plot Options

gplot::xtics gp list_of_tic_labels;

Sets the tic labels of the x-axis to the given text labels. The labels can be given aas a simple
list of strings, which are taken as successive labels or as a list of tuples with the form (value,
label), in which case each label is placed at its value position.

gplot::xtics gp () or gplot::xtics gp "default";

This restores the default tics on the y-axis.

gplot::title t;

Sets a title string on top of the plot (default location)

gplot::output gp terminal name;

Sets the terminal and output name for the successive plots. For some terminal additional
options might be given:

gplot::output gp (terminal, options) name.

For terminals like x11 or windows, name can be empty ().

gplot::xlabel gp name or gplot::ylabel gp name

Adds labels to the x- or y-axis, respectively. An empty name removes the label for successive
plots, e.g., gplot::xlabel gp "".

16.3.5 Private Functions

gpdata data, gpxydata (xdata, y1data, ..)

Internal functions to handle lists of data point (gpdata) or tuples of lists of data points
(gpxydata) and convert them to be understood by Gnuplot.

gpxycmd, gpxycmdtitle

Internal function to generate the plotting command for multiple datasets. gpxycmdtitle
adds titles to each dataset, a.k.a plot legend.

gplot::gpopt ("style", style, args);

Internal function to convert a plot style to the respective gnuplot syntax

gplot::gptitle t;

Internal function to generate title information for individual datasets
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Chapter 17
pure-gsl - GNU Scientific Library Interface for
Pure

Version 0.12, September 17, 2014

Albert Graef <aggraef@gmail.com>
Eddie Rucker <erucker@bmc.edu>

License: GPL V3 or later, see the accompanying COPYING file

Building on Pure’s GSL-compatible matrix support, this module aims to provide a com-
plete wrapper for the GNU Scientific Library which provides a wide range of mathematical
routines useful for scientific programming, number crunching and signal processing appli-
cations.

This is still work in progress, only a small part of the interface is finished right now. Here is
a brief summary of the operations which are implemented:

• Matrix-scalar and matrix-matrix arithmetic. This is fairly complete and includes matrix
multiplication, as well as element-wise exponentiation (^) and integer operations (div,
mod, bit shifts and bitwise logical operations) which aren’t actually in the GSL API.

• SVD (singular value decomposition), as well as the corresponding solvers, pseudo in-
verses and left and right matrix division. This is only available for real matrices right
now, as GSL doesn’t implement complex SVD.

• Random distributions (p.d.f. and c.d.f.) and statistic functions.

• Polynomial evaluation and roots.

• Linear least-squares fitting. Multi-fitting is not available yet.
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Installation instructions: Get the latest source from https://bitbucket.org/purelang/pure-
lang/downloads/pure-gsl-0.12.tar.gz. Run make to compile the module and make install
(as root) to install it in the Pure library directory. This requires GNU make, and of course you
need to have Pure and GSL installed. The make install step is only necessary for system-
wide installation.

make tries to guess your Pure installation directory and platform-specific setup. If it gets
this wrong, you can set some variables manually. In particular, make install prefix=/usr
sets the installation prefix, and make PIC=-fPIC or some similar flag might be needed for
compilation on 64 bit systems. Please see the Makefile for details.

The current release requires GSL 1.11 or later and Pure 0.45 or later. Older GSL versions
might still work, but then some operations may be missing. The latest and greatest GSL
version is always available from http://www.gnu.org/software/gsl.

After installation, you can import the entire GSL interface as follows:

using gsl;

For convenience, the different parts of the GSL interface are also available as separate mod-
ules. E.g., if you only need the matrix operations:

using gsl::matrix;

In either case, the global gsl_version variable reports the installed GSL version:

> show gsl_version
let gsl_version = "1.11";

(This variable used to be defined by the Pure runtime but has been moved into pure-gsl as
of Pure 0.37.)

Most other operations are declared in separate namespaces which are in 1-1 correspondence
with the module names. Thus, e.g., the gsl_poly_eval routine is named gsl::poly::eval
in Pure and can be found in the gsl::poly module and namespace. The using namespace
declaration can be used to facilitate access to the operations in a given namespace, e.g.:

> using gsl::poly;
> using namespace gsl::poly;
> eval {1,2,3} 2;
17

See the examples folder in the sources for some examples.

If you’d like to contribute, please mail the authors or contact us at
http://groups.google.com/group/pure-lang.

17.1 Polynomials

This module provides Pure wrappers for the GSL polynomial routines. For detail about the
routines, see Chapter 6 of the GSL manual,
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http://www.gnu.org/software/gsl/manual/html_node/Polynomials.html.

Polynomials are represented by vectors (one row matrices).

17.1.1 Routines

gsl::poly::eval c::matrix x
implements gsl_poly_eval, gsl_poly_complex_eval, and gsl_complex_poly_eval
without the len parameter.

GSL does not supply an integer routine for evaluating polynomials with int or bigint
coefficients. Therefore, an integer routine has been provided in pure-gsl using the
Chinese Remainder Theorem.

gsl::poly::dd_init x::matrix y::matrix
implements gsl_poly_dd_init without the size parameter.

gsl::poly::dd_eval dd::matrix xa::matrix x::double
implements gsl_poly_dd_eval without the size parameter.

gsl::poly::dd_taylor xp::double dd::matrix xa::matrix
implements gsl_poly_dd_taylor without the size and workspace w arguments.

gsl::poly::solve_quadratic a b c
implements gsl_poly_solve_quadratic. This function returns a list of roots instead
of passing them through the parameters x0 and x1.

gsl::poly::complex_solve_quadratic a b c
implements gsl_poly_complex_solve_quadratic. This function returns a list of roots
instead of passing trhough the parameters z0 and z1.

gsl::poly::solve_cubic a b c
implements gsl_poly_solve_cubic. This function returns a list of roots instead of
passing them through the parameters x0, x1, and x2.

gsl::poly::complex_solve_cubic a b c
implements gsl_poly_complex_colve_cubic. This function returns a list of roots in-
stead of passing them through the parameters z0, z1, and z2.

gsl::poly::complex_solve c::matrix
implements gsl_poly_complex_solve omitting the parametrs n and w. The GSL rou-
tines for creating and freeing the workspace are handled automatically.

17.1.2 Examples

Usage of each library routine is illustrated below.

> using gsl::poly;
> using namespace gsl::poly;
> eval {1,2,3} 2;
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17
> eval {1.0,2.0,3.0} (-2.0);
9.0
> eval {1, 2, 2} (1+:1);
3.0+:6.0
> eval {1+:2, 2+:3, 2+:3} (1+:1);
-6.0+:11.0
> let dd = dd_init {1,2,3} {2,4,6};
> dd;
{2.0,2.0,0.0}
> dd_eval dd {1,2,3} 2;
4.0
> dd_taylor 0.0 dd {1,2,3};
{0.0,2.0,0.0}
> solve_quadratic 2 4 1;
[-1.70710678118655,-0.292893218813452]
> solve_quadratic 1 4 4;
[-2.0,-2.0]
> solve_quadratic 0 2 1;
[-0.5]
> solve_quadratic 1 2 8;
[]
> complex_solve_quadratic 0 2 1;
[-0.5+:0.0]
> complex_solve_quadratic 2 2 3;
[-0.5+:-1.11803398874989,-0.5+:1.11803398874989]
> solve_cubic 3 3 1;
[-1.0,-1.0,-1.0]
> solve_cubic 3 2 1;
[-2.32471795724475]
> complex_solve_cubic 2 2 1;
[-1.0+:0.0,-0.5+:-0.866025403784439,-0.5+:0.866025403784439]
> complex_solve {6,1,-7,-1,1};
[1.0+:0.0,-1.0+:0.0,-2.0+:0.0,3.0+:0.0]

17.2 Special Functions

This module is loaded via the command using gsl::sf and provides Pure wrappers for the
GSL Special Functions. For details, see Chapter 7 of the GSL manual,

http://www.gnu.org/software/gsl/manual/html_node/Special-Functions.html.

To load the library, use the Pure command using gsl::sf. Modes for the functions must be
one of:

GSL_PREC_DOUBLE
GSL_PREC_SINGLE
GSL_PREC_APPROX

Results for some of the functions are returned as a Pure list instead of the gsl_sf_result or
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gsl_sf_result_e10 structures in C. In these cases, the resulting list is one of the following
forms.

• [val, err] for the gsl_sf_result struct and

• [val, err, e10] for the gsl_sf_result_e10 struct.

17.2.1 Airy Functions

gsl::sf::airy_Ai x
gsl::sf::airy_Ai (x, mode::int)

implements gsl_sf_airy_Ai. The first form computes the function with mode =
GSL_PREC_DOUBLE.

gsl::sf::airy_Ai_e x
gsl::sf::airy_Ai_e (x, mode::int)

implements gsl_sf_airy_Ai_e. The first form computes the function with mode =
GSL_PREC_DOUBLE.

gsl::sf::airy_Ai_scaled x
gsl::sf::airy_Ai_scaled (x, mode::int)

implements gsl_sf_airy_Ai_scaled. The first form computes the function with mode
= GSL_PREC_DOUBLE.

gsl::sf::airy_Ai_scaled_e x
gsl::sf::airy_Ai_scaled_e (x, mode::int)

implements gsl_sf_airy_Ai_scaled_e. The first form computes the function with
mode = GSL_PREC_DOUBLE.

gsl::sf::airy_Bi x
gsl::sf::airy_Bi (x, mode::int)

implements gsl_sf_airy_Bi. The first form computes the function with mode =
GSL_PREC_DOUBLE.

gsl::sf::airy_Bi_e x
gsl::sf::airy_Bi_e (x, mode::int)

implements gsl_sf_airy_Bi_e. The first form computes the function with mode =
GSL_PREC_DOUBLE.

gsl::sf::airy_Bi_scaled x
gsl::sf::airy_Bi_scaled (x, mode::int)

implements gsl_sf_airy_Bi_scaled. The first form computes the function with mode
= GSL_PREC_DOUBLE.

gsl::sf::airy_Bi_scaled_e x
gsl::sf::airy_Bi_scaled_e (x, mode::int)

implements gsl_sf_airy_Bi_scaled_e. The first form computes the function with
mode = GSL_PREC_DOUBLE.

gsl::sf::airy_Ai_deriv x
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gsl::sf::airy_Ai_deriv (x, mode::int)
implements gsl_sf_airy_Ai_deriv. The first form computes the function with mode
= GSL_PREC_DOUBLE.

gsl::sf::airy_Ai_deriv_e x
gsl::sf::airy_Ai_deriv_e (x, mode::int)

implements gsl_sf_airy_Ai_deriv_e. The first form computes the function with mode
= GSL_PREC_DOUBLE.

gsl::sf::airy_Ai_deriv_scaled x
gsl::sf::airy_Ai_deriv_scaled (x, mode::int)

implements gsl_sf_airy_Ai_deriv_scaled. The first form computes the function
with mode = GSL_PREC_DOUBLE.

gsl::sf::airy_Ai_deriv_scaled_e x
gsl::sf::airy_Ai_deriv_scaled_e (x, mode::int)

implements gsl_sf_airy_Ai_deriv_scaled_e. The first form computes the function
with mode = GSL_PREC_DOUBLE.

gsl::sf::airy_Bi_deriv x
gsl::sf::airy_Bi_deriv (x, mode::int)

implements gsl_sf_airy_Bi_deriv. The first form computes the function with mode
= GSL_PREC_DOUBLE.

gsl::sf::airy_Bi_deriv_e x
gsl::sf::airy_Bi_deriv_e (x, mode::int)

implements gsl_sf_airy_Bi_deriv_e. The first form computes the function with mode
= GSL_PREC_DOUBLE.

gsl::sf::airy_Bi_deriv_scaled x
gsl::sf::airy_Bi_deriv_scaled (x, mode::int)

implements gsl_sf_airy_Bi_deriv_scaled. The first form computes the function
with mode = GSL_PREC_DOUBLE.

gsl::sf::airy_Bi_deriv_scaled_e x
gsl::sf::airy_Bi_deriv_scaled_e (x, mode::int)

implements gsl_sf_airy_Bi_deriv_scaled_e. The first form computes the function
with mode = GSL_PREC_DOUBLE.

gsl::sf::airy_zero_Ai s
implements gsl_sf_airy_zero_Ai.

gsl::sf::airy_zero_Ai_e s
implements gsl_sf_airy_zero_Ai_e.

gsl::sf::airy_zero_Bi s
implements gsl_sf_airy_zero_Bi.

gsl::sf::airy_zero_Bi_e s
implements gsl_sf_airy_zero_Bi_e.

gsl::sf::airy_zero_Ai_deriv s
implements gsl_sf_airy_zero_Ai_deriv.
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gsl::sf::airy_zero_Ai_deriv_e s
implements gsl_sf_airy_zero_Ai_deriv_e.

gsl::sf::airy_zero_Bi_deriv s
implements gsl_sf_airy_zero_Bi_deriv.

gsl::sf::airy_zero_Bi_deriv_e s
implements gsl_sf_airy_zero_Bi_deriv_e.

17.2.2 Examples

The following illustrate the Airy functions.

> using gsl::sf;
> using namespace gsl::sf;
> airy_Ai (-1.2); // defaults to GSL_PREC_DOUBLE
0.52619437480212
> airy_Ai_scaled (-1.2);
0.52619437480212
> airy_Ai (-1.2,GSL_PREC_APPROX);
0.526194374771687
> airy_Ai_scaled (-1.2, GSL_PREC_SINGLE);
0.526194374771687
> airy_Ai_e (-1.2);
[0.52619437480212,1.88330586480371e-15]
> airy_Ai_e (-1.2,GSL_PREC_APPROX);
[0.526194374771687,1.01942940819652e-08]
> airy_Ai_scaled_e (-1.2);
[0.52619437480212,1.88330586480371e-15]
> airy_Ai_scaled_e (-1.2,GSL_PREC_APPROX);
[0.526194374771687,1.01942940819652e-08]
> airy_Bi (-1.2);
-0.015821370184632
> airy_Bi_scaled (-1.2);
-0.015821370184632
> airy_Bi (-1.2,GSL_PREC_APPROX);
-0.0158213701898015
> airy_Bi_scaled (-1.2, GSL_PREC_SINGLE);
-0.0158213701898015
> airy_Bi_e (-1.2);
[-0.015821370184632,1.31448899295896e-16]
> airy_Bi_e (-1.2,GSL_PREC_APPROX);
[-0.0158213701898015,4.10638404843775e-10]
> airy_Bi_scaled_e (-1.2);
[-0.015821370184632,1.31448899295896e-16]
> airy_Bi_scaled_e (-1.2,GSL_PREC_APPROX);
[-0.0158213701898015,4.10638404843775e-10]
> airy_Ai_deriv (-1.2); // defaults to GSL_PREC_DOUBLE
0.107031569272281
> airy_Ai_deriv_scaled (-1.2);
0.107031569272281

17.2.2 Examples 581



Pure Language and Library Documentation, Release 0.62

> airy_Ai_deriv (-1.2,GSL_PREC_APPROX);
0.107031569264504
> airy_Ai_deriv_scaled (-1.2, GSL_PREC_SINGLE);
0.107031569264504
> airy_Ai_deriv_e (-1.2);
[0.107031569272281,3.02919983680384e-16]
> airy_Ai_deriv_e (-1.2,GSL_PREC_APPROX);
[0.107031569264504,9.25921017197604e-11]
> airy_Ai_deriv_scaled_e (-1.2);
[0.107031569272281,3.02919983680384e-16]
> airy_Ai_deriv_scaled_e (-1.2,GSL_PREC_APPROX);
[0.107031569264504,9.25921017197604e-11]
> airy_Bi_deriv (-1.2);
0.601710157437464
> airy_Bi_deriv_scaled (-1.2);
0.601710157437464
> airy_Bi_deriv (-1.2,GSL_PREC_APPROX);
0.601710157441937
> airy_Bi_deriv_scaled (-1.2, GSL_PREC_SINGLE);
0.601710157441937
> airy_Bi_deriv_e (-1.2);
[0.601710157437464,1.7029557943563e-15]
> airy_Bi_deriv_e (-1.2,GSL_PREC_APPROX);
[0.601710157441937,5.20534347823991e-10]
> airy_Bi_deriv_scaled_e (-1.2);
[0.601710157437464,1.7029557943563e-15]
> airy_Bi_deriv_scaled_e (-1.2,GSL_PREC_APPROX);
[0.601710157441937,5.20534347823991e-10]
> airy_zero_Ai 2;
-4.08794944413097
> airy_zero_Ai_e 3;
[-5.52055982809555,1.22581052599448e-15]
> airy_zero_Bi 2;
-3.27109330283635
> airy_zero_Bi_e 3;
[-4.83073784166202,1.07263927554824e-15]
> airy_zero_Ai_deriv 2;
-3.24819758217984
> airy_zero_Ai_deriv_e 3;
[-4.82009921117874,1.07027702504564e-15]
> airy_zero_Bi_deriv 2;
-4.07315508907183
> airy_zero_Bi_deriv_e 3;
[-5.5123957296636,1.22399773198358e-15]

17.2.3 Bessel Functions

gsl::sf::bessel_J0 x
implements gsl_sf_bessel_J0.

gsl::sf::bessel_J0_e x
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implements gsl_sf_besselJ0_e.

gsl::sf::bessel_J1 x
implements gsl_sf_bessel_J1.

gsl::sf::bessel_J1_e x
implements gsl_sf_bessel_J1_e.

gsl::sf::bessel_Jn n x
implements gsl_sf_bessel_Jn.

gsl::sf::bessel_Jn_e n x
implements gsl_sf_bessel_Jn_e.

gsl::sf::bessel_Jn_array nmin::int nmax::int x
implements gsl_sf_bessel_Jn_array.

gsl::sf::bessel_Y0 x
implements gsl_sf_bessel_Y0.

gsl::sf::bessel_Y0_e x
implements gsl_sf_bessel_Y0_e.

gsl::sf::bessel_Y1 x
implements gsl_sf_bessel_Y1.

gsl::sf::bessel_Y1_e x
implements gsl_sf_bessel_Y1_e.

gsl::sf::bessel_Yn x
implements gsl_sf_bessel_Yn.

gsl::sf::bessel_Yn_e x
implements gsl_sf_bessel_Yn_e.

gsl::sf::bessel_Yn_array nmin::int nmax::int x
implements gsl_sf_bessel_Yn_array.

gsl::sf::bessel_I0 x
implements gsl_sf_bessel_I0.

gsl::sf::bessel_I0_e x
implements gsl_sf_bessel_I0_e.

gsl::sf::bessel_I1 x
implements gsl_sf_bessel_I1.

gsl::sf::bessel_I1_e x
implements gsl_sf_bessel_I1_e.

gsl::sf::bessel_In n::int x
implements gsl_sf_bessel_In.

gsl::sf::bessel_In_e n::int x
implements gsl_sf_bessel_In_e
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gsl::sf::bessel_In_array nmin::int nmax::int x
implements gsl_sf_bessel_In_array.

gsl::sf::bessel_I0_scaled x
implements gsl_sf_bessel_I0_scaled.

gsl::sf::bessel_I0_scaled_e x
implements gsl_sf_bessel_I0_scaled_e.

gsl::sf::bessel_I1_scaled x
implements gsl_sf_bessel_I1_scaled.

gsl::sf::bessel_I1_scaled_e x
implements gsl_sf_bessel_I1_scaled_e.

gsl::sf::bessel_In_scaled n::int x
implements gsl_sf_bessel_In_scaled.

gsl::sf::bessel_In_scaled_e n::int x
implements gsl_sf_bessel_In_scaled_e.

gsl::sf::bessel_In_scaled_array nmin::int nmax::int x
implements gsl_sf_bessel_In_array.

gsl::sf::bessel_K0 x
implements gsl_sf_bessel_K0.

gsl::sf::bessel_K0_e x
implements gsl_sf_bessel_K0_e.

gsl::sf::bessel_K1 x
implements gsl_sf_bessel_K1.

gsl::sf::bessel_K1_e x
implements gsl_sf_bessel_K1_e.

gsl::sf::bessel_Kn n::int x
implements gsl_sf_bessel_Kn.

gsl::sf::bessel_Kn_e n::int x
implements gsl_sf_bessel_Kn_e

gsl::sf::bessel_Kn_array nmin::int nmax::int x
implements gsl_sf_bessel_Kn_array.

gsl::sf::bessel_K0_scaled x
implements gsl_sf_bessel_K0_scaled.

gsl::sf::bessel_K0_scaled_e x
implements gsl_sf_bessel_K0_scaled_e.

gsl::sf::bessel_K1_scaled x
implements gsl_sf_bessel_K1_scaled.

gsl::sf::bessel_K1_scaled_e x
implements gsl_sf_bessel_K1_scaled_e.
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gsl::sf::bessel_Kn_scaled n::int x
implements gsl_sf_bessel_Kn_scaled.

gsl::sf::bessel_Kn_scaled_e n::int x
implements gsl_sf_bessel_Kn_scaled_e.

gsl::sf::bessel_Kn_scaled_array nmin::int nmax::int x
implements gsl_sf_bessel_Kn_array.

gsl::sf::bessel_j0 x
implements gsl_sf_bessel_j0.

gsl::sf::bessel_j0_e x
implements gsl_sf_bessel_j0_e.

gsl::sf::bessel_j1 x
implements gsl_sf_bessel_j1.

gsl::sf::bessel_j1_e x
implements gsl_sf_bessel_j1_e.

gsl::sf::bessel_j2 x
implements gsl_sf_bessel_j2.

gsl::sf::bessel_j2_e x
implements gsl_sf_bessel_j2_e.

gsl::sf::bessel_jl l::int x
implements gsl_sf_bessel_jl.

gsl::sf::bessel_jl_e l::int x
implements gsl_sf_bessel_jl_e.

gsl::sf::bessel_jl_array lmax::int x
implements gsl_sf_bessel_jl_array.

gsl::sf::bessel_jl_steed_array lmax::int x
implements gsl_sf_bessel_jl_steed_array.

gsl::sf::bessel_y0 x
implements gsl_sf_bessel_y0.

gsl::sf::bessel_y0_e x
implements gsl_sf_bessel_y0_e.

gsl::sf::bessel_y1 x
implements gsl_sf_bessel_y1.

gsl::sf::bessel_y1_e x
implements gsl_sf_bessel_y1_e.

gsl::sf::bessel_y2 x
implements gsl_sf_bessel_y2.

gsl::sf::bessel_y2_e x
implements gsl_sf_bessel_y2_e.
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gsl::sf::bessel_yl l::int x
implements gsl_sf_bessel_yl.

gsl::sf::bessel_yl_e l::int x
implements gsl_sf_bessel_yl_e.

gsl::sf::bessel_yl_array lmax::int x
implements gsl_sf_bessel_yl_array.

gsl::sf::bessel_i0_scaled x
implements gsl_sf_bessel_i0_scaled.

gsl::sf::bessel_i0_scaled_e x
implements gsl_sf_bessel_i0_scaled_e.

gsl::sf::bessel_i1_scaled x
implements gsl_sf_bessel_i1_scaled.

gsl::sf::bessel_i1_scaled_e x
implements gsl_sf_bessel_i1_scaled_e.

gsl::sf::bessel_i2_scaled x
implements gsl_sf_bessel_i2_scaled.

gsl::sf::bessel_i2_scaled_e x
implements gsl_sf_bessel_i2_scaled_e.

gsl::sf::bessel_il_scaled l::int x
implements gsl_sf_bessel_il_scaled.

gsl::sf::bessel_il_scaled_e l::int x
implements gsl_sf_bessel_il_scaled_e.

gsl::sf::bessel_il_scaled_array lmax::int x
implements gsl_sf_bessel_il_scaled_array.

gsl::sf::bessel_k0_scaled x
implements gsl_sf_bessel_k0_scaled.

gsl::sf::bessel_k0_scaled_e x
implements gsl_sf_bessel_k0_scaled_e.

gsl::sf::bessel_k1_scaled x
implements gsl_sf_bessel_k1_scaled.

gsl::sf::bessel_k1_scaled_e x
implements gsl_sf_bessel_ik_scaled_e.

gsl::sf::bessel_k2_scaled x
implements gsl_sf_bessel_k2_scaled.

gsl::sf::bessel_k2_scaled_e x
implements gsl_sf_bessel_k2_scaled_e.

gsl::sf::bessel_kl_scaled l::int x
implements gsl_sf_bessel_kl_scaled.
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gsl::sf::bessel_kl_scaled_e l::int x
implements gsl_sf_bessel_kl_scaled_e.

gsl::sf::bessel_kl_scaled_array lmax::int x
implements gsl_sf_bessel_il_scaled_array.

gsl::sf::bessel_Jnu nu x
implements gsl_sf_bessel_Jnu.

gsl::sf::bessel_Jnu_e nu x
implements gsl_sf_bessel_Jnu_e.

gsl::sf::bessel_sequence_Jnu_e nu v::matrix
implements gsl_sf_bessel_sequence_Jnu_e.

gsl::sf::bessel_Ynu nu x
implements gsl_sf_bessel_Ynu.

gsl::sf::bessel_Ynu_e nu x
implements gsl_sf_bessel_Ynu_e.

gsl::sf::bessel_Inu nu x
implements gsl_sf_bessel_Inu.

gsl::sf::bessel_Inu_e nu x
implements gsl_sf_bessel_Inu_e.

gsl::sf::bessel_Inu_scaled nu x
implements gsl_sf_bessel_Inu_scaled.

gsl::sf::bessel_Inu_scaled_e nu x
implements gsl_sf_bessel_Inu_scaled_e.

gsl::sf::bessel_Knu nu x
implements gsl_sf_bessel_Knu.

gsl::sf::bessel_Knu_e nu x
implements gsl_sf_bessel_Knu.

gsl::sf::bessel_lnKnu nu x
implements gsl_sf_bessel_lnKnu.

gsl::sf::bessel_lnKnu_e nu x
implements gsl_sf_bessel_lnKnu_e.

gsl::sf::bessel_Knu_scaled nu x
implements gsl_sf_bessel_Knu_scaled.

gsl::sf::bessel_Knu_scaled_e nu x
implements gsl_sf_bessel_Knu_scaled_e.

gsl::sf::bessel_zero_J0 s::int
implements gsl_sf_bessel_zero_J0.

gsl::sf::bessel_zero_J0_e s::int
implements gsl_sf_bessel_zero_J0_e.
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gsl::sf::bessel_zero_J1 s::int
implements gsl_sf_bessel_zero_J1.

gsl::sf::bessel_zero_J1_e s::int
implements gsl_sf_bessel_zero_J1_e.

gsl::sf::bessel_zero_Jnu nu s::int
implements gsl_sf_bessel_zero_Jnu.

gsl::sf::bessel_zero_Jnu_e nu s::int
implements gsl_sf_bessel_zero_Jnu.

17.2.4 Examples

The following illustrate the Bessel functions.

> using gsl::sf;
> using namespace gsl::sf;
> bessel_J0 (-1.2);
0.671132744264363
> bessel_J0_e 0.75;
[0.864242275166649,7.07329111491049e-16]
> bessel_J1 1.2;
0.498289057567216
> bessel_J1_e (-0.2);
[-0.099500832639236,5.00768737808415e-17]
> bessel_Jn 0 (-1.2);
0.671132744264363
> bessel_Jn_e 2 0.75;
[0.0670739972996506,5.48959386474892e-17]
> bessel_Jn_array 0 4 0.5;
[0.938469807240813,0.242268457674874,0.0306040234586826,
0.00256372999458724,0.000160736476364288]

> bessel_Y0 0.25;
-0.931573024930059
> bessel_Y0_e 0.25;
[-0.931573024930059,6.4279898430593e-16]
> bessel_Y1 0.125;
-5.19993611253477
> bessel_Y1_e 4.325;
[0.343041276811844,2.74577716760089e-16]
> bessel_Yn 3 4.325;
-0.0684784962694202
> bessel_Yn_e 3 4.325;
[-0.0684784962694202,3.37764590906247e-16]
> bessel_Yn_array 2 4 1.35;
[-1.07379345815726,-2.66813016175689,-10.7845628163178]
> bessel_I0 1.35;
1.51022709775726
> bessel_I0_e 1.35;
[1.51022709775726,2.37852166449918e-15]
> bessel_I1 0.35;
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0.177693400031422
> bessel_I1_e 0.35;
[0.177693400031422,1.55520651386126e-16]
> bessel_In 2 3.0;
2.24521244092995
> bessel_In_e 2 3.0;
2.24521244092995,5.98244771302867e-15]
> bessel_In_array 3 5 (-0.1);
[-2.08463574223272e-05,2.60546902129966e-07,-2.6052519298937e-09]
> bessel_I0_scaled 1.05;
0.453242541279856
> bessel_I0_scaled_e 1.05;
[0.453242541279856,4.10118141697477e-16]
> bessel_I1_scaled 1.05;
0.210226017612868
> bessel_I1_scaled_e 1.05;
[0.210226017612868,2.12903131803686e-16]
> bessel_In_scaled 3 1.05;
0.00903732602788281
> bessel_In_scaled_e 3 1.05;
[0.00903732602788281,2.00668948743994e-17]
> bessel_In_scaled_array 3 5 1.05;
[0.00903732602788281,0.0011701685245855,0.000121756316755217]
> bessel_K0 2.3;
0.0791399330020936
> bessel_K0_e 2.3;
[0.0791399330020936,1.15144454318261e-16]
> bessel_K1 2.3;
0.0949824438453627
> bessel_K1_e 2.3;
[0.0949824438453627,9.85583638959967e-17]
> bessel_Kn 2 3.4;
0.0366633035851529
> bessel_Kn_e 2 3.4;
[0.0366633035851529,2.01761856558251e-16]
> bessel_Kn_array 1 3 2.5;
[0.0738908163477471,0.121460206278564,0.268227146393449]
> bessel_K0_scaled 1.5;
0.367433609054158
> bessel_K0_scaled_e 1.5;
[0.958210053294896,1.25816573186951e-14]
> bessel_K1_scaled 1.5;
1.24316587355255
> bessel_K1_scaled_e 1.5;
[1.24316587355255,2.32370553362606e-15]
> bessel_Kn_scaled 4 1.5;
35.4899165934682
> bessel_Kn_scaled_e 4 1.5;
[35.4899165934682,3.89252285021454e-14]
> bessel_Kn_scaled_array 4 6 1.5;
[35.4899165934682,197.498093175689,1352.14387109806]
> bessel_j0 0.01;
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0.999983333416666
> bessel_j0_e 0.01;
[0.999983333416666,4.44081808400239e-16]
> bessel_j1 0.2;
0.0664003806703222
> bessel_j1_e 0.2;
[0.0664003806703222,2.94876925856268e-17]
> bessel_j2 0.3;
0.00596152486862022
> bessel_j2_e 0.3;
[0.00596152486862022,2.64744886840705e-18]
> bessel_jl 4 0.3;
8.53642426502516e-06
> bessel_jl_e 4 0.3;
[8.53642426502516e-06,1.02355215483598e-19]
> bessel_jl_array 2 1.2;
[0.776699238306022,0.34528456985779,0.0865121863384538]
> bessel_jl_steed_array 2 1.2;
[0.776699238306022,0.34528456985779,0.0865121863384538]
> bessel_y0 1;
-0.54030230586814
> bessel_y0_e 3;
[0.329997498866815,2.93096657048522e-16]
> bessel_y1 3;
0.062959163602316
> bessel_y1_e 3.0;
[0.062959163602316,1.04609100698801e-16]
> bessel_yl 3 5;
-0.0154429099129942
> bessel_yl_e 3 5;
[-0.0154429099129942,2.87258769784673e-17]
> bessel_i0_scaled 3;
0.166253541303889
> bessel_i0_scaled_e 3;
[0.166253541303889,7.38314037924188e-17]
> bessel_i1_scaled 3;
0.111661944928148
> bessel_i1_scaled_e 3;
[0.111661944928148,4.95878648934625e-17]
> bessel_i2_scaled 3;
0.0545915963757409
> bessel_i2_scaled_e 3;
[0.0545915963757409,2.42435388989563e-17]
> bessel_il_scaled 3 1;
0.0037027398773348
> bessel_il_scaled_e 3 1;
[0.0037027398773348,8.46838615599053e-17]
> bessel_il_scaled_array 3 1;
[0.432332358381693,0.135335283236613,0.0263265086718556,0.0037027398773348]
> bessel_k0_scaled 3;
0.523598775598299
> bessel_k0_scaled_e 3;
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[0.523598775598299,2.32524566533909e-16]
> bessel_k1_scaled 4;
0.490873852123405
> bessel_k1_scaled_e 4;
[0.490873852123405,2.17991781125539e-16]
> bessel_k2_scaled 4;
0.760854470791278
> bessel_k2_scaled_e 4;
[0.760854470791278,3.37887260744586e-16]
> bessel_kl_scaled 2 4;
0.760854470791278
> bessel_kl_scaled_e 2 4;
[0.760854470791278,3.37887260744586e-16]
> bessel_kl_scaled_array 2 4;
[0.392699081698724,0.490873852123405,0.760854470791278]
> bessel_Jnu 2 2.3;
0.413914591732062
> bessel_Jnu_e 2 2.3;
[0.413914591732062,6.43352513956959e-16]
> bessel_sequence_Jnu_e 2 {.1,.2,.3};
[0.00124895865879992,0.00498335415278356,0.011165861949064]
> bessel_Ynu 1 0.5;
-1.47147239267024
> bessel_Ynu_e 1 0.5;
[-1.47147239267024,8.49504515830242e-15]
> bessel_Inu 1.2 3.4;
5.25626563437082
> bessel_Inu_e 1.2 3.4;
[5.25626563437082,1.00839636820646e-13]
> bessel_Inu_scaled 1.2 3.4;
0.175418771999042
> bessel_Inu_scaled_e 1.2 3.4;
[0.175418771999042,3.15501414592188e-15]
> bessel_Knu 3 3;
0.122170375757184
> bessel_Knu_e 3 3;
[0.122170375757184,4.34036365096743e-16]
> bessel_lnKnu 3 3;
-2.10233868587978
> bessel_lnKnu_e 3 3;
[-2.10233868587978,4.24157124665032e-15]
> bessel_Knu_scaled 3 3;
2.45385759319062
> bessel_Knu_scaled_e 3 3;
[2.45385759319062,7.6281217575122e-15]
> bessel_zero_J0 3;
8.65372791291102
> bessel_zero_J0_e 3;
[8.65372791291102,2.59611837387331e-14]
> bessel_zero_J1 3;
10.1734681350627
> bessel_zero_J1_e 3;
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[10.1734681350627,2.03469362701254e-13]
> bessel_zero_Jnu 1.2 3;
10.46769
> bessel_zero_Jnu_e 1.2 3;
[10.4676986203553,2.09353972407105e-14]86203553

17.2.5 Clausen Functions

gsl::sf::clausen x
implements gsl_sf_clausen.

gsl::sf::clausen_e x
implements gsl_sf_clausen_e.

17.2.6 Examples

The following illustrate the Clausen functions.

> using gsl::sf;
> using namespace gsl::sf;
> clausen 4.5;
-0.831839220823219
> clausen_e 4.5;
[-0.831839220823219,8.60688668835964e-16]

17.2.7 Colomb Functions

The results of the Coulomb wave functions are returned as a list whose elements are ordered
corresponding to the argument order of the corresponding C functions in GSL library.

gsl::sf::hydrogenicR_1 Z r
implements gsl_sf_hydrogenicR_1.

gsl::sf::hydrogenicR_1_e Z r
implements gsl_sf_hydrogenicR_1_e.

gsl::sf::hydrogenicR n::int l::int Z r
implements gsl_sf_hydrogenicR_1.

gsl::sf::hydrogenicR_e n::int l::int Z r
implements gsl_sf_hydrogenicR_1_e.

gsl::sf::coulomb_wave_FG_e eta x L_F k::int
implements gsl_sf_coulomb_wave_FG_e.

gsl::sf::coulomb_wave_F_array L_min kmax::int eta x
implements gsl_sf_coulomb_wave_F_array.
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gsl::sf::coulomb_wave_FG_array L_min kmax::int eta x
implements gsl_sf_coulomb_wave_FG_array.

gsl::sf::coulomb_wave_FGp_array L_min kmax::int eta x
implements gsl_sf_coulomb_wave_FGp_array.

gsl::sf::coulomb_wave_sphF_array L_min kmax::int eta x
implements gsl_sf_coulomb_wave_sphF_array.

gsl::sf::coulomb_CL_e L eta
implements gsl_sf_coulomb_wave_CL_e.

gsl::sf::coulomb_CL_array Lmin kmax eta
implements gsl_sf_coulomb_wave_CL_array.

17.2.8 Examples

The following illustrate the Coulomb functions.

> using gsl::sf;
> using namespace gsl::sf;
> hydrogenicR_1 0.2 4;
0.0803784086420537
> hydrogenicR_1_e 0.2 4;
[0.0803784086420537,2.85561471862841e-17]
> hydrogenicR 3 1 0.25 3.2;
0.00802954301593587
> hydrogenicR_e 3 1 0.25 3.2;
[0.00802954301593587,3.90138748076797e-17]
> coulomb_wave_F_array 1 2 0.5 0.5;
[{0.0387503306520188,0.0038612830533923,0.000274978904710252},0.0]
> coulomb_wave_FG_array 1 2 0.5 0.5;
[{0.0387503306520188,0.0038612830533923,0.000274978904710252},
{4.13731494044202,25.4479852847406,257.269816591168},0.0,0.0]

> coulomb_wave_FGp_array 1 2 0.5 0.5;
[{0.0387503306520188,0.0038612830533923,0.000274978904710252},
{4.13731494044202,25.4479852847406,257.269816591168},0.0,0.0]

> coulomb_wave_sphF_array 1 2 0.5 0.5;
[{0.0775006613040376,0.0077225661067846,0.000549957809420504},0.0]
> coulomb_CL_e (-0.5) 3;
[0.000143036170217949,2.92195771135514e-18]
> coulomb_CL_array (-0.5) 4 1.5;
[0.0159218263353144,0.0251746178646226,0.00890057150292734,
0.00172996014234001,0.000235267570111599]

17.2.9 Coupling Coefficients

gsl::sf::coupling_3j m::matrix
implements gsl_sf_coupling_3j except the input is a 2x3 (row by column) integer
matrix instead of six integer arguments.
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gsl::sf::coupling_3j_e m::matrix
implements gsl_sf_coupling_3j_e except the input is a 2x3 (row by column) integer
matrix instead of six integer arguments.

gsl::sf::coupling_6j m::matrix
implements gsl_sf_coupling_6j except the input is a 2x3 (row by column) integer
matrix instead of six integer arguments.

gsl::sf::coupling_6j_e m::matrix
implements gsl_sf_coupling_6j_e except the input is a 2x3 (row by column) integer
matrix instead of six integer arguments.

gsl::sf::coupling_9j m::matrix
implements gsl_sf_coupling_9j except the input is a 3x3 integer matrix instead of six
integer arguments.

gsl::sf::coupling_9j_e m::matrix
implements gsl_sf_coupling_9j_e except the input is a 3x3 integer matrix instead of
six integer arguments.

17.2.10 Examples

The following illustrate the coupling coefficient functions.

> using gsl::sf;
> using namespace gsl::sf;
> coupling_3j {6,4,2;0,0,0};
-0.29277002188456
> coupling_3j_e {6,4,2;0,0,0};
[-0.29277002188456,1.300160076865e-16]
> coupling_6j {1,2,3;2,1,2};
-0.166666666666667
> coupling_6j_e {1,2,3;2,1,2};
[-0.166666666666667,2.22044604925031e-16]
> coupling_9j {1,2,3;2,1,2;1,1,1};
-0.0962250448649376
> coupling_9j_e {1,2,3;2,1,2;1,1,1};
[-0.0962250448649376,4.84948508304183e-16]

17.2.11 Dawson Function

gsl::sf::dawson x
implements gsl_sf_dawson.

gsl::sf::dawson_e x
implements gsl_sf_dawson_e.
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17.2.12 Examples

The following illustrate the dawson functions.

> dawson 3;/**-
0.178271030610558
> dawson_e 3;
[0.178271030610558,8.9920386788099e-16]

17.2.13 Debye Functions

gsl::sf::debye_1 x
implements gsl_sf_debye_1.

gsl::sf::debye_1_e x
implements gsl_sf_debye_1_e.

gsl::sf::debye_2 x
implements gsl_sf_debye_2.

gsl::sf::debye_2_e x
implements gsl_sf_debye_2_e.

gsl::sf::debye_3 x
implements gsl_sf_debye_3.

gsl::sf::debye_3_e x
implements gsl_sf_debye_3_e.

gsl::sf::debye_4 x
implements gsl_sf_debye_4.

gsl::sf::debye_4_e x
implements gsl_sf_debye_4_e.

gsl::sf::debye_5 x
implements gsl_sf_debye_5.

gsl::sf::debye_5_e x
implements gsl_sf_debye_5_e.

gsl::sf::debye_6 x
implements gsl_sf_debye_6.

gsl::sf::debye_6_e x
implements gsl_sf_debye_6_e.

17.2.14 Examples

The following illustrate the debye functions.
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> debye_1 0.4;
0.904437352623294
> debye_1_e 0.4;
[0.904437352623294,3.84040456356756e-16]
> debye_2 1.4;
0.613281386045505
> debye_2_e 1.4;
[0.613281386045505,5.15090106564116e-16]
> debye_3 2.4;
0.370136882985216
> debye_3_e 2.4;
[0.370136882985216,6.0792125556598e-16]
> debye_4 3.4;
0.205914922541978
> debye_4_e 3.4;
[0.205914922541978,7.42872979584512e-16]
> debye_5 4.4;
0.107477287722471
> debye_5_e 4.4;
[0.107477287722471,2.38647518907499e-17]
> debye_6 5.4;
0.0533132925698824
> debye_6_e 5.4;
[0.0533132925698824,1.18379289859322e-17]

17.2.15 Dilogarithm

gsl::sf::dilog x
implements gsl_sf_dilog.

gsl::sf::dilog (r<:theta)
implements gsl_sf_complex_dilog_e except that results are returned as the complex
value re+:im and the error values are not returned.

gsl::sf::dilog_e x
implements gsl_sf_dilog_e.

gsl::sf::dilog_e (r<:theta)
implements gsl_sf_complex_dilog_e except the results are returned as the list
[re+:im, re_error, im_error].

17.2.16 Examples

The following illustrate the dilog functions.

> dilog 1.0;
1.64493406684823
> dilog (1<:2);
-0.496658586741567+:0.727146050863279
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> dilog_e (1%3);
[0.366213229977064,8.22687466397711e-15]
> dilog_e (1<:3);
[-0.817454913536463+:0.0980262093913011,3.8224192909699e-15,
1.47247478976757e-15]

gsl::sf::multiply_e x y
implements gsl_sf_multiply_e.

gsl::sf::multiply_err_e x dx y dy
implements gsl_sf_multiply_err_e.

17.2.17 Examples

The following illustrate the multiply functions.

> multiply_e 10.0 11.0;
[110.0,4.88498130835069e-14]
> multiply_err_e 10.0 0.04 11.0 0.002;
[110.0,0.460000000000049]

17.3 Matrices

This module is loaded via the command using gsl::matrix and provides wrappers for
many of the GSL matrix, BLAS, and linear algebra routines found in Chapters 8, 12, and 13,
respectively of the GSL Reference Manual:

• Vectors and Matrices

• BLAS Support

• Linear Algebra

It also contains some general utility functions for creating various types of matrices.

17.3.1 Matrix Creation

The utility functions zeros and ones create matrices with all elements zero or one, respec-
tively, and eye creates identity matrices. These functions can be invoked either with a pair
(n,m) denoting the desired number of rows or columns, or an integer n in which case a
square n x n matrix is created. The result is always a double matrix. Analogous functions
izeros, czeros, etc. are provided to create integer and complex matrices, respectively.

gsl::matrix::zeros (n :: int, m :: int)
creates an n x m double matrix with all of its entries being zero.

gsl::matrix::zeros n :: int
creates an n x n double matrix with all of its entries being zero.
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gsl::matrix::izeros (n :: int, m :: int)
creates an n x m integer matrix with all of its entries being zero.

gsl::matrix::izeros n :: int
creates an n‘x‘n integer matrix with all of its entries being zero.

gsl::matrix::czeros (n :: int, m :: int)
creates an n x m complex matrix with all of its entries being zero.

gsl::matrix::czeros n :: int
creates an n x n complex matrix with all of its entries being zero.

gsl::matrix::ones (n :: int, m :: int)
creates an n x m double matrix with all of its entries being one.

gsl::matrix::ones n :: int
creates an n x n double matrix with all of its entries being one.

gsl::matrix::iones (n :: int, m :: int)
creates an n x m integer matrix with all of its entries being one.

gsl::matrix::iones n :: int
creates an n x n integer matrix with all of its entries being one.

gsl::matrix::cones (n :: int, m :: int)
creates an n x m complex matrix with all of its entries being one.

gsl::matrix::cones n :: int
creates an n x n complex matrix with all of its entries being one.

gsl::matrix::eye (n :: int, m :: int)
creates an n x m identity matrix with double entries.

gsl::matrix::eye n :: int
creates an n x n identity matrix with double entries.

gsl::matrix::ieye (n :: int, m :: int)
creates an n x m identity matrix with integer entries.

gsl::matrix::ieye n :: int
creates an n x n identity matrix with integer entries.

gsl::matrix::ceye (n :: int, m :: int)
creates an n x m identity matrix with complex entries.

gsl::matrix::ceye n :: int
creates an n x n identity matrix with complex entries.

17.3.2 Matrix Operators and Functions

The following operations are defined for constant a and matrices x and y. Some operators
are not defined in the GSL library but are provided here for convenience.

a + x

598 17.3 Matrices



Pure Language and Library Documentation, Release 0.62

x + a
returns a matrix with entries a + x!(i,j).

x + y
adds matrix x to matrix y.

- x
returns a matrix with entries - x!(i,j). Note that neg x is equivalent to - x.

a - x
returns a matrix with entries a - x!(i,j).

x - a
returns a matrix with entries x!(i,j) - a.

x - y
subtracts matrix y from matrix x.

a * x
x * a

returns a matrix with entries a * x!(i,j).

x .* y
multiplies, element-wise, matrix x to matrix y.

x * y
multiplies matrix x to matrix y.

a / x
returns a matrix with entries a / x!(i,j). Note that matrix x must not have any zero
entries.

x / a
returns a matrix with entries x!(i,j) / a. Note that a must be nonzero.

x ./ y
divides, element-wise, matrix x by matrix y.

x / y
right divides matrix x by matrix y.

x \ y
left divides matrix x by matrix y.

a div x
returns an integer matrix with entries a div x!(i,j). Note that a must be an integer
and matrix x must be an integer matrix with nonzero entries.

x div a
returns an integer matrix with entries x!(i,j) div a. Note that a must be a nonzero
integer and matrix x must have integer entries.

x div y
computes the quotient integer matrix x by integer matrix y.
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a mod x
returns an integer matrix with entries a mod x!(i,j). Note that a must be an integer
and matrix x must be an integer matrix with nonzero entries.

x mod a
returns an integer matrix with entries a mod x!(i,j). Note that a must be an integer
and matrix x must be an integer matrix with nonzero entries.

x mod y
returns the remainder integer matrix x mod integer matrix y.

not x
returns a matrix with integer entries not x!(i,j). Note that x must be a matrix with
integer entries and not is the bitwise negation operation.

a ^ x
returns a matrix with entries a ^ x!(i,j). Note that 0^0 is defined as 1.

x ^ a
returns a matrix with entries x!(i,j) ^ a. Note that 0^0 is defined as 1.

x .^ y
returns a matrix with entries x!(i,j) ^ y!(i,j).

x ^ y
returns a matrix with entries x!(i,j) ^ y!(i,j).

x << a
returns an integer matrix with entries x!(i,j) << a. Note that a must be an integer
and matrix x must have integer entries.

x << y
returns an integer matrix with entries x!(i,j) << y!(i,j). Note that x and y must
have integer entries.

x >> a
returns an integer matrix with entries x!(i,j) >> a. Note that a must be an integer
and matrix x must have integer entries.

x >> y
returns an integer matrix with entries x!(i,j) >> y!(i,j). Note that x and y must
have integer entries.

x and a
a and x

returns an integer matrix with entries a and x!(i,j). Note that a must be an integer,
matrix x must have integer entries, and and is a bitwise operator.

x and y
returns an integer matrix with entries x!(i,j) and y!(i,j). Note that x and y must
be matrices with integer entries.

x or a
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a or x
returns an integer matrix with entries a or x!(i,j). Note that a must be an integer,
matrix x must have integer entries, and or is a bitwise operator.

x or y
returns an integer matrix with entries x!(i,j) or y!(i,j). Note that x and y must be
matrices with integer entries.

The pow function computes powers of matrices by repeated matrix multiplication.

pow x :: matrix k :: int
pow x :: matrix k :: bigint

Raises matrix x to the k th power. Note x must be a square matrix and k a nonnegative
integer.

17.3.3 Singular Value Decomposition

For a given n x m matrix x, these functions yield a singular-value decomposition u, s, v
of the matrix such that x == u*s*transpose v, where u and v are orthogonal matrices of
dimensions n x m and n x n, respectively, and s is a n x n diagonal matrix which has the
singular values in its diagonal, in descending order. Note that GSL implements this only
for double matrices right now. Also, GSL only handles the case of square or overdetermined
systems, but we work around that in our wrapper functions by just adding a suitable number
of zero rows in the underdetermined case.

gsl::matrix::svd x
singular-value decomposition of matrix x.

gsl::matrix::svd_mod x
This uses the modified Golub-Reinsch algorithm, which is faster if n > m but needs
O(m^2) extra memory as internal workspace.

gsl::matrix::svd_jacobi x
This uses one-sided Jacobi orthogonalization which provides better relative accuracy
but is slower.

gsl::matrix::svd_solve (u, s, v) b
Solve the system Ax=b, using the SVD of A. svd_solve takes the result (u,s,v) of a svd
call, and a column vector b of the appropriate dimension. The result is another column
vector solving the system (possibly in the least-squares sense).

gsl::matrix::pinv x
Computes the pseudo inverse of a matrix from its singular value decomposition.

17.4 Least-Squares Fitting

This module is loaded via the command using gsl::fit and provides Pure wrappers for
the GSL least-squares fitting routines found in Chapter 36 of the GSL manual,
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http://www.gnu.org/software/gsl/manual/html_node/Least_002dSquares-Fitting.html.

17.4.1 Routines

gsl::fit::linear x::matrix y::matrix
implements gsl_fit_linear without the xstride, ystride, and n parameters. Results
are returned as a list [c0, c1, cov00, cov01, cov11, sumsq].

gsl::fit::wlinear x::matrix w::matrix y::matrix
implements gsl_fit_wlinear without the xstride, wstride, ystride, and n parame-
ters. Results are given as a list [c0, c1, cov00, cov01, cov11, chisq].

gsl::fit::linear_est x c0::double c1::double cov00::double cov01::double cov11::double
implements gsl_fit_linear_est. Results are returned as a list [y, y_err].

gsl::fit::mul x::matrix y::matrix
implements gsl_fit_mul omitting the parameters xstride, ystride, and n. Results
are returned as a list [c1, cov11, sumsq].

gsl::fit::wmul x::matrix w::matrix y::matrix
implements gsl_fit_wmul omitting the parametrs xstride, ystride, and n. Results
are returned as a list [c1, cov11, sumsq].

gsl::fit::mul_est x c1::double cov11::double
implements gsl_fit_mul_est. Results are returned as a list [y, y_err].

17.4.2 Examples

Usage of each implemented library routine is illustrated below.

> using gsl::fit;
> using namespace gsl::fit;

The following code determines the equation for the least-squares line through the points
(1,0.01), (2,1.11), (3,1.9), (4,2.85), and (5,4.01).

> Y x = ’(a + b * x)
> when
> a:b:_ = linear {1,2,3,4,5} {0.01,1.11,1.9,2.85,4.01}
> end;
> Y x;
-0.946+0.974*x
> eval $ Y 2;
1.002

The following code illustrates estimating y-values without constructing an equation for the
least-squares line determined by the points {x1,x2,x3,...,xn}, {y1,y2,y3,...,yn}. Here
we estimate the y-value at x = 1, x = 2, and x = 3. Compare the output above at x = 2 to the
output at x = 2 below.
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> let c0:c1:cov00:cov01:cov11:_ = linear {1,2,3,4,5}
> {0.01,1.11,1.9,2.85,4.01};
> linear_est 1 c0 c1 cov00 cov01 cov11;
[0.028,0.0838570211729465]
> linear_est 2 c0 c1 cov00 cov01 cov11;
[1.002,0.0592958683214944]
> linear_est 3 c0 c1 cov00 cov01 cov11;
[1.976,0.0484148737476408]

Next, we determine a least-squares line through the points (1,0.01), (2,1.11), (3,1.9), (4,2.85),
and (5,4.01) using weights 0.1, 0.2, 0.3, 0.4, and 0.5.

> W x = ’(a + b * x)
> when
> a:b:_ = wlinear (matrix (1..5))
> {0.1, 0.2, 0.3, 0.4, 0.5}
> {0.01, 1.11, 1.9, 2.85, 4.01};
> end;
> W u;
-0.99+0.986*u
> eval $ W 2;
0.982

The least-squares slope for Y = c1 * X using the points (1,3), (2,5), and (3,7) is calculated
below. Also, the y-values and standard error about x = 1, 2, and 3 are given.

> let c1:cov11:sumsq:_ = mul {1,2,3} {3,5,7};
> mul_est 1 c1 cov11;
[2.42857142857143,0.123717914826348]
> mul_est 2 c1 cov11;
[4.85714285714286,0.247435829652697]
> mul_est 3 c1 cov11;
[7.28571428571428,0.371153744479045]

The least-squares slope for Y = c1 * X using the points (1,3), (2,5), and (3,7), and weights
0.4, 0.9, and 0.4 is calculated below. The approximation of y-values and standard error about
x = 1, 2, and 3 follows.

> let c1:cov11:sumsq:_ = wmul {1,2,3} {0.4,0.9,0.4} {3,5,7};
> mul_est 1 c1 cov11;
[2.44736842105263,0.362738125055006]
> mul_est 2 c1 cov11;
[4.89473684210526,0.725476250110012]
> mul_est 3 c1 cov11;
[7.34210526315789,1.08821437516502]

17.5 Statistics

This module is loaded via the command using gsl::stats and provides Pure wrappers for
the GSL Statistics routines found in Chapter 20 of the GSL manual,
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http://www.gnu.org/software/gsl/manual/html_node/Statistics.html.

17.5.1 Routines

gsl::stats::mean data::matrix
implements gsl_stats_mean without stride and n arguments.

gsl::stats::variance data::matrix
implements gsl_stats_variance without stride and n arguments.

gsl::stats::variance data::matrix mean
implements gsl_stats_variance_m without stride and n arguments.

gsl::stats::sd data::matrix
implements gsl_stats_sd without stride and n arguments.

gsl::stats::sd_m data::matrix mean
implements gsl_stats_sd_m without stride and n arguments.

gsl::stats::tss data::matrix
implements gsl_stats_tss without stride and n arguments.

gsl::stats::tss_m data::matrix mean
implements gsl_stats_tss_m without stride and n arguments.

gsl::stats::variance_with_fixed_mean data::matrix mean
implements gsl_stats_variance_with_fixed_mean without stride and n arguments.

gsl::stats::sd_with_fixed_mean data::matrix mean
implements gsl_stats_sd_with_fixed_mean without stride and n arguments.

gsl::stats::absdev data::matrix
implements gsl_stats_absdev without stride and n arguments.

gsl::stats::absdev_m data::matrix mean
implements gsl_stats_absdev_m without stride and n arguments.

gsl::stats::skew data::matrix mean
implements gsl_stats_skew without stride and n arguments.

gsl::stats::skew_m_sd data::matrix mean sd
implements gsl_stats_skew_m_sd without stride and n arguments.

gsl::stats::kurtosis data::matrix
implements gsl_stats_kurtosis without stride and n arguments.

gsl::stats::kurtosis_m_sd data::matrix mean sd
implements gsl_stats_kurtosis_m_sd without stride and n arguments.

gsl::stats::lag1_autocorrelation data::matrix
implements gsl_stats_lag1_autocorrelation without stride and n arguments.

gsl::stats::lag1_autocorrelation_m data::matrix mean
implements gsl_stats_lag1_autocorrelation_m without stride and n arguments.
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gsl::stats::covariance d1::matrix d2::matrix
implements gsl_stats_covariance without stride1, stride2, and n arguments.

gsl::stats::covariance_m d1::matrix d2::matrix mean1 mean2
implements gsl_stats_covariance_m without stride1, stride2, and n arguments.

gsl::stats::correlation d1::matrix d2::matrix
implements gsl_stats_correlation without stride1, stride2, and n arguments.

gsl::stats::wmean weight::matrix data::matrix
implements gsl_stats_wmean without stride and n arguments.

gsl::stats::wvariance weight::matrix data::matrix
implements gsl_stats_wvariance without stride and n arguments.

gsl::stats::wvariance_m weight::matrix data::matrix mean
implements gsl_stats_wvariance_m without stride and n arguments.

gsl::stats::wsd weight::matrix data::matrix
implements gsl_stats_wsd without stride and n arguments.

gsl::stats::wsd_m weight::matrix data::matrix mean
implements gsl_stats_wsd_m without stride and n arguments.

gsl::stats::wvariance_with_fixed_mean weight::matrix data::matrix mean
implements gsl_stats_wvariance_with_fixed_mean without stride and n argu-
ments.

gsl::stats::wsd_with_fixed_mean weight::matrix data::matrix mean
implements gsl_stats_wsd_with_fixed_mean without stride and n arguments.

gsl::stats::wtss weight::matrix data::matrix
implements gsl_stats_wtss without stride and n arguments.

gsl::stats::wtss_m weight::matrix data::matrix mean
implements gsl_stats_wtss_m without stride and n arguments.

gsl::stats::wabsdev weight::matrix data::matrix
implements gsl_stats_wabsdev without stride and n arguments.

gsl::stats::wabsdev_m weight::matrix data::matrix mean
implements gsl_stats_wabsdev_m without stride and n arguments.

gsl::stats::wskew weight::matrix data::matrix
implements gsl_stats_wskew without stride and n arguments.

gsl::stats::wskew_m_sd weight::matrix data::matrix mean sd
implements gsl_stats_wskew_m_sd without stride and n arguments.

gsl::stats::wkurtosis weight::matrix data::matrix
implements gsl_stats_wkurtosis without stride and n arguments.

gsl::stats::wkurtosis_m_sd weight::matrix data::matrix
implements gsl_stats_wkurtosis_m_sd without stride and n arguments.

17.5.1 Routines 605



Pure Language and Library Documentation, Release 0.62

gsl::stats::max data::matrix
implements gsl_stats_max without stride and n arguments.

gsl::stats::min data::matrix
implements gsl_stats_min without stride and n arguments.

gsl::stats::minmax data::matrix
implements gsl_stats_minmax without stride and n arguments. Results are returned
as a list [min, max].

gsl::stats::min_index data::matrix
implements gsl_stats_min_index without stride and n arguments.

gsl::stats::max_index data::matrix
implements gsl_stats_max_index without stride and n arguments.

gsl::stats::minmax_index data::matrix
implements gsl_stats_minmax_index without stride and n arguments. Results are
returned as a list [min_index, max_index].

gsl::stats::median_from_sorted_data data::matrix
implements gsl_stats_median_from_sorted_data without stride and n arguments.

gsl::stats::quantile_from_sorted_data data::matrix f::double
implements gsl_stats_quantile_from_sorted_data without stride and n argu-
ments.

17.5.2 Examples

The following illustrates the use of each function in the stats module.

> using gsl::stats;
> using namespace gsl::stats;
> mean {1,2,3,4,5};
3.0
> variance {1,2,3,4,5};
2.5
> variance_m {1,2,3,4,5} 4;
3.75
> sd {1,2,3,4,5};
1.58113883008419
> sd_m {1,2,3,4,5} 4;
1.93649167310371
> tss {1,2,3,4,5};
10.0
> tss_m {1,2,3,4,5} 4;
15.0
> variance_with_fixed_mean {0.0,1.2,3.4,5.6,6.0} 4.1;
6.314
> sd_with_fixed_mean {0.0,1.2,3.4,5.6,6.0} 4.1;
2.51276739870606
> absdev {2,2,3,4,4};
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0.8
> absdev_m {2,2,3,4,4} 4;
1.0
> skew {1,1,1,1,2,2,2,2,2,2,2,2,3,30};
2.94796699504537
> skew_m_sd {1,2,2,3,3,3,3,3,3,3,4,4,5} 3 1;
0.0
> kurtosis {1,2,2,3,3,3,3,3,3,3,4,4,5};
-0.230769230769231
> kurtosis_m_sd {1,2,2,3,3,3,3,3,3,3,4,4,5} 3 1;
-0.230769230769231
> lag1_autocorrelation {1,2,3,4,5};
0.4
> lag1_autocorrelation_m {1,2,3,4,5} 2.5;
0.444444444444444
> covariance {1,2,3,4,5} {3.0,4.5,6.0,7.5,9.0};
3.75
> covariance_m {1,2,3,4,5} {3.0,4.5,6.0,7.5,9.0} 3 6;
3.75
> correlation {1,2,3,4} {2,3,4,5};
1.0
> wmean {0.4,0.2,0.3,0.3,0.3} {2,3,4,5,6};
3.93333333333333
> wvariance {0.4,0.2,0.3,0.3,0.3} {2,3,4,5,6};
2.7752808988764
> wvariance_m {0.4,0.2,0.3,0.3,0.3} {2,3,4,5,6} 3.0;
3.87640449438202
> wsd {0.4,0.2,0.3,0.3,0.3} {2,3,4,5,6};
1.66591743459164
> wsd_m {0.4,0.2,0.3,0.3,0.3} {2,3,4,5,6} 3.0;
1.96885867811329
> wvariance_with_fixed_mean {1,2,3,4} {1,2,3,4} 2.5;
1.25
> wsd_with_fixed_mean {1,2,3,4} {1,2,3,4} 2.5;
1.11803398874989
> wtss {1,1,2,2} {2,3,4,5};
6.83333333333333
> wtss_m {1,1,2,2} {2,3,4,5} 3.1;
10.06
> wabsdev {1,1,2,2} {2,3,4,5};
0.888888888888889
> wabsdev_m {1,1,2,2} {2,3,4,5} 3.1;
1.13333333333333
> wskew {1,1,2,2} {2,3,4,5};
-0.299254338484713
> wskew_m_sd {1,1,2,2} {2,3,4,5} 3.1 1.2;
1.33526234567901
> wkurtosis {1,1,2,2} {2,3,4,5};
-1.96206512878137
> wkurtosis_m_sd {1,1,2,2} {2,3,4,5} 3.1 1.2;
-0.681921939300412
> min {9,4,2,1,9};
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1
> max {9.1,4.2,2.6,1.1,9.2};
9.2
> minmax {9.0,4.0,2.0,1.0,9.0};
[1.0,9.0]
> min_index {9.1,4.2,2.6,1.1,9.2};
3
> max_index {9,4,2,1,9};
0
> minmax_index {9,4,2,1,0,9};
[4,0]
> median_from_sorted_data {1.0,2.0,3.0};
2.0
> quantile_from_sorted_data {1.0,2.0,3.0} 0.25;
1.5

17.6 Random Number Distributions

This module is loaded via the command using gsl::randist and provides Pure wrappers
for the GSL random distribution routines found in Chapter 19 of the GSL manual,

http://www.gnu.org/software/gsl/manual/html_node/Random-Number-
Distributions.html.

There are two namespaces provided by randist.pure, gsl::ran for probability densitity func-
tions and gsl::cdf for cumulative distribution functions. The two namespaces minimize
typing of the prefixes gsl_ran_ and gsl_cdf_ respectively.

17.6.1 Routines

gsl::ran::ugaussian_pdf x
implements gsl_ran_ugaussian.

gsl::ran::gaussian_pdf x sigma
implements gsl_ran_gaussian_pdf.

gsl::ran::gaussian_tail_pdf x a sigma
implements gsl_ran_gaussian_tail_pdf.

gsl::ran::ugaussian_tail_pdf x a
implements gsl_ran_ugaussian_tail_pdf.

gsl::ran::bivariate_gaussian_pdf x a
implements gsl_ran_bivariate_gaussian_pdf.

gsl::ran::exponential_pdf x mu
implements gsl_ran_exponential_pdf.
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gsl::ran::laplace_pdf x a
implements gsl_ran_laplace_pdf.

gsl::ran::exppow_pdf x a b
implements gsl_ran_exppow_pdf.

gsl::ran::cauchy_pdf x a
implements gsl_ran_cauchy_pdf.

gsl::ran::rayleigh_pdf x sigma
implements gsl_ran_rayleigh_pdf.

gsl::ran::rayleigh_tail_pdf x a sigma
implements gsl_ran_rayleigh_tail_pdf.

gsl::ran::landau_pdf x
implements gsl_ran_landau_pdf.

gsl::ran::gamma_pdf x a b
implements gsl_ran_gamma_pdf.

gsl::ran::flat_pdf x a b
implements gsl_ran_flat_pdf.

gsl::ran::lognormal_pdf x zeta sigma
implements gsl_ran_lognormal_pdf.

gsl::ran::chisq_pdf x nu
implements gsl_ran_chisq_pdf.

gsl::ran::fdist_pdf x nu1 nu2
implements gsl_ran_fdist_pdf.

gsl::ran::tdist_pdf x nu
implements gsl_ran_tdist_pdf.

gsl::ran::beta_pdf x a b
implements gsl_ran_beta_pdf.

gsl::ran::logistic_pdf x a
implements gsl_ran_logistic_pdf.

gsl::ran::pareto_pdf x a b
implements gsl_ran_pareto_pdf.

gsl::ran::weibull_pdf x a b
implements gsl_ran_weibull_pdf.

gsl::ran::gumbel1_pdf x a b
implements gsl_ran_gumbel1_pdf.

gsl::ran::gumbel2_pdf x a b
implements gsl_ran_gumbel2_pdf.

gsl::ran::dirichlet_pdf alpha::matrix theta::matrix
implements gsl_ran_dirichlet_pdf.
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gsl::ran::dirichlet_lnpdf alpha::matrix theta::matrix
implements gsl_ran_dirichlet_lnpdf.

gsl::ran::discrete_preproc p::matrix
implements gsl_ran_discrete_preproc without the K parameter.

gsl::ran::discrete_pdf k::int p::pointer
implements gsl_ran_discrete_pdf without the K parameter.

gsl::ran::discrete_free p::pointer
implements gsl_ran_discrete_free

gsl::ran::poisson_pdf k::int mu
implements gsl_ran_poisson_pdf.

gsl::ran::bernoulli_pdf k::int p
implements gsl_ran_bernoulli_pdf.

gsl::ran::binomial_pdf k::int p n::int
implements gsl_ran_binomial_pdf.

gsl::ran::multinomial_pdf p::matrix n::matrix
implements gsl_ran_multinomial_pdf.

gsl::ran::multinomial_lnpdf p::matrix n::matrix
implements gsl_ran_multinomial_lnpdf.

gsl::ran::negative_binomial_pdf k::int p n
implements gsl_ran_negative_binomial_pdf.

gsl::ran::pascal_pdf k::int p n::int
implements gsl_ran_pascal_pdf.

gsl::ran::geometric_pdf k::int p
implements gsl_ran_geometric_pdf.

gsl::ran::hypergeometric_pdf k::int n1::int n2::int t::int
implements gsl_ran_hypergeometric_pdf.

gsl::ran::logarithmic_pdf k::int p
implements gsl_ran_logarithmic_pdf.

gsl::cdf::ugaussian_P x
implements gsl_cdf_ugaussian_P.

gsl::cdf::ugaussian_Q x
implements gsl_cdf_ugaussian_Q.

gsl::cdf::ugaussian_Pinv p
implements gsl_cdf_ugaussian_Pinv.

gsl::cdf::ugaussian_Qinv q
implements gsl_cdf_ugaussian_Qinv.

gsl::cdf::gaussian_P x sigma
implements gsl_cdf_gaussian_P.
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gsl::cdf::gaussian_Q x sigma
implements gsl_cdf_gaussian_Q.

gsl::cdf::gaussian_Pinv p sigma
implements gsl_cdf_gaussian_Pinv.

gsl::cdf::guassian_Qinv q sigma
implements gsl_cdf_gaussian_Qinv.

gsl::cdf::exponential_P x mu
implements gsl_cdf_exponential_P.

gsl::cdf::exponential_Q x mu
implements gsl_cdf_exponential_Q.

gsl::cdf::exponential_Pinv p mu
implements gsl_cdf_exponential_Pinv.

gsl::cdf::exponential_Qinv q mu
implements gsl_cdf_exponential_Qinv.

gsl::cdf::laplace_P x a
implements gsl_cdf_laplace_P.

gsl::cdf::laplace_Q x a
implements gsl_cdf_laplace_Q.

gsl::cdf::laplace_Pinv p a
implements gsl_cdf_laplace_Pinv.

gsl::cdf::laplace_Qinv q a
implements gsl_cdf_laplace_Qinv.

gsl::cdf::exppow_P x a b
implements gsl_cdf_exppow_P.

gsl::cdf::exppow_Q x a b
implements gsl_cdf_exppow_Q.

gsl::cdf::cauchy_P x a
implements gsl_cdf_cauchy_P.

gsl::cdf::cauchy_Q x a
implements gsl_cdf_cauchy_Q.

gsl::cdf::cauchy_Pinv p a
implements gsl_cdf_cauchy_Pinv.

gsl::cdf::cauchy_Qinv q a
implements gsl_cdf_cauchy_Qinv.

gsl::cdf::rayleigh_P x sigma
implements gsl_cdf_rayleigh_P.

gsl::cdf::rayleigh_Q x sigma
implements gsl_cdf_rayleigh_Q.
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gsl::cdf::rayleigh_Pinv p sigma
implements gsl_cdf_rayleigh_Pinv.

gsl::cdf::rayleigh_Qinv q sigma
implements gsl_cdf_rayleigh_Qinv.

gsl::cdf::gamma_P x a b
implements gsl_cdf_gamma_P.

gsl::cdf::gamma_Q x a b
implements gsl_cdf_gamMa_Q.

gsl::cdf::gamma_Pinv p a b
implements gsl_cdf_gamma_Pinv.

gsl::cdf::gamma_Qinv q a b
implements gsl_cdf_gamma_Qinv.

gsl::cdf::flat_P x a b
implements gsl_cdf_flat_P.

gsl::cdf::flat_Q x a b
implements gsl_cdf_flat_Q.

gsl::cdf::flat_Pinv p a b
implements gsl_cdf_flat_Pinv.

gsl::cdf::flat_Qinv q a b
implements gsl_cdf_flat_Qinv.

gsl::cdf::lognormal_P x zeta sigma
implements gsl_cdf_lognormal_P.

gsl::cdf::lognormal_Q x zeta sigma
implements gsl_cdf_lognormal_Q.

gsl::cdf::lognormal_Pinv p zeta sigma
implements gsl_cdf_lognormal_Pinv.

gsl::cdf::lognormal_Qinv q zeta sigma
implements gsl_cdf_lognormal_Qinv.

gsl::cdf::chisq_P x nu
implements gsl_cdf_chisq_P.

gsl::cdf::chisq_Q x nu
implements gsl_cdf_chisq_Q.

gsl::cdf::chisq_Pinv p nu
implements gsl_cdf_chisq_Pinv.

gsl::cdf::chisq_Qinv q nu
implements gsl_cdf_chisq_Qinv.

gsl::cdf::fdist_P x nu1 nu2
implements gsl_cdf_fdist_P.
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gsl::cdf::fdist_Q x nu1 nu2
implements gsl_cdf_fdist_Q.

gsl::cdf::fdist_Pinv p nu1 nu2
implements gsl_cdf_fdist_Pinv.

gsl::cdf::fdist_Qinv q nu1 nu2
implements gsl_cdf_fdist_Qinv.

gsl::cdf::tdist_P x nu
implements gsl_cdf_tdist_P.

gsl::cdf::tdist_Q x nu
implements gsl_cdf_tdist_Q.

gsl::cdf::tdist_Pinv p nu
implements gsl_cdf_tdist_Pinv.

gsl::cdf::tdist_Qinv q nu
implements gsl_cdf_tdist_Qinv.

gsl::cdf::beta_P x a b
implements gsl_cdf_beta_P.

gsl::cdf::beta_Q x a b
implements gsl_cdf_beta_Q.

gsl::cdf::beta_Pinv p a b
implements gsl_cdf_beta_Pinv.

gsl::cdf::beta_Qinv q a b
implements gsl_cdf_beta_Qinv.

gsl::cdf::logistic_P x a
implements gsl_cdf_logistic_P.

gsl::cdf::logistic_Q x a
implements gsl_cdf_logistic_Q.

gsl::cdf::logistic_Pinv p a
implements gsl_cdf_logistic_Pinv.

gsl::cdf::logistic_Qinv q a
implements gsl_cdf_logistic_Qinv.

gsl::cdf::pareto_P x a b
implements gsl_cdf_pareto_P.

gsl::cdf::pareto_Q x a b
implements gsl_cdf_pareto_Q.

gsl::cdf::pareto_Pinv p a b
implements gsl_cdf_pareto_Pinv.

gsl::cdf::pareto_Qinv q a b
implements gsl_cdf_pareto_Qinv.
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gsl::cdf::weibull_P x a b
implements gsl_cdf_weibull_P.

gsl::cdf::weibull_Q x a b
implements gsl_cdf_weibull_Q.

gsl::cdf::weibull_Pinv p a b
implements gsl_cdf_weibull_Pinv.

gsl::cdf::weibull_Qinv q a b
implements gsl_cdf_weibull_Qinv.

gsl::cdf::gumbel1_P x a b
implements gsl_cdf_gumbel1_P.

gsl::cdf::gumbel1_Q x a b
implements gsl_cdf_gumbel1_Q.

gsl::cdf::gumbel1_Pinv p a b
implements gsl_cdf_gumbel1_Pinv.

gsl::cdf::gumbel1_Qinv q a b
implements gsl_cdf_gumbel1_Qinv.

gsl::cdf::gumbel2_P x a b
implements gsl_cdf_gumbel2_P.

gsl::cdf::gumbel2_Q x a b
implements gsl_cdf_gumbel2_Q.

gsl::cdf::gumbel2_Pinv p a b
implements gsl_cdf_gumbel2_Pinv.

gsl::cdf::gumbel2_Qinv q a b
implements gsl_cdf_gumbel2_Qinv.

gsl::cdf::poisson_P k::int mu
implements gsl_cdf_poisson_P.

gsl::cdf::poisson_Q k::int mu
implements gsl_cdf_poisson_Q.

gsl::cdf::binomial_P k::int p n::int
implements gsl_cdf_binomial_P.

gsl::cdf::binomial_Q k::int q n::int
implements gsl_cdf_binomial_Q.

gsl::cdf::negative_binomial_P k::int p n
implements gsl_cdf_negative_binomial_P.

gsl::cdf::negative_binomial_Q k::int p n
implements gsl_cdf_negative_binomial_Q.

gsl::cdf::pascal_P k::int p n::int
implements gsl_cdf_pascal_P.
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gsl::cdf::pascal_Q k::int p n::int
implements gsl_cdf_pascal_Q.

gsl::cdf::geometric_P k::int p
implements gsl_cdf_geometric_P.

gsl::cdf::geometric_Q k::int p
implements gsl_cdf_geometric_Q.

gsl::cdf::hypergeometric_P k::int n1::int n2::int t::int
implements gsl_cdf_hypergeometric_P.

gsl::cdf::hypergeometric_Q k::int n1::int n2::int t::int
implements gsl_cdf_hypergeometric_Q.

17.6.2 Examples

The following illustrates the use of each function in the randist module. The pdf functions
are illustrated first.

> using gsl::stats;
> using namespace gsl::ran;
> ugaussian_pdf 1.2;
0.194186054983213
> gaussian_pdf (-1.3) 1.5;
0.182690978264686
> gaussian_tail_pdf 2.0 1.0 1.5;
0.433042698395299
> ugaussian_tail_pdf 2.0 1.0;
0.34030367841782
> bivariate_gaussian_pdf 1.2 0.9 1.0 1.0 0.95;
0.184646843689817
> exponential_pdf 1.0 0.5;
0.270670566473225
> laplace_pdf 1.5 2.0;
0.118091638185254
> exppow_pdf 0.0 1.0 1.5;
0.553866083716236
> cauchy_pdf (-1.0) 1.0;
0.159154943091895
> rayleigh_pdf 2.5 1.0;
0.109842334058519
> rayleigh_tail_pdf 1.5 1.0 1.0;
0.802892142778485
> landau_pdf 1.1;
0.140968737919623
> gamma_pdf 1.0 1.0 1.5;
0.342278079355061
> flat_pdf 1.0 0.5 2.5;
0.5
> lognormal_pdf 0.01 0.0 1.0;
0.000990238664959182
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> chisq_pdf 1.0 2.0;
0.303265329856317
> fdist_pdf 0.5 3.0 2.0;
0.480970043785452
> tdist_pdf 0.1 10.0;
0.386975225815181
> beta_pdf 0.5 4.0 1.0;
0.499999999999999
> logistic_pdf (-1.0) 2.0;
0.117501856100797
> pareto_pdf 0.01 3.0 2.0;
0.0
> weibull_pdf 0.01 1.0 1.0;
0.990049833749168
> gumbel1_pdf 0.01 1.0 1.0;
0.367861108816436
> gumbel2_pdf 0.01 1.0 1.0;
3.72007597602084e-40
> dirichlet_pdf {0.1,0.2,0.8} {2.0,2.0,2.0};
0.00501316294425874
> dirichlet_lnpdf {0.1,0.2,0.8} {2.0,2.0,2.0};
-5.29568823688856
> poisson_pdf 4 0.4;
0.000715008049104682
> bernoulli_pdf 1 0.7;
0.7
> binomial_pdf 3 0.5 9;
0.1640625
> multinomial_pdf {0.1,0.2,0.7} {2,2,2};
0.0
> multinomial_lnpdf {0.1,0.2,0.7} {2,2,2};
-1728120799.71174
> negative_binomial_pdf 10 0.5 3.5;
0.0122430486923836
> pascal_pdf 10 0.5 3;
0.00805664062499999
> geometric_pdf 5 0.4;
0.05184
> hypergeometric_pdf 1 5 20 3;
0.413043478260872
> logarithmic_pdf 10 0.7;
0.00234619293712492
> test_discrete
> = v
> when
> px = discrete_preproc {0.1,0.3,0.4};
> v = discrete_pdf 0 px +
> discrete_pdf 1 px +
> discrete_pdf 2 px;
> _ = discrete_free px
> end;
> test_discrete;
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1.0

The cumulative distribution functions are shown.

> using namespace gsl::cdf;
> ugaussian_P (-1.3);
0.0968004845856103
> ugaussian_Q (-1.3);
0.90319951541439
> ugaussian_Pinv 0.84;
0.994457883209753
> ugaussian_Qinv 0.84;
-0.994457883209753
> gaussian_P (1.3) 1.5;
0.806937662858093
> gaussian_Q (1.3) 1.5;
0.193062337141907
> gaussian_Pinv 0.4 5.0;
-1.266735515679
> gaussian_Qinv 0.4 5.0;
1.266735515679
> exponential_P 1.0 0.5;
0.864664716763387
> exponential_Q 1.0 0.5;
0.135335283236613
> exponential_Pinv 0.6 0.5;
0.458145365937077
> exponential_Qinv 0.6 0.5;
0.255412811882995
> laplace_P 1.5 2.0;
0.763816723629493
> laplace_Q 1.5 2.0;
0.236183276370507
> laplace_Pinv 0.6 2.0;
0.446287102628419
> laplace_Qinv 0.4 2.0;
0.446287102628419
> exppow_P 0.0 1.0 2.5;
0.5
> exppow_Q 0.0 1.0 0.5;
0.5
> cauchy_P (-1.0) 1.0;
0.25
> cauchy_Q (-1.0) 1.0;
0.75
> cauchy_Pinv 0.75 1.0;
1.0
> cauchy_Qinv 0.25 1.0;
1.0
> rayleigh_P 1.5 2.0;
0.245160398010993
> rayleigh_Q 0.5 1.0;
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0.882496902584595
> rayleigh_Pinv 0.5 1.0;
1.17741002251547
> rayleigh_Qinv 0.5 1.0;
1.17741002251547
> gamma_P 1.0 1.0 3.0;
0.283468689426211
> gamma_Q 1.0 1.0 3.0;
0.716531310573789
> gamma_Pinv 0.5 1.0 1.0;
0.693147180559945
> gamma_Qinv 0.5 1.0 1.0;
0.693147180559945
> flat_P 2.0 1.2 4.8;
0.222222222222222
> flat_Q 2.0 1.2 4.8;
0.777777777777778
> flat_Pinv 0.2 0.5 2.5;
0.9
> flat_Qinv 0.2 0.5 2.5;
2.1
> lognormal_P 0.01 0.0 1.0;
2.06064339597172e-06
> lognormal_Q 0.01 0.0 1.0;
0.999997939356604
> lognormal_Pinv 0.1 0.0 1.0;
0.27760624185201
> lognormal_Qinv 0.1 0.0 1.0;
3.60222447927916
> chisq_P 1.0 2.0;
0.393469340287367
> chisq_Q 1.0 2.0;
0.606530659712633
> chisq_Pinv 0.5 2.0;
0.221199216928595
> chisq_Qinv 0.5 2.0;
1.38629436111989
> fdist_P 1.0 3.0 2.0;
0.46475800154489
> fdist_Q 1.0 3.0 2.0;
0.53524199845511
> fdist_Pinv 0.5 3.0 2.0;
1.13494292261288
> fdist_Qinv 0.5 3.0 2.0;
1.13494292261288
> tdist_P 2.1 10.0;
0.968961377898891
> tdist_Q (-2.1) 10.0;
0.968961377898891
> tdist_Pinv 0.68 10.0;
0.482264205919689
> tdist_Qinv 0.68 10.0;
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-0.482264205919689
> beta_P 0.75 2.0 2.0;
0.84375
> beta_Q 0.75 2.0 2.0;
0.15625
> beta_Pinv 0.75 2.0 2.0;
0.673648177666931
> beta_Qinv 0.25 2.0 2.0;
0.673648177666931
> logistic_P (-1.0) 2.0;
1
> logistic_Q (-1.0) 2.0;
0.622459331201855
> logistic_Pinv 0.75 1.0;
1.09861228866811
> logistic_Qinv 0.25 1.0;
1.09861228866811
> pareto_P 2.01 3.0 2.0;
0.0148512406901899
> pareto_Q 2.01 3.0 2.0;
0.98514875930981
> pareto_Pinv 0.1 3.0 2.0;
2.07148833730257
> pareto_Qinv 0.1 3.0 2.0;
4.30886938006377
> weibull_P 1.01 1.0 2.0;
0.639441117518024
> weibull_Q 1.01 2.0 3.0;
0.879160657465162
> weibull_Pinv 0.1 1.0 2.0;
0.324592845974501
> weibull_Qinv 0.1 1.0 2.0;
1.51742712938515
> gumbel1_P 1.01 1.0 1.0;
0.694739044426344
> gumbel1_Q 1.01 1.0 1.0;
0.305260955573656
> gumbel1_Pinv 0.1 1.0 1.0;
-0.834032445247956
> gumbel1_Qinv 0.1 1.0 1.0;
2.25036732731245
> gumbel2_P 1.01 1.0 1.0;
0.371539903071873
> gumbel2_Q 1.01 1.0 1.0;
0.628460096928127
> gumbel2_Pinv 0.1 1.0 1.0;
0.434294481903252
> gumbel2_Qinv 0.1 1.0 1.0;
9.4912215810299
> poisson_P 4 0.4;
0.999938756672898
> poisson_Q 4 0.6;
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0.000394486018340255
> binomial_P 3 0.5 10;
0.171874999999999
> binomial_Q 3 0.5 10;
0.828125000000001
> negative_binomial_P 10 0.5 3.0;
0.98876953125
> negative_binomial_Q 10 0.5 3.0;
0.01123046875
> pascal_P 10 0.5 3;
0.98876953125
> pascal_Q 10 0.5 3;
0.01123046875
> geometric_P 5 0.4;
0.92224
> geometric_Q 5 0.6;
0.01024
> hypergeometric_P 1 5 20 3;
0.908695652173913
> hypergeometric_Q 1 5 20 3;
0.0913043478260873

17.7 Sorting

This module is loaded via the command using gsl::sort and provides Pure wrappers for
the GSL sorting routines found in Chapter 11 of the GSL manual,

http://www.gnu.org/software/gsl/manual/html_node/Sorting.html.

17.7.1 Routines

gsl::sort_vector m::matrix
implements gsl_sort and gsl_sort_int without stride and n parameters.

gsl::sort_vector_index m::matrix
implements gsl_sort_index and gsl_sort_int_index without stride and n parame-
ters.

17.7.2 Examples

Usage of each library routine is illustrated below.

> using gsl::sort;
> using namespace gsl;
> sort_vector {0,3,2,4,5};
{0,2,3,4,5}
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> sort_vector_index {0.0,1.0,5.0,2.0,8.0,0.0};
{5,0,1,3,2,4}
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Chapter 18
pure-mpfr

Version 0.5, September 17, 2014

Albert Graef <aggraef@gmail.com>

The GNU MPFR library is a C library for multiple-precision floating-point computations
with correct rounding. It is based on GMP which Pure also uses for its bigint support.

This module makes the MPFR multiprecision floats (henceforth referred to as mpfr numbers
or values) available in Pure, so that they work with the other types of Pure numbers in an
almost seamless fashion. Pure mpfr values are represented as pointers which can readily be
passed as arguments to the MPFR functions, so the representation only involves minimal
overhead on the Pure side.

The module defines the type of mpfr values as an instance of Pure’s real type, so that it
becomes a well-behaved citizen of Pure’s numeric tower. Memory management of these
values is automatic. You can create an mpfr value from any other kind of Pure real value
(int, bigint or double), or from a string in decimal notation, using the mpfr function. Back
conversions are provided from mpfr to int, bigint, double and string (the latter by means
of a custom pretty-printer installed by this module, so that mpfr values are printed in a
format similar to the printf %g format). Integration with Pure’s complex type is provided
as well.

Please note that this module needs more testing and the API hasn’t been finalized
yet, but it should be perfectly usable already. As usual, please report any bugs
on the Pure issue tracker, on the Pure mailing list, or directly to the author, see
http://purelang.bitbucket.org/.

18.1 Copying

Copyright (c) 2011 by Albert Graef.
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pure-mpfr is free software: you can redistribute it and/or modify it under the terms of the
GNU Lesser General Public License as published by the Free Software Foundation, either
version 3 of the License, or (at your option) any later version.

pure-mpfr is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICU-
LAR PURPOSE. See the GNU Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with this
program. If not, see <http://www.gnu.org/licenses/>.

18.2 Installation

Get the latest source from https://bitbucket.org/purelang/pure-lang/downloads/pure-
mpfr-0.5.tar.gz.

Run make to compile the module and make install (as root) to install it in the Pure library
directory. This requires GNU make, and of course you need to have Pure and libmpfr in-
stalled.

make tries to guess your Pure installation directory and platform-specific setup. If it gets this
wrong, you can set some variables manually, please check the Makefile for details.

Note: This module requires Pure 0.50 or later and libmpfr 3.x (3.0.0 has been tested). Older
libmpfr versions (2.x) probably require some work.

18.3 Usage

After installation, you can use the operations of this module by placing the following import
declaration in your Pure programs:

using mpfr;

Note: This also pulls in the math standard library module, whose operations are overloaded
by the mpfr module in order to provide support for mpfr values. Thus you don’t need to
explicitly import the math module when using the mpfr module.

If you use both the mpfr module and the pointers standard library module in your script,
make sure that you import the pointers module after mpfr, so that the definitions of pointer
arithmetic in the pointers module do not interfere with the overloading of arithmetic oper-
ations in the mpfr module.
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18.3.1 Precision and Rounding

The following operations of the MPFR library are provided to inspect and change the default
precision and rounding modes used by MPFR.

mpfr_get_default_prec
mpfr_set_default_prec prec

Get and set the default precision in terms of number of bits in the mantissa, including
the sign. MPFR initially sets this to 53 (matching the mantissa size of double values).
It can be changed to any desired value not less than 2.

mpfr_get_prec x
Get the precision of an mpfr number x. Note that mpfr numbers always keep the pre-
cision they were created with, but it is possible to create a new mpfr number with any
given precision from an existing mpfr number using the mpfr function, see below.

mpfr_get_default_rounding_mode
mpfr_set_default_rounding_mode rnd

Get and set the default rounding mode, which is used for all arithmetic operations and
mathematical functions provided by this module. The given rounding mode rnd must
be one of the supported rounding modes listed below.

constant MPFR_RNDN // round to nearest, with ties to even
constant MPFR_RNDZ // round toward zero
constant MPFR_RNDU // round toward +Inf
constant MPFR_RNDD // round toward -Inf
constant MPFR_RNDA // round away from zero

Supported rounding modes. Please check the MPFR documentation for details.

In addition, the following operations enable you to control the precision in textual represen-
tations of mpfr values. This information is used by the custom pretty-printer for mpfr values
installed by the module.

mpfr_get_print_prec
mpfr_set_print_prec prec

Get and set the precision (number of decimal digits in the mantissa) used by the pretty-
printer.

18.3.2 MPFR Numbers

The module defines the following data type for representing mpfr values, which is a subtype
of the Pure real type:

type mpfr
This is a tagged pointer type (denoted mpfr* in Pure extern declarations) which is com-
patible with the mpfr_t and mpfr_ptr data types of the MPFR C library. Members of
this type are “cooked” pointers, which are allocated dynamically and freed automati-
cally when they are garbage-collected (by means of a corresponding Pure sentry).
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mpfrp x
Type predicate checking for mpfr values.

18.3.3 Conversions

The following operations are provided to convert between mpfr numbers and other kinds of
Pure real values.

mpfr x
mpfr (x,prec)
mpfr (x,prec,rnd)

This function converts any real number (int, bigint, double, rational, mpfr) to an
mpfr value.

Optionally, it is possible to specify a precision (number of bits in the mantissa) prec
and a rounding mode rnd (one of the MPFR_RND constants), otherwise MPFR’s default
precision and rounding mode are used (see Precision and Rounding above). Note that
this function may also be used to convert an mpfr to a new mpfr number, possibly with
a different precision and rounding.

The argument x can also be a string denoting a floating point number in decimal no-
tation with optional sign, decimal point and/or scaling factor, which is parsed and
converted to an mpfr number using the corresponding MPFR function.

int x
bigint x
double x

Convert an mpfr number x to the corresponding type of real number. Please note that
there is no rational conversion, as MPFR does not provide such an operation, but if
you need this then you can first convert x to a double and then apply the standard
library rational function to it (this may loose precision, of course).

str x
By virtue of the custom pretty-printer provided by this module, the standard library
str function can be used to obtain a printable representation of an mpfr number x in
decimal notation. The result is a string.

floor x
ceil x
round x
trunc x
frac x

Rounding and truncation functions. These all take and yield mpfr numbers. frac
returns the fractional part of an mpfr number, i.e., x-trunc x.
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18.3.4 Arithmetic

The following standard operators (see the Pure Library Manual) are overloaded to provide
mpfr arithmetic and comparisons. These all handle mixed mpfr/real operands.

- x
x + y
x - y
x * y
x / y
x ^ y

Arithmetic operations.

x == y
x ~= y
x <= y
x >= y
x < y
x > y

Comparisons.

18.3.5 Math Functions

The following functions from the math module are overloaded to provide support for mpfr
values. Note that it is also possible to invoke the corresponding functions from the MPFR
library in a direct fashion, using the same function names with an additional _mpfr suffix.
These functions also accept other kinds of real arguments which are converted to mpfr be-
fore applying the MPFR function.

abs x
Absolute value (this is implemented directly, so there’s no corresponding _mpfr func-
tion for this).

sqrt x
exp x
ln x
log x

Square root, exponential and logarithms.

sin x
cos x
tan x
asin x
acos x
atan x
atan2 y x

Trigonometric functions.

sinh x
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cosh x
tanh x
asinh x
acosh x
atanh x

Hyperbolic trigonometric functions.

18.3.6 Complex Number Support

The following functions from the math module are overloaded to provide support for com-
plex values involving mpfr numbers:

complex x
polar x
rect x
cis x
arg x
re x
im x
conj x

18.4 Examples

Import the module and set the default precision:

> using mpfr;
> mpfr_set_default_prec 64; // extended precision (long double on x86)
()

Calculate pi with the current precision. Note that mixed arithmetic works with any combi-
nation of real and mpfr numbers.

> let Pi = 4*atan (mpfr 1);
> pi; Pi; abs (Pi-pi);
3.14159265358979
3.14159265358979323851
1.22514845490862001043e-16

> let Pi2 = Pi^2;
> Pi2; sqrt Pi2; sqrt Pi2 == Pi;
9.86960440108935861941
3.14159265358979323851
1

You can also query the precision of a number and change it on the fly:

> Pi; mpfr_get_prec Pi;
3.14159265358979323851

628 18.4 Examples



Pure Language and Library Documentation, Release 0.62

64
> let Pi1 = mpfr (Pi,53); Pi1; mpfr_get_prec Pi1;
3.1415926535897931
53

Complex mpfr numbers work, too:

> let z = mpfr 2^(1/i); z;
0.769238901363972126565+:-0.638961276313634801184
> let z = ln z/ln (mpfr 2); z;
0.0+:-1.0
> abs z, arg z;
1.0,-1.57079632679489661926
> polar z;
1.0<:-1.57079632679489661926
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Chapter 19
pure-octave

Version 0.6, September 17, 2014

Albert Graef <aggraef@gmail.com>

A Pure interface to GNU Octave.

19.1 Introduction

This is an Octave module for the Pure programming language, based on Paul Kienzle’s oc-
tave_embed which allows Octave to be embedded in other languages. It allows you to exe-
cute arbitrary Octave commands and Octave functions from Pure.

19.2 Copying

pure-octave is free software: you can redistribute it and/or modify it under the terms of the
GNU General Public License as published by the Free Software Foundation, either version 3
of the License, or (at your option) any later version.

pure-octave is distributed in the hope that it will be useful, but WITHOUT ANY WAR-
RANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE.

Please see the accompanying COPYING file for the precise license terms. The GPL can also
be read online at http://www.gnu.org/licenses/.
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19.3 Installation

Get the latest source from https://bitbucket.org/purelang/pure-lang/downloads/pure-
octave-0.6.tar.gz.

Run make to compile the module and make install (as root) to install it in the Pure library
directory. This requires GNU make, and of course you need to have both Pure and Oc-
tave installed (including Octave’s mkoctfile utility and the corresponding header files and
libraries).

make tries to guess your Pure installation directory and platform-specific setup. If it gets this
wrong, you can set some variables manually. In particular, make install prefix=/usr sets
the installation prefix. Please see the Makefile for details.

NOTE: This release of pure-octave has been tested with Octave 3.6.2 and 3.8.0. Older ver-
sions might require some fiddling with the sources to get the embedded Octave interface
working.

19.4 Basic Usage

Import this module into your Pure scripts as follows:

using octave;

This will add an embedded instance of the Octave interpreter to your program. (You can
import this module as often as you want, but there’s always only one instance of Octave in
each process.)

octave_eval s
Executes arbitrary Octave code.

> octave_eval "eig([1 2;3 4])";
ans =

-0.37228
5.37228

0

This prints the result on stdout and returns a result code (zero if everything went fine). To
suppress the printing of the result, simply terminate the Octave statement with a semicolon:

> octave_eval "eig([1 2;3 4]);";
0

octave_set var val
octave_get var

Set and get global variables in the Octave interpreter.
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This allows you to define values to be used when evaluating Octave code, and to transfer
results back to Pure. However, before such globals can be accessed in Octave, you must
explicitly declare them as globals:

> octave_eval "global x y ans";
0

Now you can use octave_set and octave_get to transfer values between Pure and Octave
as follows:

> octave_set "x" {1.0,2.0;3.0,4.0};
{1.0,2.0;3.0,4.0}
> octave_eval "eig(x);";
0
> octave_get "ans";
{-0.372281323269014;5.37228132326901}

Note that the most recent result can always be accessed through Octave’s ans variable. You
can also use an explicit variable definition as follows:

> octave_eval "y = eig(x);";
0
> octave_get "y";
{-0.372281323269014;5.37228132326901}

19.5 Direct Function Calls

octave_call fun n args
Call an octave function in a direct fashion. fun denotes the name of the function, n the
number of function results and args the function arguments.

> let x = {1.0,2.0;3.0,4.0};
> octave_call "eig" 1 x;
{-0.372281323269014;5.37228132326901}

Note the second argument, which denotes the desired number of return values. This will
usually be 1 (or 0 if you don’t care about the result), but some Octave functions may return
a variable number of results, depending on how they’re called. Multiple values are returned
as tuples in Pure:

> octave_call "eig" 2 x;
{-0.824564840132394,-0.415973557919284;0.565767464968992,-0.909376709132124},
{-0.372281323269014,0.0;0.0,5.37228132326901}

Multiple arguments are also specified as a tuple:

> octave_call "norm" 1 (x, 2);
5.46498570421904
> octave_call "norm" 1 (x, 1);
6.0
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Instead of a function name, you can also specify the function to be called using a special
kind of Octave object, a function value. These are returned, e.g., by Octave’s str2func and
inline builtins. For your convenience, pure-octave provides a frontend to these builtins, the
octave_func function, which lets you specify an Octave function in one of two ways:

octave_func name
Returns the Octave function with the given name. This works like Octave’s str2func
builtin.

octave_func expr
Returns an “inline” function, where expr is an Octave expression (as a string) describ-
ing the function value. This works like Octave’s inline builtin. Instead of just an
Octave expression, you can also specify a tuple consisting of the inline expression and
the parameter names. (Otherwise the parameters are determined automatically, see
the description of the inline function in the Octave manual for details.)

Note that inline functions allow you to call stuff that is not an Octave function and hence
cannot be specified directly in octave_call, such as an operator. Examples:

> let eig = octave_func "eig";
> let mul = octave_func "x*y";
> octave_call eig 1 (octave_call mul 1 (x,x));
{0.138593383654928;28.8614066163451}
> let add = octave_func ("x+y","x","y");
> octave_call add 1 (x,x);
{2.0,4.0;6.0,8.0}

19.6 Data Conversions

As shown above, the octave_set, octave_get and octave_call functions convert Pure data
to corresponding Octave values and vice versa. Octave scalars and matrices of boolean,
integer, double, complex and character data are all directly supported by this interface, and
are mapped to the corresponding Pure data types in a straightforward manner (scalars to
scalars, matrices to matrices and strings to strings). Note that in any case these conversions
create copies of the data, so modifying, say, an Octave matrix received via octave_get in Pure
only affects the Pure copy of the matrix and leaves the original Octave matrix unchanged.

Octave’s higher-dimensional numeric arrays, cell arrays and structures are not natively sup-
ported by the interface, but are implemented using special conversion hooks defined in
the octave.pure module (see the __pure2oct__ and __oct2pure__ functions in octave.pure).
This simplifies the implementation and makes these conversions customizable if the need
arises. It also makes it possible to extend the interface for further special data structures in
the future. Please check the octave.pure module for details. It’s possible to disable these
custom conversions with the octave_converters function:

octave_converters flag
Enable or disable custom data conversions between Pure and Octave. The given flag
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must be a truth value (zero means disable, any nonzero value enable). The function
returns the previous value of the flag.

Octave objects which are neither handled natively by the interface nor through the auxiliary
converters (if enabled) are just passed through as is, in the form of a cooked pointer to an Oc-
tave value which frees itself when garbage-collected. This allows these objects to be passed
around freely, but you can’t inspect or modify them in Pure. This applies, in particular, to
Octave function objects, see Direct Function Calls. You can check for such objects with the
octave_valuep predicate:

octave_valuep x
Check for Octave value pointers.

> let eig = octave_func "eig";
> eig; octave_valuep eig;
#<pointer 0x230dba0>
1

Such Octave value pointers can be used freely whereever an Octave value is needed (i.e., in
invocations of octave_set and octave_call).

You should also note the following:

• Scalars and 1x1 matrices are indistinguishable in Octave, thus any 1x1 matrix will be
returned as a scalar from Octave to Pure.

• All types of boolean and integer matrices are returned from Octave to Pure as (ma-
chine) integer matrices. When converted back to Octave, these all become Octave
int32 matrices, but you can easily convert them to boolean or other types of matri-
ces in Octave as needed. For instance:

> octave_set "a" {1,2;3,4};
{1,2;3,4}
> octave_eval "global a ans";
0
> octave_eval "eig(a)";
error: eig: wrong type argument ‘int32 matrix’
1
> octave_eval "eig(double(a))";
ans =

-0.37228
5.37228

0
> octave_eval "a>2";
ans =

0 0
1 1

0
> octave_get "ans";
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{0,0;1,1}

• Octave strings are mapped to Pure strings, and character matrices with more than one
row are mapped to (symbolic) column vectors of Pure strings. Example:

> octave_set "a" "Hello, world!";
"Hello, world!"
> octave_eval "a";
a = Hello, world!
0
> octave_eval "[a;’abc’]";
ans =

Hello, world!
abc

0
> octave_get "ans";
{"Hello, world!";"abc "}

• With the default converters, Octave numeric and cell arrays are represented as sym-
bolic Pure matrices, structs as Pure records. This is still experimental and minor de-
tails of the Pure data representations are subject to change; please check octave.pure
for more information. Here are some examples:

> octave_call "rand" 1 (1,2,3);
{{0.775409654288678,0.946392719372485,0.351919625087157},
{0.388835562237807,0.589476406910984,0.839694088469728}}
> octave_call "size" 1 ans;
{1.0,2.0,3.0}

> octave_eval "struct(’name’, ’Peter’, ’age’, 23);"; octave_get "ans";
0
{"name"=>"Peter","age"=>23.0}
> octave_call (octave_func ("x.age","x")) 1 ans;
23.0

Nested cell arrays and structs are set off with the special cell and struct constructors:

> octave_eval "x = {[1,2,3], {1,2,3}}; x{3}.name = ’Peter’; x{3}.age = 23;";
0
> octave_get "x";
{{1.0,2.0,3.0},cell {1.0,2.0,3.0},struct {"name"=>"Peter","age"=>23.0}}

Struct arrays are also supported:

> octave_eval "y = struct(’name’, {’Peter’,’Hannah’}, ’age’, {23, 16});";
0
> octave_get "y";
{{"name"=>"Peter","age"=>23.0},{"name"=>"Hannah","age"=>16.0}}

There’s also a little convenience function to factor a struct array into a more condensed
form (this format can also be used to denote a struct array in Pure):
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> struct_array ans;
{"name"=>{"Peter","Hannah"},"age"=>{23.0,16.0}}
> octave_call "disp" 0 ans;

1x2 struct array containing the fields:

name
age

()

19.7 Calling Back Into Pure

The embedded Octave interpreter provides one special builtin, the pure_call function
which can be used to call any function defined in the executing Pure script from Octave.
For instance:

> even m::matrix = {~(int x mod 2) | x=m};
> octave_eval "pure_call(’even’, 1:12)";
ans =

0 1 0 1 0 1 0 1 0 1 0 1

0

Here’s the description of the pure_call function, as it is printed with Octave’s help com-
mand:

‘pure_call’ is a built-in function

RES = pure_call(NAME, ARG, ...)
[RES, ...] = pure_call(NAME, ARG, ...)

Execute the Pure function named NAME (a string) with the given arguments.
The Pure function may return multiple results as a tuple. Example:
pure_call(’succ’, 99) => 100.

19.8 Gnuplot Interface

Octave has a comprehensive plotting interface based on Gnuplot. To make the plotting ca-
pabilities available in a convenient form in Pure, the distribution includes an additional
gnuplot.pure module which provides simple wrappers of the most important plotting func-
tions. Please check gnuplot.pure for details. For instance, here are a few simple plotting
commands:

using gnuplot;
using namespace gnuplot;
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sombrero(); // sample "sombrero" plot (3d)
popup(); // show the plot window
peaks 25; // another sample 3d plot
refresh(); // update the window
popdn(); // hide the plot window
print "plot.eps"; // print the plot to an encapsulated PostScript file

Note that most of the operations are in their own gnuplot namespace, so we used a using
namespace declaration for convenience here. The following example does the “sombrero”
plot again, but shows some of the explicit plotting commands and helper functions to gen-
erate the data:

using math;
let u = linspace (-8, 8, 41);
let x,y = meshgrid2 u;
let z = {sin r/r | r = {sqrt (x^2+y^2)+eps() | x,y = zip x y}};
mesh (u, u, z);
popup();

Note the commands that are needed to actually show the plot window and update its con-
tents after doing each plot. Octave normally handles this automatically in its command loop,
but since the embedded Octave interpreter doesn’t have an interactive command line, you’ll
have to take care of this yourself when using this module.

Also note that there doesn’t seem to be a direct way to specify the default output terminal
in the Octave gnuplot interface, so if you need to do this then you’ll have to set the GNUTERM
environment variable as described in the gnuplot manual page.

19.9 Caveats and Notes

Directly embedding Octave in Pure programs is convenient because it allows easy exchange
of data between Pure and Octave, and you can also call Octave functions directly from Pure
and vice versa. However, it also comes at a cost. A default build of Octave pulls in quite
a few dependencies of its own which might conflict with other modules loaded in a Pure
script. Specifically, we have found that older Octave versions may give problems with third-
party graphics libraries such as VTK, if used in the same program as Octave. (These seem to
be fixed in the latest Octave and VTK versions, however.)
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Chapter 20
Pure-Rational - Rational number library for
the Pure programming language

Version 0.1, September 17, 2014

Rob Hubbard
Albert Graef <aggraef@gmail.com>
Jiri Spitz <jiri.spitz@bluetone.cz>

This package provides a Pure port of Q+Q, Rob Hubbard’s rational number library for the
Q programming language. The port was done by Jiri Spitz. It contains rational.pure, a
collection of utility functions for rational numbers, and rat_interval.pure, a module for
doing interval arithmetic needed by rational.pure. These modules are designed to work
with the math.pure module (part of the standard Pure library), which contains the definition
of Pure’s rational type and implements the basic rational arithmetic.

This document is an edited version of Rob’s original Q+Q manual available from the Q web-
site, slightly adjusted to account for the Pure specifics of the implementation. In particular,
note that the operations provided by rational.pure and rat_interval.pure live in their
own rational and interval namespaces, respectively, so if you want to get unqualified ac-
cess to the symbols of these modules (as the examples in this manual assume) then you’ll
have to import the modules as follows:

using rational, rat_interval;
using namespace rational, interval;

Also note that rational always pulls in the math module, so you don’t have to import the
latter explicitly if you are using rational.

Another minor difference to the Q version of this module is that rational results always have
Pure bigints as their numerators and denominators, hence the L suffix in the printed results.
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Also, unary minus binds weaker in Pure than the rational division operator, so a negative
rational number will be printed as, e.g., (-1L)%2L, which looks a bit funny but is correct
since Pure rationals always carry their sign in the numerator.

20.1 Copying

Copyright (c) 2006 - 2010 by Rob Hubbard.
Copyright (c) 2006 - 2010 by Albert Graef <aggraef@gmail.com>.
Copyright (c) 2010 by Jiri Spitz <jiri.spitz@bluetone.cz>.

Pure-rational is free software: you can redistribute it and/or modify it under the terms of the
GNU General Public License as published by the Free Software Foundation, either version 3
of the License, or (at your option) any later version.

Pure-rational is distributed in the hope that it will be useful, but WITHOUT ANY WAR-
RANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU Public License along with this program. If not,
see <http://www.gnu.org/licenses/>.

20.2 Installation

Get the latest source from https://bitbucket.org/purelang/pure-lang/downloads/pure-
rational-0.1.tar.gz.

Then run make install (as root) to install pure-rational in the Pure library directory. This
requires GNU make, and of course you need to have Pure installed.

make install tries to guess your Pure installation directory. If it gets this wrong, you can
install using make install prefix=/usr which sets the installation prefix. Please see the
Makefile for details.

20.3 Introduction

20.3.1 The Rational Module

This module provides additional operations on the rational number type provided by the
math.pure module in the standard library. The module is compatible with Pure version 0.43
(onwards).
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20.3.2 The Files and the Default Prelude

The implementation of the rational type and associated utilities is distributed across various
files.

math.pure and Other Files

The file math.pure defines the type, its constructors and ‘deconstructors’ and basic arithmeti-
cal and mathematical operators and functions. This is part of the standard Pure library. A
few definitions associated with rationals are also defined in other standard library modules.
In particular, the type tests are contained in primitives.pure.

It is also possible to create rational complex numbers (in addition to double complex num-
bers and integral or Gaussian complex numbers). That is, rationals play nicely with the
complex number constructors provided in the math.pure module. This is discussed further
in Rational Complex Numbers.

rational.pure

Additional ‘rational utilities’, not included in the math.pure module, are defined in
rational.pure. The functions include further arithmetical and mathematical operators and
functions, continued fraction support, approximation routines and string formatting and
evaluation.

The rational utilities include some ‘rational complex number’ functions.

rat interval.pure

Amongst the rational utilities are some functions that return a rational interval. The file
rat_interval.pure is a partial implementation of interval arithmetic. Intervals are dis-
cussed further in Intervals.

20.3.3 Notation

Throughout this document, the parameters q, q0, q1, ... usually denote rationals (∈ Q),
parameters z, ... usually denote integers (∈ Z), r, ... usually denote real numbers (∈ R), c, ...
usually denote complex numbers (∈C), n, ... usually denote parameters of any numeric type,
v, ... usually denote parameters of any interval type, and x, ... usually denote parameters of
any type.

The reals are not just the doubles, but include rationals and integers. The term ‘rational’
usually refers to a rational number ∈ Q ⊃ Z, or an expression of type rational or integer.
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20.4 The Rational Type

20.4.1 Constructors

Rationals are constructed with the % exact division operator, and other kinds of numbers can
be converted to rationals with the rational function. These are both defined in math.pure.

n1 % n2
is the exact division operator, which may be used as a constructor (for integers n1 and
n2). This is described in More on Division.

rational x
converts the given number x to a rational.

Example 1 Constructing a fraction:

> 44%14;
22L%7L

Example 2 Converting from an integer:

> rational 3;
3L%1L

20.4.2 ‘Deconstructors’

A rational number is in simplest form if the numerator and denominator are coprime (i.e. do
not have a factor in common) and the denominator is positive (and, specifically, non-zero).
Sometimes the term ‘irreducible’ is used for a rational in simplest form. This is a property of
the representation of the rational number and not of the number itself.

num q
given a rational or integer q, returns the ‘(signed) simplest numerator’, i.e. the numer-
ator of the normalised form of q.

den q
given a rational or integer q, returns the ‘(positive) simplest denominator’, i.e. the
denominator of the normalised form of q.

rational::num_den q
given a rational or integer q, returns a pair (n, d) containing the (signed) simplest
numerator n and the (positive) simplest denominator d. This is the inverse (up to
equivalence) of rational as defined on integer pairs (see Constructors).

Example 3 Using num_den to obtain a representation in simplest form:

> let q = (44%(-14));
> num q;
-22L
> den q;
7L
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> num_den q;
-22L,7L
> num_den 3;
3L,1L
> num_den (-3);
-3L,1L

Together, num and den are a pair of ‘decomposition’ operators, and num_den is also a decom-
position operator. There are others (see Decomposition). The integer and fraction function
(see Integer and Fraction Parts) may be used in conjunction with num_den_gauss to decom-
pose a rational into integer, numerator and denominator parts.

20.4.3 Type and Value Tests

The functions rationalp and ratvalp and other rational variants are new for rationals and
the standard functions exactp and inexactp are extended for rationals.

A value is ‘exact’, or of an exact type, if it is of a type that is able to represent the values
returned by arithmetical operations exactly; in a sense, it is ‘closed’ under arithmetical op-
erations. Otherwise, a value is ‘inexact’. Inexact types are able to store some values only
approximately.

The doubles are not an exact type. The results of some operations on some values that are
stored exactly, can’t be stored exactly. (Furthermore, doubles are intended to represent real
numbers; no irrational number (∈ R \ Q) can be stored exactly as a double; even some
rational (∈ Q) numbers are not stored exactly.)

The rationals are an exact type. All rational numbers (subject to available resources, of
course) are stored exactly. The results of the arithmetical operations on rationals are rationals
represented exactly. Beware that the standard intvalp and ratvalp may return 1 even if the
value is of double type. However, these functions may be combined with exactp.

exactp x
returns whether x has an exact value.

inexactp x
returns whether x has an inexact value.

rationalp x
returns whether x is of rational type.

ratvalp x
returns whether x has a rational value.

Example 4 Rational value tests:

> let l = [9, 9%1, 9%2, 4.5, sqrt 2, 1+i, inf, nan];
> map exactp l;
[1,1,1,0,0,1,0,0]
> map inexactp l;
[0,0,0,1,1,0,1,1]
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> map rationalp l;
[0,1,1,0,0,0,0,0]
> map ratvalp l;
[1,1,1,1,1,0,0,0]
> map (\x -> (exactp x && ratvalp x)) l; // "has exact rational value"
[1,1,1,0,0,0,0,0]
> map intvalp l; // for comparison
[1,1,0,0,0,0,0,0]
> map (\x -> (exactp x && intvalp x)) l; // "has exact integer value"
[1,1,0,0,0,0,0,0]

See Rational Complex Numbers for details about rational complex numbers, and Rational
Complex Type and Value Tests for details of their type and value tests.

20.5 Arithmetic

20.5.1 Operators

The standard arithmetic operators (+), (−) and (*) are overloaded to have at least one rational
operand. If both operands are rational then the result is rational. If one operand is integer,
then the result is rational. If one operand is double, then the result is double.

The operators (/) and (%) are overloaded for division on at least one rational operand. The
value returned by (/) is always inexact (in the sense of Type and Value Tests). The value
returned by (%) is exact (if it exists).

The standard function pow is overloaded to have a rational left operand. If pow is passed
integer operands where the right operand is negative, then a rational is returned. The right
operand should be an integer; negative values are permitted (because q−z = 1/qz). It is
not overloaded to also have a rational right operand because such values are not generally
rational (e.g. q1/n = n√q).

The standard arithmetic operator (^) is also overloaded, but produces a double value (as
always).

Example 5 Arithmetic:

> 5%7 + 2%3;
29L%21L
> str_mixed ans;
"1L+8L/21L"
> 1 + 2%3;
5L%3L
> ans + 1.0;
2.66666666666667
> 3%8 - 1%3;
1L%24L
> (11%10) ^ 3;
1.331
> pow (11%10) 3;
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1331L%1000L
> pow 3 5;
243L
> pow 3 (-5);
1L%243L

(See the function str_mixed.)

Beware that (/) on integers will not produce a rational result.

Example 6 Division:

> 44/14;
3.14285714285714
> 44%14;
22L%7L
> str_mixed ans;
"3L+1L/7L"

(See the function str_mixed.)

20.5.2 More on Division

There is a rational-aware divide operator on the numeric types:

n1 % n2
returns the quotient (∈ Q) of n1 and n2. If n1 and n2 are rational or integer then the
result is rational. This operator has the precedence of division (/).

Example 7 Using % like a constructor:

> 44 % 14;
22L%7L
> 2 + 3%8; // "2 3/8"
19L%8L
> str_mixed ans;
"2L+3L/8L"

(See the function str_mixed.)

rational::reciprocal n
returns the reciprocal of n: 1/n.

Example 8 Reciprocal:

> reciprocal (22%7);
7L%22L

The following division functions are parameterised by a rounding mode roundfun. The
available rounding modes are described in Rounding to Integer.

rational::divide roundfun n d
for rationals n and d returns a pair (q, r) of ‘quotient’ and ‘remainder’ where q is an
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integer and r is a rational such that |r| < |d| (or better) and n = q * d + r. Further
conditions may hold, depending on the chosen rounding mode roundfun (see Round-
ing to Integer). If roundfun = floor then 0 ≤ r < d. If roundfun = ceil then −d < r
≤ 0. If roundfun = trunc then |r| < |d| and sgn r ∈ {0, sgn d}. If roundfun = round,
roundfun = round_zero_bias or roundfun = round_unbiased then |r| ≤ d/2.

rational::quotient roundfun nN d
returns just the quotient as produced by divide roundfun n d.

rational::modulus roundfun n d
returns just the remainder as produced by divide roundfun n d.

q1 div q2
(overload of the built-in div) q1 and q2 may be rational or integer. Returns an integer.

q1 mod q2
(overload of the built-in mod) q1 and q2 may be rational or integer. Returns a rational.
If q = q1 div q2 and r = q1 mod q2 then q1 = q * q2 + q, q ∈ Z, |r| < |q2| and sgn r ∈
{0, sgn q2}.

20.5.3 Relations — Equality and Inequality Tests

The standard arithmetic operators (==), (~=), (<), (<=), (>), (>=) are overloaded to have at
least one rational operand. The other operand may be rational, integer or double.

Example 9 Inequality:

> 3%8 < 1%3;
0

20.5.4 Comparison Function

rational::cmp n1 n2
is the ‘comparison’ (or ‘compare’) function, and returns sgn (n1− n2); that is, it returns
−1 if n1 < n2, 0 if n1 = n2, and +1 if n1 > n2.

Example 10 Compare:

> cmp (3%8) (1%3);
1

20.6 Mathematical Functions

Most mathematical functions, including the elementary functions (sin, sin−1, sinh, sinh−1,
cos, ... , exp, ln, ... ), are not closed on the set of rational numbers. That is, most mathematical
functions do not yield a rational number in general when applied to a rational number.
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Therefore the elementary functions are not defined for rationals. To apply these functions,
first apply a cast to double, or compose the function with a cast.

20.6.1 Absolute Value and Sign

The standard abs and sgn functions are overloaded for rationals.

abs q
returns absolute value, or magnitude, |q| of q; abs q = |q| = q × sgn q (see below).

sgn q
returns the sign of q as an integer; returns −1 if q < 0, 0 if q = 0, +1 if q > 0.

Together, these functions satisfy the property ∀q • (sgn q) * (abs q) = q (i.e. ∀q • (sgn q)
* |q| = q). Thus these provide a pair of ‘decomposition’ operators; there are others (see
Decomposition).

20.6.2 Greatest Common Divisor (GCD) and Least Common Multiple (LCM)

The standard functions gcd and lcm are overloaded for rationals, and mixtures of integer
and rational.

gcd n1 n2
The GCD is also known as the Highest Common Factor (HCF). The GCD of rationals
q1 and q2 is the largest (therefore positive) rational f such that f divides into both q1
and q2 exactly, i.e. an integral number of times. This is not defined for n1 and n2 both
zero. For integral q1 and q2, this definition coincides with the usual definition of GCD
for integers.

Example 11 With two rationals:

> let a = 7%12;
> let b = 21%32;
> let f = gcd a b;
> f;
7L%96L
> a % f;
8L%1L
> b % f;
9L%1L

Example 12 With a rational and an integer:

> let f = gcd (6%5) 4;
> f;
2L%5L
> (6%5) % f;
3L%1L
> 4 % f;
10L%1L
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Example 13 With integral rationals and with integers:

> gcd (rational 18) (rational 24);
6L%1L
> gcd 18 24;
6

Example 14 The behaviour with negative numbers:

> gcd (rational (-18)) (rational 24);
6L%1L
> gcd (rational 18) (rational (-24));
6L%1L
> gcd (rational (-18)) (rational (-24));
6L%1L

lcm n1 n2
The LCM of rationals q1 and q2 is the smallest positive rational m such that both q1
and q2 divide m exactly. This is not defined for n1 and n2 both zero. For integral q1
and q2, this definition coincides with the usual definition of LCM for integers.

Example 15 With two rationals:

> let a = 7%12;
> let bB = 21%32;
> let m = lcm a b;
> m;
21L%4L
> m % a;
9L%1L
> m % b;
8L%1L

Example 16 With a rational and an integer:

> let m = lcm (6%5) 4;
> m;
12L%1L
> m % (6%5);
10L%1L

Example 17 The behaviour with negative numbers:

> lcm (rational (-18)) (rational 24);
72L%1L
> lcm (rational 18) (rational (-24));
72L%1L
> lcm (rational (-18)) (rational (-24));
72L%1L

Together, the GCD and LCM have the following property when applied to two numbers:
(gcd q1 q2) * (lcm q1 q2) = |q1 * q2|.
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20.6.3 Extrema (Minima and Maxima)

The standard min and max functions work with rational values.

Example 18 Maximum:

> max (3%8) (1%3);
3L%8L

20.7 Special Rational Functions

20.7.1 Complexity

The ‘complexity’ (or ‘complicatedness’) of a rational is a measure of the greatness of its sim-
plest (positive) denominator.

The complexity of a number is not itself made available, but various functions and operators
are provided to allow complexities to be compared. Generally, it does not make sense to
operate directly on complexity values.

The complexity functions in this section may be applied to integers (the least complex), ra-
tionals, or reals (doubles; the most complex).

Functions concerning ‘complexity’ are named with ‘cplx’, whereas functions concerning
‘complex numbers’ (see Rational Complex Numbers) are named with ‘comp’.

Complexity Relations

n1 rational::eq_cplx n2
“[is] equally complex [to]” — returns 1 if n1 and n2 are equally complex; returns 0
otherwise. Equal complexity is not the same a equality; n1 and n2 are equally com-
plex if their simplest denominators are equal. Equal complexity forms an equivalence
relation on rationals.

Example 19 Complexity equality test:

> (1%3) eq_cplx (100%3);
1
> (1%4) eq_cplx (1%5);
0
> (3%3) eq_cplx (1%3); // LHS is not in simplest form
0

n1 rational::not_eq_cplx n2
“not equally complex” — returns 0 if n1 and n2 are equally complex; returns 1 other-
wise.
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n1 rational::less_cplx n2
“[is] less complex [than]” (or “simpler”) — returns 1 if n1 is strictly less complex than
n2; returns 0 otherwise. This forms a partial strict ordering on rationals.

Example 20 Complexity inequality test:

> (1%3) less_cplx (100%3);
0
> (1%4) less_cplx (1%5);
1
> (3%3) less_cplx (1%3); // LHS is not in simplest form
1

n1 rational::less_eq_cplx n2
“less or equally complex” (or “not more complex”) — returns 1 if n1 is less complex
than or equally complex to n2; returns 0 otherwise. This forms a partial non-strict
ordering on rationals.

n1 rational::more_cplx n2
“[is] more complex [than]” — returns 1 if n1 is strictly more complex than n2; returns
0 otherwise. This forms a partial strict ordering on rationals.

n1 rational::more_eq_cplx n2
“more or equally complex” (or “not less complex”) — returns 1 if n1 is more complex
than or equally complex to n2; returns 0 otherwise. This forms a partial non-strict
ordering on rationals.

Complexity Comparison Function

rational::cmp_complexity n1 n2
is the ‘complexity comparison’ function, and returns the sign of the difference in com-
plexity; that is, it returns −1 if n1 is less complex than n2, 0 if n1 and n2 are equally
complex (but not necessarily equal), and +1 if n1 is more complex than n2.

Example 21 Complexity comparison:

> cmp_complexity (1%3) (100%3);
0
> cmp_complexity (1%4) (1%5);
-1
> cmp_complexity (3%3) (1%3); // LHS is not in simplest form
-1

Complexity Extrema

rational::least_cplx n1 n2
returns the least complex of n1 and n2; if they’re equally complex, n1 is returned.

Example 22 Complexity selection:
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> least_cplx (100%3) (1%3);
100L%3L
> least_cplx (1%5) (1%4);
1L%4L
> least_cplx (1%3) (3%3); // second argument not in simplest form
1L%1L

rational::most_cplx n1 n2
returns the most complex of n1 and n2; if they’re equally complex, n1 is returned.

Other Complexity Functions

rational::complexity_rel n1 op n2
returns “complexity-of n1” compared by operator op to the “complexity-of n2”. This
is equivalent to prefix complexity rel op n1 n2 (below), but is the more readable form.

Example 23 Complexity relations:

> complexity_rel (1%3) (==) (100%3);
1
> complexity_rel (1%4) (<=) (1%5);
1
> complexity_rel (1%4) (>) (1%5);
0

rational::_complexity_rel op n1 n2
returns the same as complexity_rel n1 op n2, but this form is more convenient for
currying.

20.7.2 Mediants and Farey Sequences

rational::mediant q1 q2
returns the canonical mediant of the rationals q1 and q2, a form of (nonarithmetic)
average on rationals. The mediant of the representations n1/d1 = q1 and n2/d2 = q2,
where d1 and d2 must be positive, is defined as (n1 + n2)/(d1 + d2). A mediant of the
rationals q1 and q2 is a mediant of some representation of each of q1 and q2. That is,
the mediant is dependent upon the representations and therefore is not well-defined
as a function on pairs of rationals. The canonical mediant always assumes the simplest
representation, and therefore is well-defined as a function on pairs of rationals.

By the phrase “the mediant” (as opposed to just “a mediant”) we always mean “the
canonical mediant”.

If q1 < q2, then any mediant q is always such that q1 < q < q2.

The (canonical) mediant has some special properties. If q1 and q2 are integers, then the
mediant is the arithmetic mean. If q1 and q2 are unit fractions (reciprocals of integers),
then the mediant is the harmonic mean. The mediant of q and 1/q is ±1, (which
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happens to be a geometric mean with the correct sign, although this is a somewhat
uninteresting and degenerate case).

Example 24 Mediants:

> mediant (1%4) (3%10);
2L%7L
> mediant 3 7; // both integers
5L%1L
> mediant 3 8; // both integers again
11L%2L
> mediant (1%3) (1%7); // both unit fractions
1L%5L
> mediant (1%3) (1%8); // both unit fractions again
2L%11L
> mediant (-10) (-1%10);
(-1L)%1L

rational::farey k
for an integer k, farey returns the ordered list containing the order-k Farey sequence,
which is the ordered list of all rational numbers between 0 and 1 inclusive with (sim-
plest) denominator at most k.

Example 25 A Farey sequence:

> map str_mixed (farey 6);
["0L","1L/6L","1L/5L","1L/4L","1L/3L","2L/5L","1L/2L","3L/5L","2L/3L",
"3L/4L","4L/5L","5L/6L","1L"]

(See the function str_mixed.)

Farey sequences and mediants are closely related. Three rationals q1 < q2 < q3 are consecu-
tive members of a Farey sequence if and only if q2 is the mediant of q1 and q3. If rationals
q1 = n1/d1 < q2 = n2/d2 are consecutive members of a Farey sequence, then n2d1 − n1d2 =
1.

20.7.3 Rational Type Simplification

rational::rat_simplify q
returns q with rationals simplified to integers, if possible.

Example 26 Rational type simplification:

> let l = [9, 9%1, 9%2, 4.5, 9%1+i, 9%2+i]; l;
[9,9L%1L,9L%2L,4.5,9L%1L+:1,9L%2L+:1]
> map rat_simplify l;
[9,9,9L%2L,4.5,9+:1,9L%2L+:1]

See Rational Complex Numbers for details about rational complex numbers, and Rational
Complex Type Simplification for details of their type simplification.
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20.8 Q -> Z — Rounding

20.8.1 Rounding to Integer

Some of these are new functions, and some are overloads of standard functions. The be-
haviour of the overloads is consistent with that of the standard functions.

floor q
(overload of standard function) returns q rounded downwards, i.e. towards −1, to an
integer, usually denoted bQc.

ceil q
(overload of standard function) returns q rounded upwards, i.e. towards +1, to an
integer, usually denoted dQe.

trunc q
(overload of standard function) returns q truncated, i.e. rounded towards 0, to an
integer.

round q
(overload of standard function) returns q ‘rounded off’, i.e. rounded to the nearest
integer, with ‘half-integers’ (values that are an integer plus a half) rounded away from
zero.

rational::round_zero_bias q
(new function) returns q ‘rounded off’, i.e. rounded to the nearest integer, but with
‘half-integers’ rounded towards zero.

rational::round_unbiased q
(new function) returns q rounded to the nearest integer, with ‘half-integers’ rounded
to the nearest even integer.

Example 27 Illustration of the different rounding modes:

> let l = iterwhile (<= 3) (+(1%2)) (- rational 3);
> map double l; // (just to show the values in a familiar format)
[-3.0,-2.5,-2.0,-1.5,-1.0,-0.5,0.0,0.5,1.0,1.5,2.0,2.5,3.0]
> map floor l;
[-3L,-3L,-2L,-2L,-1L,-1L,0L,0L,1L,1L,2L,2L,3L]
> map ceil l;
[-3L,-2L,-2L,-1L,-1L,0L,0L,1L,1L,2L,2L,3L,3L]
> map trunc l;
[-3L,-2L,-2L,-1L,-1L,0L,0L,0L,1L,1L,2L,2L,3L]
> map round l;
[-3L,-3L,-2L,-2L,-1L,-1L,0L,1L,1L,2L,2L,3L,3L]
> map round_zero_bias l;
[-3L,-2L,-2L,-1L,-1L,0L,0L,0L,1L,1L,2L,2L,3L]
> map round_unbiased l;
[-3L,-2L,-2L,-2L,-1L,0L,0L,0L,1L,2L,2L,2L,3L]

(See the function double.)
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20.8.2 Integer and Fraction Parts

rational::integer_and_fraction roundfun q
returns a pair (z, f) where z is the ‘integer part’ as an integer, f is the ‘fraction part’ as a
rational, where the rounding operations are performed using rounding mode roundfun
(see Rounding to Integer).

Example 28 Integer and fraction parts with the different rounding modes:

> let nc = -22%7;
> integer_and_fraction floor nc;
-4L,6L%7L
> integer_and_fraction trunc nc;
-3L,(-1L)%7L
> integer_and_fraction round nc;
-3L,(-1L)%7L

It is always the case that z and f have the property that q = z + f. However, the remaining
properties depend upon the choice of roundfun. Thus this provides a ‘decomposition’ oper-
ator; there are others (see Decomposition). If roundfun = floor then 0 ≤ f < 1. If roundfun =
ceil then −1 < f ≤ 0. If roundfun = trunc then |f| < 1 and sgn f ∈ {0, sgn q}. If roundfun =
round, roundfun = round_zero_bias or roundfun = round_unbiased then |f| ≤ 1/2.

rational::fraction roundfun q
returns just the ‘fraction part’ as a rational, where the rounding operations are per-
formed using roundfun. The corresponding function ‘integer’ is not provided, as inte-
ger roundfun q would be just roundfun q. The integer and fraction function (probably
with trunc or floor rounding mode) may be used in conjunction with num_den (see
‘Deconstructors’) to decompose a rational into integer, numerator and denominator
parts.

int q
overloads the built-in int and returns the ‘integer part’ of q consistent with the built-in.

frac q
overloads the built-in frac and returns the ‘fraction part’ of q consistent with the built-
in.

Example 29 Standard integer and fraction parts:

> let nc = -22%7;
> int nc;
-3
> frac nc;
(-1L)%7L

20.9 Rounding to Multiples

rational::round_to_multiple roundfun multOf q
returns q rounded to an integer multiple of a non-zero value multOf, using roundfun
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as the rounding mode (see Rounding to Integer). Note that it is the multiple that is
rounded in the prescribed way, and not the final result, which may make a difference
in the case that multOf is negative. If that is not the desired behaviour, pass this func-
tion the absolute value of multOf rather than multOf. Similar comments apply to the
following functions.

rational::floor_multiple multOf q
returns q rounded to a downwards integer multiple of multOf.

rational::ceil_multiple multOf q
returns q rounded to an upwards integer multiple of multOf.

rational::trunc_multiple multOf q
returns q rounded towards zero to an integer multiple of multOf.

rational::round_multiple multOf q
returns q rounded towards the nearest integer multiple of multOf, with half-integer
multiples rounded away from 0.

rational::round_multiple_zero_bias multOf q
returns q rounded towards the nearest integer multiple of multOf, with half-integer
multiples rounded towards 0.

rational::round_multiple_unbiased multOf q
returns q rounded towards the nearest integer multiple of multOf, with half-integer
multiples rounded to an even multiple.

Example 30 Round to multiple:

> let l = [34.9, 35, 35%1, 35.0, 35.1];
> map double l; // (just to show the values in a familiar format)
[34.9,35.0,35.0,35.0,35.1]
> map (floor_multiple 10) l;
[30.0,30L,30L,30.0,30.0]
> map (ceil_multiple 10) l;
[40.0,40L,40L,40.0,40.0]
> map (trunc_multiple 10) l;
[30.0,30L,30L,30.0,30.0]
> map (round_multiple 10) l;
[30.0,40L,40L,40.0,40.0]
> map (round_multiple_zero_bias 10) l;
[30.0,30L,30L,30.0,40.0]
> map (round_multiple_unbiased 10) l;
[30.0,40L,40L,40.0,40.0]

(See the function double.)

The round multiple functions may be used to find a fixed denominator approximation of a
number. (The simplest denominator may actually be a proper factor of the chosen value.) To
approximate for a bounded (rather than particular) denominator, use rational approx max
den instead (see Best Approximation with Bounded Denominator).
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Example 31 Finding the nearest q = n/d value to 1/e≈ 0.368 where d = 1000 (actually, where
d|1000):

> let co_E = exp (-1);
co_E;
0.367879441171442
> round_multiple (1%1000) (rational co_E);
46L%125L
> 1000 * ans;
368L%1L

Example 32 Finding the nearest q = n/d value to 1/φ ≈ 0.618 where d = 35 = 243 (actually,
where d|243):

> let co_Phi = (sqrt 5 - 1) / 2;
> round_multiple (1%243) (rational co_Phi);
50L%81L

Other methods for obtaining a rational approximation of a number are described in R -> Q
— Approximation.

20.10 Q -> R — Conversion / Casting

double q
(overload of built-in) returns a double having a value as close as possible to q. (Over-
flow, underflow and loss of accuracy are potential problems. rationals that are too
absolutely large or too absolutely small may overflow or underflow; some rationals
can not be represented exactly as a double.)

20.11 R -> Q — Approximation

This section describes functions that approximate a number (usually a double) by a ratio-
nal. See Rounding to Multiples for approximation of a number by a rational with a fixed
denominator. See Numeral String -> Q — Approximation for approximation by a rational of
a string representation of a real number.

20.11.1 Intervals

Some of the approximation functions return an interval. The file rat_interval.pure is a ba-
sic implementation of interval arithmetic, and is not included in the default prelude. It is not
intended to provide a complete implementation of interval arithmetic. The notions of ‘open’
and ‘closed’ intervals are not distinguished. Infinite and half-infinite intervals are not specif-
ically provided. Some operations and functions may be missing. The most likely functions
to be used are simply the ‘deconstructors’; see Interval Constructors and ‘Deconstructors’.
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Interval Constructors and ‘Deconstructors’

Intervals are constructed with the function interval.

interval::interval (n1, n2)
given a pair of numbers (z1 <= z2), this returns the interval z1..z2. This is the inverse
of lo_up.

Example 33 Constructing an interval:

> let v = interval (3, 8);
> v;
interval::Ivl 3 8

interval::lower v
returns the infimum (roughly, minimum) of v.

interval::upper v
returns the supremum (roughly, maximum) of v.

interval::lo_up v
returns a pair (l, u) containing the lower l and upper u extrema of the interval v. This
is the inverse of interval as defined on number pairs.

Example 34 Deconstructing an interval:

> lower v;
3
> upper v;
8
> lo_up v;
3,8

Interval Type Tests

exactp v
returns whether an interval v has exact extrema.

inexactp v
returns whether an interval v has an inexact extremum.

interval::intervalp x
returns whether x is of type interval.

interval::interval_valp x
returns whether x has an interval value.

interval::ratinterval_valp x
returns whether x has an interval value with rational extrema.

interval::intinterval_valp x
returns whether x has an interval value with integral extrema.
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Example 35 Interval value tests:

> let l = [interval(0,1), interval(0,1%1), interval(0,3%2), interval(0,1.5)];
> map exactp l;
[1,1,1,0]
> map inexactp l;
[0,0,0,1]
> map intervalp l;
[1,1,1,1]
> map interval_valp l;
[1,1,1,1]
> map ratinterval_valp l;
[1,1,1,1]
> map intinterval_valp l;
[1,1,0,0]

Interval Arithmetic Operators and Relations

The standard arithmetic operators (+), (−), (*), (/) and (%) are overloaded for intervals.
The divide operators (/) and (%) do not produce a result if the right operand is an interval
containing 0. Example 36 Some intervals:

> let a = interval (11, 19);
> let b = interval (16, 24);
> let c = interval (21, 29);
> let d = interval (23, 27);

Example 37 Interval arithmetic:

> let p = interval (0, 1);
> let s = interval (-1, 1);
> a + b;
interval::Ivl 27 43
> a - b;
interval::Ivl (-13) 3
> a * b;
interval::Ivl 176 456
> p * 2;
interval::Ivl 0 2
> (-2) * p;
interval::Ivl (-2) 0
> -c;
interval::Ivl (-29) (-21)
> s * a;
interval::Ivl (-19) 19
> a % 2;
interval::Ivl (11L%2L) (19L%2L)
> a / 2;
interval::Ivl 5.5 9.5
> reciprocal a;
interval::Ivl (1L%19L) (1L%11L)
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> 2 % a;
interval::Ivl (2L%19L) (2L%11L)
> a % b;
interval::Ivl (11L%24L) (19L%16L)
> a % a; // notice that the intervals are mutually independent here
interval::Ivl (11L%19L) (19L%11L)

There are also some relations defined for intervals. The standard relations (==) and (~=) are
overloaded.

However, rather than overloading (<), (<=), (>), (>=), which could be used for either ordering
or containment with some ambiguity, the module defines (before), (within), and so on.
‘Strictness’ refers to the properties at the end-points.

v1 interval::before v2
returns whether v1 is entirely before v2.

v1 interval::strictly_before v2
returns whether v1 is strictly entirely before v2.

v1 interval::after v2
returns whether v1 is entirely after v2.

v1 interval::strictly_after v2
returns whether v1 is strictly entirely after v2.

v1 interval::within v2
returns whether v1 is entirely within v2; i.e. whether v1 is subinterval of v2.

v1 interval::strictly_within v2
returns whether v1 is strictly entirely within v2; i.e. whether v1 is proper subinterval
of v2.

v1 interval::without v2
returns whether v1 entirely contains v2; i.e. whether v1 is superinterval of v2. ‘With-
out’ is used in the sense of outside or around.

v1 interval::strictly_without v2
returns whether v1 strictly entirely contains v2; i.e. whether v1 is proper superinterval
of v2.

v1 interval::disjoint v2
returns whether v1 and v2 are entirely disjoint.

v interval::strictly_disjoint v2
returns whether v1 and v2 are entirely strictly disjoint.

Example 38 Interval relations:

> a == b;
0
> a == a;
1
> a before b;
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0
> a before c;
1
> c before a;
0
> a disjoint b;
0
> c disjoint a;
1
> a within b;
0
> a within c;
0
> d within c;
1
> c within d;
0
> a strictly_within a;
0
> a within a;
1

(The symbols a through d were defined in Example 36.)

These may also be used with a simple (real) value, and in particular to test membership.

Example 39 Membership:

> 10 within a;
0
> 11 within a;
1
> 11.0 within a;
1
> 12 within a;
1
> 12.0 within a;
1
> 10 strictly_within a;
0
> 11 strictly_within a;
0
> (11%1) strictly_within a;
0
> 12 strictly_within a;
1
> (12%1) strictly_within a;
1

(The symbol a was defined in Example 36.)
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Interval Maths

Some standard functions are overloaded for intervals; some new functions are provided.

abs v
returns the interval representing the range of (x) as x varies over v.

Example 40 Absolute interval:

> abs (interval (1, 5));
interval::Ivl 1 5
> abs (interval (-1, 5));
interval::Ivl 0 5
> abs (interval (-5, -1));
interval::Ivl 1 5

sgn v
returns the interval representing the range of sgn(x) as x varies over v.

# v
returns the length of an interval.

Example 41 Absolute interval:

> #d;
4

(The symbol d was defined in Example 36.)

20.11.2 Least Complex Approximation within Epsilon

rational::rational_approx_epsilon ε r
Find the least complex (see Complexity Extrema) rational approximation to r (usually
a double) that is ε-close. That is find the q with the smallest possible denominator such
that such that |q − r| ≤ ε. (ε > 0.)

Example 42 Rational approximation to π ≈ 3.142 ≈ 22/7:

> rational_approx_epsilon .01 pi;
22L%7L
> abs (ans - pi);
0.00126448926734968

Example 43 The golden ratio φ = (1 +
√

5) / 2 ≈ 1.618:

> let phi = (1 + sqrt 5) / 2;
> rational_approx_epsilon .001 phi;
55L%34L
> abs (ans - phi);
0.000386929926365465
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rational::rational_approxs_epsilon ε r
Produce a list of ever better rational approximations to r (usually a double) that is
eventually ε-close. (ε > 0.)

Example 44 Rational approximations to π:

> rational_approxs_epsilon .0001 pi;
[3L%1L,25L%8L,47L%15L,69L%22L,91L%29L,113L%36L,135L%43L,157L%50L,179L%57L,
201L%64L,223L%71L,245L%78L,267L%85L,289L%92L,311L%99L,333L%106L]

Example 45 Rational approximations to the golden ratio φ; these approximations are always
reverse consecutive Fibonacci numbers (from f1: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, ...):

> rational_approxs_epsilon .0001 phi;
[1L%1L,3L%2L,8L%5L,21L%13L,55L%34L,144L%89L]

(The symbol phi was defined in Example 43.)

rational::rational_interval_epsilon ε r
Find the least complex (see Complexity Extrema) rational interval containing r (usually
a double) that is ε-small. That is find the least complex (see Complexity Extrema) q1 ≤
q2 such that r ∈ [q1, q2] and q2 − q1 ≤ ε. (ε > 0.)

Example 46 Rational interval surrounding π:

> let i_Pi = rational_interval_epsilon .01 pi;
> i_Pi;
interval::Ivl (47L%15L) (22L%7L)
> double (lower i_Pi); pi; double (upper i_Pi);
3.13333333333333
3.14159265358979
3.14285714285714

(The functions lower and upper are described in Interval Constructors and ‘Deconstructors’.)

Example 47 Rational interval surrounding the golden ratio φ:

> rational_interval_epsilon .001 phi;
interval::Ivl (55L%34L) (89L%55L)
> #ans;
1L%1870L

(The symbol phi was defined in Example 43. The function # is described in Interval Maths.)

20.11.3 Best Approximation with Bounded Denominator

rational::rational_approx_max_den maxDen r
Find the closest rational approximation to r (usually a double) that has a denominator
no greater than maxDen. (maxDen > 0).

Example 48 Rational approximation to π:
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> rational_approx_max_den 10 pi;
22L%7L

Example 49 Rational approximation to the golden ratio φ:

> rational_approx_max_den 1000 phi;
1597L%987L

(The symbol phi was defined in Example 43.)

rational::rational_approxs_max_den maxDen r
Produce a list of ever better rational approximations to r (usually a double) while the
denominator is bounded by maxDen (maxDen > 0).

Example 50 Rational approximations to π:

> rational_approxs_max_den 100 pi;
[3L%1L,25L%8L,47L%15L,69L%22L,91L%29L,113L%36L,135L%43L,157L%50L,179L%57L,
201L%64L,223L%71L,245L%78L,267L%85L,289L%92L,311L%99L]

Example 51 Rational approximations to the golden ratio φ:

> rational_approxs_max_den 100 phi;
[1L%1L,3L%2L,8L%5L,21L%13L,55L%34L,144L%89L]

(The symbol phi was defined in Example 43.)

rational::rational_interval_max_den maxDen r
Find the smallest rational interval containing r (usually a double) that has endpoints
with denominators no greater than maxDen (maxDen > 0).

Example 52 Rational interval surrounding π:

> let i_Pi = rational_interval_max_den 100 pi ; i_Pi;
interval::Ivl (311L%99L) (22L%7L)
> double (lower i_Pi); pi; double (upper i_Pi);
3.14141414141414
3.14159265358979
3.14285714285714

Example 53 Rational interval surrounding the golden ratio φ:

> rational_interval_max_den 1000 phi;
interval::Ivl (987L%610L) (1597L%987L)

(The symbol phi was defined in Example 43.)

To approximate for a particular (rather than bounded) denominator, use round to multiple
instead (see Rounding to Multiples).
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20.12 Decomposition

There is more than one way to ‘decompose’ a rational number into its ‘components’. It
might be split into an integer and a fraction part — see Integer and Fraction Parts; or sign
and absolute value — see Absolute Value and Sign; or numerator and denominator — see
‘Deconstructors’.

20.13 Continued Fractions

20.13.1 Introduction

In “pure-rational”, a continued fraction a0 + (1 / (a1 + (1 / (a2 + ··· + 1 / an)))) where ∀i > 0 •
ai 6= 0, is represented by [a0, a1, a2, ... , an].

A ‘simple’ continued fraction is one in which ∀i • ai ∈ Z and ∀i > 0 • ai > 0.

Simple continued fractions for rationals are not quite unique since [a0, a1, ... , an, 1] = [a0, a1,
... , an+1]. We will refer to these as the ‘non-standard’ and ‘standard’ forms, respectively. The
following functions return the standard form.

20.13.2 Generating Continued Fractions

Exact

rational::continued_fraction q
Find ‘the’ (exact) continued fraction of a rational (including, trivially, integer) value q.

Example 54 The rational 1234/1001:

> continued_fraction (1234%1001);
[1L,4L,3L,2L,1L,1L,1L,8L]
> evaluate_continued_fraction ans;
1234L%1001L

Inexact

rational::continued_fraction_max_terms n r
Find up to n initial terms of continued fraction of the value r with the ‘remainder’, if
any, in the final element. (If continued_fraction_max_terms n r returns a list of length
n or less, then the result is exact.)

Example 55 First 5 terms of the continued fraction for the golden ratio φ:

> continued_fraction_max_terms 5 phi;
[1.0,1.0,1.0,1.0,1.0,1.61803398874989]
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> evaluate_continued_fraction ans;
1.61803398874989

(The symbol phi was defined in Example 43.)

rational::continued_fraction_epsilon ε r
Find enough of the initial terms of a continued fraction to within ε of the value r with
the ‘remainder’, if any, in the final element.

Example 56 First few terms of the value
√

2:

> continued_fraction_epsilon .001 (sqrt 2);
[1.0,2.0,2.0,2.0,2.0,2.41421356237241]
> map double (convergents ans);
[1.0,1.5,1.4,1.41666666666667,1.41379310344828,1.41421356237309]

20.13.3 Evaluating Continued Fractions

rational::evaluate_continued_fraction aa
Fold a continued fraction aa into the value it represents. This function is not limited to
simple continued fractions. (Exact simple continued fractions are folded into a ratio-
nal.)

Example 57 The continued fraction [1, 2, 3, 4] and the non-standard form [4, 3, 2, 1]:

> evaluate_continued_fraction [1,2,3,4];
43L%30L
> continued_fraction ans;
[1L,2L,3L,4L]
> evaluate_continued_fraction [4,3,2,1];
43L%10L
> continued_fraction ans;
[4L,3L,3L]

Convergents

rational::convergents aa
Calculate the convergents of the continued fraction aa. This function is not limited to
simple continued fractions.

Example 58 Convergents of a continued fraction approximation of the value
√

2:

> continued_fraction_max_terms 5 (sqrt 2);
[1.0,2.0,2.0,2.0,2.0,2.41421356237241]
> convergents ans;
[1.0,1.5,1.4,1.41666666666667,1.41379310344828,1.41421356237309]
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20.14 Rational Complex Numbers

Pure together with rational.pure provide various types of number, including integers (Z),
doubles (R, roughly), complex numbers (C) and Gaussian integers (Z[i]), rationals (Q) and
rational complex numbers (Q[i]).

Functions concerning ‘complex numbers’ are named with ‘comp’, whereas functions con-
cerning ‘complexity’ (see Complexity) are named with ‘cplx’.

20.14.1 Rational Complex Constructors and ‘Deconstructors’

Complex numbers can have rational parts.

Example 59 Forming a rational complex:

> 1 +: 1 * (1%2);
1+:1L%2L
> ans * ans;
3L%4L+:1L%1L

And rational numbers can be given complex parts.

Example 60 Complex rationals and complicated rationals:

> (1 +: 2) % (3 +: 4);
11L%25L+:2L%25L
> ans * (3 +: 4);
1L%1L+:2L%1L
> ((4%1) * (0 +: 1)) % 2;
0L%1L+:2L%1L
> ((4%1) * (0 +: 1)) % (1%2);
0L%1L+:8L%1L
> ((4%1) * (0 +: 1)) % (1 + (1%2) * (0 +: 1));
8L%5L+:16L%5L
> ans * (1+(1%2) * (0 +: 1));
0L%1L+:4L%1L
> ((4%1) * (0 +: 1)) / (1 + (1%2) * (0 +: 1));
1.6+:3.2

The various parts of a complex rational may be deconstructed using combinations of num
and den and the standard functions re and im.

Thus, taking real and imaginary parts first, a rational complex number may be considered
to be (xn / xd) + (yn / yd) * i with xn, xd, yn, yd ∈ Z.

A rational complex number may also be decomposed into its ‘numerator’ and ‘denomina-
tor’, where these are both integral complex numbers, or ‘Gaussian integers’, and the denom-
inatoris a minimal choice in some sense.

One way to do this is so that the denominator is the minimum positive integer. The denom-
inator is a complex number with zero imaginary part.
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Thus, taking numerator and denominator parts first, a rational complex number may be
considered to be (nx + ny * i) / (d + 0 * i) with nx, ny, d ∈ Z.

Another way to do this is so that the denominator is a Gaussian integer with minimal abso-
lute value. Thus, taking numerator and denominator parts first, a rational complex number
may be considered to be (nx + ny * i) / (dx + dy * i) with nx, ny, dx, dy ∈ Z.

The dx, dy are not unique, but can be chosen such that dx > 0 and either |dy| < dx or dy = dx
> 0.

rational::num_den_nat c
given a complex rational or integer c, returns a pair (n, d) containing an integral com-
plex (Gaussian integral) numerator n, and the smallest natural (i.e. positive integral
real) complex denominator d, i.e. a complex number where <(d) ∈ Z, <(d) > 0, =(d) =
0; i.e. the numerator and denominator of one ‘normalised’ form of c.

This is an inverse (up to equivalence) of rational as defined on integral complex pairs
(see Constructors).

rational::num_den_gauss c
given a complex rational or integer c, returns a pair (n, d) containing an integral com-
plex (Gaussian integral) numerator n, and an absolutely smallest integral complex de-
nominator d chosen s.t. <(d),=(d) ∈ Z, <(d) > 0, and either |<(d)| < =(d) or <(d) =
=(d) > 0; i.e. the numerator and denominator of another ‘normalised’ form of c.

This is an inverse (up to equivalence) of rational as defined on integral complex pairs
(see Constructors).

rational::num_den c
synonymous with num_den_gauss.

This is an inverse (up to equivalence) of rational as defined on integer pairs (see Con-
structors).

num c
given a complex rational or integer c, returns just the numerator of the normalised
form of c given by num_den c.

den c
given a complex rational or integer c, returns just the denominator of the normalised
form of c given by num_den c.

Example 61 Rational complex number deconstruction:

> let cq = (1+2*i)%(3+3*i); cq;
1L%2L+:1L%6L
> (re cq, im cq);
1L%2L,1L%6L
> (num . re) cq;
1L
> (den . re) cq;
2L
> (num . im) cq;
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1L
> (den . im) cq;
6L
> let (n_nat,d_nat) = num_den_nat cq;
> (n_nat, d_nat);
3+:1,6+:0
> n_nat % d_nat;
1L%2L+:1L%6L
> abs d_nat;
6.0
> let (n, d) = num_den_gauss cq; (n, d);
1L+:2L,3L+:3L
> let (n,d) = num_den cq; (n, d);
1L+:2L,3L+:3L
> n % d;
1L%2L+:1L%6L
> abs d;
4.24264068711928
> (re . num) cq;
1L
> (im . num) cq;
2L
> (re . den) cq; //always > 0
3L
> (im . den) cq; //always <= (re.den)
3L

20.14.2 Rational Complex Type and Value Tests

Beware that intcompvalp and ratcompvapl may return 1 even if the value is of complex type
with double parts. However, these functions may be combined with exactp.

complexp x
standard function; returns whether x is of complex type.

compvalp x
standard function; returns whether x has a complex value (∈ C = R[i]).

rational::ratcompvalp x
returns whether x has a rational complex value (∈ Q[i]).

rational::intcompvalp x
returns whether x has an integral complex value (∈ Z[i]), i.e. a Gaussian integer value.

Example 62 Rational complex number value tests:

> let l = [9, 9%1, 9%2, 4.5, sqrt 2, 1+:1, 1%2+:1, 0.5+:1, inf, nan];
> map exactp l;
[1,1,1,0,0,1,1,0,0,0]
> map inexactp l;
[0,0,0,1,1,0,0,1,1,1]

668 20.14 Rational Complex Numbers



Pure Language and Library Documentation, Release 0.62

> map complexp l;
[0,0,0,0,0,1,1,1,0,0]
> map compvalp l;
[1,1,1,1,1,1,1,1,1,1]
> map (\x -> (exactp x and compvalp x)) l; // "has exact complex value"
[1,1,1,0,0,1,1,0,0,0]
> map ratcompvalp l;
[1,1,1,1,1,1,1,1,0,0]
> map (\x -> (exactp x and ratcompvalp x)) l;
[1,1,1,0,0,1,1,0,0,0]
> map intcompvalp l;
[1,1,0,0,0,1,0,0,0,0]
> map (\x -> (exactp x and intcompvalp x)) l;
[1,1,0,0,0,1,0,0,0,0]
> map ratvalp l;
[1,1,1,1,1,0,0,0,0,0]
> map (\x -> (exactp x and ratvalp x)) l;
[1,1,1,0,0,0,0,0,0,0]
> map intvalp l; // for comparison
[1,1,0,0,0,0,0,0,0,0]
> map (\x -> (exactp x and intvalp x)) l;
[1,1,0,0,0,0,0,0,0,0]

See ‘Type and Value Tests‘_ for some details of rational type and value tests.

20.14.3 Rational Complex Arithmetic Operators and Relations

The standard arithmetic operators (+), (−), (*), (/), (%), (), (==) and (~=) are overloaded to
have at least one complex and/or rational operand, but (<), (<=), (>), (>=) are not, as complex
numbers are unordered.

Example 63 Rational complex arithmetic:

> let w = 1%2 +: 3%4;
> let z = 5%6 +: 7%8;
> w + z;
4L%3L+:13L%8L
> w % z;
618L%841L+:108L%841L
> w / z;
0.734839476813318+:0.128418549346017
> w ^ 2;
-0.3125+:0.75
> w == z;
0
> w == w;
1
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20.14.4 Rational Complex Maths

The standard functions re and im work with rational complex numbers (see Rational Com-
plex Constructors and ‘Deconstructors’).

The standard functions polar, abs and arg work with rational complex numbers, but the
results are inexact.

Example 64 Rational complex maths:

> polar (1%2+:1%2);
0.707106781186548<:0.785398163397448
> abs (4%2+:3%2);
2.5
> arg (-1%1);
3.14159265358979

There are some additional useful functions for calculating with rational complex numbers
and more general mathematical values.

rational::norm_gauss c
returns the Gaussian norm ||c|| of any complex (or real) number c; this is the square
of the absolute value, and is returned as an (exact) integer.

rational::div_mod_gauss n d
performs Gaussian integer division, returning (q, r) where q is a (not always unique)
quotient, and r is a (not always unique) remainder. q and r are such that n = q * d + r
and ||r|| < ||d|| (equivalently, |r| < |d|).

rational::n_div_gauss d
returns just a quotient from Gaussian integer division as produced by div_mod_gauss
n d.

rational::n_mod_gauss d
returns just a remainder from Gaussian integer division as produced by
div_mod_gauss n d.

rational::gcd_gauss c1 c2
returns a GCD G of the Gaussian integers c1,c2. This is chosen so that s.t. <(G) > 0,
and either |=(G)| < <(G) or =(G) = <(G) > 0;

rational::euclid_gcd zerofun modfun x y
returns a (non-unique) GCD calculated by performing the Euclidean algorithm on the
values x and y (of any type) where zerofun is a predicate for equality to 0, and modfun
is a binary modulus (remainder) function.

rational::euclid_alg zerofun divfun x y
returns (g, a, b) where the g is a (non-unique) GCD and a, b are (arbitrary, non-unique)
values such that a * x + b * y = g calculated by performing the generalised Euclidean
algorithm on the values x and y (of any type) where zerofun is a predicate for equality
to 0, and div is a binary quotient function.

Example 65 More rational complex and other maths:
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> norm_gauss (1 +: 3);
10
> abs (1 +: 3);
3.16227766016838
> norm_gauss (-5);
25
> let (q, r) = div_mod_gauss 100 (12 +: 5);
> (q, r);
7L+:-3L,1L+:1L
> q * (12 +: 5) + r;
100L+:0L
> 100 div_gauss (12 +: 5);
7L+:-3L
> 100 mod_gauss (12 +: 5);
1L+:1L
> div_mod_gauss 23 5;
5L+:0L,-2L+:0L
> gcd_gauss (1 +: 2) (3 +: 4);
1L+:0L
> gcd_gauss 25 15;
5L+:0L
> euclid_gcd (==0) (mod_gauss) (1+: 2) (3 +: 4);
1L+:0L
> euclid_gcd (==0) (mod) 25 15;
5
> let (g, a, b) = euclid_alg (==0) (div_gauss) (1 +: 2) (3 +: 4); g;
1L+:0L
> (a, b);
-2L+:0L,1L+:0L
> a * (1 +: 2) + b * (3 +: 4);
1L+:0L
> let (g, a, b) = euclid_alg (==0) (div) 25 15; g;
5
> (a, b);
-1,2
> a * 25 + b * 15;
5

20.14.5 Rational Complex Type Simplification

rational::comp_simplify c
returns q with complex numbers simplified to reals, if possible.

rational::ratcomp_simplify c
returns q with rationals simplified to integers, and complex numbers simplified to
reals, if possible.

Example 66 Rational complex number type simplification:

> let l = [9+:1, 9%1+:1, 9%2+:1, 4.5+:1, 9%1+:0, 9%2+:0, 4.5+:0.0];
> l;
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[9+:1,9L%1L+:1,9L%2L+:1,4.5+:1,9L%1L+:0,9L%2L+:0,4.5+:0.0]
> map comp_simplify l;
[9+:1,9L%1L+:1,9L%2L+:1,4.5+:1,9L%1L,9L%2L,4.5+:0.0]
> map ratcomp_simplify l;
[9+:1,9+:1,9L%2L+:1,4.5+:1,9,9L%2L,4.5+:0.0]

See ‘Rational Type Simplification‘_ for some details of rational type
simplification.

20.15 String Formatting and Evaluation

20.15.1 The Naming of the String Conversion Functions

There are several families of functions for converting between strings and rationals.

The functions that convert from rationals to strings have names based on that of the standard
function str. The str_* functions convert to a formatted string, and depend on a ‘format
structure’ parameter (see Internationalisation and Format Structures). The strs_* functions
convert to a tuple of string fragments.

The functions that convert from strings to rationals have names based on that of the standard
function eval (val in Q). The val_* functions convert from a formatted string, and depend
on a format structure parameter. The sval_* functions convert from a tuple of string frag-
ments.

There are also join_* and split_* functions to join string fragments into formatted strings,
and to split formatted strings into string fragments, respectively; these depend on a format
structure parameter. These functions are not always invertible, because some of the func-
tions reduce an error term to just a sign, e.g. str_real_approx_dp may round a value. Thus
sometimes the join_* and split_* pairs, and the str_* and val_* pairs are not quite mutual
inverses.

20.15.2 Internationalisation and Format Structures

Many of the string formatting functions in the following sections are parameterised by a
‘format structure’. Throughout this document, the formal parameter for the format structure
will be fmt. This is simply a record mapping some string ‘codes’ to functions as follows. The
functions are mostly from strings to a string, or from a string to a tuple of strings.

"sm" a function mapping a sign and an unsigned mantissa (or integer) strings to a signed
mantissa (or integer) string.

"se" a function mapping a sign and an unsigned exponent string to a signed exponent
string.

"-s" a function mapping a signed number string to a pair containing a sign and the un-
signed number string.
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"gi" a function mapping an integer representing the group size and an integer string to a
grouped integer string.

"gf" a function mapping an integer representing the group size and a fraction-part string to
a grouped fraction-part string.

"-g" a function mapping a grouped number string to an ungrouped number string.

"zi" a function mapping an integer number string to a number string. The input string rep-
resenting zero integer part is “”, which should be mapped to the desired representation
of zero. All other number strings should be returned unaltered.

"zf" a function mapping a fraction-part number string to a number string. The input string
representing zero fraction part is “”, which should be mapped to the desired represen-
tation of zero. All other number strings should be returned unaltered.

"ir" a function mapping initial and recurring parts of a fraction part to the desired format.

"-ir" a function mapping a formatted fraction part to the component initial and recurring
parts.

"if" a function mapping an integer string and fraction part string to the radix-point format-
ted string.

"-if" a function mapping a radix-point formatted string to the component integer fraction
part strings

"me" a function mapping a mantissa string and exponent string to the formatted exponential
string.

"-me" a function mapping a formatted exponential string to the component mantissa and
exponent strings.

"e" a function mapping an ‘error’ number (not string) and a number string to a formatted
number string indicating the sign of the error.

"-e" a function mapping a formatted number string indicating the sign of the error to the
component ‘error’ string (not number) and number strings.

Depending upon the format structure, some parameters of some of the functions taking a
format structure may have no effect. For example, an intGroup parameter specifying the
size of the integer digit groups will have no effect if the integer group separator is the empty
string.

rational::create_format options
is a function that provides an easy way to prepare a ‘format structure’ from the simpler
‘options structure’. The options structure is another record, but from more descriptive
strings to a string or tuple of strings.

For example, format_uk is generated from options_uk as follows:

public options_uk;
const options_uk =

{
"sign" => ("-","",""), // alternative: ("-"," ","+")
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"exponent sign" => ("-","",""), // alternative: ("-","","+")
"group separator" => ",", // might be " " or "." or "’" elsewhere
"zero" => "0",
"radix point" => ".", // might be "," elsewhere
"fraction group separator" => ",",
"fraction zero" => "0", // alternative: ""
"recur brackets" => ("[","...]"),
"exponent" => "*10^", // (poor) alternative: "e"
"error sign" => ("-","","+"),
"error brackets" => ("(",")")

};

public format_uk;
const format_uk = create_format options_uk;

The exponent string need not depend on the radix, as the numerals for the number radix in
that radix are always “10”.

Beware of using “e” or “E” as an exponent string as these have the potential of being treated
as digits in, e.g., hexadecimal.

Format structures do not have to be generated via create format; they may also be con-
structed directly.

20.15.3 Digit Grouping

Some functions take group parameters. A value of 0 means “don’t group”.

20.15.4 Radices

The functions that produce a decimal expansion take a Radix argument. The fraction parts
are expanded in that radix (or ‘base’), in addition to the integer parts. The parameter Radix
is not restricted to the usual {2, 8, 10, 16}, but may be any integer from 2 to 36; the numerals
(‘digits’) are chosen from [”0”, ... , “9”, “A”, ... , “Z”]. The letter-digits are always upper case.

The functions do not attach a prefix (such as “0x” for hexadecimal) to the resulting string.

20.15.5 Error Terms

Some functions return a value including an ‘error’ term (in a tuple) or sign (at the end of a
string). Such an error is represents what the next digit would be as a fraction of the radix.

Example 67 Error term in the tuple of string ‘fragments’:

> strs_real_approx_sf 10 floor 3 (234567%100000);
"+","2","34",567L%1000L
> strs_real_approx_sf 10 ceil 3 (234567%100000);
"+","2","35",(-433L)%1000L

674 20.15 String Formatting and Evaluation



Pure Language and Library Documentation, Release 0.62

(See the function strs_real_approx_sf.)

In strings, only the sign of the error term is given. A “+” should be read as “and a bit more”;
“-” as “but a bit less”.

Example 68 Error sign in the string:

> str_real_approx_sf format_uk 10 0 0 floor 3 (234567%100000);
"2.34(+)"
> str_real_approx_sf format_uk 10 0 0 ceil 3 (234567%100000);
"2.35(-)"

(See the function str_real_approx_sf.)

20.16 Q <-> Fraction String (“i + n/d”)

20.16.1 Formatting to Fraction Strings

rational::str_vulgar q
returns a String representing the rational (or integer) q in the form

•“[−]n/d”

rational::str_vulgar_or_int q
returns a String representing the rational (or integer) q in one of the forms

•“[−]n/d”

•“[−]i”

rational::str_mixed q
returns a String representing the rational (or integer) q in one of the forms

•“i + n/d”

•“−(i + n/d)”

•“[−]n/d”

•“[−]i”

Example 69 The fraction string representations:

> let l = iterwhile (<= 3%2) (+(1%2)) (-3%2);
> l;
[(-3L)%2L,(-1L)%1L,(-1L)%2L,0L%1L,1L%2L,1L%1L,3L%2L]
> map str_vulgar l;
["-3L/2L","-1L/1L","-1L/2L","0L/1L","1L/2L","1L/1L","3L/2L"]
> map str_vulgar_or_int l;
["-3L/2L","-1L","-1L/2L","0L","1L/2L","1L","3L/2L"]
> map str_mixed l;
["-(1L+1L/2L)","-1L","-1L/2L","0L","1L/2L","1L","1L+1L/2L"]

These might be compared to the behaviour of the standard function str.
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str x
returns a string representing the value x.

Example 70 The standard function str:

> map str l;
["(-3L)%2L","(-1L)%1L","(-1L)%2L","0L%1L","1L%2L","1L%1L","3L%2L"]

20.16.2 Evaluation of Fraction Strings

rational::val_vulgar strg
returns a rational q represented by the string strg in the form

•“[−]n/d”

Such strings can also be evaluated by the val_mixed function.

rational::val_mixed strg
returns a rational q represented by the string strg

•“i + n/d”

•“−(i + n/d)”

•“[−]n/d” — thus val_mixed strictly extends val_vulgar

•“[−]i”

Example 71 Evaluating fraction strings:

> val_vulgar "-22/7";
(-22L)%7L
> val_mixed "1L+5L/6L";
11L%6L

These might be compared to the behaviour of the standard function eval.

eval s
evaluates the string s.

Example 72 The standard function eval:

> eval "1+5%6";
11L%6L
> eval "1L+5L/6L";
1.83333333333333

20.17 Q <-> Recurring Numeral Expansion String (“I.FR”)

See Internationalisation and Format Structures for information about the formatting struc-
ture to be supplied in the fmt parameter.
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20.17.1 Formatting to Recurring Expansion Strings

rational::str_real_recur fmt radix intGroup q
returns a string (exactly) representing the rational (or integer) q as base-Radix expan-
sion of one the forms

•“[−]int.frac”

•“[−]int.init frac part[smallest recurring frac part ...]”

Note that there is no fracGroup parameter.

Beware that the string returned by this function can be very long. The length of the recurring
part of such a decimal expansion may be up to one less than the simplest denominator of q.

Example 73 The recurring radix expansion-type string representations:

> str_real_recur format_uk 10 3 (4000001%4); // grouped with commas
"1,000,000.25"
> str_real_recur format_uk 10 0 (4000001%4); // no grouping
"1000000.25"
> str_real_recur format_uk 10 3 (1000000%3);
"333,333.[3...]"
> str_real_recur format_uk 10 3 (1000000%7);
"142,857.[142857...]"
> str_real_recur format_uk 10 3 (-1%700);
"-0.00[142857...]"
> str_real_recur format_uk 10 3 (127%128);
"0.9921875"
> str_real_recur format_uk 2 4 (-127%128);
"-0.1111111"
> str_real_recur format_uk 16 4 (127%128);
"0.FE"
> str_real_recur format_uk 10 0 (70057%350); // 1%7 + 10001%50;
"200.16[285714...]"

The function allows expansion to different radices (bases).

Example 74 The recurring radix expansion in decimal and hexadecimal:

> str_real_recur format_uk 10 0 (1%100);
"0.01"
> str_real_recur format_uk 16 0 (1%100);
"0.0[28F5C...]"

Example 75 The recurring radix expansion in duodecimal:

> str_real_recur format_uk 12 0 (1%100);
"0.0[15343A0B62A68781B059...]"

Note that this bracket notation is not standard in the literature. Usually the recurring nu-
merals are indicated by a single dot over the initial and final numerals of the recurring part,
or an overline over the recurring part. For example 1/70 = 0.0˙14285˙7 = 0.0142857 and 1/3
= 0.˙3 = 0.3.

20.17.1 Formatting to Recurring Expansion Strings 677



Pure Language and Library Documentation, Release 0.62

rational::strs_real_recur radix q
returns a quadruple of the four strings:

•the sign,

•integer part (which is empty for 0),

•initial fraction part

•and recurring fraction part (either and both of which may be empty).

Example 76 The recurring radix expansion in decimal — the fragments:

> strs_real_recur 10 (100%7);
"+","14","","285714"
> strs_real_recur 10 (-1%700);
"-","","00","142857"
> strs_real_recur 10 (70057%350);
"+","200","16","285714"

This function may be used to also, e.g. format the integer part with comma-separated group-
ings.

rational::join_str_real_recur fmt intGroup sign i fracInit fracRecur
formats the parts in the quadruple returned by strs_real_recur to the sort of string
as returned by str_real_recur.

20.17.2 Evaluation of Recurring Expansion Strings

The str_* and val_* functions depend on a ‘format structure’ parameter (fmt) such as for-
mat uk. Conversions may be performed between rationals and differently formatted strings
if a suitable alternative format structure is supplied. See Internationalisation and Format
Structures for information about formatting structures.

rational::val_real_recur fmt radix strg
returns the rational q represented by the base-radix expansion string strg of one the
forms

•“[−]int.frac”

•“[−]int.init frac part[recurring frac part ...]”

Example 77 Conversion from the recurring radix expansion-type string representations:

> val_real_recur format_uk 10 "-12.345";
(-2469L)%200L
> val_real_recur format_uk 10 "0.3";
3L%10L
> val_real_recur format_uk 10 "0.[3...]";
1L%3L
> val_real_recur format_uk 10 ".333[33...]";
1L%3L
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> val_real_recur format_uk 10 ".[9...]";
1L%1L

rational::sval_real_recur radix sign iStr fracStr recurPartStr
returns the rational q represented by the parts

•sign

•integer part

•initial fraction part

•recurring fraction part

rational::split_str_real_recur Fmt strg
returns a tuple containing the parts

•sign

•integer part

•initial fraction part

•recurring fraction part of one the forms - “[−]int.frac” - “[−]int.init frac
part[recurring frac part ...]”

20.18 Q <-> Numeral Expansion String (“I.F× 10E”)

See Internationalisation and Format Structures for information about the formatting struc-
ture to be supplied in the fmt parameter.

The exponent string “*10^” need not depend on the radix, as the numerals for the number
radix in that radix are always “10”.

20.18.1 Formatting to Expansion Strings

Functions for Fixed Decimal Places

rational::str_real_approx_dp fmt radix intGroup fracGroup roundfun dp q
returns a string representing a numeral expansion approximation of q to dp decimal
places, using rounding mode roundfun (see Rounding to Integer) roundfun is usually
round or round_unbiased. (dp may be positive, zero or negative; non-positive dps may
look misleading — use e.g. scientific notation instead.)

Example 78 Decimal places:

> str_real_approx_dp format_uk 10 3 3 round 2 (22%7);
"3.14(+)"
> str_real_approx_dp format_uk 10 3 3 ceil 2 (22%7);
"3.15(-)"
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rational::strs_real_approx_dp radix roundfun do q
returns a tuple of strings

•sign

•integer part

•fraction part

representing an expansion to a number of decimal places, together with

•the rounding “error”: a fraction representing the next numerals.

Example 79 Decimal places — the fragments:

> strs_real_approx_dp 10 round 2 (22%7);
"+","3","14",2L%7L
> strs_real_approx_dp 10 ceil 2 (22%7);
"+","3","15",(-5L)%7L

rational::join_str_real_approx fmt intGroup fracGroup sign i frac err
formats the parts in the quadruple returned by strs_real_approx_dp or
strs_real_approx_sf to the sort of string as returned by str_real_approx_dp
or str_real_approx_sf.

Functions for Significant Figures

rational::str_real_approx_sf fmt radix intGroup fracGroup roundfun sf q
returns a string representing a numeral expansion approximation of q to sf significant
figures, using rounding mode roundfun (see Rounding to Integer).

roundfun is usually round or round_unbiased. (sf must be positive.)

Example 80 Significant figures:

> str_real_approx_sf format_uk 10 3 3 floor 2 (22%7);
"3.1(+)"
> str_real_approx_sf format_uk 10 3 3 floor 2 ((-22)%7);
"-3.2(+)"

rational::strs_real_approx_sf radix roundfun sf q
returns a tuple of strings

•sign,

•integer part,

•fraction part, representing an expansion to a number of significant figures, to-
gether with

•the rounding “error”: a fraction representing the next numerals

rational::join_str_real_approx
see join_str_real_approx.
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Functions for Scientific Notation and Engineering Notation

rational::str_real_approx_sci fmt radix intGroup fracGroup roundfun sf q
returns a string expansion with a number of significant figures in scientific notation,
using rounding mode roundfun (see Rounding to Integer).

(sf must be positive; expStep is usually 3, radix is usually 10, roundfun is usually round
or round_unbiased; str_real_approx_sci is equivalent to str_real_approx_eng (be-
low) with expStep = 1.)

rational::strs_real_approx_sci radix roundfun sf q
returns a tuple of strings:

•sign of mantissa,

•integer part of mantissa,

•fraction part of mantissa,

•sign of exponent,

•exponent magnitude

representing an expansion to a number of significant figures in scientific notation to-
gether with

•the rounding “error”: a fraction representing the next numerals.

rational::str_real_approx_eng fmt expStep radix intGroup fracGroup round sf q
returns a string expansion with a number of significant figures in engineering notation,
using rounding mode roundfun.

The ExpStep parameter specifies the granularity of the exponent; specifically, the ex-
ponent will always be divisible by expStep.

(sf must be positive; expStep is usually 3 and must be positive, radix is usually 10,
roundfun is usually round or round_unbiased.)

Example 81 Engineering notation:

> str_real_approx_eng format_uk 3 10 3 3 round 7 (rational 999950);
"999.950,0*10^3"
> str_real_approx_eng format_uk 3 10 3 3 round 4 999950;
"1.000*10^6(-)"

rational::strs_real_approx_eng expStep radix roundfun sf q
returns a tuple of strings:

•sign of mantissa,

•integer part of mantissa,

•fraction part of mantissa,

•sign of exponent,
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•exponent magnitude

representing an expansion to a number of significant figures in engineering notation
together with

•the rounding “error”: a fraction representing the next numerals.

Example 82 Engineering notation — the fragments:

> strs_real_approx_eng 3 10 round 7 (rational 999950);
"+","999","9500","+","3",0L%1L
> strs_real_approx_eng 3 10 round 4 999950;
"+","1","000","+","6",(-1L)%20L

rational::join_str_real_eng fmt intGroup fracGroup mantSign mantI mantF rac expSign expI err
formats the parts in the quadruple returned by strs_real_approx_eng or
strs_real_approx_sci to the sort of string as returned by str_real_approx_eng or
str_real_approx_sci.

20.18.2 Evaluation of Expansion Strings

The str_* and val_* functions depend on a ‘format structure’ parameter (fmt) such as for-
mat uk. Conversions may be performed between rationals and differently formatted strings
if a suitable alternative format structure is supplied. See Internationalisation and Format
Structures for information about formatting structures.

rational::val_real_eng fmt radix strg
returns the rational q represented by the base-radix expansion string strg of one the
forms

•“[−]int.frac”

•“[−]int.frace[−]exponent”

Example 83 Conversion from the recurring radix expansion-type string representations:

> val_real_eng format_uk 10 "-12.345";
(-2469L)%200L
> val_real_eng format_uk 10 "-12.345*10^2";
(-2469L)%2L

rational::sval_real_eng radix signStr mantIStr mantF racStr expSignStr expStr
returns the rational q represented by the parts

•sign

•integer part of mantissa

•fraction part of mantissa

•sign of exponent

•exponent
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rational::split_str_real_eng fmt strg
returns a tuple containing the string parts

•sign

•integer part of mantissa

•fraction part of mantissa

•sign of exponent

•exponent

•the “error” sign

of one the forms

•“[−]int.frac”

•“[−]int.frac ×10^[−]exponent”

These functions can deal with the fixed decimal places, the significant figures and the scien-
tific notation in addition to the engineering notation.

20.19 Numeral String -> Q — Approximation

This section describes functions to approximate by a rational a real number represented by
a string. See R -> Q — Approximation for approximation by a rational of a double.

The str_* and val_* functions depend on a ‘format structure’ parameter (fmt) such as for-
mat uk. Conversions may be performed between rationals and differently formatted strings
if a format structure is supplied. See Internationalisation and Format Structures for informa-
tion about formatting structures.

rational::val_eng_approx_epsilon fmt radix epsilon strg
Find the least complex rational approximation q to the number represented by the
base-radix expansion string str in one of the forms

•“[−]int.frac”

•“[−]int.frac ×10^[−]exponent”

that is ε-close. That is find a q such that |q − eval str| ≤ ε.

Example 84 Rational from a long string:

> let strg = "123.456,789,876,543,212,345,678,987,654,321*10^27";
> let x = val_real_eng format_uk 10 strg;
> x;
123456789876543212345678987654321L%1000L
> let q = val_eng_approx_epsilon format_uk 10 (1%100) strg;
> q;
1975308638024691397530863802469L%16L
> double (x - q);
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0.0085
> str_real_approx_eng format_uk 3 10 3 3 round 30 q;
"123.456,789,876,543,212,345,678,987,654*10^27(+)"
> str_real_approx_eng format_uk 3 10 3 3 round 42 q;
"123.456,789,876,543,212,345,678,987,654,312,500,000,000*10^27"
> double q;
1.23456789876543e+029

rational::val_eng_interval_epsilon fmt radix epsilon strg
Find the least complex rational interval containing the number represented by the
base-radix expansion string strg in one of the forms

•“[−]int.frac”

•“[−]int.frac ×10^[−]exponent”

that is “-small.

rational::val_eng_approx_max_den fmt radix maxDen strg
Find the closest rational approximation to the number represented by the base-rRadix
expansion string strg in one of the forms

•“[−]int.frac”

•“[−]int.frac ×10^[−]exponent”

that has a denominator no greater than maxDen. (maxDen > 0)

rational::val_eng_interval_max_den fmt radix maxDen strg
Find the smallest rational interval containing the number represented by the base-radix
expansion string strg in one of the forms

•“[−]int.frac”

•“[−]int.frac ×10^[−]exponent”

that has endpoints with denominators no greater than maxDen. (maxDen > 0)

Example 85 Other rationals from a long string:

> val_eng_approx_epsilon format_uk 10 (1%100) strg;
1975308638024691397530863802469L%16L
> val_eng_interval_epsilon format_uk 10 (1%100) strg;
interval::Ivl (3086419746913580308641974691358L%25L)
(3456790116543209945679011654321L%28L)
> val_eng_approx_max_den format_uk 10 100 strg;
9999999980000000199999998000000L%81L
> val_eng_interval_max_den format_uk 10 100 strg;
interval::Ivl 9999999980000000199999998000000L%81L
3456790116543209945679011654321L%28L
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One of Pure’s distinguishing features as a term rewriting programming language is that
it makes the symbolic manipulation of expressions very easy and convenient. It is thus a
natural environment for hosting a full-featured computer algebra system (CAS). Computer
algebra systems are complex pieces of software featuring advanced algorithms for simpli-
fication of algebraic expressions, symbolic integration, equation solving and much more.
Reimplementing all these algorithms in Pure would be a major undertaking, to say the least.
A much better option is to interface to an existing CAS which has already proven its worth
to the scientific computing community, has been tested extensively and is known to be both
reliable and efficient.

This is also the approach taken by Pure’s reduce module which interfaces to the well-known
Reduce system. Along with Macsyma/Maxima, Reduce is one of the oldest computer al-
gebra systems which has been around since the 1960s and is widely recognized as a state-
of-the-art, powerful and efficient CAS. It is free/open source software distributed under a
BSD-style license, actively maintained on its SourceForge website, and implementations ex-
ist for all major computing platforms. The reduce module makes the functionality of Reduce
available in Pure in a seamless way. It uses an “embedded” version of Reduce in the form of
a shared library which is easy to build from the Reduce sources; the Installation section be-
low describes how to do this. More background information and a discussion of the interface
can be found in the Embedding REDUCE thread on the Pure mailing list.
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The interface can be found in the reduce.pure module. It has two parts, a low-level interface
which consists of a handful of C entry points supplied by the Reduce library, and a high-level
interface which provides everything that the Pure programmer needs to use Reduce from
Pure. Please note that at present this module is still experimental. But the basic functionality
works, and you’re welcome to discuss the new interface on the mailing list and/or submit
bug reports and patches.

21.1 Copying

pure-reduce is available under the same 2-clause BSD license as Reduce itself, please see the
accompanying COPYING file and the reduce.pure file for details.

21.2 Installation

Get the latest source from https://bitbucket.org/purelang/pure-lang/downloads/pure-
reduce-0.4.tar.gz.

You’ll need both the Reduce library (named reduce.so, reduce.dylib or reduce.dll, depending
on the system you have) and a Reduce image file (reduce.img) to make this module work. A
Makefile is included with this package so that you can build these yourself from the Reduce
sources. (In principle, this only needs to be done once for the initial installation of this
module, but you may want to repeat this procedure every once in a while to get the latest
Reduce version.)

The full Reduce system is a big package, so we have packaged a stripped-down version
of the Reduce source which contains all the bits and pieces needed to compile the Reduce
library and image, and has also been patched up so that it compiles cleanly on recent Linux
systems. At the time of this writing, you can find this package here:

https://bitbucket.org/purelang/pure-lang/downloads/reduce-algebra-csl-
r2204.tar.bz2

(You may want to check the download section on the Pure website for newer revisions of
this package, since we may update the package from time to time to the latest source from
the Reduce svn repository.)

Unpack the reduce-algebra-csl tarball and move the resulting reduce-algebra directory into
the pure-reduce source directory. Run make and then (if needed) make install in the pure-
reduce directory (not in the reduce-algebra directory!). You should also run make check
which performs a few tests in order to verify that the interface works ok (this can be done
without installing the package, but needs the Reduce image and library).

For convenience, the Makefile also has a make reduce target which builds a minimal Reduce
executable. If you use that option, make install installs this executable along with the li-
brary and image files, so that you can then run Reduce directly from the command line by
just typing reduce. Please note that this is a really minimalistic Reduce frontend which is
most useful for testing purposes. (If you want the full Reduce version then you can find
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binary Reduce packages for various systems at SourceForge. But note that neither the mini-
malistic nor the full Reduce frontend is required for the pure-reduce module in any way.)

It is also possible to build the Reduce library and image directly from the latest source in the
Reduce svn repository. You can check out the repository with the following command:

svn co svn://svn.code.sf.net/p/reduce-algebra/code/trunk reduce-algebra

This pulls down many hundreds of megabytes, so this may take a while. Once the checkout
is finished, you’ll end up with a reduce-algebra directory which you can drop into the pure-
reduce source directory and proceed with the compilation as described above. Note that
if you go that route then you should be prepared to deal with compilation problems in the
Reduce sources. Reduce is a big and complicated software, so the svn sources are not always
in a state which guarantees smooth compilation on all supported systems. If you run into
problems then please consider using our streamlined reduce-algebra-csl package instead.

21.3 Low-Level Interface

The low-level interface is a straight wrapper of the C entry points provided by the Reduce
library, also known as the “procedural” or PROC interface, for short. It uses an embed-
ded version of Reduce which runs on a free and open-source Lisp flavour known as CSL
(Codemist Standard Lisp). The external C routines are all declared in the reduce namespace.
Normally you shouldn’t have to call these functions directly, since we provide a high-level,
idiomatic Pure interface which makes calling Reduce from Pure much easier, see below.

21.4 High-Level Interface

The high-level interface provides a wrapper of the low-level PROC interface which makes
calling Reduce from Pure easy and convenient. After installing the module, it can be im-
ported in your Pure scripts as follows:

using reduce;

This starts up Reduce and makes the following variables and functions available in Pure.

21.4.1 Starting and Stopping Reduce

variable REDUCE_PATH
This variable holds a colon-delimited search path used to locate the Reduce image file
(see reduce::start below). By default this includes the current directory and the Pure
library directory.

reduce::start image::string args::smatrix
Initializes the Reduce system. This is done automatically when loading this module, so
normally you shouldn’t have to call this manually, unless the default image file wasn’t
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found or you want to restart the Reduce system with your own image file or your own
set of options. When calling this operation manually, you need to specify the name of
the Reduce image file and any desired extra arguments as a string vector. Unless the
filename contains a slash, reduce::start searches the directories in REDUCE_PATH for
the image file. An exception is raised if the image file isn’t found.

reduce::finish
Finalizes the Reduce system. You can call this to release the resources of the Reduce
system. (reduce::start also invokes this automatically if a Reduce instance is already
running, so it isn’t necessary to call reduce::finish in this case.)

21.4.2 Maintenance Operations

reduce::verbosity n
Sets the verbosity level; 0 means no messages at all (which is the default when using
this module), and the following values may be or’ed together to pick what you need:

1: messages whenever garbage collection happens

2: messages whenever a module of code is loaded

4: extra details in the garbage collector messages

reduce::switch name:string val::int
Lets you change global Reduce options. This works like Reduce’s on and off declara-
tions; please check the Reduce documentation for details.

reduce::capture flag::int
reduce::output

Captures output from Reduce. If flag is nonzero, reduce::capture arranges for all
output from Reduce to be buffered. The contents of the buffer can then be read using
the reduce::output function which returns a string value. If flag is zero, capturing is
disabled so that output goes to stdout again.

reduce::feed s::string
Feeds input to Reduce. Reduce will read input from the given string s, switching back
to stdin after s has been processed.

reduce::load name::string
Loads Reduce packages. This works like Reduce’s load_package command; please
check the Reduce documentation for details.

reduce::in name::string
Sources the given Reduce (.red) file. This works like the Lisp in function. Output is
captured using reduce::capture, see above.

21.4.3 Evaluation

For convenience, the following operations are in the default namespace:
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simplify x
This is the main entry point. It takes an algebraic expression in Pure format and tries to
simplify it using Reduce. The result is then converted back to Pure format. Note that
you need to quote x if you want to prevent it from being evaluated on the Pure side.

simplifyd x
A variation of simplify which takes care of customary mathematical notation for lim-
its, integrals and differentials, so that you can write stuff like d f/d x and lim n inf
(1/n) and have that expanded to the corresponding Reduce calls automatically. This
also tries to support most of the idioms and variations of notation which can be seen
in output of the Reduce tmprint module and which are commonly used in TeXmacs
documents.

lisp x
This can be used to execute arbitrary Lisp code, which is sometimes necessary to per-
form special functions in the Reduce system. Note that you need to quote x if you want
to prevent it from being evaluated on the Pure side. This is true, in particular, for the
quote itself, which needs an extra level so that one quote goes through to the Lisp sys-
tem (e.g.: lisp (”(a b c))). For convenience, free symbols are quoted automatically,
and Pure lists are mapped to corresponding Lisp lists and vice versa (so lisp [a,b,c]
actually yields the same result as lisp (”(a b c))). The result is always a Pure list or
an atomic value.

lispval x
This converts a Pure expression to its Reduce equivalent, like simplify does, but with-
out actually simplifying it. As with the other functions, you need to quote x if you
want to prevent it from being evaluated on the Pure side. The result is the Pure rep-
resentation of a Lisp form which can be passed as a value to other Lisp routines by
employing the lisp function. (Normally this requires that you double-quote the ex-
pression so that it doesn’t get evaluated by the Lisp interpreter.) This function isn’t for
casual usage, but may be useful if you need to pass a Reduce expression to some Lisp
function which cannot be called through simplify.

lispsym s::string
This function creates a special Pure identifier for any symbol given as a string, even
symbols which don’t conform to Pure syntax. This is sometimes needed to specify spe-
cial Lisp symbols in calls to lisp, such as lisp (lispsym "oem-supervisor"). (Note
that if such a special symbol occurs as a literal in a result returned by lisp or simplify
then it will get mangled into a form which conforms to Pure syntax.)

declare declsym [foo,bar,...]
Declare symbols and their properties; please see the Declarations section in the Reduce
manual for details. The second argument can also be a singleton symbol. In the present
implementation, declsym must be one of:

•operator: declares an operator symbol;

•precedence: declares an infix operator and optionally specifies its precedence
(giving the symbol priority over a second given symbol);
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•antisymmetric, symmetric, even, odd, linear, noncom and nonzero: declares
properties of already declared operator symbols;

•depend, nodepend, factor, remfac, order, korder: declares kernel dependencies
and orders. These take both symbols and “kernels” as arguments (the latter are
simple prefix expressions which denote irreducible subterms such as cos x; Re-
duce treats these more or less like variables in algebraic simplifications).

precision prec::int
Sets the internal Reduce precision in decimal digits for floating point calculations, and
returns the previously set precision. This takes effect when rounded mode is enabled
(reduce::switch "rounded" 1). Note that at present this only affects Reduce’s inter-
nal precision, floating point values are still returned as double precision numbers in
Pure land.

plotreset
This is identical to the plotreset command provided by Reduce’s gnuplot interface,
and is sometimes needed to reset the plot subsystem.

In Pure land, Reduce expressions are represented using Pure’s standard curried notation.
Marshalling of numeric data works in a straightforward fashion and includes all natively
supported Pure data types (machine ints, bigints, doubles, rationals and complex numbers).
Some special conversions are applied to algebraic expressions to make arithmetic operations
such as +, * etc. work as expected. In addition, the ==, =>, .. and := infix operators can
be used to denote equations, replacement rules, ranges and assignments in Reduce, respec-
tively. (Note that you may have to quote these in some cases so that they don’t get evaluated
on the Pure side.) Also, Reduce’s arbconst n, arbint n and arbcomplex n terms can be
mapped to Greek symbols αn, βn and ζn on the Pure side. (This may cause issues in en-
vironments without proper Unicode support, so it’s disabled by default.) For debugging
purposes, all these automatic conversions can also be turned off on the output side with
the ‘#! --disable mapped‘ compilation pragma; this needs to be placed before the ‘using
reduce;‘ import clause to take effect. There are a number of other conditional compilation
options which may be used to selectively turn off some of the conversions; please check the
module source for details.

Lisp expressions are handled in a similar fashion, but here only a few basic Pure data types
(integers, doubles, strings and lists) are converted to and from corresponding Lisp data.
Function applications in Pure’s curried notation are mapped to corresponding Lisp forms.
The result of invoking lisp is always one of the supported atomic types or a Pure list.

The lisp function is to be used with care. An orderly Pure exception is raised if you try to
execute a non-existing Lisp function. But there are some internal functions in Reduce which
aren’t very forgiving if you try to execute them with invalid arguments, and will most likely
crash the Reduce system in such cases. You have been warned!

21.5 Basic Examples

Here is a simple example showing how to start up Reduce and do some calculations:
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> using reduce;
Reduce (Free CSL version), 27-Sep-12 ...
> simplify $ df ((x+5)^3) x;
3*x^2+30*x+75
> simplify $ intg (exp (2*x)) x;
e^(2*x)/2
> simplify $ solve (x^2+7) x;
[x==sqrt 7*i,x==-sqrt 7*i]

Note that the result returned by simplify is always a quoted expression. If the expression
can be further reduced on the Pure side, you’ll have to use Pure’s eval function to force its
evaluation:

> using math;
> eval ans;
[x==0.0+:2.64575131106459,x==0.0+:-2.64575131106459]

The following example shows how you can do a simple plot using Reduce’s gnuplot module:

> simplify $ plot [sin x/x, x==’(-20..20), terminal=="wxt"];
0

This pops up a wxWidgets window (terminal=="wxt") with a plot of the given function in
it, see the screenshot below. The x==’(-20..20) argument specifies the desired range of the
x variable (note that the range needs to be quoted so that it gets through to Reduce rather
than being evaluated on the Pure side).

Figure 21.1: Reduce gnuplot example.

The same plot can be written to a PostScript file sinc.ps as follows:
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> simplify $ plot [sin x/x, x==’(-20..20), terminal=="postscript", output=="sinc.ps"];
0

The lisp function can be used to execute Lisp code in the CSL interpreter hosting the Reduce
system. Here are some basic examples. Note that, to be on the safe side, we just always quote
the argument to lisp here to prevent its evaluation on the Pure side.

> lisp (’plus 2 3);
5
> lisp (’car (list a b c d e));
a
> lisp (’cdr [a,b,[c,d],e]);
[b,[c,d],e]

Lisp’s truth values are t and nil; the latter is just the empty list, so that’s what you get if a
Lisp predicate evaluates to “false”:

> lisp (’lessp 5 3);
[]
> lisp (’greaterp 5 3);
t

Most simple kinds of Lisp calls should be doable that way, but don’t expect any miracles;
the lisp function is provided to access special functionality in the “symbolic mode” of the
Reduce system, not to turn Pure into a full-featured Lisp frontend. The following example
illustrates how you can use the lisp function to declare an operator symbol and change or
query its properties:

> lisp (’operator [myop]);
[]
> lisp (’flag [myop] odd);
[]
> lisp (’prop myop);
[odd:t,simpfn:simpiden]
> simplify (myop (-x));
-myop x

If you find it awkward to evaluate Lisp forms in Pure, you can also achieve the same with
the declare function which covers most of the common Reduce declarations that might be
needed:

> declare operator myop;
[]
> declare odd myop;
[]
> simplify (myop (-x));
-myop x

For basic Pure-based usage of Reduce, it’s convenient to have a simple read-eval-print loop
which lets you type some declarations and expressions to be simplified (in Pure syntax), and
takes care of all the quoting and invoking simplify for you. Here’s a little Pure script which
does that:
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using math, reduce, system;

/* You might want to replace this with the real readline if you have the
corresponding Pure module installed. See the red.pure script in the
distribution for details. */

myreadline prompt::string = fputs prompt stdout $$ fflush stdout $$ gets;

red = loop with
// A simplistic REPL.
loop = case myreadline "> " of
s::string = process s $$ loop if ~null s;
_ = () otherwise;

end;
// Get rid of trailing blanks and semicolons.
process s = process (init s) if any (==last s) [" ",";"];
// Process a declaration or REDUCE expression.
process s = case val s of
val _ = fputs "** syntax error\n" stderr if ~null lasterr;
on flag = reduce::switch (str flag) 1;
off flag = reduce::switch (str flag) 0;
x@(declare _ _) = eval x;
x = puts (str (simplify x)) otherwise;

end;
end;

Now you can run red at the Pure prompt and start typing the stuff you want to evaluate,
one expression or declaration per line. Enter an empty line or Ctrl-D when you’re done to
return to the Pure command prompt.

> red;
> df ((x+5)^3) x
3*x^2+30*x+75
> intg (exp (2*x)) x
e^(2*x)/2
> on rounded
> solve (x^2+7==17) x
[x==3.16227766016838,x==-3.16227766016838]
> off rounded
> solve (x^2+7==17) x
[x==sqrt 10,x==-sqrt 10]
> declare operator myop
> declare odd myop
> myop (-x)
-myop x
> plot [sin x/x, x==(-20..20), terminal=="wxt"]
0
> ^D
()

Note that we barely scratched the surface here; Reduce is a very complex system with lots
of capabilities. The following section explores some of these areas in more detail.
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21.6 Examples by Topic

This is a small excerpt from the REDUCE User’s Manual [REDUM], translated to Pure syn-
tax. For any details we refer to that document. With this guide it should be straightforward
to translate back and forth between Pure and REDUCE syntax for the invocation of REDUCE
functions. The one thing you have to keep in mind is that Pure uses curried notation for func-
tion applications, so where a function is invoked as f(x,y,z) in REDUCE, you’ll have to call
it as f x y z in Pure (with parentheses around each argument which is a compound expres-
sion).

The REDUCE User’s Manual as well as the documentation of each package and other valu-
able information may be found at: http://www.reduce-algebra.com/documentation.htm

21.6.1 Differentiation

The operator df is used to represent partial differentiation with respect to one or more vari-
ables.

df exprn [var <num>]+

Differentiation of the function x2y3z4 with respect to x, y, z, two, three and four times respec-

tively, i.e ∂9x2y3z4

∂x2∂y3∂z4 :

> simplify $ df (x^2*y^3*z^4) x 2 y 3 z 4 ;
288

The derivative of log sin(x)2:

> simplify $ df (log(sin x)^2) x;
2*cos x*log (sin x)/sin x

Note the parentheses.

Suppose z(cos(x), y). Let’s calculate ∂ sin(z)
∂ cos(x) and ∂z2

∂x :

> declare depend [z,cos x,y];
[]
> simplify (df (sin z) (cos x));
cos z*df z (cos x)
> simplify (df (z^2) x);
2*df z x*z

Note how to declare dependencies.

The results are cos(z) ∂z
∂ cos(x) and 2z ∂z

∂x , respectively, as expected.

21.6.2 Integration

INT is an operator in REDUCE for indefinite integration using a combination of the Risch-
Norman algorithm and pattern matching.
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intg exprn var

Note that in Pure the operator is called intg in order not to clash with the int conversion
function.

Example 1: ∫ 1
ax + b

dx

> simplify $ intg (1/(a*x+b)) x;
log (a*x+b)/a

Example 2:

I(a, b, n) =
∫

x2(ax + b)ndx

> I a b n = simplify $ intg (x^2*(a*x+b)^n) x;
> I a b n;
((a*x+b)^n*a^3*n^2*x^3+3*(a*x+b)^n*a^3*n*x^3+2*(a*x+b)^n*a^3*x^3+
(a*x+b)^n*a^2*b*n^2*x^2+(a*x+b)^n*a^2*b*n*x^2-2*(a*x+b)^n*a*b^2*
n*x+2*(a*x+b)^n*b^3)/(a^3*n^3+6*a^3*n^2+11*a^3*n+6*a^3)

> I a b 0 ;
x^3/3
> I 0 b n;
b^n*x^3/3
> I a 0 k;
x^k*a^k*x^3/(k+3)

Example 3:

∫ √
x +
√

x2 + 1
x

dx

> simplify $ intg (sqrt(x+sqrt(x^2+1))/x) x ;
intg (sqrt (sqrt (x^2+1)+x)/x) x

Apparently no solution was found. There is a package ALGINT in REDUCE which specifically
deals with algebraic functions. The REDUCE User’s Manual [REDUM] says:

This package [...] will analytically integrate a wide range of expressions involving square
roots where the answer exists in that class of functions. It is an implementation of the
work described in J.H. Davenport [LNCS102].
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> reduce::load "algint" ;
0
> simplify $ intg (sqrt(x+sqrt(x^2+1))/x) x ;
atan ((sqrt (sqrt (x^2+1)+x)*sqrt (x^2+1)-sqrt (sqrt (x^2+1)+x)*x-sqrt
(sqrt (x^2+1)+x))/2)+2*sqrt (sqrt (x^2+1)+x)+log (sqrt (sqrt
(x^2+1)+x)-1)-log (sqrt (sqrt (x^2+1)+x)+1)

Note how to load packages.

21.6.3 Length, Map and Select

LENGTH is a generic operator for finding the length of compound objects. Besides lists and
matrices, this also includes algebraic expressions. The MAP and SELECT operators let you ma-
nipulate such objects by applying a function to each element of the structure, or by picking
the elements satisfying a given predicate function. Thus these operations serve pretty much
the same purposes as # (or dim), map and filter in Pure, but in REDUCE they also work
with the operands of an algebraic expression.

length exprn
map fun exprn
select fun exprn

> simplify $ length (a+b);
2
> simplify $ length (x^n+a*x+2);
3

> simplify $ ’map sqrt [1,2,3];
[1,2^(1/2),3^(1/2)]
> simplify $ ’map log [x^n,x^m,sin x];
[log (x^n),log (x^m),log (sin x)]

Note that map must be quoted if we want to evaluate it in REDUCE, since it’s also a function
in Pure. In this case, we might as well do the calculation using Pure’s map; the result is exactly
the same.

> simplify $ map sqrt [1,2,3];
[1,2^(1/2),3^(1/2)]
> simplify $ map log [x^n,x^m,sin x];
[log (x^n),log (x^m),log (sin x)]

If the function to be applied in calls to MAP or SELECT is a compound expression, it must
either contain a single free variable (indicated with the ~ prefix, e.g.: ~w) or a replacement
rule of the form var => exprn. In either case the current elements are substituted for the
free variable when the function is applied.

> simplify $ ’map (y=>df y x) [x^n,x^m,sin x];
[x^n*n/x,x^m*m/x,cos x]
> simplify $ ’map (y=>intg y x) [x^n,x^m,sin x];
[x^n*x/(n+1),x^m*x/(m+1),-cos x]
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> simplify $ select (evenp (deg (~w) y)) ((x+y)^5);
x^5+10*x^3*y^2+5*x*y^4
> simplify $ select (w=>evenp (deg w y)) ((x+y)^5);
x^5+10*x^3*y^2+5*x*y^4

Contrast this with Pure where the function argument to map is often specified as a lambda:

> simplify $ map (\y->df y x) [x^n,x^m,sin x];
[x^n*n/x,x^m*m/x,cos x]
> simplify $ map (\y->intg y x) [x^n,x^m,sin x];
[x^n*x/(n+1),x^m*x/(m+1),-cos x]

In principle, the same correspondences also hold between REDUCE’s select and Pure’s
filter. For instance, consider:

> simplify $ select (w=>evenp (deg w x)) [2*x^2,3*x^3,4*x^4];
[2*x^2,4*x^4]

The equivalent Pure filter is:

> filter (\w->simplify $ evenp (deg w x)) [2*x^2,3*x^3,4*x^4];
[2*x^2,4*x^4]

Note that REDUCE is now being called inside the predicate function, the rest of the process-
ing is done in Pure.

Of course, if you want to apply map, filter and similar Pure functions to an algebraic ex-
pression, you’ll first have to extract its components as a list. Here’s a little Pure function
which mimics the way in which MAP and SELECT decompose an expression:

terms x = case x of
f@_ u v = collect f x with
// Collect the operands of variadic Reduce operators.
collect f (f@_ u v) = collect f u+collect f v;
collect f x = [x] otherwise;

end if any (===eval f) [(+),(-),(*),min,max];
= [u,v] if arity f == 2;
_ = [x] otherwise;

end;

For instance, consider:

> simplify $ ’map (w=>w+1) (df ((x+y)^3) x);
3*x^2+6*x*y+3*y^2+3

With the help of terms we can also do this using Pure’s map as follows:

> map (+1) $ terms (simplify (df ((x+y)^3) x));
[3*x^2+1,6*x*y+1,3*y^2+1]
> simplify $ foldl (+) 0 ans;
3*x^2+6*x*y+3*y^2+3
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While the REDUCE version is shorter and only involves a single call to simplify, with a little
bit of programming the Pure solution can be made just as convenient. More importantly, this
method easily generalizes to other list operations. This makes it possible to apply Pure’s full
arsenal of generic list functions which goes beyond what’s available in REDUCE.

21.6.4 Partial Fractions

The PF operator transforms an expression into a list of partial fractions with respect to the
main variable. PF does a complete partial fraction decomposition.

pf expr var

Let us find the decomposition of:

f (x) =
2

(x + 1)2 (x + 2)

> let f = 2/((x+1)^2*(x+2));
> simplify $ pf f x;
[2/(x+2),(-2)/(x+1),2/(x^2+2*x+1)]

This means:

f (x) =
2

x + 2
+
−2

x + 1
+

2
x2 + 2x + 1

If one wants the denominators in factored form, one has to use the switch off exp:

> reduce::switch "exp" 0 ;
0
> simplify $ pf f x;
[2/(x+2),(-2)/(x+1),2/(x+1)^2]

Note how the value of a Reduce switch is changed in Pure.

21.6.5 Solving

SOLVE is an operator for solving one or more simultaneous algebraic equations. It is used
with the syntax:

solve expr [var | varlist]

where expr is a list of one or more expressions. Each expression is an algebraic equation, or
is the difference of the two sides of the equation.

Example 1:
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Find the solutions to

log(sin(x + 3))5 = 8

> let eqn1 = log(sin (x+3))^5 == 8 ;
> let sol1 = simplify $ solve eqn1 x;

The variable sol1 now contains an entire list of solutions. How many are there?

> #sol1 ;
10

The first one is:

> sol1!0;
x==2*arbint 5*pi+asin (e^(2^(3/5)*cos (2*pi/5))/e^(2^(3/5)*sin (2*pi/5)*i))-3

x = 2 · n · π + asin(
e2

3
5 ·cos( 2·π

5 )

e2
3
5 ·sin( 2·π

5 )·i
)− 3

where n is an arbitrary integer constant (shown as arbint 5 in the result of simplify).

It is also possible to obtain the right-hand side of any solution in the list via REDUCE com-
mands:

> simplify $ rhs $ first $ solve eqn1 x;
2*arbint 10*pi+asin (e^(2^(3/5)*cos (2*pi/5))/e^(2^(3/5)*sin (2*pi/5)*i))-3

where first gets the first solution in the list and rhs obtains the right-hand side. Hence
there is a wealth of possibilities to process the solution list.

Example 2:

Here are some simpler examples for the sake of clarity:

X2 + 1 = 0

> simplify $ solve [X^2+1==0] X;
[X==i,X==-i]

(x + 3 y = 7) ∧ (y− x = 1)
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> simplify $ solve [x+3*y==7,y-x==1] [x,y] ;
[[x==1,y==2]]

To get the multiplicities, turn on the switch multiplicities:

> simplify $ solve [x^2==2*x-1] x;
[x==1]
> reduce::switch "multiplicities" 1;
0
> simplify $ solve [x^2==2*x-1] x;
[x==1,x==1]

For details consult the REDUCE user manual.

21.6.6 Even and Odd Operators

An operator can be declared to be even or odd in its first argument by the declarations EVEN
and ODD respectively.

> declare operator [f1,f2];
[]
> declare odd f1;
[]
> declare even f2;
[]

> simplify $ f1(-a);
-f1 a

> simplify $ f2 (-a);
f2 a

> simplify $ f1 (-a) (-b);
-f1 a (-b)

21.6.7 Linear Operators

An operator can be declared to be linear in its first argument over powers of its second
argument.

L(a x5 + b x + c, x) = L(x5, x) · a + L(x, x) · b + L(1, x) · c

> declare operator L;
[]
> declare linear L;
[]
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> simplify $ L (a*x^5+b*x+c) x ;
L (x^5) x*a+L x x*b+L 1 x*c

L(a + b + c + d, y) = L(1, y) · (a + b + c + d)

> simplify $ L (a+b+c+d) y;
L 1 y*a+L 1 y*b+L 1 y*c+L 1 y*d

Note that L x y binds stronger than (*) in Pure.

21.6.8 Non-commuting Operators

An operator can be declared to be non-commutative under multiplication by the declaration
NONCOM.

> declare operator [u,v];
[]
> simplify (u(x)*u(y)-u(y)*u(x));
0
> declare noncom [u,v];
[]
> simplify (u(x)*u(y)-u(y)*u(x));
u x*u y-u y*u x

21.6.9 Symmetric and Antisymmetric Operators

An operator can be declared to be symmetric with respect to its arguments by the declaration
SYMMETRIC. Similarly, the declaration ANTISYMMETRIC declares an operator antisymmetric.

> declare operator [A,S];
[]
> declare symmetric S;
[]
> declare antisymmetric A;
[]

> simplify $ A x x ;
0

> simplify $ (A x y z) + (A x z y) ;
0

> simplify $ S y x ;
S x y
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> simplify $ A y x ;
-A x y

21.6.10 Creating/Removing Variable Dependencies

There are several facilities in REDUCE, such as the differentiation operator and the linear op-
erator facility, which can utilize knowledge of the dependencies between various variables.
Such dependencies may be expressed by the command DEPEND.

> declare operator D ;
[]
> declare depend [D,x,y];
[]

> simplify $ df D a;
0

D does not depend on a, thus differentiating with respect to a yields 0, but

> simplify $ df D x;
df D x

because D is declared to depend on x. If we also let a depend on x, then:

> declare depend [a,x];
[]
> simplify $ df (D*a) x;
df D x*a+df a x*D

Note: Dependencies remain active until they are explicitly removed:

> declare nodepend [a,x];
> simplify $ df a x;
0
> simplify $ df (D*a) x;
df D x*a

21.6.11 Internal Order of Variables

It is possible for the user to change the internal order of variables by means of the declaration
KORDER. The syntax for this is:

declare korder [v1,...,vn]

Unlike the ORDER declaration, which has a purely cosmetic effect on the way results are
printed, the use of KORDER can have a significant effect on computation time.

> declare korder [z,y,x];
[]
> x+y+z;
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x+y+z
> simplify $ x+y+z;
z+y+x

21.6.12 Parts of Algebraic Expressions

The following operators can be used to obtain a specific part of an expression, or even change
such a part to another expression.

coeff expr::polynomial var
coeffn expr::polynomial var n::int
part expr::algebraic [n::int]

Examples:

> simplify $ coeff ((y^2+z)^3/z) y ;
[z^2,0,3*z,0,3,0,1/z]

> simplify $ coeffn ((y^2+z)^3/z) y 6;
1/z

> simplify $ part (a+b) 2 ;
b

> simplify $ part (a+b) 1 ;
a

> simplify $ part (a+b) 0 ;
(+)

PART may also be used to substitute a given part of an expression. In this case, the PART
construct appears on the left-hand side of an assignment statement (cf. Assignment), and
the expression to replace the given part on the right-hand side.

> simplify $ xx:=a+b;
a+b
> simplify $ part xx 2 := c ;
c
> simplify $ xx;
a+c

21.6.13 Polynomials and Rationals

REDUCE is capable of factorizing univariate and multivariate polynomials with integer co-
efficients, finding all factors with integer coefficients. The package for doing this was written
by Dr. Arthur C. Norman and Ms. P. Mary Ann Moore at The University of Cambridge. It is
described in [SYMSAC81].

factorize expr::polynomial [p::prime]
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Some examples:

> simplify $ factorize (x^105-1) ;
[[x^48+x^47+x^46-x^43-x^42-2*x^41-x^40 ... ]

> reduce::switch "ifactor" 1;
0
> simplify $ factorize (12*x^2 - 12) ;
[[2,2],[3,1],[x+1,1],[x-1,1]]
> reduce::switch "ifactor" 0;
0

The following operators should be well known:

gcd expr1::polynomial expr2::polynomial -> polynomial
lcm expr1::polynomial expr2::polynomial -> polynomial
remainder expr1::polynomial expr2::polynomial -> polynomial
resultant expr1::polynomial expr2::polynomial var -> polynomial
decompose expr::polynomial -> list
interpol <values> <variable> <points>) -> polynomial
deg expr::polynomial var ->int
den expr::rational -> polynomial
lcof expr::polynomial var -> polynomial
lpower expr::polynomial var-> polynomial
lterm expr::polynomial var -> polynomial
mainvar expr::polynomial -> expr
num expr::rational -> polynomial
reduct expr::polynomial var -> polynomial

Some examples of each operator:

GCD/LCM

> simplify $ gcd (x^2+2*x+1) (x^2+3*x+2) ;
x+1
> simplify $ gcd (2*x^2-2*y^2) (4*x+4*y) ;
2*x+2*y
> simplify $ gcd (x^2+y^2) (x-y) ;
1

> simplify $ lcm (x^2+2*x+1) (x^2+3*x+2) ;
x^3+4*x^2+5*x+2
> simplify $ lcm (2*x^2-2*y^2) (4*x+4*y) ;
4*x^2-4*y^2

REMAINDER/RESULTANT

> simplify $ remainder ((x+y)*(x+2*y)) (x+3*y) ;
2*y^2
> simplify $ remainder (2*x+y) 2 ;
y
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> simplify $ resultant (x/r*u+y) (u*y) u ;
-y^2

DECOMPOSE

> simplify $ decompose (x^8-88*x^7+2924*x^6-43912*x^5+263431*x^4-
> 218900*x^3+65690*x^2-7700*x+234) ;
[u^2+35*u+234,u==v^2+10*v,v==x^2-22*x]

> simplify $ decompose (u^2+v^2+2*u*v+1) ;
[w^2+1,w==u+v]

DEG/DEN

> simplify $ deg ((a+b)*(c+2*d)^2) d ;
2
> simplify $ deg ((x+b)*(x^6+2*y)^2) x ;
13

> simplify $ den (x/y^2) ;
y^2

LCOF/LPOWER/LTERM

> simplify $ lcof ((a+b)*(c+2*d)^2) a ;
c^2+4*c*d+4*d^2
> simplify $ lcof ((a+b)*(c+2*d)^2) d ;
4*a+4*b
> simplify $ lcof ((a+b)*(c+2*d)) (’e) ;
a*c+2*a*d+b*c+2*b*d

> simplify $ lpower ((a+b)*(c+2*d)^2) a ;
a
> simplify $ lpower ((a+b)*(c+2*d)^2) d ;
d^2
> simplify $ lpower ((a+b)*(c+2*d)) x ;
1

> simplify $ lterm ((a+b)*(c+2*d)^2) a ;
a*c^2+4*a*c*d+4*a*d^2
> simplify $ lterm ((a+b)*(c+2*d)^2) d ;
4*a*d^2+4*b*d^2
> simplify $ lterm ((a+b)*(c+2*d)) x ;
a*c+2*a*d+b*c+2*b*d

MAINVAR/NUM/REDUCT

> simplify $ mainvar ((a+b)*(c+2*d)^2) ;
a
> simplify $ mainvar 2 ;
0

> simplify $ num (x/y^2) ;
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x
> simplify $ num (’(100/6)) ;
50
> simplify $ num (a/4+b/6) ;
3*a+2*b

> simplify $ reduct ((a+b)*(c+2*d)) a ;
b*c+2*b*d
> simplify $ reduct ((a+b)*(c+2*d)) d ;
a*c+b*c
> simplify $ reduct ((a+b)*(c+2*d)) x ;
0

21.6.14 Substitution

An important class of commands in REDUCE define substitutions for variables and expres-
sions to be made during the evaluation of expressions. One such operation is the prefix
operator SUB.

sub <substlist> exprn::algebraic -> algebraic

> simplify $ sub [x==a+y,y==y+1] (x^2+y^2) ;
a^2+2*a*y+2*y^2+2*y+1

> simplify $ sub [a==sin x, b==sin y] (a^2+b^2) ;
sin x^2+sin y^2

Note that simple substitutions of this kind can also be done directly in Pure, using the reduce
macro.

21.6.15 Assignment

One may assign values to variables in the REDUCE environment. Note that in Pure the set
operator and := are equivalent, i.e. both sides are evaluated, contrary to the := version in
REDUCE.

set expr expr
expr := expr

> simplify $ P := a*x^n + b* x^m + c ; // P:=a*x^n + b* x^m + c;
x^m*b+x^n*a+c
> simplify P ; // return P (from Reduce)
x^m*b+x^n*a+c
> simplify $ df P x; // diff P x
(x^m*b*m+x^n*a*n)/x
> simplify $ Q := intg P x ; // integrate P x, store in Q
(x^m*b*n*x+x^m*b*x+x^n*a*m*x+x^n*a*x+c*m*n*x+c*m*x+c*n*x+c*x)/(m*n+m+n+1)
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> simplify $ set Q (a*x^n + b* x^m + c) ;
x^m*b+x^n*a+c

21.6.16 Matrix Calculations

A very powerful feature of REDUCE is the ease with which matrix calculations can be per-
formed. It fits very well into Pure’s native matrix type.

To keep it simple we show the usage of the different operators by examples using the well
known Pauli matrices. See, e.g., http://en.wikipedia.org/wiki/Pauli_matrices for a refer-
ence.

σ1 =

(
0 1
1 0

)
σ2 =

(
0 −i
i 0

)
σ3 =

(
1 0
0 −1

)

let s0 = {1,0;0,1} ;
let s1 = {0,1;1,0} ;
let s2 = {0,-i;i,0};
let s3 = {1,0;0,-1};

Check the identities

σ2
1 = σ2

2 = σ2
3 = −iσ1 σ2 σ3 = σ0

where σ0 denotes the unit matrix.

Note: Instead of s1*s1 we could also write s1^2 here.

> let r1 = simplify $ (s1*s1) ; r1;
{1,0;0,1}
> let r2 = simplify $ (s2*s2) ; r2;
{1,0;0,1}
> let r3 = simplify $ (s3*s3) ; r3;
{1,0;0,1}
> let r4 = simplify $ (-i*s1*s2*s3) ; r4;
{1,0;0,1}
> let r5 = all (==s0) [r1,r2,r3,r4] ; r5;
1

Check: det σi = −1, ∀i ∈ {1, 2, 3}.

> map (simplify . det) [s1,s2,s3] ;
[-1,-1,-1]

Calculate the eigenvalues/-vectors of σ2:
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> let r7 = simplify $ mateigen s2 q; r7;
[[q-1,1,{-c1*i;c2}],[q+1,1,{c3*i;c4}]]

> let r8 = map head r7; r8; // -> [q-1,q+1] => Eigenvalues q=+/-1
[q-1,q+1]

> let r9 = map (head.tail) r7 ; r9; // multiplicities
[1,1]

> let r10 = map last r7 ; r10; // eigenvectors
[{-c1*i;c2},{c3*i;c4}]

Transpose (operator tp):

> map (simplify.tp) [s1,s2,s3] ; // -> [s1’,s2’,s3’]
[{0,1;1,0},{0,i;-i,0},{1,0;0,-1}]

Trace (operator trace):

> map (simplify.trace) [s1,s2,s3] ;
[0,0,0]

Cofactor (trivial here):

> simplify $ cofactor s2 1 1 ;
0

Nullspace of σ2 + {0,i;0,0}:

> simplify $ nullspace (s2+{0,i;0,0}) ;
[{0;1}]

Rank:

> map (simplify . rank) [s0,s1,s2,s3] ;
[2,2,2,2]

Inverse (simply 1
matrix ):

> let r15 = simplify $ 1/s2 ; r15;
{0,1/i;(-1)/i,0}

> simplify $ s2*r15 ;
{1,0;0,1}

Solving without solve:

a11 x1 + a12 x2 = y1

a21 x1 + a22 x2 = y2
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> simplify $ (1/{a11,a12;a21,a22}*{y1;y2}) ; // A^-1 * y’ ;
{(-a12*y2+a22*y1)/(a11*a22-a12*a21);(a11*y2-a21*y1)/(a11*a22-a12*a21)}

21.6.17 Limits

From the package description:

LIMITS is a fast limit package for REDUCE for functions which are continuous except for
computable poles and singularities, based on some earlier work by Ian Cohen and John P.
Fitch. This package defines a LIMIT operator, called with the syntax:

limit expr::alg var limpoint::alg -> alg

lim
x→∞

x sin
1
x
=?, lim

x→0

1
x
=?

> simplify $ limit (x*sin(1/x)) x infinity ;
1

> simplify $ limit (1/x) x 0 ;
inf

Notes: This package loads automatically. Author: Stanley L. Kameny.

21.6.18 Ordinary differential equations solver

The ODESOLVE package is a solver for ordinary differential equations.

Problem 1:
dy
dx

= x2 + ex

> declare depend [y,x]; // declare: y depends on x
[]

> simplify $ odesolve [df y x == x^2+exp(x)] [y] x ;
[y==(3*C+3*e^x+x^3)/3]

Problem 2:

d2 y
dx2 = y(x) ∧ y(0) = A ∧ y(1) = B
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> simplify $ odesolve [(df y x 2) == y] [y] x [[x==0,y==A],[x==1,y==B]] ;
[y==(-e^(2*x)*A+e^(2*x)*B*e+A*e^2-B*e)/(e^x*e^2-e^x)]

Remember to remove dependencies:

> declare nodepend [y,x];
[]

21.6.19 Series Summation and Products

SUM: A package for series summation

From the package description:

The package implements the Gosper algorithm for the summation of series. It defines op-
erators SUM and PROD. The operator SUM returns the indefinite or definite summation of a
given expression, and PROD returns the product of the given expression. This package loads
automatically. Author: Fujio Kako.

Calculate

N

∑
n=1

n3,
n−1

∑
k=0

(a + k r),
n+1

∑
k=1

1
(p + (k− 1) q) · (p + k q)

,
N

∏
k=1

k
k + 2

> simplify $ sum (n^3) n 1 N ;
(N^4+2*N^3+N^2)/4

> simplify $ sum (a+k*r) k 0 (n-1) ;
(2*a*n+n^2*r-n*r)/2

> simplify $ sum (1/((p+(k-1)*q)*(p+k*q))) k 1 (n+1) ;
(n+1)/(n*p*q+p^2+p*q)

> simplify $ prod (k/(k+2)) k 1 N ;
2/(N^2+3*N+2)

21.6.20 Taylor Series

TAYLOR: Manipulation of Taylor series

From the package description:

This package carries out the Taylor expansion of an expression in one or more variables and
efficient manipulation of the resulting Taylor series. Capabilities include basic operations
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(addition, subtraction, multiplication and division) and also application of certain algebraic
and transcendental functions. Author: Rainer Schöpf.

Example:

ex2+y2
= 1 + y2 + x2 + y2 · x2 + O(x3, y3)

For details consult the package documentation in the REDUCE distribution.

> simplify $ taylor (exp (x^2+y^2)) x 0 2 y 0 2 ;
x^2*y^2+x^2+y^2+1

> simplify $ taylor (exp x) x 0 3;
(x^3+3*x^2+6*x+6)/6

> simplify $ implicit_taylor (x^2+y^2-1) x y 0 1 5 ;
(-x^4-4*x^2+8)/8

> simplify $ inverse_taylor (exp(x)-1) x y 0 8;
(-105*y^8+120*y^7-140*y^6+168*y^5-210*y^4+280*y^3-420*y^2+840*y)/840

Note that the “big O” residual terms are omitted in the results returned by simplify, al-
though REDUCE will print them.

21.6.21 Boolean Expressions

The truth values within REDUCE are t and nil = (). Not all predicates (functions returning
a truth value) can be called by simplify, however, so one has to use the lisp function in
some circumstances.

Some examples:

> simplify $ evenp 200 ;
t
> simplify $ evenp 201 ;
[]

> lisp (fixp 200) ;
t

where fixp tests for integers.

The following example shows a pitfall. Since there is a numberp function in both Pure and
REDUCE, the function needs to be quoted to make the expression go through to REDUCE:

> lisp (numberp x) ;
0
> lisp (numberp 111) ;
1
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> lisp (’numberp x) ;
[]
> lisp (’numberp 111) ;
t

In the first case numberp x evaluates to zero in Pure, so the lisp function gets 0 and returns
0. In the second case (quoted) the function numberp is evaluated in REDUCE and returns
nil, i.e. [] in Pure. Of course, both results are correct but there may be other cases where
equally named functions have different meanings in the two environments.

Some other useful predicates in REDUCE are ordp and freeof:

> lisp (ordp x y) ;
t
> lisp (ordp y x) ;
[]
> lisp (ordp "abc" "abd") ;
t
> lisp (ordp "abd" "abc") ;
[]
> lisp (ordp 3 5) ;
[]
> lisp (ordp 5 3) ;
t

> simplify $ freeof (x^2+y) x ;
0
> simplify $ freeof (x^2+y) z ;
1
> simplify $ freeof (x^n*y^m) (y^m) ;
0

21.6.22 Mathematical Functions

REDUCE provides many mathematical functions which can take arbitrary scalar expressions
as their single argument:

• ACOS ACOSH ACOT ACOTH ACSC ACSCH ASEC ASECH ASIN ASINH

• ATAN ATANH ATAN2 COS COSH COT COTH CSC CSCH DILOG EI EXP

• HYPOT LN LOG LOGB LOG10 SEC SECH SIN SINH SQRT TAN TANH ERF

Note that Pure also defines some these functions in its math module, so these may have to be
quoted to prevent evaluation on the Pure side. For instance:

> simplify $ cos 4.3;
cos (43/10)
> using math;
warning: external ’exp’ shadows previous undefined use of this symbol
warning: external ’sin’ shadows previous undefined use of this symbol
warning: external ’cos’ shadows previous undefined use of this symbol
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> simplify $ cos 4.3;
(-21601483)/53896027

Some examples:

> simplify $ cos (-x) ;
cos x
> simplify $ cos (n*pi) ;
cos (80143857*n/25510582)
> simplify $ (quote e)^(3*i*(quote pi)/2) ;
-i
> simplify $ sec (quote pi);
-1
> let simplify $ log10 10 ;
1
> simplify $ erf (-a);
-erf a

The special functions are in two separate packages SPECFN and SPECFN2:

• Bernoulli Numbers and Euler Numbers;

• Stirling Numbers;

• Binomial Coefficients;

• Pochhammer notation;

• The Gamma function;

• The Psi function and its derivatives;

• The Riemann Zeta function;

• The Bessel functions J and Y of the first and second kind;

• The modified Bessel functions I and K;

• The Hankel functions H1 and H2;

• The Kummer hypergeometric functions M and U;

• The Beta function, and Struve, Lommel and Whittaker functions;

• The Airy functions;

• The Exponential Integral, the Sine and Cosine Integrals;

• The Hyperbolic Sine and Cosine Integrals;

• The Fresnel Integrals and the Error function;

• The Dilog function;

• Hermite Polynomials;

• Jacobi Polynomials;

• Legendre Polynomials;
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• Spherical and Solid Harmonics;

• Laguerre Polynomials;

• Chebyshev Polynomials;

• Gegenbauer Polynomials;

• Euler Polynomials;

• Bernoulli Polynomials.

• Jacobi Elliptic Functions and Integrals;

• 3j symbols, 6j symbols and Clebsch Gordan coefficients;

In SPECFN2 are the generalized hypergeometric functions and Meijer’s G function.

Author: Chris Cannam, with contributions from Winfried Neun, Herbert Melenk, Victor
Adamchik, Francis Wright and several others.

21.6.23 Definite Integrals

DEFINT: Calculating definite integrals by using the Meijer G integration formula.∫ ∞

0
e−x dx

> reduce::load "defint" ;
0

> simplify $ intg (exp(-x)) x 0 infinity ;
1

∫ ∞

0
x2 cos(x) e−2 x dx

> simplify $ intg (x^2*cos(x)*exp(-2*x)) x 0 infinity ;
4/125

∫ 1

0
x e−

1
2 x dx
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> simplify $ intg (x*exp(-1/2*x)) x 0 1 ;
2*sqrt e*(2*sqrt e-3)/e

∫ 1

0
x log(1 + x) dx

> simplify $ intg (x*log(1+x)) x 0 1 ;
1/4

∫ 2 y

y
cos(2 x) dx

> simplify $ intg (cos(2*x)) x y (2*y);
(sin (4*y)-sin (2*y))/2

Various transformations:

> simplify $ laplace_transform (exp(-a*x)) x ;
1/(a+s)

> simplify $ hankel_transform (exp(-a*x)) x ;
s^(n/2)*gamma (n/2)*hypergeometric [(n+2)/2] [n+1]
((-s)/a)*n/(2*a^(n/2)*gamma (n+1)*a)

> simplify $ y_transform (exp(-a*x)) x ;
(a^n*gamma (n+1)*gamma ((-n)/2)*gamma ((-2*n-1)/2)*gamma
((2*n+3)/2)*hypergeometric [(-n+2)/2] [-n+1] ((-s)/a)+s^n*gamma
(-n)*gamma (n/2)*hypergeometric [(n+2)/2] [n+1] ((-s)/a)*n*pi)/
(2*s^(n/2)*a^(n/2)*gamma ((-2*n-1)/2)*gamma ((2*n+3)/2)*a*pi)

> simplify $ k_transform (exp(-a*x)) x ;
(-a^n*gamma (n+1)*gamma ((-n)/2)*hypergeometric [(-n+2)/2] [-n+1]
(s/a)+s^n*gamma (-n)*gamma (n/2)*hypergeometric [(n+2)/2] [n+1] (s/a)*n)/
(4*s^(n/2)*a^(n/2)*a)

> simplify $ struveh_transform (exp(-a*x)) x ;
2*s^((n+1)/2)*gamma ((n+3)/2)*hypergeometric [1,(n+3)/2] [(2*n+3)/2,3/2]
((-s)/a)/(sqrt pi*a^((n+1)/2)*gamma ((2*n+3)/2)*a)

> simplify $ fourier_sin (exp(-a*x)) x ;
s/(a^2+s^2)
> simplify $ fourier_cos (exp(-a*x)) x ;
a/(a^2+s^2)
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21.6.24 Declarations, Switches and Loading

Lisp evaluation can be used in the REDUCE system, in particular, to declare operator sym-
bols and their properties (simplify won’t do that). E.g.:

> lisp (’operator [myop]);
> lisp (’flag [myop] odd);
> lisp (’prop myop); // => [odd:t,simpfn:simpiden]
> simplify (myop (-x)); // => -myop x

For the most common kinds of declarations, the reduce module provides the declare func-
tion which takes care of the necessary Lisp magic and is safe to use. The above example can
also be done as follows:

> declare operator myop;
> declare odd myop;
> simplify (myop (-x));
-myop x

Please see the description of declare for a list of supported declarations.

The reduce module also provides a few other basic maintenance functions which are done
with special commands in REDUCE:

reduce::switch ”switch-name” 0|1
reduce::load ”package-name”
reduce::in ”path/filename.red”
reduce::capture 0|1
reduce::feed ”text”

As already mentioned, REDUCE switches can be turned on and off with reduce::switch,
e.g.:

> reduce::switch "exp" 0 ;
0

Packages can be loaded with the reduce::load command:

> reduce::load "defint" ;
0

REDUCE source files can be read in with the reduce::in command:

> reduce::in "myreduce.red" ;
0

Last but not least, REDUCE terminal input and output can also be redirected to string buffers
using the reduce::feed and reduce::capture functions. For instance, the following code
feeds some text with a Lisp form to REDUCE, which gets read by evaluating the Lisp form
(eval read). The output is captured and can be inspected with the reduce::output func-
tion:
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> reduce::feed "(print ’(a b c d))";
0
> reduce::capture 1; // start capturing output
0
> lisp (’eval read); // read buffered input and evaluate
[a,b,c,d]
> reduce::output; // inspect buffered output
"(a b c d)\n"
> reduce::capture 0; // stop capturing output
0

21.6.25 Plotting

REDUCE can do 2- and 3-dimensional function plots through its gnuplot package. Some ex-
amples (note that we have to quote the x..y ranges here so that they get through to Reduce,
rather than being evaluated on the Pure side):

> simplify $ plot (sin x/x) (x==’(-15..15));

// Multiple ranges.
> simplify $ plot (sin(x^2 + y^2) / sqrt(x^2 + y^2)) [x==’(-12..12), y==’(-12..12)];

// Specifying options.
> simplify $ plot (cos (sqrt(x^2 + y^2))) [x==’(-3..3),y==’(-3 .. 3)] hidden3d;

// Specifying points.
> simplify $ plot [[0,0],[0,1],[1,1],[0,0],[1,0],[0,1],[0.5,1.5],[1,1],[1,0]];

// Output options.
> simplify $ plot (sin x) [x==’(0..10),terminal==postscript,output=="sin.ps"];

21.6.26 References

[REDUM] REDUCE User’s Manual, Version 3.8, Anthony C. Hearn, Santa Monica, CA, USA.

[LNCS102] On the Integration of Algebraic Functions, LNCS 102, Springer Verlag, 1981.

[SYMSAC81] P. M. A. Moore and A.C. Norman, Implementing a Polynomial Factorization and
GCD Package, Proc. SYMSAC ’81, ACM (New York) (1981), 109-116.
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Chapter 22
Pure-CSV - Comma Separated Value Interface
for the Pure Programming Language

Version 1.6, September 17, 2014

Eddie Rucker <erucker@bmc.edu>

The CSV library provides an interface for reading and writing comma sepa-
rated value files. The module is very loosely based on Python’s CSV module
(http://docs.python.org/lib/module-csv.html).

22.1 Installation

Get the latest source from https://bitbucket.org/purelang/pure-lang/downloads/pure-
csv-1.6.tar.gz.

Run make to compile the module and make install (as root) to install it in the Pure library
directory. This requires GNU make. The make install step is only necessary for system-
wide installation.

The make utility tries to guess your Pure installation directory and platform-specific setup.
If it gets this wrong, you can set some variables manually. In particular, make install
prefix=/usr sets the installation prefix, and make PIC=-fPIC or some similar flag might
be needed for compilation on 64 bit systems. Please see the Makefile for details.

22.2 Usage

Data records are represented as vectors or lists of any Pure values. Values are converted as
necessary and written as a group of strings, integers, or doubles separated by a delimiter.
Three predefined dialects are provided; DEFAULT (record terminator= \n ), RFC4180 (record
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terminator= \r\n ), and Excel. Procedures are provided to create other CSV dialects. See
(http://www.ietf.org/rfc/rfc4180.txt) for more details about the RFC4180 standard.

22.2.1 Handling Errors

error msg is an error handling term. Operations resulting in parse errors, memory errors,
or read/write errors produce a special csv::error msg term, where msg is a string de-
scribing the particular error. Your application should either check for these or have
csv::error defined to directly handle errors in some way (e.g., provide a default
value, or raise an exception).

22.2.2 Creating Dialects

dialect record creates a dialect from a record of dialect option pairs. The dialect object
is freed automatically when exiting the pure script. The list of possible options and
option values are presented below.

• delimiter - Character used to separate fields.

– Value - any string.

– Default - ",".

• escape - Embedded escape character used to embed a delimiter, escape, or ter-
minator into unquoted fields. If the escape character is not null, then the quote
character is ignored.

– Value - any string.

– Default - "".

– Reading - The escape character is dropped and the next char is inserted into
the field.

– Writing - The escape character is written into the output stream before the
delimiter, escape, or return character.

• quote - Quotes are used to embed delimiters, quotes, or terminators into a field.

– Value - any string.

– Default - "\"".

– Notes - Embedded quotes are doubled. The escape option must be the null
string.

• terminator - Record termination string.

– Value - any string.

– Reading - Either a user specified string or if not specivied the file is sniffed
for a \r, \r\n, or \n.
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– Writing - Either a user specified string, \r\n for Windows platforms, or \n for
everything else.

• quote_flag - Sets the quoting style of strings and/or numbers.

– Value - One of {ALL, STRINGS, MINIMAL}.

– Default - ALL.

– Reading -

1. ALL - Every field is read as a string.

2. STRING, MINIMAL - Fields within quotes and fields that cannot be con-
verted to integers or doubles are read as strings.

– Writing -

1. ALL - Every field is written within quotes.

2. STRING - Only fields of type string are quoted.

3. MINIMAL - Only fields containing embedded quotes, terminators, or de-
limiters are written within quotes.

• space_around_quoted_field - Determines how white space between quotes and
delimiters should be treated.

– Value - One of {NO, LEFT, RIGHT, BOTH}.

– Default - NO.

– Reading -

1. NO - Follows RFC4180 rules.

2. LEFT - Allows space before a quoted field.

3. RIGHT - Allows space between a quoted field and a delimiter.

4. BOTH - Allows space before and after a quoted field.

– Writing - fields are never written with space before a quoted field or between
a quoted field and a delimiter.

– Notes this option does not affect space within quotes or fields written using
the escape string option.

• trim_space - trim white space before or after field contents.

– Value - One of {NO, LEFT, RIGHT, BOTH}.

– Default - NO.

– Reading -

1. NO - Reading follows RFC4180 rules.
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2. LEFT, RIGHT, or BOTH - The field is trimmed accordingly. Use caution
because trimming may allow automatic conversion of numbers if the
quote_flag is set to MINIMAL.

– Writing -

1. NO - Reading follows RFC4180 rules

2. LEFT, RIGHT, or BOTH - Trimming space is probably a bad idea since leading
or trailing space may be significant for other applications.

The following example illustrates the construction of a dialect for reading tab delimited
files without quoted strings.

Example

> using csv;
> using namespace csv;
> let d = dialect {delimiter=>"\t", quote_flag=>STRING};
>

22.2.3 Opening CSV Files

open name::string opens a CSV file for reading using the default dialect. If the file does
not exist, the error msg rule is invoked.

open (name::string, rw_flag::string) opens a CSV file for reading, writing, or append-
ing using the default dialect. Valid rw_flag values are "r" for reading, "w" for writing,
and "a" for appending. If the file does not exist when opened for reading, the error
msg rule is invoked. When a file is opened for writing and the file exists, the old file
is overwritten. If the file does not exist, a new empty file is created. When a file is
opened for appending and the file exists, new records are appended to the end of the
file, otherwise a new empty file is created.

open (name::string, rw_flag::string, d::matrix) exactly as above except read-
ing/writing is done according to a user defined dialect d.

open (name::string, rw_flag::string, d::matrix, opts@(_:_)) exactly as above ex-
cept allows for list output or header options when reading.

1. If opts contains LIST, the output of getr, fgetr, and fgetr_lazy is a list instead
of a vector.

2. If opts contains HEADER, the first line of the file is automatically read and parsed
as a record where entries are key=>position pairs where key is a string and
position is an integer denoting the location of a field within the record. The
header record may be accessed by header.

Examples

> using csv;
> using namespace csv;
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> let d = dialect {delimiter=>"\t"};
> let f = open ("junk.csv", "w", d);
> putr f {"hello",123,"",3+:4,world};
()
> close f;
()
> let f = open ("junk.csv", "r", d);
> getr f;
{"hello","123","","3+:4","world"}
>

Suppose our file “test.csv” is as presented below.

ir$ more test.csv
NAME,TEST1,TEST2
"HOPE, BOB",90,95
"JONES, SALLY",88,72
"RED, FEEFEE",45,52

Notice how the LIST option affects the return of getr and how the HEADER option may be
used to index records.

> using csv;
> using namespace csv;
> let d = dialect {quote_flag=>MINIMAL};
> let f = open ("test.csv", "r", d, [LIST,HEADER]);
> let r = getr f;
> r!0;
"HOPE, BOB"
> let k = header f;
> k;
{"NAME"=>0,"TEST1"=>1,"TEST2"=>2}
> r!(k!"NAME");
"HOPE, BOB"
> r!!(k!!["NAME","TEST1"]);
["HOPE, BOB",90]
>

22.2.4 File Reading Functions

header csv_file::pointer returns the record of key=>position pairs when opened by
csv::open using the header option. If the file was opened without the HEADER option,
{} is returned.

getr csv_file::pointer reads from a csv_file opened by csv::open and returns a record
represented as a row matrix. Reading from a file opened for writing or appending
invokes the error msg rule.

fgetr csv_file::pointer reads a whole file and returns a list of records. This procedure
should only be used on data files that are small enough to fit in the computer’s primary
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memory. Reading from a file opened for writing or appending invokes the error msg
rule.

fgetr_lazy csv_file::pointer Lazy version of fgetr.

22.2.5 File Writing Functions

When modifying CSV files that will be imported into Microsoft Excel, fields with significant
leading 0s should be written using a "=""0...""" formatting scheme. This same technique
will work for preserving leading space too. Again, this quirk should only be necessary for
files to be imported into MS Excel.

putr csv_file::pointer rec::matrix writes a record in row matrix format to csv_file.
Writing to a file opened for reading invokes the error msg rule.

fputr csv_file::pointer l@(_:_) writes a list of records where each record is a row ma-
trix to csv_file. Writing to a file opened for reading invokes the error msg rule.

22.2.6 Examples

The first example shows how to write and read a default CSV file.

> using csv;
> using namespace csv;
> let f = open ("testing.csv", "w");
> fputr f [{"bob",3.9,"",-2},{"fred",-11.8,"",0},{"mary",2.3,"$",11}];
()
> close f;
()
> let f = open "testing.csv";
> fgetr f;
[{"bob","3.9","","-2"},{"fred","-11.8","","0"},{"mary","2.3","$","11"}]
> close f;
>

The second example illustrates how to write and read a CSV file using automatic conver-
sions.

> using csv;
> using namespace csv;
> let d = dialect {quote_flag=>MINIMAL};
> let f = open ("test.csv", "w", d);
> putr f {"I","",-4,1.2,2%4,like};
()
> putr f {"playing","the",0,-0.2,1+:4,drums};
()
> close f;
()
> let f = open ("test.csv", "r", d);
> fgetr f;
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[{"I","",-4,1.2,"2%4","like"},{"playing","the",0,-0.2,"1+:4","drums"}]
> close f;
()
>

Records containing quotes, delimiters, and line breaks are also properly handled.

> using csv;
> using namespace csv;
> let d = dialect {quote_flag=>STRING};
> let f = open ("test.csv", "w", d);
> fputr f [{"this\nis\n",1},{"a \"test\"",2}];
()
> close f;
()
> let f = open ("test.csv", "r", d);
> fgetr f;
[{"this\nis\n",1},{"a \"test\"",2}]
> close f;
()
>

Consider the following hand written CSV file. According to RFC4180, this is not a valid CSV
file. However, by using the space_around_quoted_field, the file can still be read.

erucker:$ more test.csv
"this", "is", "not", "valid"

> using csv;
> using namespace csv;
> let f = open "test.csv";
> getr f;
csv::error "parse error at line 1"
> let d = dialect {space_around_quoted_field=>BOTH};
> let f = open ("test.csv", "r", d);
> getr f;
{"this","is","not","valid"}
>

The trim_space flag should be used with caution. A field with space in front of a number
should be interpreted as a string, but consider the following file.

erucker:$ more test.csv
" this ", 45 ,23, hello

Now observe the differences for the two dialects below.

> using csv;
> using namespace csv;
> let d = dialect {trim_space=>BOTH};
> let f = open ("test.csv","r",d);
> getr f;
{"this","45","23","hello"}
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> let d = dialect {trim_space=>BOTH, quote_flag=>MINIMAL};
> let f = open ("test.csv", "r", d);
> getr f;
{"this",45,23,"hello"}
>

The trim_space flag also affects writing.

> using csv;
> using namespace csv;
> let d = dialect {trim_space=>BOTH};
> let f = open ("test.csv", "w", d);
> putr f {" this "," 45 "};
()
> close f;
()
> quit

erucker:$ more test.csv
"this","45"

For the last example a tab delimiter is used, automatic conversions is on, and records are
represented as lists. Files are automatically closed when the script is finished.

> using csv;
> using namespace csv;
> let d = dialect {quote_flag=>MINIMAL, delimiter=>"\t"};
> let f = open ("test.csv", "w", d, [LIST]);
> fputr f [["a","b",-4.5,""],["c","d",2.3,"-"]];
()
> close f;
()
> let f = open ("test.csv", "r", d, [LIST]);
> fgetr f;
[["a","b",-4.5,""],["c","d",2.3,"-"]]
> quit
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Chapter 23
pure-fastcgi: FastCGI module for Pure

Version 0.6, September 17, 2014

Albert Gräf <aggraef@gmail.com>

This module lets you write FastCGI scripts with Pure, to be run by web servers like Apache.
Compared to normal CGI scripts, this has the advantage that the script keeps running and
may process as many requests from the web server as you like, in order to reduce startup
times and enable caching techniques. Most ordinary CGI scripts can be converted to use
FastCGI with minimal changes.

23.1 Copying

Copyright (c) 2009 by Albert Graef. pure-fastcgi is distributed under a 3-clause BSD-style
license, please see the included COPYING file for details.

23.2 Installation

Besides Pure, you’ll need to have the FastCGI library installed to compile this module. Also,
to run FastCGI scripts, your web server must be configured accordingly; see the documen-
tation of FastCGI and your web server for details.

Get the latest source from https://bitbucket.org/purelang/pure-lang/downloads/pure-
fastcgi-0.6.tar.gz.

Running make compiles the module, make install installs it in your Pure library directory.
You might have to adjust the path to the fcgi_stdio.h header file in fastcgi.c and/or the option
to link in the FastCGI library in the Makefile.

The Makefile tries to guess the host system type and Pure version, and set up some platform-
specific things accordingly. If this doesn’t work for your system then you’ll have to edit the
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Makefile accordingly.

23.3 Usage

pure-fastcgi provides the accept function with which you tell the FastCGI server that your
script is ready to accept another request.

fastcgi::accept
Accept a FastCGI request.

The module also overrides a number of standard I/O functions so that they talk to the server
instead. These routines are all in the fastcgi namespace. In your Pure script, you can set up
a simple loop to process requests as follows:

#!/usr/local/bin/pure -x

using fastcgi;
using namespace fastcgi;

extern char *getenv(char*);

main count = main count when
count = count+1;
printf "Content-type: text/html\n\n\

<title>FastCGI Hello! (Pure, fcgi_stdio library)</title>\
<h1>FastCGI Hello! (Pure, fcgi_stdio library)</h1>\
Request number %d running on host <i>%s</i>\n"

(count,getenv "SERVER_NAME");
end if accept >= 0;

main 0;

(You might have to adjust the “shebang” in the first line above, so that the shell finds the
Pure interpreter. Also, remember to make the script executable. If you’re worried about
startup times, or if your operating system doesn’t support shebangs, then you can also use
the Pure interpreter to compile the script to a native executable instead.)

This script keeps running until accept returns -1 to indicate that the script should exit.
Each call to accept blocks until either a request is available or the FastCGI server detects an
error or other kind of termination condition. As with ordinary CGI, additional information
about the request is available through various environment variables. A list of commonly
supported environment variables and their meaning can be found in The Common Gateway
Interface specification.

A number of other routines are provided to deal with data filters, finish a request and set
an exit status for a request. These correspond to operations provided by the FastCGI li-
brary, see the FastCGI documentation and the FCGI_Accept(3), FCGI_StartFilterData(3),
FCGI_Finish(3) and FCGI_SetExitStatus(3) manpages for details. An interface to the
FCGI_ToFILE macro is also available. Note that in Pure these functions are called accept,
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start_filter_data, finish, set_exit_status and to_file, respectively, and are all de-
clared in the fastcgi namespace. A detailed listing of all routines can be found in the
fastcgi.pure module.

Please see the examples subdirectory in the pure-fastcgi sources for some more elaborate
examples.

Note that to run your FastCGI scripts in a browser, your web server must have the FastCGI
module loaded and must also be set up to execute the scripts. E.g., when using Apache, the
following configuration file entry will set up a directory for FastCGI scripts:

ScriptAlias /fastcgi-bin/ "/srv/www/fastcgi-bin/"
<Location /fastcgi-bin/>

Options ExecCGI
SetHandler fastcgi-script
Order allow,deny
Allow from all

</Location>

(Replace fastcgi-script with fcgid-script if you’re running mod_fcgid rather than
mod_fastcgi.)

Put this entry into http.conf or a similar file provided by your Apache installation
(usually under /etc/apache2), and restart Apache. After that you can just throw
your scripts into the fastcgi-bin directory to have them executed via an URL like
http://localhost/fastcgi-bin/myscript.

You can also set up a handler for the .pure filename extension as follows:

<IfModule mod_fastcgi.c>
<FilesMatch "\.pure$">

AddHandler fastcgi-script .pure
Options +ExecCGI

</FilesMatch>
</IfModule>

(Again, you’ll have to adjust the IfModule statement and replace fastcgi-script with
fcgid-script if you’re running mod_fcgid.) After that you should be able to execute scripts
with the proper extension anywhere under your server’s document root.
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Chapter 24
Pure-ODBC - ODBC interface for the Pure
programming language

Version 0.10, September 17, 2014

Albert Graef <aggraef@gmail.com>
Jiri Spitz <jiri.spitz@bluetone.cz>

This module provides a simple ODBC interface for the Pure programming language, which
lets you access a large variety of open source and commercial database systems from Pure.
ODBC a.k.a. “Open Database Connectivity” was originally developed by Microsoft for
Windows, but is now available on many different platforms, and two open source imple-
mentations exist for Unix-like systems: iODBC (http://www.iodbc.org) and unixODBC
(http://www.unixodbc.org).

ODBC has become the industry standard for portable and vendor independent database
access. Most modern relational databases provide an ODBC interface so that they can
be used with this module. This includes the popular open source DBMSs MySQL
(http://www.mysql.com) and PostgreSQL (http://www.postgresql.org). The module pro-
vides the necessary operations to connect to an ODBC data source and retrieve or modify
data using SQL statements.

To make this module work, you must have an ODBC installation on your system, as well
as the driver backend for the DBMS you want to use (and, of course, the DBMS itself). You
also have to configure the DBMS as a data source for the ODBC system. On Windows this
is done with the ODBC applet in the system control panel. For iODBC and unixODBC you
can either edit the corresponding configuration files (/etc/odbc.ini and/or ~/.odbc.ini) by
hand, or use one of the available graphical setup tools. More information about the setup
process can be found on the iODBC and unixODBC websites.
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24.1 Copying

Copyright (c) 2009 by Albert Graef <aggraef@gmail.com>.
Copyright (c) 2009 by Jiri Spitz <jiri.spitz@bluetone.cz>.

pure-odbc is free software: you can redistribute it and/or modify it under the terms of the
GNU Lesser General Public License as published by the Free Software Foundation, either
version 3 of the License, or (at your option) any later version.

pure-odbc is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICU-
LAR PURPOSE. See the GNU Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with this
program. If not, see <http://www.gnu.org/licenses/>.

24.2 Installation

Get the latest source from https://bitbucket.org/purelang/pure-lang/downloads/pure-
odbc-0.10.tar.gz.

Run make to compile the module and make install (as root) to install it in the Pure library
directory. This requires GNU make, and of course you need to have Pure installed. The only
other dependency is the GNU Multiprecision Library (GMP).

make tries to guess your Pure installation directory and platform-specific setup. If it gets
this wrong, you can set some variables manually. In particular, make install prefix=/usr
sets the installation prefix, and make PIC=-fPIC or some similar flag might be needed for
compilation on 64 bit systems. The variable ODBCLIB specifies the ODBC library to be linked
with. The default value is ODBCLIB=-lodbc. Please see the Makefile for details.

24.3 Opening and Closing a Data Source

To open an ODBC connection, you have to specify a “connect string” which names the data
source to be used with the odbc::connect function. A list of available data sources can
be obtained with the odbc::sources function. For instance, on my Linux system running
MySQL and PostgreSQL it shows the following:

> odbc::sources;
[("myodbc","MySQL ODBC 2.50"),("psqlodbc","PostgreSQL ODBC")]

The first component in each entry of the list is the name of the data source, which can be
used as the value of the DSN option in the connect string, the second component provides a
short description of the data source.
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Likewise, the list of ODBC drivers available on your system can be obtained with the
odbc::drivers function which returns a list of pairs of driver names and attributes. (Older
ODBC implementations on Unix lacked this feature, but it seems to be properly supported in
recent unixODBC implementations at least.) This function can be used to determine a legal
value for the DRIVER attribute in the connect string, see below.

The odbc::connect function is invoked with a single parameter, the connect string, which is
used to describe the data source and various other parameters such as user id and password.
For instance, on my system I can connect to the local myodbc data source from above as
follows:

> let db = odbc::connect "DSN=myodbc";

The odbc::connect function returns a pointer to an ODBCHandle object which is used to refer
to the database connection in the other routines provided by this module. An ODBCHandle
object is closed automatically when it is no longer accessible. You can also close it explicitly
with a call to the odbc::disconnect function:

> odbc::disconnect db;

After odbc::disconnect has been invoked on a handle, any further operations on it will fail.

odbc::connect allows a number of attributes to be passed to the ODBC driver when opening
the database connection. E.g., here’s how to specify a username and password; note that the
different attributes are separated with a semicolon:

> let db = odbc::connect "DSN=myodbc;UID=root;PWD=guess";

The precise set of attributes in the connect string depends on your ODBC driver, but at
least the following options should be available on most systems. (Case is insignificant in the
attribute names, so e.g. the DATABASE attribute may be specified as either DATABASE, Database
or database.)

• DSN=<data source name>

• DRIVER=<driver name>

• HOST=<server host name>

• DATABASE=<database path>

• UID=<user name>

• PWD=<password>

The following attributes appear to be Windows-specific:

• FILEDSN=<DSN file name>

• DBQ=<database file name>

Using the FILEDSN option you can establish a connection to a data source described in a .dsn
file on Windows, as follows:
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> odbc::connect "FILEDSN=test.dsn";

Usually it is also possible to directly connect to a driver and name a database file as the data
source. For instance, using the MS Access ODBC driver you can connect to a database file
test.mdb as follows:

> odbc::connect "DRIVER=Microsoft Access Driver (*.mdb);DBQ=test.mdb";

SQLite (http://www.sqlite.org) provides another way to get a database up and running
quickly. For that you need the SQLite library and the SQLite ODBC driver available at
http://www.ch-werner.de/sqliteodbc. Then you can open an SQLite database as follows
(the database file is named with the DATABASE attribute and is created automatically if it
doesn’t exist):

> odbc::connect "DRIVER=SQLite3;Database=test.db";

SQLite generally performs very well if you avoid some pitfalls (in particular, big batches
of updates/inserts should be done within a transaction, otherwise they will take forever).
It is certainly good enough for smaller databases and very easy to set up. Basically, after
installing SQLite and its ODBC driver you’re ready to go immediately. This makes it a very
convenient alternative if you don’t want to go through the tedium of setting up one of the
big hulking DBMS.

24.4 Getting Information about a Data Source

You can get general information about an open database connection with the odbc::info
function. This function returns a tuple of strings with the following items (see the description
of the SQLGetInfo() function in the ODBC API reference for more information):

• DATA_SOURCE_NAME: the data source name

• DATABASE_NAME: the default database

• DBMS_NAME: the host DBMS name

• DBMS_VER: the host DBMS version

• DRIVER_NAME: the name of the ODBC driver

• DRIVER_VER: the version of the ODBC driver

• DRIVER_ODBC_VER: the ODBC version supported by the driver

• ODBC_VER: the ODBC version of the driver manager

E.g., here is what the connection to MySQL shows on my Linux system:

> odbc::info db;
"myodbc","test","MySQL","5.0.18","myodbc3.dll","03.51.12","03.51","03.52"

The odbc module also provides a number of operations to retrieve a bunch of additional
meta information about the given database connection. In particular, the odbc::getinfo
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function provides a direct interface to the SQLGetInfo() routine. The result of odbc::getinfo
is a pointer which can be converted to an integer or string value, depending on the type of
information requested. For instance:

> get_short $ odbc::getinfo db odbc::SQL_MAX_TABLES_IN_SELECT;
31

> cstring_dup $ odbc::getinfo db odbc::SQL_IDENTIFIER_QUOTE_CHAR;
"‘"

Information about supported SQL data types is available with the odbc::typeinfo routine
(this returns a lot of data, see odbc.pure for an explanation):

> odbc::typeinfo db odbc::SQL_ALL_TYPES;

Moreover, information about the tables in the current database, as well as the structure
of the tables and their primary and foreign keys can be retrieved with the odbc::tables,
odbc::columns, odbc::primary_keys and odbc::foreign_keys functions:

> odbc::tables db;
[("event","TABLE"),("pet","TABLE")]

> odbc::columns db "pet";
[("name","varchar","NO","’’"),("owner","varchar","YES",odbc::SQLNULL),
("species","varchar","YES",odbc::SQLNULL),("sex","char","YES",odbc::SQLNULL),
("birth","date","YES",odbc::SQLNULL),("death","date","YES",odbc::SQLNULL)]

> odbc::primary_keys db "pet";
["name"]

> odbc::foreign_keys db "event";
[("name","pet","name")]

This often provides a convenient and portable means to retrieve basic information about
table structures, at least on RDBMS which properly implement the corresponding ODBC
calls. Also note that while this information is also available through special system catalogs
in most databases, the details of accessing these vary a lot among implementations.

24.5 Executing SQL Queries

As soon as a database connection has been opened, you can execute SQL queries on it using
the sql function which executes a query and collects the results in a list. Note that SQL
queries generally come in two different flavours: queries returning data (so-called result
sets), and statements modifying the data (which have as their result the number of affected
rows). The sql function returns a nonempty list of lists (where the first list denotes the
column titles, and each subsequent list corresponds to a single row of the result set) in the
former, and the row count in the latter case.

For instance, here is how you can select some entries from a table. (The following examples
assume the sample “menagerie” tables from the MySQL documentation. The initdb func-
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tion in the examples/menagerie.pure script can be used to create these tables in your default
database.)

> odbc::sql db "select name,species from pet where owner=’Harold’" [];
[["name","species"],["Fluffy","cat"],["Buffy","dog"]]

Often the third parameter of sql, as above, is just the empty list, indicating a parameter-
less query. Queries involving marked input parameters can be executed by specifying the
parameter values in the third argument of the sql call. For instance:

> odbc::sql db "select name,species from pet where owner=?" ["Harold"];
[["name","species"],["Fluffy","cat"],["Buffy","dog"]]

Multiple parameters are specified as a list:

> odbc::sql db "select name,species from pet where owner=? and species=?"
> ["Harold","cat"];
[["name","species"],["Fluffy","cat"]]

Parameterized queries are particularly useful for the purpose of inserting data into a table:

> odbc::sql db "insert into pet values (?,?,?,?,?,?)"
> ["Puffball","Diane","hamster","f","1999-03-30",odbc::SQLNULL];
1

In this case we could also have hard-coded the data to be inserted right into the SQL state-
ment, but a parameterized query like the one above can easily be applied to a whole collec-
tion of data rows, e.g., as follows:

> do (odbc::sql db "insert into pet values (?,?,?,?,?,?)") data;

Parameterized queries also let you insert data which cannot be specified easily inside an SQL
query, such as long strings or binary data.

The following SQL types of result and parameter values are recognized and converted
to/from the corresponding Pure types:

SQL value/type Pure value/type
SQL NULL (no value) odbc::SQLNULL

integer types (INTEGER and friends) int

64-bit integers bigint

floating point types (REAL, FLOAT and friends) double

binary data (BINARY, BLOB, etc.) (size, data)

character strings (CHAR, VARCHAR, TEXT, etc.) string

Note the special constant (nonfix symbol) odbc::SQLNULL which is used to represent SQL
NULL values.

Also note that binary data is specified as a pair (size, data) consisting of an int or bigint
size which denotes the size of the data in bytes, and a pointer data (which must not be a
null pointer unless size is 0 as well) pointing to the binary data itself.
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All other SQL data (including, e.g., TIME, DATE and TIMESTAMP) is represented in Pure
using its character representation, encoded as a Pure string.

Some databases also allow special types of queries (e.g., “batch” queries consisting of mul-
tiple SQL statements) which may return multiple result sets and/or row counts. The sql
function only returns the first result set, which is appropriate in most cases. If you need to
determine all result sets returned by a query, the msql function must be used. This function
is invoked in exactly the same way as the sql function, but returns a list with all the result
sets and/or row counts of the query.

Example:

> odbc::msql db "select * from pet; select * from event" [];

This will return a list with two result sets, one for each query.

24.6 Low-Level Operations

The sql and msql operations are in fact just ordinary Pure functions which are implemented
in terms of the low-level operations sql_exec, sql_fetch, sql_more and sql_close. You can
also invoke these functions directly if necessary. The sql_exec function starts executing a
query and returns either a row count or the column names of the first result set as a tuple of
strings. After that you can use sql_fetch to obtain the results in the set one by one. When all
rows have been delivered, sql_fetch fails. The sql_more function can then be used to check
for additional result sets. If there are further results, sql_more returns either the next row
count, or a tuple of column names, after which you can invoke sql_fetch again to obtain
the data rows in the second set, etc. When the last result set has been processed, sql_more
fails.

Example:

> odbc::sql_exec db "select name,species from pet where owner=’Harold’" [];
["name","species"]
> odbc::sql_fetch db; // get the 1st row
["Fluffy","cat"]
> odbc::sql_fetch db; // get the 2nd row
["Buffy","dog"]
> odbc::sql_fetch db; // no more results
odbc::sql_fetch #<pointer 0x24753e0>
> odbc::sql_more db; // no more result sets
odbc::sql_more #<pointer 0x24753e0>

Moreover, the sql_close function can be called at any time to terminate an SQL query, after
which subsequent calls to sql_fetch and sql_more will fail:

> odbc::sql_close db; // terminate query
()

This is not strictly necessary (it will be done automatically as soon as the next SQL query is
invoked), but it is useful in order to release all resources associated with the query, such as
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parameter values which have to be cached so that they remain accessible to the SQL server.
Since these parameters in some cases may use a lot of memory it is better to call sql_close
as soon as you are finished with a query. This is also done automatically by the sql and msql
functions.

Also note that only a single query can be in progress per database connection at any one time.
That is, if you invoke sql_exec to initiate a new query, a previous query will be terminated
automatically. (However, it is possible to execute multiple queries on the same database
simultaneously, if you process them through different connections to that database.)

The low-level operations are useful when you have to deal with large result sets where you
want to avoid to build the complete list of results in main memory. Instead, these func-
tions allow you to process the individual elements immediately as they are delivered by the
sql_fetch function. (An alternative method which combines the space efficiency of imme-
diate processing with the convenience of the list representation is discussed in the following
section.) Using the low-level operations you can also build your own specialized query en-
gines; take the definitions of sql or msql as a start and change them according to your needs.

24.7 Lazy Processing

As an experimental feature, the odbc module also provides two operations odbc::lsql
and odbc::lmsql which work like odbc::sql and odbc::msql (see Executing SQL Queries
above), but return lazy lists (streams) instead. This offers the convenience of a list-based
representation without the overhead of keeping entire result sets in memory, which can be
prohibitive when working with large amounts of data.

These functions are invoked just like odbc::sql and odbc::msql, but they return a lazy list
of rows (or a lazy list of lazy lists of rows in the case of lmsql). For instance:

> odbc::lsql db "select * from pet" [];
["name","owner","species","sex","birth","death"]:#<thunk 0x7ffbb9aa2eb8>

Note that the tail of the result list is “thunked” and will only be produced on demand, as
you traverse the list. As a simple example, suppose that we just want to print the name field
of each data row:

> using system;
> do (\(name:_)->puts name) $ tail $ odbc::lsql db "select * from pet" [];
Fluffy
Claws
Buffy
Fang
Bowser
Chirpy
Whistler
Slim
()

Here only one row is in memory at any time while the do function is in progress. This
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keeps memory requirements much lower than when using the odbc::sql function which
first loads the entire result set into memory. Another advantage is that only those data rows
are fetched from the database which are actually needed in the course of the computation.
This can speed up the processing significantly if only a part of the result set is needed. For
instance, in the following example we only look at the first two data rows until the desired
row is found, so the remaining rows are never fetched from the database:

> head [row | row@(name:_) = tail $ odbc::lsql db "select * from pet" [];
> name == "Claws"];
["Claws","Gwen","cat","m","1994-03-17",odbc::SQLNULL]

On the other hand, lsql/lmsql will usually be somewhat slower than sql/msql if the entire
result set is being processed. So you should always consider the time/space tradeoffs when
deciding which functions to use in a given situation.

Also note that when using lsql/lmsql, the query remains in progress as long as the result
list is still being processed. (This is different from sql/msql which load the complete result
set(s) at once after which the query is terminated immediately.) Since only one query can
be executed per database connection, this means that only one lazy result set can be pro-
cessed per database connection at any time. However, as with the lowlevel operations it is
possible to do several lazy queries simultaneously if you assign them to different database
connections.

24.8 Error Handling

When one of the above operations fails because the SQL server reports an error, an error
term of the form odbc::error msg state will be returned, which specifies an error message
and the corresponding SQL state (i.e., error code). A detailed explanation of the state codes
can be found in the ODBC documentation. For instance, a reference to a non-existent table
will cause a report like the following:

> odbc::sql db "select * from pets" [];
odbc::error "[TCX][MyODBC]Table ’test.pets’ doesn’t exist" "S1000"

You can check for such return values and take some appropriate action. By redefining
odbc::error accordingly, you can also have it generate exceptions or print an error message.
For instance:

odbc::error msg state = fprintf stderr "%s (%s)\n" (msg,state) $$ ();

Note: When redefining odbc::error in this manner, you should be aware that the return
value of odbc::error is what will be returned by the other operations of this module in case
of an error condition. These return values are checked by other functions such as sql. Thus
the return value should still indicate that an error has happened, and not be something that
might be interpreted as a legal return value, such as an integer or a nonempty tuple. It is
usually safe to have odbc::error return an empty tuple or throw an exception, but other
types of return values should be avoided.
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24.9 Caveats and Bugs

Be warned that multiple result sets are not supported by all databases. I also found that some
ODBC drivers do not properly implement this feature, even though the database supports
it. So you better stay away from this if you want your application to be portable. You can
easily implement batched queries using a sequence of single queries instead.

Note that since the exact numeric SQL data types (NUMERIC, DECIMAL) are mapped to
Pure double values (which are double precision floating point numbers), there might be a
loss of precision in extreme cases. If this is a problem you should explicitly convert these
values to strings in your query, which can be done using the SQL CAST function, as in
select cast(1234.56 as char).

24.10 Further Information and Examples

For further details about the operations provided by this module please see the odbc.pure
file. A sample script illustrating the usage of the module can be found in the examples
directory.
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Chapter 25
Pure-Sql3

Version 0.5, September 17, 2014

Peter Summerland <p.summerland@gmail.com>
Albert Graef <aggraef@gmail.com>

This document describes Sql3, a SQLite module for the Pure programming language.

25.1 Introduction

SQLite is a software library that implements an easy to use, self-contained, serverless, zero-
configuration, transactional SQL database engine. SQLite is not intended to be an enterprise
database engine like Oracle or PostgreSQL. Instead, SQLite strives to be small, fast, reliable,
and above all simple. See Appropriate Uses For SQLite.

Sql3 is a wrapper around SQLite’s C interface that provides Pure programmers access to
almost all of SQLite’s features, including many that are not available through Pure’s generic
ODBC interface.

25.1.1 Simple Example

Here is a simple example that opens a database file “readme.db” (creating it if it does not
exist), adds a table “RM”, populates “RM” and executes a query.

pure-sql3$> pure -q
>

> using sql3; using namespace sql3;

741

mailto:p.summerland@gmail.com
mailto:aggraef@gmail.com
http://www.sqlite.org
http://purelang.bitbucket.org
http://www.sqlite.org/whentouse.html


Pure Language and Library Documentation, Release 0.62

> let dbp = open "readme.db";

> exec dbp "create table if not exists RM (name text, age integer)";

> exec dbp "delete from RM";

> let sp1 = prep dbp "ci" "insert into RM values (?,?)";

> exec sp1 ("Sam",20);

> exec sp1 ("Fred",22);

> let sp2 = prep dbp "ci:i" "select * from RM where age > ?";

> exec sp2 18;
[["Sam",20],["Fred",22]]

The Sql3 functions, open, prep and exec encapsulate the core functionality of SQLite, and in
many cases are all you need to use SQLite effectively.

25.1.2 More Examples

The examples subdirectory of pure-Sql3 contains several files that further illustrate basic
usage as well as some of Sql3’s more sophisticated features. These include readme.pure, a
short file that contains the examples included herein. If you are using emacs pure-mode you
can load readme.pure into a buffer and execute the examples line by line (pressing C-c C-c)
(as well as experiment as you go).

25.1.3 SQLite Documentation

SQLite’s home page provides excellent documentation regarding its SQL dialect as well as
its C interface. Comments in this document regarding SQLite are not meant to be a substitute
for the actual documentation and should not be relied upon, other than as general observa-
tions which may or may not be accurate. The best way to use Sql3 is to get familiar with
SQLite and its C interface and go directly to the SQLite Site Map for authoritative answers
to any specific questions that you might have.

In the rest of this document, it is assumed the reader has some familiarity with SQLite and
has read An Introduction To The SQLite C/C++ Interface.

25.1.4 Sqlite3 - The SQLite Command-Line Utility

The SQLite library includes a really nice command-line utility named sqlite3 (or sqlite3.exe
on Windows) that allows the user to manually enter and execute SQL statements against a
SQLite database (and much more).
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This tool is an invaluable aid when working with SQLite in general and with Sql3 in the Pure
interpreter in particular. For example, after entering the Pure statements from the Simple
Example above, you could start a new terminal, cd to pure-sql3, type “sqlite3 readme.db” at
the prompt, and see the effect the Pure statements had on the database:

pure-sql3$> sqlite3 readme.db
SQLite version 3.6.16
Enter ".help" for instructions
Enter SQL statements terminated with a ";"

sqlite> select * from RM;
Sam|20
Fred|22

For bottom up REPL development, sqlite3 and Pure are an excellent combination.

25.2 Copying

Copyright (c) 2010 by Peter Summerland <p.summerland@gmail.com>.
Copyright (c) 2010 by Albert Graef <aggraef@gmail.com>.

All rights reserved.

Sql3 is free software: you can redistribute it and/or modify it under the terms of the New
BSD License, often referred to as the 3 clause BSD license. Sql3 is distributed in the hope that
it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

Please see the COPYING file for the actual license applicable to Sql3.

25.3 Installation

Get the latest source from https://bitbucket.org/purelang/pure-lang/downloads/pure-
sql3-0.5.tar.gz.

Unless you already have them on your machine, download SQLite and sqlite3 from the
SQLite website and install as indicated. To install Sql3, cd to the pure-sql3 directory, run
make, and then run sudo make install (on Linux).

25.4 Data Structure

From a client’s perspective, the most important of SQLite’s data structures are the database
connection object “sqlite3” and the prepared statement object “sqlite3_stmt”. These are
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opaque data structures that are made available to users of SQLite’s C interface via point-
ers, sqlite3* and sqlite3_stmt*. At appropriate times, Sql3 creates “cooked” versions of these
pointers that can be used (with care) to call native C functions exposed by SQLite’s C inter-
face.

Sql3 introduces two new data types, “db_ptr” and “stmt_ptr” which refer to the cooked ver-
sions of sqlite3* and sqlite3_stmt*, respectively. These two new data types are defined using
type, and therefore can be used as type tags in rule patterns or as the first parameter passed
to in the typep function. It follows that all db_ptrs are sqlite3* pointers and all stmt_ptrs are
sqlite3_stmt* pointers. Thus, using dbp and sp1 from the introductory example:

> typep db_ptr dbp, pointer_type dbp;
1, "sqlite3*"

> typep stmt_ptr sp1, pointer_type sp1;
1, "sqlite3_stmt*"

The converse, of course, is not true, as SQLite knows nothing about Sql3, and db_ptrs and
stmt_ptrs carry other information in addtion to the underlying pointers provided to them
by SQLite.

25.5 Core Database Operations

The core database operations are (a) opening and closing database connections and (b)
preparing, executing and closing prepared statements.

25.5.1 Database Connections

Generally speaking, the first step in accessing a database is to obtain a db_ptr that refer-
ences a database connection object. Once the db_ptr is obtained, it can be used to construct
prepared statements for updating and querying the underlying database. The last step is
usually to close the database connection (although this is will be done automatically by Sql3
when the db_ptr goes out of scope).

Opening a Database Connection

In Sql3 open constructs a database connection and returns a db_ptr that refers to the connec-
tion.

sql3::open (file_path::string [,access_mode::int[,custom_bindings]])
opens a SQLite database file whose name is given by the file_path argument and re-
turns a db_ptr for the associated database connection object created by SQLite.

Example:
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> let dbp2 = open "abc.db"; dbp2;
#<pointer 0x992dff8>

If the filename is ”:memory:” a private, temporary in-memory database is created for the
connection.

The basic access modes are:

• SQLITE_OPEN_READONLY - the database is opened in read-only mode. If the
database does not already exist, an error is returned.

• SQLITE_OPEN_READWRITE - the database is opened for reading and writing if pos-
sible, or reading only if the file is write protected by the operating system. In either
case the database must already exist, otherwise an error is returned.

• SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE - the database is opened for
reading and writing, and is creates it if it does not already exist. This is the default
value that is used if the flags argument is omitted.

• SQLITE_OPEN - an alias for SQLITE_OPEN_READWRITE |
SQLITE_OPEN_CREATE provided by Sql3.

These flags can be combined with SQLITE_OPEN_NOMUTEX
SQLITE_OPEN_FULLMUTEX SQLITE_OPEN_SHAREDCACHE
SQLITE_OPEN_PRIVATECACHE to control SQLite’s threading and shared cache fea-
tures. All of these flags are exported by Sql3.

The optional custom_bindings argument allows the user to set up customized binding and
fetching behavior for prepared statements associated with the returned db_ptr. (See Custom
Binding Types for Prepared Statements)

Failure to Open a Database Connection

If SQLite cannot open the connection, it still returns a pointer to a database connection object
that must be closed. In this case, open automatically closes the the connection object and then
throws an exception. E.g.,:

> catch error (open ("RM_zyx.db",SQLITE_OPEN_READONLY));
error (sql3::db_error 14 "unable to open database file [open RM_zyx.db]")

Apparently, SQLite does not verify that a file is a valid SQLite database when it opens a
connection. However, if the file is corrupted SQLite will return an error when the connection
is used.

Testing a db ptr

You can test any object to see if it is a db_ptr using (typep db_ptr):

typep db_ptr x
returns 1 if x is a db_ptr returned by open, and 0 if it is not.
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You can also determine if a db_ptr’s data connection is open.

sql3::is_open dbp::db_ptr
returns 1 if the database connection referenced by dbp is open.

Closing a Database Connection

When a database connection object is no longer needed, it should be closed so that SQLite
can free the associated resources.

sql3::close dbp::db_ptr
if the database connection referenced by the db_ptr dbp is open, close it using
sqlite3_close; otherwise do nothing.

Before calling sqlite3_close, close finalizes all prepared statements associated with the
connection being closed. Sql3 will detect and throw a db_error if an attempt is subsequently
made to execute a statement associated with the closed database connection.

> let dbp2_sp = prep dbp2 "ci:" "select * from RM";

> exec dbp2_sp ();
[["Sam",20],["Fred",22]]

> close dbp2;

> catch error (exec dbp2_sp);
error (sql3::db_error 0 "Attempt to exec on a closed db_ptr.")

If a db_ptr goes out of scope, Sql3 will automatically call sqlite3_close to close the refer-
enced database connection, but only if the connection has not already been closed by close.
Thus, for example, it is not necessary to use a catch statement to ensure that Sqlite3 resources
are properly finalized when a db_ptr is passed into code that could throw an exception.

When debugging, this activity can be observed by editing sql3.pure, changing “const
SHOW_OPEN_CLOSE = 0;” to “const SHOW_OPEN_CLOSE = 1;” and running sudo make
install in the pure-sql3 directory. This will cause a message to be printed whenever a db_ptr
or stmt_ptr is created or finalized.

N.B. You should never call the native C interface function‘‘sqlite3_close‘‘ with a db_ptr. If
the referenced database connection is closed by such a call, a subsequent call to close on this
db_ptr (including the call that will automatically occur when the db_ptr goes out of scope)
will cause a seg fault.

25.5.2 Prepared Statements

The native SQLite C interface provides five core functions needed to execute a SQL state-
ment.

• sqlite3_prepare_v2
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• sqlite3_bind

• sqlite3_step

• sqlite3_column

• sqlite3_finalize

Using the C interface, the basic procedure is to prepare a statement using
sqlite3_prepare_v2, bind its parameters using sqlite3_bind, step it using sqlite3_step
one or more times until it is done and then finalize it using sqlite3_finalize. Each time
sqlite3_step returns SQLITE_ROW, use sqlite3_column to fetch the row’s values. Here
sqlite3_bind and sqlite3_column represent families of bind and column functions, rather
than actual functions, with one member for each of the basic data types recognized by
SQLite. Thus, for example, sqlite_bind_double is the function one would use to bind a
prepared statement with an argument of type double.

Sql3 encapsulates these procedures in four functions: prep, exec, lexec and finalize.

Constructing Prepared Statements

In Sql3 you can use prep to construct a prepared statement and obtain a stmt_ptr that refers
to it.

sql3::prep dbp::db_ptr binding_string::string sql_statement::string
constructs a prepared statement object and returns a stmt_ptr that references it. dbp
must be a db_ptr or the rule will not match. sql_statement is the SQL statement that
will be executed when the prepared statement is passed to exec.

Basically, prep just passes dbp and sql_statement on to sqlite3_prepare_v2 and returns a
sentry guarded version of the sqlite3_stmt* it receives back from sqlite3_prepare_v2. SQL
statements passed to prep (and sqlite3_prepare_v2) can have argument placeholders, indi-
cated by ”?”, ”?nnn”, ”:AAA”, etc, in which case the argument placeholders must be bound
to values using sqlite_bind before the prepared statement is passed to sqlite3_step.
Hence the binding_string, which is used by Sql3 to determine how to bind the prepared
statement’s argument placeholders, if any. The binding string also tells Sql3 how to fetch
values in the sqlite3_column phase of the basic prepare, bind, step, fetch, finalize cycle
dictated by the SQlite C interface.

In the following two examples, the “c” and “i” in the binding strings indicate that (a) a
string and an int will be used to bind sp1,(b) an int will be used to bind sp2 and (c) sp2,
when executed, will return a result set in the form of a list of sublists each of which contains
a string and an int.

> let sp1 = prep dbp "ci" "insert into RM values (?,?)";

> let sp2 = prep dbp "ci:i" "select * from RM where age > ?";

In general, the characters in the type string before the ”:”, if any, indicate the types in the
result set. Those that occur after the ”:”, if any, indicate the types of the arguments used to
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bind the prepared statement object. If the type string does not contain a ”:”, the characters
in the type string, if any, are the types of binding arguments.

Sql3 provides the following set of “core” binding types:

Type Pure Argument SQLite Type
b (int, pointer) blob
c string text (utf8)
d double float
i int int
k int or bigint int64
l bigint blob
n Sql3::SQLNULL NULL
x expression blob
v variant variant

The “b” or blob type is different from the rest in that the Pure argument is specified as a
pair. The first element of the pair indicates the length in bytes of the object to be stored
and the second element indicates its location in memory. The “c” type stands for string (as
in “char*”), “d” stands for double and “i” stands for int. The “k” type stands for “key”
and maps Pure ints and bigints (within the range of int64) to int64 values in the database.
This type is useful when dealing with SQLite’s “integer primary keys” and “rowids” both of
which are int64. The “l” type, in contrast applies to all bigints (and not to ints) and it maps
bigints onto blobs, which are generally meaningless in SQL math expressions. The “n” type
can only appear on the binding side of a type string. The “v” type stands for any of “b”, “c”,
“d”, “i” or “n”, based on the type of the binding argument. A “v” type will be fetched from
SQLite according to the native SQLite column type of the corresponding column. The “x”
type is used to store and reconstruct Pure expressions as binary objects, using the val and
blob functions provided by the Pure prelude.

Users can define custom binding types and pass them as a third parameter to open. The
resulting db_ptr can be used with the custom binding types to construct prepared statements
using prep.

Testing a stmt ptr

You can determine if a given expression is a stmt_ptr using typep.

typep stmt_ptr x
returns 1 if x is a stmt_ptr, otherwise returns 0.

Executing Prepared Statements

In Sql3, the bind, step, column, step, column ... cycle is encapsulated in the exec and lexec
functions.
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sql3::exec sp::stmt_ptr args
use args to bind the prepared statement referenced by sp, execute it and return the
result set as a list. The first parameter, sp must be a valid stmt_ptr or the rule will fail.

The second parameter, args, is a tuple or list of arguments whose number and type cor-
respond to the bind parameter types specified in the call to prep that produced the first
parameter sp.

Thus, using sp1 and sp2 defined in the introductory example:

> exec sp1 ("Tom",30); //insert Tom
[]

> exec sp2 19; //select age > 19
[["Sam",20],["Fred",22],["Tom",30]]

An error is thrown if the args do not correspond to the specified types.

> catch error (exec sp2 "a");
error (sql3::db_error 0 "\"a\" does not have type int")

If a prepared statement does not have any binding parameters, the call to exec should use
() as the binding argument.

> let sp3 = prep dbp "c:" "select name from RM";

> exec sp3 ();
[["Sam"],["Fred"],["Tom"]]

Extra care is required when executing prepared statements that take a blob argument be-
cause it must be a pair. In order to preserve the tuple as a pair, binding arguments that
include a blob should passed to exec as a list. If passed as a member of a larger tuple, it will
be treated as two arguments due to the nature of tuples.

> let blb = (100,ptr);

> (a,blb,c);
a,100,ptr,c

> [a,blb,c];
[a,(100,ptr),c]

Thus something like “exec stpx [a,blb,c]” would work fine, while “exec stpx
(a,blb,c)” would produce a Sql3 binding exception.

Executing Lazily

The exec function returns result sets as eager lists which can sometimes be inefficient or
simply not feasible for large result sets. In such cases it is preferable to use lexec instead of
exec.
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sql3::lexec stmp::stmt_ptr args
same as exec except that it returns a lazy list.

Example:

> lexec sp2 19;
["Sam",20]:#<thunk 0xb6475ab0>

Note that no changes to sp2 were required. In addition, for most purposes the lazy list
returned by lexec can be processed by the same code that processed the eager list returned
by exec.

Executing Directly on a db ptr

For statements that have no parameters and which do not return results, exec can be applied
to a db_ptr.

sql3::exec dbp::db_ptr sql_statement::string
constructs a temporary prepared statement using sql_statement. The SQL statement
cannot contain argument placeholders and cannot be a select statement.

Example:

> exec dbp "create table if not exists RM (name varchar, age integer)";

Executing Against a Busy Database

SQLite allows multiple processes to concurrently read a single database, but when any pro-
cess wants to write, it locks the entire database file for the duration of its update.

When the native SQLite C interface function sqlite3_step (used by exec) tries to access
a file that is locked by another process, it treats the database as “busy” and returns the
SQLITE_BUSY error code. If this happens in a call to exec or lexec, a db_busy exception
will be thrown.

You can adjust SQLite’s behavior using sqlite3_busy_handler or sqlite3_busy_timeout.

If the statement is a COMMIT or occurs outside of an explicit transaction, then you can retry
the statement. If the statement is not a COMMIT and occurs within a explicit transaction
then you should rollback the transaction before continuing.

Grouping Execution with Transactions

No changes can be made to a SQLite database file except within a transaction. Transactions
can be started manually by executing a BEGIN statement (i.e., exec dbp “BEGIN”). Manually
started transactions persist until the next COMMIT or ROLLBACK statement is executed.
Transactions are also ended if an error occurs before the transaction is manually ended using
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a COMMIT or ROLLBACK statement. This behavior provides the means make a series of
changes “atomically.”

By default, SQLite operates in autocommit mode. In autocommit mode, any SQL statement
that changes the database (basically, anything other than SELECT) will automatically start a
transaction if one is not already in effect. As opposed to manually started transactions, auto-
matically started transactions are committed as soon as the execution of the related statement
completes.

The upshot of this, in Sql3 terms, is that unless a transaction is started manually, the database
will be updated each time exec is called. For a long series of updates or inserts this a can
be very slow. The way to avoid this problem is to manually begin and end transactions
manually.

Sql3 provides the following convenience functions all of which simply call exec with the
appropriate statement. For example begin dbp is exactly the same as exec dbp "BEGIN".

sql3::begin dbp::db_ptr

sql3::begin_exclusive dbp::db_ptr

sql3::begin_immediate dbp::db_ptr

sql3::commit dbp::db_ptr

sql3::rollback dbp::db_ptr

sql3::savepoint dbp::db_ptr save_point::string

sql3::release dbp::db_ptr save_point::string

sql3::rollback_to dbp::db_ptr save_point::string

Note that transactions created using begin and commit do not nest. For nested transactions,
use savepoint and release.

Finalizing Prepared Statements

When a prepared statement is no longer needed it should be finalized so that SQLite can free
the associated resources.

sql3::finalize sp::stmt_ptr
finalize the prepared statement referenced by sp, which must be a stmt_ptr previously
returned by prep.

Often there is no need to call finalize for a given stmt_ptr because it will be automatically
called when the stmt_ptr goes out of scope.

If the stmt_ptr is associated with a database connection that has been closed (which would
have caused an exception to be thrown), an attempt to finalize it, including the automatic
finalization can occur when stmt_ptr goes out of scope, will cause an exception to be thrown.
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> catch error (finalize dbp2_sp);
error (sql3::db_error 0 "finalize: STMT attached to a closed db_ptr.")

Multiple calls to finalize are fine. In contrast, the corresponding native C interface func-
tion, sqlite3_finalize will cause a seg fault if called with a pointer to a finalized prepared
statement object. This is the main reason why you should never call sqlite3_finalize with
a stmt_ptr. If the prepared statement referenced by the stmt_ptr is finalized by such a call,
a subsequent call to finalize with the stmt_ptr (including the call that will automatically
occur when the stmt_ptr goes out of scope) will cause a seg fault.

25.5.3 Exceptions

Sql3 throws two types of exceptions, one for outright errors and one for database “busy”
conditions.

constructor sql3::db_error ec msg
When a Sql3 function detects an error it throws an exception of the form “db_error ec
msg” where ec is an error code and msg is the corresponding error message. If ec>0,
the error was detected by SQLite itself, and ec and msg are those returned by SQLite.
If ec==0, the error was detected by Sql3 and msg is a Sql3 specific description of the
error. E.g.,

> db_error_handler (db_error ec msg) = ()
> when
> source = if ec > 0 then "SQLite" else "Sql3";
> printf "%s db_error: ec %d, %s\n" (source,ec,msg);
> end;
> db_error_handler x = throw x;

> catch db_error_handler (exec dbp "select * from NO_TABLE");
SQLite db_error: ec 1, no such table: NO_TABLE

constructor sql3::db_busy dbp
Sql3 functions exec and lexec throw exceptions of the form “db_busy dbp”, where
dbp is a db_ptr, if they are prevented from executing successfully because the database
referenced by dbp is locked (See Executing Against a Busy Database).

SQLite Error Codes

Here is a list, as of January 31, 2011, of SQLite’s error codes.

SQLITE_ERROR 1 /* SQL error or missing database */
SQLITE_INTERNAL 2 /* Internal logic error in SQLite */
SQLITE_PERM 3 /* Access permission denied */
SQLITE_ABORT 4 /* Callback routine requested an abort */
SQLITE_BUSY 5 /* The database file is locked */
SQLITE_LOCKED 6 /* A table in the database is locked */
SQLITE_NOMEM 7 /* A malloc() failed */
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SQLITE_READONLY 8 /* Attempt to write a readonly database */
SQLITE_INTERRUPT 9 /* Operation terminated by sqlite3_interrupt()*/
SQLITE_IOERR 10 /* Some kind of disk I/O error occurred */
SQLITE_CORRUPT 11 /* The database disk image is malformed */
SQLITE_NOTFOUND 12 /* NOT USED. Table or record not found */
SQLITE_FULL 13 /* Insertion failed because database is full */
SQLITE_CANTOPEN 14 /* Unable to open the database file */
SQLITE_PROTOCOL 15 /* NOT USED. Database lock protocol error */
SQLITE_EMPTY 16 /* Database is empty */
SQLITE_SCHEMA 17 /* The database schema changed */
SQLITE_TOOBIG 18 /* String or BLOB exceeds size limit */
SQLITE_CONSTRAINT 19 /* Abort due to constraint violation */
SQLITE_MISMATCH 20 /* Data type mismatch */
SQLITE_MISUSE 21 /* Library used incorrectly */
SQLITE_NOLFS 22 /* Uses OS features not supported on host */
SQLITE_AUTH 23 /* Authorization denied */
SQLITE_FORMAT 24 /* Auxiliary database format error */
SQLITE_RANGE 25 /* 2nd parameter to sqlite3_bind out of range */
SQLITE_NOTADB 26 /* File opened that is not a database file */

New error codes may be added in future versions of SQLite. Note that the SQLite names of
the error codes are not exported by the Sql3 module.

25.6 Advanced Features

Sql3’s advanced features include the ability to implement SQL functions in Pure, convenient
access to the SQLite C interface and custom binding types.

25.6.1 Custom SQL Functions

An extremely powerful (albeit complex) feature of the SQLite C interface is the ability to add
new SQL scalar or aggregate functions. The new functions can be used in SQL statements the
in same way as SQLites’s prepackaged functions. Sql3 hides the complexity and seamlessly
integrates all of this functionality, :), into Pure via create_function. This function is used to
register both scalar SQL functions and aggregate SQL functions with SQlite.

Scalar SQL Functions

You can add a custom SQL scalar function to SQLite by passing a single Pure function to
create_function.

sql3::create_function dbp::db_ptr name::string nargs::int pure_fun
registers a new SQL scalar function of nargs arguments that can be called, as name,
in SQL statements prepared with respect to dbp, a db_ptr. When the SQL function is
called in a SQL statement, control is passed to pure_fun, a function written in Pure. If
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nargs is (-1), the SQL function name is variadic, and the arguments will be passed to
pure_fun as a single list.

Note that create_function can also register aggregate functions (see Aggregate SQL Func-
tions).

Here is an example of a scalar function that takes two parameters. Note that any kind of
Pure “function” can be passed here; local functions, global functions, lambdas or partial
applications all work.

> create_function dbp::dbp "p_fn" 2 plus with plus x y = x + y; end;

> let sp4 = prep dbp "cii:"
> "select p_fn(’Hi ’,name), age, p_fn(age,10) from RM";

> exec sp4 ();
[["Hi Sam",20,30],["Hi Fred",22,32]]

Here is an example of a variadic function:

> create_function dbp "p_qm" (-1) quasimodo with
> quasimodo xs = "quasimodo: "+join ":" [str x | x=xs];
> end;

If the SQL function takes no arguments, the corresponding Pure function must, for technical
reasons in Pure, take a single dummy argument. E.g.,

> create_function dbp "p_count" 0 counter with
> counter () = put r (get r+1);
> end when r = ref 0 end;

Here is how count and quasimodo might be used:

> let sp5 = prep dbp "ic:" "select p_count(), p_qm(name,age) from RM";

> exec sp5 ();
[[1,"quasimodo: \"Sam\":20"],[2,"quasimodo: \"Fred\":22"]]

> exec sp5 ();
[[3,"quasimodo: \"Sam\":20"],[4,"quasimodo: \"Fred\":22"]]

Multiple SQL functions can be registered with the same name if they have differing numbers
of arguments. Built-in SQL functions may be overloaded or replaced by new application-
defined functions.

Generally, a custom function is permitted to call other Sql3 and native SQLite C interface
functions. However, such calls must not close the database connection nor finalize or reset
the prepared statement in which the function is running.
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Aggregate SQL Functions

You can use create_function to register an aggregate SQL function with SQLite by passing
a triple consisting of two Pure functions and a start value, in lieu of a single Pure function.

sql3::create_function dbp::db_ptr name::string nargs::int (step,final,start)
registers a new SQL aggregate function of nargs arguments that can be called, as name
in SQL statements prepared with respect to dbp, a db_ptr. step and final are curried
Pure functions and start is the initial value for the aggregation. The step function
is called repeatedly to accumulate values from the database, starting from the given
start value, and finally the final function is applied to the accumulated result.

Note that for a single-argument step function, this works exactly as if the functions were
invoked as “final (foldl step start values)”, where values is the list of aggregated
values from the database.

> create_function dbp "p_avg" 1 (step,final,(0,0.0)) with
> step (n,a) x = n+1, a+x;
> final (n,a) = a/n;
> end;

> let sp6 = prep dbp "id:" "select count(name), p_avg(age) from RM";

> exec sp6 ();
[[2,21.0]]

25.6.2 Accessing the Rest of SQLite’s C Interface

The db_ptrs returned by open and stmt_ptrs returned by prep are sentry guarded ver-
sions of the actual pointers to the data base connection objects and prepared statement
objects returned by their corresponding native C interface functions sqlite3_open_v2 and
sqlite3_prepare_v2. This makes it easy to call almost any external function in SQLite’s C
interface directly, passing it the same db_ptr or stmt_ptr that is passed to Sql3’s functions,
such as prep or exec.

For example, you can override SQLite’s default behavior with respect to a busy database as
follows:

> extern int sqlite3_busy_timeout(sqlite3*, int);

> sqlite3_busy_timeout dbp 10;

This sets a busy handler that will “sleep and retry” multiple times until at least 10 millisec-
onds of sleeping have accumulated. Calling this routine with an argument less than or equal
to zero turns off all busy handlers.

Another example is to query the number of database rows that were changed, inserted or
deleted by the most recently completed SQL statement executed on a given database con-
nection:
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> extern int sqlite3_changes(sqlite3*);

> exec sp1 ("Harvey",30);

> sqlite3_changes dbp;
1

As a final example, in this case using a stmt_ptr, you can determine name assigned to a
column in a result using sqlite3_column_name:

> extern char *sqlite3_column_name(sqlite3_stmt*, int);

> exec sp2 29;
[["Harvey",30]]

> sqlite3_column_name sp2 1;
"age"

In order to call a native C function you must first make it accessible using an extern state-
ment.

Please note also that directly calling a function provided by the SQLite C interface can be
dangerous, as is the case with any call from Pure code to an external C function. Sql3
users should be especially careful in this regard because using a db_ptr or a stmt_ptr in
calls to certain native C interface functions, including in particular sqlite3_close and
sqlite3_finalize, will corrupt data held by the db_ptr or stmt_ptr, leading to undefined
behavior. The reason for this restriction is that Sql3 uses sentries to insure that the resources
associated with a db_ptr or a stmt_ptr are automatically finalized by SQLite when they go
out of scope. In addition, the sentries carry internal information used by Sql3 for other pur-
poses.

25.6.3 Custom Binding Types for Prepared Statements

You can add your own binding types for preparing and executing prepared statements by
specifying a third argument to open. The third argument must be a list of “hash rocket pairs”
in which the left side is a character for the custom binding type and the right side is a list
with three members. The second and third members of the list are functions that map objects
from the new type to one of the Sql3 core types and back, respectively. The first member of
the list is the character for the Sql3 core types referenced by the mapping functions.

The file sql3_user_bind_types.pure in the examples subdirectory shows how this might be
done for a couple of user defined types. The example script deals with dates and certain
Pure expressions as bigints and native Pure expressions, while the database stores these as
utf-8 text. The following snippets show parts of the script that are relevant to this discussion:

const custom_binds = [
"t"=>["c",day_to_str,str_to_day],
"s"=>["c",str,eval]

];
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d1 = str_to_day "2010-03-22";

db = open ("abc.db", SQLITE_OPEN, custom_binds);
stm1 = prep db "cts" "insert into TC values(?,?,?)";
exec stm1 ["Manny", d1, s_expr];
stm3a = sql3::prep db "t:" "select t_date from TC";
stm3b = sql3::prep db "c:" "select t_date from TC";

Executing stm3a and stm3b from the interpreter shows that TC’s date field is stored as a
string, but returned to the Pure script as a bigint.

> sql3::exec stm3a ());
[[14691L]]

> sql3::exec stm3b ());
[["2010-03-22"]]

The character designating the custom type must not be one of the letters used to designate
Sql3 core binding types.

25.7 Threading Modes

SQLite supports three different threading modes:

1. Single-thread. In this mode, all mutexes are disabled and SQLite is unsafe to use in
more than a single thread at once.

2. Multi-thread. In this mode, SQLite can be safely used by multiple threads provided
that no single database connection is used simultaneously in two or more threads.

3. Serialized. In serialized mode, SQLite can be safely used by multiple threads with no
restriction.

SQLite can be compiled with or without support for multithreading and the default is to
support it.

In many cases, single-thread mode might be appropriate if only because it is measurably
faster. This might be the case, for example, if you are using SQLite as the on-disk file format
for a desktop application.

If your version of SQLite was compiled with support for multithreading, you can
switch to single-thread mode at runtime by calling sqlite3_config() with the verb
SQLITE_CONFIG_SINGLETHREAD.

If you must use threads, it is anticipated that Sql3 probably will not impose an additional
burden. Hopefully, you will be fine if you apply the same precautions to a db_ptr or stmt_ptr
that you would apply to the underlying sqlite* and sqlite_stmt*s if you were not using Sql3.
It is strongly advised however that you look at the underlying Sql3 code to verify that this
will work. Since everything that is imposed between the raw pointers returned by the SQlite
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interface and the corresponding db_ptr and stmt_ptrs is written in Pure, it should be rel-
atively easy to determine how Sql3 and your multithreading strategy will interact. See Is
SQLite threadsafe? , Opening A New Database Connection and Test To See If The Library Is
Threadsafe.
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Chapter 26
Pure-XML - XML/XSLT interface

Version 0.7, September 17, 2014

Albert Graef <aggraef@gmail.com>

XML, the Extensible Markup Language, facilitates the exchange of complex structured data
between applications and systems. XSLT allows you to transform XML documents to
other XML-based formats such as HTML. Together, XML and XSLT let you create dynamic
web content with ease. Both XML and XSLT are open standards by the W3C consortium
(http://www.w3.org).

Pure’s XML interface is based on the libxml2 and libxslt libraries from the GNOME project.
If you have a Linux system then you most likely have these libraries, otherwise you can get
them from http://xmlsoft.org. For Windows users, the required dlls are available from the
GnuWin32 project (http://gnuwin32.sourceforge.net) and are already included in the Pure
MSI package.

26.1 Copying

Copyright (c) 2009 by Albert Graef <aggraef@gmail.com>.

pure-xml is free software: you can redistribute it and/or modify it under the terms of the
GNU Lesser General Public License as published by the Free Software Foundation, either
version 3 of the License, or (at your option) any later version.

pure-xml is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICU-
LAR PURPOSE. See the GNU Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with this
program. If not, see <http://www.gnu.org/licenses/>.
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26.2 Installation

Get the latest source from https://bitbucket.org/purelang/pure-lang/downloads/pure-
xml-0.7.tar.gz.

Run make and then sudo make install to compile and install this module. This requires
libxml2, libxslt and Pure.

26.3 Usage

Use the following declaration to make the operations of this module available in your pro-
grams:

using xml;

The module defines two namespaces xml and xslt for the XML and the XSLT operations,
respectively. For convenience, you can open these in your program as follows:

using namespace xml, xslt;

A number of complete examples illustrating the use of this module can be found in the
examples directory in the source distribution.

26.4 Data Structure

This module represents XML documents using pointers to the xmlDoc and xmlNode struc-
tures provided by the libxml2 library. Similarly, stylesheets are simply pointers to the xml-
Stylesheet structure from libxslt (cf. Transformations). This makes it possible to use these
objects directly with the operations of the libxml2 and libsxslt libraries (via Pure’s C inter-
face) if necessary. Note, however, that these are all “cooked” pointers which take care of
freeing themselves automatically when they are no longer needed, therefore you shouldn’t
free them manually.

You can also check for these types of pointers using the following predicates:

xml::docp x
checks whether x is an XML document pointer.

xml::nodep x
checks whether x is a pointer to a node in an XML document.

xslt::stylesheetp x
checks whether x is an XSLT stylesheet pointer.
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26.4.1 The Document Tree

An XML document is a rooted tree which can be created, traversed and manipulated using
the operations of this module. There are different types of nodes in the tree, each carrying
their own type of data. In Pure land, the node data is described using the following “node
info” constructors.

constructor xml::element tag ns attrs
An XML element with given (possibly qualified) name tag, a (possibly empty) list of
namespace declarations ns and a (possibly empty) list of attributes attrs. Namespace
declarations normally take the form of a pair of strings (prefix,href), where prefix
is the prefix associated with the namespace and href the corresponding URI (the name
of the namespace), but they can also be just a string href if the namespace prefix is
missing. Attributes are encoded as key=>value pairs, where key is the attribute name
and value the associated value; both key and value are strings.

constructor xml::element_text tag ns attrs content
A convenience function which denotes a combination of an element node with a text
child. This is only used when creating a new node, and indicates that a text node child
is to be added to the node automatically.

constructor xml::attr key val
An attribute node. These only occur as results of the select and attrs functions, and
cannot be inserted directly into a document.

constructor xml::text content
A text node with the given content (a string).

constructor xml::cdata content
Like xml::text, but contains unparsed character data.

constructor xml::comment content
A comment.

constructor xml::entity_ref name
An entity reference (&name;).

constructor xml::pi name content
Processing instructions. name is the application name, content the text of the process-
ing instructions.

26.4.2 Document Types

Besides the node types described above, there are some additional node types used in
the document type definition (DTD), which can be extracted from a document using the
int_subset and ext_subset functions. These are for inspection purposes only; it is not pos-
sible to change the DTD of a document in-place. (However, you can create a new document
and attach a DTD to it, using the new_doc function.)
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constructor xml::doctype name extid
DTDs are represented using this special type of node, where name is the name of the
root element, and extid is a pair consisting of the external identifier and the URI of
the DTD (or just the URI if there is no external identifier). The xml::doctype node has
as its children zero or more of the following kinds of DTD declaration nodes (these
are just straightforward abstract syntax for the !ELEMENT, !ATTLIST and !ENTITY
declarations inside a DTD declaration; see the XML specification for details).

Element declarations: Here, name is the element tag and content the definition of the element
structure, see element content below. XML supports various kinds of element types, please
refer to document type definition in the XML specification for details.

constructor xml::undefined_element name
An undefined element. This is in libxml2, but not in the XML specification, you
shouldn’t see this in normal operation.

constructor xml::empty_element name
An element without any content.

constructor xml::any_element name
An element with unrestricted content.

constructor xml::mixed_element name content
A “mixed” element which can contain character data, optionally interspersed with
child elements, as given in the content specification.

constructor xml::std_element name content
A standard element consisting only of child elements, as given in the content specifi-
cation.

Attribute declarations: These are used to declare the attributes of an element. elem_name is
the name of an element which describes the attribute type, name is the name of the attribute
itself, and default specifies the default value of the attribute, see attribute defaults below.
XML supports a bunch of different attribute types, please refer to document type definition
in the XML specification for details.

constructor xml::cdata_attr elem_name name default

constructor xml::id_attr elem_name name default

constructor xml::idref_attr elem_name name default

constructor xml::idrefs_attr elem_name name default

constructor xml::entity_attr elem_name name default

constructor xml::entities_attr elem_name name default

constructor xml::nmtoken_attr elem_name name default

constructor xml::nmtokens_attr elem_name name default

constructor xml::enum_attr elem_name name vals default

constructor xml::notation_attr elem_name name vals default
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Entity declarations: These are used for internal and external entity declarations. name is the
entity name and content its definition. External entities also have an extid (external identi-
fier/URI pair) identifying the entity.

constructor xml::int_entity name content

constructor xml::int_param_entity name content

constructor xml::ext_entity name extid content

constructor xml::ext_param_entity name extid content

The element content type (content argument of the element declaration nodes) is a kind of
regular expression formed with tags (specified as strings) and the following constructors:

constructor xml::pcdata
text data (#PCDATA)

constructor xml::sequence xs
concatenation (x,y,z)

constructor xml::union xs
alternatives (x|y|z)

constructor xml::opt x
optional element (x?)

constructor xml::mult x
repeated element (x*)

constructor xml::plus x
non-optional repeated element (x+)

Attribute defaults (the default argument of attribute declaration nodes) are represented
using the following constructor symbols:

constructor xml::required
a required attribute, i.e., the user must specify this

constructor xml::implied
an implied attribute, i.e., the user does not have to specify this

constructor xml::default val
an attribute with the given default value val

constructor xml::fixed val
an attribute with the given fixed value val

26.5 Operations

This module provides all operations necessary to create, inspect and manipulate XML doc-
uments residing either in memory or on disk. Operations for formatting XML documents
using XSLT stylesheets are also available.
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26.5.1 Document Operations

The following functions allow you to create new XML documents, load them from or save
them to a file or a string, and provide general information about a document.

xml::new_doc version dtd info
This function creates an XML document. It returns a pointer to the new document.
version is a string denoting the XML version (or "" to indicate the default). info is the
node info of the root node (which should denote an element node). dtd denotes the
document type which can be () to denote an empty DTD, a string (the URI/filename
of the DTD), or a pair (pubid,sysid) where pubid denotes the public identifier of the
DTD and sysid its system identifier (URI).

Note that only simple kinds of documents with an internal DTD can be created this
way. Use the load_file or load_string function below to create a skeleton document
if a more elaborate prolog is required.

xml::load_file name flags
xml::load_string s flags

Load an XML document from a file name or a string s. flags denotes the parser flags,
a bitwise disjunction of any of the following constants, or 0 for the default:

•xml::DTDLOAD: load DTD

•xml::DTDVALID: validate

•xml::PEDANTIC: pedantic parse

•xml::SUBENT: substitute entities

•xml::NOBLANKS: suppress blank nodes

The return value is the document pointer. These operations may also fail if there is a
fatal error parsing the document.

xml::save_file name doc encoding compression
xml::save_string doc

Save an XML document doc to a file or a string. When saving to a file, encoding de-
notes the desired encoding (or "" for the default), compression the desired level of zlib
compression (0 means none, 9 is maximum, -1 indicates the default). Note that with
xml::save_string, the result is always encoded as UTF-8.

xml::doc_info doc
Retrieve general information about a document. Returns a tuple
(version,encoding,url,compression,standalone), where version is the XML ver-
sion of the document, encoding the external encoding (if any), url the name/location
of the document (if any), compression the level of zlib compression, and standalone
is a flag indicating whether the document contains any external markup declarations
“which affect the information passed from the XML processor to the application”,
see the section on the standalone document declaration in the XML spec for details.
(Apparently, in libxml2 standalone is either a truth value or one of the special values
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-1, indicating that there’s no XML declaration in the prolog, or -2, indicating that
there’s an XML declaration but no standalone attribute.)

xml::int_subset doc
xml::ext_subset doc

Retrieve the internal and external DTD subset of a document. Returns a doctype node
(fails if there’s no corresponding DTD).

Example

Read the sample.xml document distributed with the sources (ignoring blank nodes) and
retrieve the document info:

> using xml;
> let sample = xml::load_file "sample.xml" xml::NOBLANKS;
> xml::doc_info sample;
"1.0","","sample.xml",0,-2

26.5.2 Traversing Documents

These operations are used to traverse the document tree, i.e., the nodes of the document.
They take either a document pointer doc or a node pointer node as argument, and yield
a corresponding node pointer (or a document pointer, in the case of xml::doc). The node
pointers can then be used with the Node Information and Node Manipulation operations
described below.

xml::root doc
the root node of doc

xml::doc node
the document node belongs to

xml::parent node
the parent of node

xml::first node
xml::last node

first and last child node

xml::next node
xml::prev node

next and previous sibling

xml::first_attr node
xml::last_attr node

first and last attribute node

All these operations fail if the corresponding target node does not exist, or if the type of the
given node is not supported by this implementation.

There are also two convenience functions to retrieve the children and attribute nodes of a
node:

26.5.2 Traversing Documents 765



Pure Language and Library Documentation, Release 0.62

xml::children node
returns the list of all child nodes of node

xml::attrs node
returns the list of all attribute nodes of node

Moreover, given a node pointer node, node!i can be used to retrieve the ith child of node.

Example

Peek at the root node of the sample document and its children:

> let r = xml::root sample; r;
#<pointer 0xe15e10>
> xml::node_info r;
xml::element "story" [] []
> #xml::children r;
5
> xml::node_info (r!0);
xml::cdata "<greeting>Hello, world!</greeting>"

26.5.3 Node Information

These operations retrieve information about the nodes of an XML document.

xml::select doc xpath
xml::select doc (xpath,ns)

Retrieve nodes using an XPath specification. Given an XPath (a string) xpath, this
operation returns the list of all matching nodes in the given document doc. You can
also specify a node as the first argument, in which case the document of the given node
is searched and paths are interpreted relative to the given node (rather than the root
node of the document).

Moreover, instead of just an XPath you can also specify a pair (xpath,ns) consisting
of an XPath xpath and a list ns of prefix=>uri string pairs which describe the name-
spaces to be recognized in the XPath expression. This is necessary to select nodes by
qualified tag or attribute names. Note that only the namespace URIs must match up
with those used in the queried document; the corresponding namespace prefixes can
be chosen freely, so you can use whatever prefixes are convenient to formulate the
XPath query. However, for each namespace prefix used in the XPath expression (not
the document!), there must be a corresponding binding in the ns list. Otherwise the
underlying libxml2 function will complain about an undefined namespace prefix and
xml::select will fail.

xml::node_info node
Retrieve the node data from node. Returns a node info value, as described in Data
Structure above. Fails if the node does not belong to one of the supported node types.

xml::is_blank_node
Checks whether a node is a blank node (empty or whitespace only) and thus possibly
ignorable.
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xml::node_base node
Returns the base URI of the given node.

xml::node_path node
Returns the path of a node in the document, in the format accepted by select.

xml::node_content node
Returns the text carried by the node, if any (after entity substitution).

In addition, you can retrieve and change attributes of element nodes with the following
operations:

xml::node_attr node name
Retrieves the value of the attribute with the given name (after entity substitution).

xml::set_node_attr node name value
xml::unset_node_attr node name

Sets or unsets an attribute value.

Examples

Set and unset a node attribute:

> xml::set_node_attr r "foo" "4711";
()
> xml::node_info r;
xml::element "story" [] ["foo"=>"4711"]
> xml::node_attr r "foo";
"4711"
> xml::unset_node_attr r "foo";
()
> xml::node_info r;
xml::element "story" [] []

The select function is very powerful, and probably the single most important operation of
this module if you want to extract information from an existing XML document without
traversing the entire structure. Here is a very simple example of its use:

> [xml::node_content n, xml::node_path n | n = xml::select sample "//author"];
[("John Fleck","/story/storyinfo/author")]

Note that if the XPath expression contains qualified names, the corresponding namespace
prefixes and their URIs must be given in the second argument along with the XPath, as
follows:

xml::select doc ("//foo:bar", ["foo"=>"http://www.foo.org"]);

26.5.4 Node Manipulation

These operations enable you to manipulate the document structure by adding a new node
to the document tree (specified through its node info), and by removing (unlinking) existing
nodes from the tree.
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xml::replace node info
Add the new node specified by info in place of the given node node.

xml::add_first node info
xml::add_last node info

Add the new node as the first or last child of node, respectively.

xml::add_next node info
xml::add_prev node info

Add the new node as the next or previous sibling of node, respectively.

The operations above all return a pointer to the new XML node object.

xml::unlink node
Deletes an existing node from the document tree. Returns ().

Examples

Replace the first child of the root node in the sample document:

> xml::node_info (r!0);
xml::cdata "<greeting>Hello, world!</greeting>"
> xml::replace (r!0) (xml::text "bla bla");
#<pointer 0xd40d80>
> xml::node_info (r!0);
xml::text "bla bla"

Delete that node:

> xml::unlink (r!0);
()
> xml::node_info (r!0);
xml::comment "This is a sample document for testing the xml interface."

26.5.5 Transformations

The following operations provide basic XSLT support. As already mentioned, stylesheets
are represented as pointers to the xsltStylesheet structure provided by libxslt. Note that, in
difference to XML document pointers, this is an opaque type, i.e., there is no direct means to
inspect and manipulate parsed stylesheets in memory using the operations of this module.
However, a stylesheet is just a special kind of XML document and thus can be manipulated
after reading the stylesheet as an ordinary XML document. The load_stylesheet function
then allows you to convert the document pointer to an XSLT Stylesheet object.

Applying a stylesheet to an XML document generally involves the following steps:

1. Load and parse the stylesheet using load_stylesheet. The parameter to
load_stylesheet can be either the name of a stylesheet file or a corresponding doc-
ument pointer. The function returns a pointer to the stylesheet object which is used in
the subsequent processing.
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2. Invoke apply_stylesheet on the stylesheet and the target document. This returns a
new document containing the transformed XML document.

3. Run save_result_file or save_result_string on the result and the stylesheet to save
the transformed document in a file or a string.

Here is a brief summary of the XSLT operations. Please check the XSLT documentation for
details of the transformation process.

xslt::load_stylesheet x
Load a stylesheet. x can be either an XML document pointer, or a string denoting the
desired .xsl file.

xslt::apply_stylesheet style doc params
Apply the stylesheet style to the given document doc with the given parameters
params. The third argument is a (possibly empty) list of key=>value string pairs which
allows you to pass additional parameters to the stylesheet.

xslt::save_result_file name doc style compression
xslt::save_result_string doc style

Save the transformation result doc obtained with the stylesheet style to a file or a
string. This works pretty much like save_file or save_string, but also keeps track of
some output-related information contained in the stylesheet.

Example

Load the recipes.xml document and the recipes.xsl stylesheet distributed with the sources:

> let recipes = xml::load_file "recipes.xml" xml::DTDVALID;
> let style = xslt::load_stylesheet "recipes.xsl";

Apply the stylesheet to the document and save the result in a html file:

> let res = xslt::apply_stylesheet style recipes [];
> xslt::save_result_file "recipes.html" res style 0;
()

That’s all. You can now have a look at recipes.html in your favourite web browser.
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Chapter 27
pure-g2

Version 0.3, September 17, 2014

Albert Graef <aggraef@gmail.com>

This is a straight wrapper of the g2 graphics library, see http://g2.sf.net/.

License: BSD-style, see the COPYING file for details.

Get the latest source from https://bitbucket.org/purelang/pure-lang/downloads/pure-g2-
0.3.tar.gz.

g2 is a simple, no-frills 2D graphics library, distributed under the LGPL. It’s easy to use,
portable and supports PostScript, X11, PNG and Win32. Just the kind of thing that you
need if you want to quickly knock out some basic graphics, and whipping out the almighty
OpenGL or GTK/Cairo seems overkill.

To use this module, you need to have libg2 installed as a shared library (libg2.so, .dll etc.) in a
place where the Pure interpreter can find it. The g2 source does not include rules to properly
build and install a shared library on modern Linux systems, so we’ve included a little patch
named g2-0.72-sharedlib.patch in the pure-g2 package which helps with this. (You still have
to run ldconfig on Linux after installing g2. Also note that this patch has only been tested on
Linux, for other systems you’ll probably have to edit the g2 Makefile yourself.)

Documentation still needs to be written, so for the time being please see g2.pure and have a
look at the examples provided in the distribution.

Run make install to copy g2.pure to the Pure library directory. This tries to guess the prefix
under which Pure is installed; if this doesn’t work, you’ll have to set the prefix variable in
the Makefile accordingly.

The Makefile also provides the following targets:

• make examples compiles the examples to native executables.

• make clean deletes the native executables for the examples, as well as some graphics
files which are produced by running g2_test.pure.
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• make generate regenerates the g2.pure module. This requires that you have pure-gen
installed, as well as the g2 header files (you can point pure-gen to the prefix under
which g2 is installed with the g2prefix variable in the Makefile). This step shouldn’t
normally be necessary, unless you find that the provided wrapper doesn’t work with
your g2 version. The g2.pure in this release has been generated from g2 0.72.
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Pure OpenGL Bindings

Version 0.9, September 17, 2014

Scott Dillard
Albert Graef <aggraef@gmail.com>

These are fairly complete Pure bindings for the OpenGL graphics library, which allow you
to do 2D and 3D graphics programming with Pure. The bindings should work out of the
box on most contemporary systems which have OpenGL drivers installed, thanks to Scott’s
on-demand loading code for the GL functions, which accounts for the fact that different GL
implementations will export different functions. (Mostly to account for Microsoft’s Museum
of Ancient OpenGL History, otherwise known as opengl32.dll.)

Information about OpenGL can be found at: http://www.opengl.org/

As of pure-gl 0.5, the bindings are now generated using pure-gen instead of Scott’s origi-
nal OpenGL-specific generator. The stuff needed to do this is included (except pure-gen,
which is a separate package available from the Pure website), so that you can regenerate the
bindings if necessary.

28.1 Copying

Copyright (c) 2009, Scott E Dillard
Copyright (c) 2009, Albert Graef
Copyright (c) 2002-2005, Sven Panne

pure-gl is distributed under a 3-clause BSD-style license, please see the accompanying
COPYING file for details.
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28.2 Installation

Get the latest source from https://bitbucket.org/purelang/pure-lang/downloads/pure-gl-
0.9.tar.gz.

Normally you just run make && sudo make install, as with the other Pure modules. (See
The Makefile for further options.) This doesn’t regenerate the bindings and so can be done
on any system which has Pure, OpenGL and a C compiler installed.

If you miss some vendor-specific OpenGL functionality which is in your system’s header
files but not in the distributed bindings, with some effort you can fix that yourself by regen-
erating the bindings, see below.

28.3 Using the GL Bindings

The bindings mainly consist of 3 Pure files: GL.pure, GLU.pure and GLUT.pure.

In your Pure program, write something like:

using GL, GLU, GLUT;

GL.pure covers OpenGL up through version 2.1. To get access to extensions, you in-
clude GL_XXX.pure where XXX is the extensions suffix. Currently, there are GL_ARB.pure,
GL_EXT.pure, GL_NV.pure and GL_ATI.pure, which should cover about 99% of the useful
extensions out there. If you need more than that, it is straightforward to tweak the Makefile
to scrape some of the more esoteric extensions from your headers. All OpenGL functions
are loaded on first use. If your OpenGL implementation does not define a given function, a
gl_unsupported exception is thrown with the name of the function as its only argument.

The functions are in namespaces GL, GLU and GLUT respectively. Functions are in curried
form, i.e.:

GL::Vertex3d 1.0 2.0 3.0;

GL enumerants are in uppercase, as in C:

GL::Begin GL::LINE_STRIP;

Currently, if the GLU or GLUT bindings reference a function that your DLL does not contain,
it echoes this to stdout. I’m working on a way to supress this.

Some examples can be found in the examples subdirectory. This also includes a wrapper of
Rasterman’s imlib2 library (also generated with pure-gen), and an example which uses this
to render an image as a texture.

The examples/flexi-line directory contains Eduardo Cavazos’ port of the flexi-line demo.
Run pure flexi-line-auto.pure, sit back and enjoy. There’s also an interactive version of
the demo available in flexi-line.pure.
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28.4 Regenerating the Bindings

You need to have pure-gen installed to do this.

Also make sure that you have the OpenGL headers installed. By default, the Makefile as-
sumes that they are in the GL subdirectory of /usr/include, you can set the glpath variable
in the Makefile accordingly to change this. (Set glpath to the path under which the GL sub-
directory resides, not to the GL subdirectory itself. See below for an example.) Note that on
Linux systems, /usr/include/GL usually contains the MESA headers. If available, you may
want to use your GPU vendor’s headers instead, to get all the extensions available on your
system.

Alternatively, you can also just put the headers (gl.h, glext.h, glu.h, glut.h, and any other
OpenGL headers that get #included in those) into the GL subdirectory of the pure-gl sources,
by copying them over or creating symbolic links to them. This is particularly useful for
maintainers, who may want to use a “staged” header set which is different from the installed
OpenGL headers. The ”.” directory will always be searched first, so you can also just put the
vendor-specific headers there. For instance, if you’re like Scott and you use Ubuntu with an
Nvidia GPU, then you can do this:

cd pure-gl/GL
ln -s /usr/share/doc/nvidia-glx-new-dev/include/GL/gl.h
ln -s /usr/share/doc/nvidia-glx-new-dev/include/GL/glext.h

Finally, the Makefile also assumes that you have freeglut (an improved GLUT replacement)
installed and want all the extensions offered by freeglut. To use the vanilla GLUT without the
extensions instead, you only have to change the value of the source variable in the Makefile
from GL/all_gl_freeglut.h to GL/all_gl.h. If you use openglut instead of freeglut you will
have to change the GL/all_gl_freeglut.h file accordingly.

Once you have set up things to your liking, you can regenerate the bindings by running
make as follows:

make generate

If you need a custom path to the OpenGL headers as described above (say,
/usr/local/include) then do this instead:

make generate glpath=/usr/local/include

If you’re lucky, this will regenerate all the GL*.pure and GL*.c files, and recompile the shared
module from the GL*.c files after that. This shared module, instead of the OpenGL libraries
themselves, is what gets loaded by the Pure modules.

If you’re not so lucky, save a complete build log with all the error messages and ask on the
pure-lang mailing list for help.

See the “Generator stuff” section in the Makefile for further options. Adding a rule for other
extensions should be easy, just have a look at an existing one (e.g., GL_EXT.c) and modify it
accordingly.
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Pure GTK+ Bindings

Version 0.13, September 17, 2014

Albert Graef <aggraef@gmail.com>

pure-gtk is a collection of bindings to use the GTK+ GUI toolkit version 2.x with Pure, see
http://www.gtk.org. The bindings include the gtk (+gdk), glib, atk, cairo and pango li-
braries, each in their own Pure module.

At present these are just straight 1-1 wrappers of the C libraries, created with pure-gen. So
they still lack some convenience, but they are perfectly usable already, and a higher-level
API for accessing all the functionality will hopefully become available in time. In fact you
can help make that happen. :) So please let me know if you’d like to give a helping hand in
improving pure-gtk.

29.1 Copying

Copyright (c) 2008-2011 by Albert Graef.

pure-gtk is free software: you can redistribute it and/or modify it under the terms of the
GNU Lesser General Public License as published by the Free Software Foundation, either
version 3 of the License, or (at your option) any later version.

pure-gtk is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICU-
LAR PURPOSE. See the GNU Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with this
program. If not, see <http://www.gnu.org/licenses/>.
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29.2 Installation

You can get the latest source from https://bitbucket.org/purelang/pure-
lang/downloads/pure-gtk-0.13.tar.gz.

For Windows users, a ready-made package in msi format is available from
https://bitbucket.org/purelang/pure-lang/downloads/pure-gtk-0.13.msi.

To install from source, do the usual make && sudo make install (see the Makefile for fur-
ther options). This needs Pure and the GTK header files and libraries. You’ll also need pure-ffi
for running the examples.

NOTE: The source release was prepared with GTK+ 2.24.4 on Ubuntu 11.04. If you’re seeing
a lot of warnings and/or errors when compiling or loading the modules, your GTK head-
ers are probably much different from these. In that case you should run make generate to
regenerate the bindings; for this you also need to have pure-gen installed. (If you already
have pure-gen then it’s a good idea to do this anyway.)

29.3 Usage

See examples/hello.pure for a basic example. The files uiexample.pure and uiexample.glade
show how to run a GUI created with the Glade-3 interface builder. This needs a recent
version of the GtkBuilder API to work. (If you’re still running Glade-2 and an older GTK+
version, you might want to use the older libglade interface instead. Support for that is in the
Makefile, but it’s not enabled by default.) NOTE: The examples start up much faster when
they are compiled to native executables. To do this, just run make examples after make. (Be
patient, this takes a while.)

pure-gtk can be discussed on the Pure mailing list at:
http://groups.google.com/group/pure-lang
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pure-tk

Version 0.5, September 17, 2014

Albert Graef <aggraef@gmail.com>

Pure’s Tcl/Tk interface.

30.1 Introduction

This module provides a basic interface between Pure and Tcl/Tk. The operations of this
module allow you to execute arbitrary commands in the Tcl interpreter, set and retrieve
variable values in the interpreter, and invoke Pure callbacks from Tcl/Tk.

A recent version of Tcl/Tk is required (8.0 or later should do). You can get this from
http://www.tcl.tk. Both releases in source form and binary releases for Windows and vari-
ous Unix systems are provided there.

Some information on how to use this module can be found below. But you’ll find that pure-
tk is very easy to use, so you might just want to look at the programs in the examples folder
to pick it up at a glance. A very basic example can be found in tk_hello.pure; a slightly more
advanced example of a tiny but complete Tk application is in tk_examp.pure.

pure-tk also offers special support for Peter G. Baum’s Gnocl extension which turns Tcl into
a frontend for GTK+ and Gnome. If you have Gnocl installed then you can easily create
GTK+/Gnome applications, either from Tcl sources or from Glade UI files, using the pro-
vided gnocl.pure module. See the included uiexample.pure and the accompanying Glade
UI file for a simple example. Also, some basic information on using Gnocl with pure-tk can
be found in the Tips and Tricks section below.

One nice thing about Tcl/Tk is that it provides a bridge to a lot of other useful libraries. A
prominent example is VTK, a powerful open-source 3D visualization toolkit which comes
with full Tcl/Tk bindings. The examples directory contains a simple example (earth.pure
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and earth.tcl) which shows how you can employ these bindings to write cool animated 3D
applications using either Tk or Gnocl as the GUI toolkit.

30.2 Copying

Copyright (c) 2010 by Albert Gräf, all rights reserved. pure-tk is distributed under a BSD-
style license, see the COPYING file for details.

30.3 Installation

Get the latest source from https://bitbucket.org/purelang/pure-lang/downloads/pure-tk-
0.5.tar.gz.

As with the other addon modules for Pure, running make && sudo make install should
usually do the trick. This requires that you have Pure and Tcl/Tk installed. make tries to
guess your Pure installation directory and platform-specific setup. If it gets this wrong,
you can set some variables manually. In particular, make install prefix=/usr sets the
installation prefix. Please see the Makefile for details.

Note: When starting a new interpreter, the Tcl/Tk initialization code looks for some ini-
tialization files which it executes before anything else happens. Usually these files will be
found without any further ado, but if that does not happen automatically, you must set the
TCL_LIBRARY and TK_LIBRARY environment variables to point to the Tcl and Tk library
directories on your system.

All programs in the examples subdirectory have been set up so that they can be compiled
to native executables, and a Makefile is provided in that directory to handle this. So after
installing pure-tk you just need to type make there to compile the examples. (This step isn’t
necessary, though, you can also just run the examples with the Pure interpreter as usual.)

30.4 Basic Usage

tk cmd
execute a Tcl command

You can submit a command to the Tcl interpreter with tk cmd where cmd is a string contain-
ing the command to be executed. If the Tcl command returns a value (i.e., a nonempty string)
then tk returns that string, otherwise it returns ().

tk also starts a new instance of the Tcl interpreter if it is not already running. To stop the Tcl
interpreter, you can use the tk_quit function.

tk_quit
stop the Tcl interpreter
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Note that, as far as pure-tk is concerned, there’s only one Tcl interpreter per process, but of
course you can create secondary interpreter instances in the Tcl interpreter using the appro-
priate Tcl commands.

Simple dialogs can be created directly using Tk’s tk_messageBox and tk_dialog functions.
For instance:

tk "tk_dialog .warning \"Warning\" \"Are you sure?\" warning 0 Yes No Cancel";

Other kinds of common dialogs are available; see the Tcl/Tk manual for information.

For more elaborate applications you probably have to explicitly create some widgets, add
the appropriate callbacks and provide a main loop which takes care of processing events in
the Tcl/Tk GUI. We discuss this in the following.

30.5 Callbacks

pure-tk installs a special Tcl command named pure in the interpreter which can be used to
implement callbacks in Pure. This command is invoked from Tcl as follows:

pure function args ...

It calls the Pure function named by the first argument, passing any remaining (string) argu-
ments to the callback. If the Pure callback returns a (nonempty) string, that value becomes
the return value of the pure command, otherwise the result returned to the Tcl interpreter is
empty.

Pure callbacks are installed on Tk widgets just like any other, just using the pure command
as the actual callback command. For instance, you can define a callback which gets invoked
when a button is pushed as follows:

using tk, system;
tk "button .b -text {Hello, world!} -command {pure hello}; pack .b";
hello = puts "Hello, world!";

30.6 The Main Loop

tk_main
call the Tk main loop

The easiest way to provide a main loop for your application is to just call tk_main which
keeps processing events in the Tcl interpreter until the interpreter is exited. You can ter-
minate the interpreter in a Pure callback by calling tk_quit. Thus a minimalistic Tcl/Tk
application coded in Pure may look as follows:

using tk;
tk "button .b -text {Hello, world!} -command {pure tk_quit}; pack .b";
tk_main;
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The main loop terminates as soon as the Tcl interpreter is exited, which can happen, e.g.,
in response to a callback which invokes the tk_quit function (as shown above) or Tcl code
which destroys the main window (destroy .). The user can also close the main window
from the window manager in order to exit the main loop.

30.7 Accessing Tcl Variables

tk_set var val
tk_unset var
tk_get var

set and get Tcl variables

pure-tk allows your script to set and retrieve variable values in the Tcl interpreter with the
tk_set, tk_unset and tk_get functions. This is useful, e.g., to change the variables associ-
ated with entry and button widgets, and to retrieve the current values from the application.
For instance:

> tk_set "entry_val" "some string";
"some string"
> tk_get "entry_val";
"some string"
> tk_unset "entry_val";
()
> tk_get "entry_val";
tk_get "entry_val"

Note that tk_set returns the assigned value, so it is possible to chain such calls if several
variables have to be set to the same value:

> tk_set "foo" $ tk_set "bar" "yes";
"yes"
> map tk_get ["foo","bar"];
["yes","yes"]

30.8 Conversions Between Pure and Tcl Values

As far as pure-tk is concerned, all Tcl values are strings (in fact, that’s just what they are at
the Tcl language level, although the Tcl interpreter uses more elaborate representations of
objects such as lists internally). There are no automatic conversions of any kind. Thus, the
arguments passed to a Pure callback and the result returned by tk are simply strings in Pure
land. The same holds for the tk_set and tk_get functions.

However, there are a few helper functions which can be used to convert between Tcl and
Pure data. First, the following operations convert Pure lists to corresponding Tcl lists and
vice versa:

tk_join xs
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tk_split s
convert between Pure and Tcl lists

> tk_join ["0","1.0","Hello, world!"];
"0 1.0 {Hello, world!}"
> tk_split ans;
["0","1.0","Hello, world!"]

The tk_str and tk_val operations work in a similar fashion, but they also do automatic
conversions for numeric values (ints, bigints and doubles):

tk_str xs
tk_val s

convert between Pure and Tcl values with numeric conversions

> tk_str [0,1.0,"Hello, world!"];
"0 1.0 {Hello, world!}"
> tk_val ans;
[0,1.0,"Hello, world!"]

In addition, these operations also convert single atomic values:

> tk_str 1.0;
"1.0"
> tk_val ans;
1.0

30.9 Tips and Tricks

Here are a few other things that are worth keeping in mind when working with pure-tk.

• Errors in Tcl/Tk commands can be handled by giving an appropriate definition of the
tk_error function, which is invoked with an error message as its single argument. For
instance, the following implementation of tk_error throws an exception:

tk_error msg = throw msg;

If no definition for this function is provided, then errors cause a literal tk_error msg
expression to be returned as the result of the tk function. You can then check for such
results and take an appropriate action.

• The Tcl interpreter, when started, displays a default main window, which is required
by most Tk applications. If this is not desired (e.g., if only the basic Tcl commands
are needed), you can hide this window using a tk "wm withdraw ." command. To
redisplay the window when it is needed, use the tk "wm deiconify ." command.
It is also common practice to use wm withdraw and wm deiconify while creating the
widgets of an application, in order to reduce “flickering”.

• Instead of calling tk_main, you can also code your own main loop in Pure as follows:
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main = do_something $$ main if tk_ready;
= () otherwise;

Note that the tk_ready function checks whether the Tcl interpreter is still up and run-
ning, after processing any pending events in the interpreter. This setup allows you to
do your own custom idle processing in Pure while the application is running. How-
ever, you have to be careful that your do_something routine runs neither too short nor
too long (a few milliseconds should usually be ok). Otherwise your main loop may
turn into a busy loop and/or the GUI may become very sluggish and unresponsive.
Thus it’s usually better to just call tk_main and do any necessary background process-
ing using the Tcl interpreter’s own facilities (e.g., by setting up a Pure callback with the
Tcl after command).

• The tk function can become rather tedious when coding larger Tk applications. Usu-
ally, you will prefer to put the commands making up your application into a separate
Tcl script. One way to incorporate the Tcl script into your your Pure program is to use
the Tcl source command, e.g.:

tk "source myapp.tcl";

However, this always requires the script to be available at runtime. Another method
is to read the script into a string which is assigned to a Pure constant, and then invoke
the tk command on this string value:

using system;
const ui = fget $ fopen "myapp.tcl" "r";
tk ui;

This still reads the script at runtime if the Pure program is executed using the Pure
interpreter. However, you can now compile the Pure program to a native executable
(see the Pure manual for details on this), in which case the text of the Tcl script is
included verbatim in the executable. The compiled program can then be run without
having the original Tcl script file available:

$ pure -c myapp.pure -o myapp
$ ./myapp

This is also the method to use for running existing Tk applications, e.g., if you create
the interface using some interface builder like vtcl.

• The Tcl package command allows you to load additional extensions into the Tcl inter-
preter at runtime. For instance:

tk "package require Gnocl";

This loads Peter G. Baum’s Gnocl extension which turns Tcl into a frontend for GTK+
and Gnome. In fact, pure-tk includes a special module to handle the nitty-gritty details
of creating a GTK+/Gnome application from a Glade UI file and set up Pure callbacks
as specified in the UI file. To use this, just import the gnocl.pure module into your Pure
scripts:
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using gnocl;

Note that the Glade interface requires that you have a fairly recent version of Gnocl in-
stalled (Gnocl 0.9.94g has been tested). The other facilities provided by the gnocl.pure
module should also work with older Gnocl versions such as Gnocl 0.9.91. Please see
the gnocl.pure module and the corresponding examples included in the sources for
more information.

• The Tcl exit procedure, just as in tclsh or wish, causes exit from the current process.
Since the Tcl interpreter hosted by the pure-tk module runs as part of a Pure program
and not as a separate child process, this might not be what you want. If you’d like exit
to only exit the Tcl interpreter, without exiting the Pure program, you can redefine the
exit procedure, e.g., as follows:

tk "proc exit { {returnCode 0} } { pure tk_quit }";

If you want to do something with the exit code provided by exit, you will have to
provide an appropriate callback function, e.g.:

tk "proc exit { {returnCode 0} } { pure quit_cb $returnCode }";

A suitable implementation of quit_cb might look as follows:

quit_cb 0 = puts "Application exited normally." $$ tk_quit;
quit_cb n = printf "Application exited with exit code %d.\n" n $$

tk_quit otherwise;

• If you need dialogs beyond the standard kinds of message boxes and common dialogs,
you will have to do these yourself using a secondary toplevel. The dialog toplevel is
just like the main window but will only be shown when the application needs it. You
can construct both non-modal and modal dialogs this way, the latter can be imple-
mented using Tk’s grab command.
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Chapter 31
faust2pd: Pd Patch Generator for Faust

Version 2.8, September 17, 2014

Albert Graef <aggraef@gmail.com>

This package contains software which makes it easier to use Faust DSPs with Pd and the
Pure programming language. The main component is the faust2pd script which creates GUI
wrappers for Faust DSPs. The package also includes a bunch of examples. The software is
distributed under the GPL; see the COPYING file for details.

Note: This faust2pd version is written in Pure and was ported from an earlier version
written in Pure’s predecessor Q. The version of the script provided here should be 100%
backward-compatible to those previous versions, except for the following changes:

• The (rarely used) -f (a.k.a. –fake-buttons) option was renamed to -b.

• A new -f (a.k.a. –font-size) option was added to change the font size of the GUI ele-
ments.

• Most command line options can now also be specified using special [pd:...] tags in
the Faust source.

Also note that you can now run the script on 64 bit systems (Q never worked there).

As of version 2.1, the faust2pd script is now compiled to a native executable before installa-
tion. This makes the program start up much faster, which is a big advantage because most
xml files don’t take long to be processed.

31.1 Copying

Copyright (c) 2009-2014 by Albert Graef.
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faust2pd is free software: you can redistribute it and/or modify it under the terms of the
GNU General Public License as published by the Free Software Foundation, either version 3
of the License, or (at your option) any later version.

faust2pd is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICU-
LAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this pro-
gram. If not, see <http://www.gnu.org/licenses/>.

31.2 Requirements

faust2pd is known to work on Linux, Mac OS X, and Windows, and there shouldn’t be any
major roadblocks preventing it to work on other systems supported by Pure.

The faust2pd script is written in the Pure programming language and requires Pure’s XML
module, so you need to install these to make it work. Install the latest pure*.tar.gz and pure-
xml*.tar.gz packages and you should be set. (Pure 0.47 or later is required.) Also make sure
that the LLVM base package is installed, as described in the Pure INSTALL file, some LLVM
utilities are needed to make Pure’s batch compiler work.

To run the seqdemo example, you’ll also need the Pd Pure external (pd-pure*.tar.gz), also
available at the Pure website.

To compile the examples, you’ll need GNU C++ and make, Pd and, of course, Faust. Make
sure you get a recent version of Faust; Faust releases >0.9.8 include the puredata architecture
necessary to create Pd externals from Faust DSPs.

31.3 Installation

Get the latest source from https://bitbucket.org/purelang/pure-
lang/downloads/faust2pd-2.8.tar.gz.

Run make and make install to compile and install the faust2pd program on your system.
You can set the installation prefix by running make as make install prefix=/some/path.
Default installation prefix is /usr/local, faust2pd is installed in the bin directory below that.

Optionally, you can also run make install-pd to copy the supporting Pd abstractions (faust-
*.pd) to your lib/pd/extra directory, so that you can use the patches generated by faust2pd
without copying these abstractions to your working directory. The Makefile tries to guess
the prefix of your Pd installation, if it guesses wrong, you can specify the prefix explicitly by
running make as make install-pd pdprefix=/some/path.

The included faustxml.pure script provides access to Faust-generated dsp descriptions in
xml files to Pure scripts. This module is described in its own appendix below. It may have
uses beyond faust2pd, but isn’t normally installed. If you want to use this module, you can
just copy it to your Pure library directory.
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31.4 Quickstart

Run make examples to compile the Faust examples included in this package to correspond-
ing Pd plugins. After that you should be able to run the patches in the various subdirectories
of the examples directory. Everything is set up so that you can try the examples “in-place”,
without installing anything except the required software as noted in Requirements above.
You can also run make realclean before make to regenerate everything from scratch (this
requires faust2pd, so this will only work if you already installed the Pure interpreter).

Faust Pd plugins work in much the same way as the well-known plugin~ object (which in-
terfaces to LADSPA plugins), except that each Faust DSP is compiled to its own Pd external.
Under Linux, the basic compilation process is as follows (taking the freeverb module from
the Faust distribution as an example):

# compile the Faust source to a C++ module using the "puredata" architecture
faust -a puredata.cpp freeverb.dsp -o freeverb.cpp
# compile the C++ module to a Pd plugin
g++ -shared -Dmydsp=freeverb freeverb.cpp -o freeverb~.pd_linux

By these means, a Faust DSP named xyz with n audio inputs and m audio outputs becomes
a Pd object xyz~ with n+1 inlets and m+1 outlets. The leftmost inlet/outlet pair is for control
messages only. This allows you to inspect and change the controls the unit provides, as
detailed below. The remaining inlets and outlets are the audio inputs and outputs of the
unit, respectively. For instance, freeverb.dsp becomes the Pd object freeverb~ which, in
addition to the control inlet/outlet pair, has 2 audio inputs and outputs.

When creating a Faust object it is also possible to specify, as optional creation parameters, an
extra unit name (this is explained in the following section) and a sample rate. If no sample
rate is specified explicitly, it defaults to the sample rate at which Pd is executing. (Usually it
is not necessary or even desirable to override the default choice, but this might occasionally
be useful for debugging purposes.)

As already mentioned, the main ingredient of this package is a Pure script named “faust2pd”
which allows you to create Pd abstractions as “wrappers” around Faust units. The wrappers
generated by faust2pd can be used in Pd patches just like any other Pd objects. They are
much easier to operate than the “naked” Faust plugins themselves, as they also provide
“graph-on-parent” GUI elements to inspect and change the control values.

The process to compile a plugin and build a wrapper patch is very similar to what we’ve
seen above. You only have to add the -xml option when invoking the Faust compiler and
run faust2pd on the resulting XML file:

# compile the Faust source and generate the xml file
faust -a puredata.cpp -xml freeverb.dsp -o freeverb.cpp
# compile the C++ module to a Pd plugin
g++ -shared -Dmydsp=freeverb freeverb.cpp -o freeverb~.pd_linux
# generate the Pd patch from the xml file
faust2pd freeverb.dsp.xml

Please see Wrapping DSPs with faust2pd below for further details.
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Note that, just as with other Pd externals and abstractions, the compiled .pd_linux modules
and wrapper patches must be put somewhere where Pd can find them. To these ends you
can either move the files into the directory with the patches that use the plugin, or you can
put them into the lib/pd/extra directory or some other directory on Pd’s library path for
system-wide use.

Also, faust2pd-generated wrappers use a number of supporting abstractions (the faust-*.pd
files in the faust2pd sources), so you have to put these into the directory of the main patch
or install them under lib/pd/extra as well. (The make pd-install step does the latter, see
Installation above.)

31.5 Control Interface

The control inlet of a Faust plugin understands messages in one of the following forms:

• bang, which reports all available controls of the unit on the control outlet, in the form:
type name val init min max step, where type is the type of the control as specified
in the Faust source (checkbox, nentry, etc.), name its (fully qualified) name, val the
current value, and init, min, max, step the initial value, minimum, maximum and
stepsize of the control, respectively.

• foo 0.99, which sets the control foo to the value 0.99, and outputs nothing.

• Just foo, which outputs the (fully qualified) name and current value of the foo control
on the control outlet.

Control names can be specified in their fully qualified form, like e.g. /gnu/bar/foo which
indicates the control foo in the subgroup bar of the topmost group gnu, following the hierar-
chical group layout defined in the Faust source. This lets you distinguish between different
controls with the same name which are located in different groups. To find out about all
the controls of a unit and their fully qualified names, you can bang the control inlet of the
unit as described above, and connect its control outlet to a print object, which will cause the
descriptions of all controls to be printed in Pd’s main window. (The same information can
also be used, e.g., to initialize GUI elements with the proper values. Patches generated with
faust2pd rely on this.)

You can also specify just a part of the control path (like bar/foo or just foo in the example
above) which means that the message applies to all controls which have the given pathname
as the final portion of their fully qualified name. Thus, if there is more than one foo control
in different groups of the Faust unit then sending the message foo to the control inlet will
report the fully qualified name and value for each of them. Likewise, sending foo 0.99 will
set the value of all controls named foo at once.

Concerning the naming of Faust controls in Pd you should also note the following:

• A unit name can be specified at object creation time, in which case the given symbol is
used as a prefix for all control names of the unit. E.g., the control /gnu/bar/foo of an
object baz~ created with baz~ baz1 has the fully qualified name /baz1/gnu/bar/foo.
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This lets you distinguish different instances of an object such as, e.g., different voices
of a polyphonic synth unit.

• Pd’s input syntax for symbols is rather restrictive. Therefore group and control names
in the Faust source are mangled into a form which only contains alphanumeric charac-
ters and hyphens, so that the control names are always legal Pd symbols. For instance,
a Faust control name like meter #1 (dB) will become meter-1-dB which can be input
directly as a symbol in Pd without any problems.

• “Anonymous” groups and controls (groups and controls which have empty labels in
the Faust source) are omitted from the path specification. E.g., if foo is a control located
in a main group with an empty name then the fully qualified name of the control is
just /foo rather than //foo. Likewise, an anonymous control in the group /foo/bar is
named just /foo/bar instead of /foo/bar/.

Last but not least, there is also a special control named active which is generated automati-
cally for your convenience. The default behaviour of this control is as follows:

• When active is nonzero (the default), the unit works as usual.

• When active is zero, and the unit’s number of audio inputs and outputs match, then
the audio input is simply passed through.

• When active is zero, but the unit’s number of audio inputs and outputs do not match,
then the unit generates silence.

The active control frequently alleviates the need for special “bypass” or “mute” controls in
the Faust source. However, if the default behaviour of the generated control is not appropri-
ate you can also define your own custom version of active explicitly in the Faust program;
in this case the custom version will override the default one.

31.6 Examples

In the examples subdirectory you’ll find a bunch of sample Faust DSPs and Pd patches illus-
trating how Faust units are used in Pd.

• The examples/basic/test.pd patch demonstrates the basics of operating “bare” Faust
plugins in Pd. You’ll rarely have to do this when using the wrappers generated with
the faust2pd program, but it is a useful starting point to take a look behind the scenes
anyway.

• The examples/faust directory contains all the examples from (an earlier version of) the
Faust distribution, along with corresponding Pd wrappers generated with faust2pd.
Have a look at examples/faust/faustdemo.pd to see some of the DSPs in action. Note
that not all examples from the Faust distribution are working out of the box because
of name clashes with Pd builtins, so we renamed those. We also edited some of the
.dsp sources (e.g., turning buttons into checkboxes or sliders into nentries) where this
seemed necessary to make it easier to operate the Pd patches.
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• The examples/synth directory contains various plugins and patches showing how
to implement polyphonic synthesizers using Faust units. Take a look at exam-
ples/synth/synth.pd for an example. If you have properly configured your interfaces
then you should be able to play the synthesizer via Pd’s MIDI input.

• The examples/seqdemo/seqdemo.pd patch demonstrates how to operate a multitim-
bral synth, built with Faust units, in an automatic fashion using a pattern sequencer
programmed in Pure. This example requires the Pure interpreter as well as the pd-pure
plugin available from http://purelang.bitbucket.org.

31.7 Wrapping DSPs with faust2pd

The faust2pd script generates Pd patches from the dsp.xml files created by Faust when run
with the -xml option. Most of the sample patches were actually created that way. After
installation you can run the script as follows:

faust2pd [-hVbs] [-f size] [-o output-file] [-n #voices]
[-r max] [-X patterns] [-x width] [-y height] input-file

The default output filename is input-file with new extension .pd. Thus, faust2pd
filename.dsp.xml creates a Pd patch named filename.pd from the Faust XML description
in filename.dsp.xml.

The faust2pd program understands a number of options which affect the layout of the GUI
elements and the contents of the generated patch. Here is a brief list of the available options:

-h, --help display a short help message and exit

-V, --version display the version number and exit

-b, --fake-buttons replace buttons (bangs) with checkboxes (toggles)

-f, --font-size font size for GUI elements (10 by default)

-n, --nvoices create a synth patch with the given number of voices

-o, --output-file output file name (.pd file)

-r, --radio-sliders radio controls for sliders

-s, --slider-nums sliders with additional number control

-X, --exclude exclude controls matching the given glob patterns

-x, --width maximum width of the GUI area

-y, --height maximum height of the GUI area

Just like the Faust plugin itself, the generated patch has a control input/output as the left-
most inlet/outlet pair, and the remaining plugs are signal inlets and outlets for each audio
input/output of the Faust unit. However, the control inlet/outlet pair works slightly differ-
ent from that of the Faust plugin. Instead of being used for control replies, the control outlet
of the patch simply passes through its control input (after processing messages which are
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understood by the wrapped plugin). By these means control messages can flow along with
the audio signal through an entire chain of Faust units. (You can find an example of this in
examples/faust/faustdemo.pd.) Moreover, when generating a polyphonic synth patch us-
ing the -n option then there will actually be two control inlets, one for note messages and one
for ordinary control messages; this is illustrated in the examples/synth/synth.pd example.

The generated patch also includes the necessary GUI elements to see and change all (active
and passive) controls of the Faust unit. Faust control elements are mapped to Pd GUI el-
ements in an obvious fashion, following the horizontal and vertical layout specified in the
Faust source. The script also adds special buttons for resetting all controls to their defaults
and to operate the special active control.

This generally works very well, but you should be aware that the control GUIs generated by
faust2pd are somewhat hampered by the limited range of GUI elements available in a vanilla
Pd installation. As a remedy, faust2pd provides various options to change the content of the
generated wrapper and work around these limitations.

• There are no real button widgets as required by the Faust specification, so bangs are
used instead. There is a global delay time for switching the control from 1 back to 0,
which can be changed by sending a value in milliseconds to the faust-delay receiver.
If you need interactive control over the switching time then it is better to use check-
boxes instead, or you can have faust2pd automatically substitute checkboxes for all
buttons in a patch by invoking it with the -b a.k.a. –fake-buttons option.

• Sliders in Pd do not display their value in numeric form so it may be hard to figure
out what the current value is. Therefore faust2pd has an option -s a.k.a. –slider-nums
which causes it to add a number box to each slider control. (This flag also applies to
Faust’s passive bargraph controls, as these are implemented using sliders, see below.)

• Pd’s sliders also have no provision for specifying a stepsize, so they are an awkward
way to input integral values from a small range. OTOH, Faust doesn’t support the
“radio” control elements which Pd provides for that purpose. As a remedy, faust2pd
allows you to specify the option -r max (a.k.a. –radio-sliders=max) to indicate that
sliders with integral values from the range 0..max-1 are to be mapped to corresponding
Pd radio controls.

• Faust’s bargraphs are emulated using sliders. Note that these are passive controls
which just display a value computed by the Faust unit. A different background color
is used for these widgets so that you can distinguish them from the ordinary (active)
slider controls. The values shown in passive controls are sampled every 40 ms by
default. You can change this value by sending an appropriate message to the global
faust-timer receiver.

• Since Pd has no “tabbed” (notebook-like) GUI element, Faust’s tgroups are mapped to
hgroups instead. It may be difficult to present large and complicated control interfaces
without tabbed dialogs, though. As a remedy, you can control the amount of horizontal
or vertical space available for the GUI area with the -x and -y (a.k.a. –width and –
height) options and faust2pd will then try to break rows and columns in the layout to
make everything fit within that area. (This feature has only been tested with simple
layouts so far, so beware.)
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• You can also exclude certain controls from appearing in the GUI using the -X option.
This option takes a comma-separated list of shell glob patterns indicating either just
the names or the fully qualified paths of Faust controls which are to be excluded from
the GUI. For instance, the option -X ’volume,meter*,faust/resonator?/*’ will ex-
clude all volume controls, all controls whose names start with meter, and all controls
in groups matching faust/resonator?. (Note that the argument to -X has to be quoted
if it contains any wildcards such as * and ?, so that the shell doesn’t try to expand the
patterns beforehand. Also note that only one -X option is recognized, so you have to
specify all controls to be excluded as a single option.)

• Faust group labels are not shown at all, since I haven’t found an easy way to draw
some kind of labelled frame in Pd yet.

Despite these limitations, faust2pd appears to work rather well, at least for the kind of DSPs
found in the Faust distribution. (Still, for more complicated control surfaces and interfaces
to be used on stage you’ll probably have to edit the generated GUI layouts by hand.)

For convenience, all the content-related command line options mentioned above can also be
specified in the Faust source, as special tags in the label of the toplevel group of the dsp.
These take the form [pd:option] or [pd:option=value] where option is any of the (long)
options understood by faust2pd. For instance:

process = vgroup("mysynth [pd:nvoices=8] [pd:slider-nums]", ...);

Source options carrying arguments, like nvoices in the above example, can also be overrid-
den with corresponding command line options.

31.8 Conclusion

Creating Faust plugins for use with Pd has never been easier before, so I hope that you’ll
soon have much joy trying your Faust programs in Pd. Add Pd-Pure to this, and you can
program all your specialized audio and control objects using two modern-style functional
languages which are much more fun than C/C++. Of course there’s an initial learning curve
to be mastered, but IMHO it is well worth the effort. The bottomline is that Pd+Faust+Pure
really makes an excellent combo which provides you with a powerful, programmable in-
teractive environment for creating advanced computer music and multimedia applications
with ease.

31.8.1 Acknowledgements

Thanks are due to Yann Orlarey for his wonderful Faust, which makes developing DSP
algorithms so easy and fun.
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31.9 Appendix: faustxml

The faustxml module is provided along with faust2pd to retrieve the description of a Faust
DSP from its XML file as a data structure which is ready to be processed by Pure programs.
It may also be useful in other Pure applications which need to inspect descriptions of Faust
DSPs.

The main entry point is the info function which takes the name of a Faust-generated XML
file as argument and returns a tuple (name, descr, version, in, out, controls) with
the name, description, version, number of inputs and outputs and the toplevel group with
the descriptions of the controls of the dsp. A couple of other convenience functions are
provided to deal with the control descriptions.

31.9.1 Usage

Use the following declaration to import this module in your programs:

using faustxml;

For convenience, you can also use the following to get access to the module’s namespace:

using namespace faustxml;

31.9.2 Data Structure

The following constructors are used to represent the UI controls of Faust DSPs:

constructor faustxml::button label
constructor faustxml::checkbox label

A button or checkbox with the given label.

constructor faustxml::nentry (label,init,min,max,step)
constructor faustxml::vslider (label,init,min,max,step)
constructor faustxml::hslider (label,init,min,max,step)

A numeric input control with the given label, initial value, range and stepwidth.

constructor faustxml::vbargraph (label,min,max)
constructor faustxml::hbargraph (label,min,max)

A numeric output control with the given label and range.

constructor faustxml::vgroup (label,controls)
constructor faustxml::hgroup (label,controls)
constructor faustxml::tgroup (label,controls)

A group with the given label and list of controls in the group.
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31.9.3 Operations

faustxml::controlp x
Check for control description values.

faustxml::control_type x
faustxml::control_label x
faustxml::control_args x

Access functions for the various components of a control description.

faustxml::controls x
This function returns a flat representation of a control group x as a list of basic control
descriptions, which provides a quick way to access all the control values of a Faust
DSP. The grouping controls themselves are omitted. You can pass the last component
of the return value of the info function to this function.

faustxml::pcontrols x
Works like the controls function above, but also replaces the label of each basic con-
trol with a fully qualified path consisting of all control labels leading up to the given
control. Thus, e.g., the label of a slider "gain" inside a group "voice#0" inside the
main "faust" group will be denoted by the label "faust/voice#0/gain".

faustxml::info fname
Extract the description of a Faust DSP from its XML file. This is the main entry point.
Returns a tuple with the name, description and version of the DSP, as well as the num-
ber of inputs and outputs and the toplevel group with all the control descriptions.
Raises an exception if the XML file doesn’t exist or contains invalid contents.

Example:

> using faustxml;
> let name,descr,version,in,out,group =
> faustxml::info "examples/basic/freeverb.dsp.xml";
> name,descr,version,in,out;
"freeverb","freeverb -- a Schroeder reverb","1.0",2,2
> using system;
> do (puts.str) $ faustxml::pcontrols group;
faustxml::hslider ("freeverb/damp",0.5,0.0,1.0,0.025)
faustxml::hslider ("freeverb/roomsize",0.5,0.0,1.0,0.025)
faustxml::hslider ("freeverb/wet",0.3333,0.0,1.0,0.025)

796 31.9 Appendix: faustxml



Chapter 32
pd-faust

Version 0.8, September 17, 2014

Albert Graef <aggraef@gmail.com>

pd-faust is a dynamic environment for running Faust dsps in Pd. It is based on the author’s
faust2pd script, but offers many small improvements and some major additional features:

• Faust dsps are implemented using two Pd objects, fsynth~ and fdsp~, which provide
the necessary infrastructure to run Faust synthesizer and effect units in Pd, respec-
tively.

• In contrast to faust2pd, the Pd GUI of Faust units is generated dynamically, inside
Pd. While pd-faust supports the same global GUI layout options as faust2pd, it also
provides various options to adjust the layout of individual control items.

• pd-faust recognizes the midi and osc controller attributes in the Faust source and au-
tomatically provides corresponding MIDI and OSC controller mappings. OSC-based
controller automation is also available.

• Perhaps most importantly, Faust dsps can be reloaded at any time (even while the Pd
patch is running), in which case the GUI and the controller mappings are regenerated
automatically and on the fly as needed.

32.1 Copying

Copyright (c) 2011-2014 by Albert Graef

pd-faust is distributed under the GNU LGPL v3+. Please see the included COPYING and
COPYING.LESSER files for details.

This package also includes the faust-stk instruments which are distributed under an MIT-
style license, please check the examples/dsp/README-STK file and the dsp files for au-
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thorship information and licensing details pertaining to these. The original faust-stk sources
can be found in the Faust distribution, cf. http://faust.grame.fr/.

32.2 Installation

You’ll need Faust and Pd, obviously. Fairly recent versions of these are required. Faust
versions >= 0.9.46 and 2.0.a3 and Pd version >= 0.43.1 have been tested and are known to
work.

The pd-faust objects are written in the Pure programming language, so you’ll also need an
installation of the Pure interpreter (0.51 or later), along with the following packages (min-
imum required versions are given in parentheses): pd-pure (0.15), pure-faust (0.8), pure-midi
(0.5) and pure-stldict (0.3).

Finally, gcc and GNU make (or compatible) are required to compile the helper dsps and the
example instruments; please check the Makefile for details.

For a basic installation run make, then sudo make install. This will install the pd-faust
objects in your lib/pd/extra/faust folder. Add this directory to your Pd library search path
(-path option or Preferences/Path in Pd) and you should be set. The make command also
compiles the Faust dsps included in the distribution, so that the provided examples will be
ready to run afterwards as well (see Examples below).

The Makefile tries to guess the installation prefix under which Pd is installed. If it guesses
wrong, you can tell it the right prefix with make prefix=/some/path. Or you can specify the
exact path of the lib/pd directory with make pdlibdir=/some/path; by default the Makefile
assumes $(prefix)/lib/pd.

It is also possible to specify an alternative flavour of Pd when building and installing the
module, by adding a definition like PD=pd-extended to the make command line. This is
known to work with pd-extended and pd-l2ork, two popular alternative Pd distributions
available on the web.

The pd-faust objects are installed both in source form (so you can customize them for your
own purposes) and in binary form as a Pd object library which can be loaded with Pd’s -lib
option. The latter substantially reduces startup times and is thus the recommended way to
run pd-faust if you don’t need to customize the pd-faust objects on the fly. To these ends,
after completing installation and setting up Preferences/Path in Pd, simply add pdfaust to
your preloaded library modules in Pd’s Preferences/Startup dialog.

Note: The pdfaust module must come after the pure entry which loads pd-pure, otherwise
you’ll get an error message. In any case the pd-pure loader will be required to run these
objects, so it should be configured accordingly; please check the pd-pure documentation for
details.

Some further build options are described in the Makefile. In particular, it is possible to
compile the Faust dsps to LLVM bitcode which can be loaded directly by the Pure interpreter,
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but for that you’ll need a special Faust version (see the Faust2 website for how to get this
version up and running) and an LLVM-capable C/C++ compiler such as clang or gcc with
the dragonegg plugin (please check the Makefile and the LLVM website for details).

If you have the required tools then you can build the bitcode modules by running make
bitcode after make. If you run make install afterwards, the bitcode modules will be in-
stalled along with the “normal” Faust plugins. In addition, a second object library called
pdfaust2 will be built and installed, which can be used as a drop-in replacement for pdfaust
and lets you run the bitcode modules. (Note that in the present implementation it is not pos-
sible to load both pdfaust and pdfaust2 in Pd, you’ll have to pick one or the other.)

32.3 Usage

Working with pd-faust basically involves adding a bunch of fsynth~ and fdsp~ objects to
a Pd patch along with the corresponding GUI subpatches, and wiring up the Faust units in
some variation of a synth-effects chain which typically takes input from Pd’s MIDI interface
(notein, ctlin, etc.) and outputs the signals produced by the Faust units to Pd’s audio
interface (dac~).

For convenience, pd-faust also includes the midiseq and oscseq objects and a correspond-
ing midiosc abstraction which can be used to handle MIDI input and playback as well as
OSC controller automation. This useful helper abstraction is described in more detail under
Operating the Patches below.

Note: pd-faust interprets MIDI, OSC and Faust dsp filenames relative to the hosting Pd
patch by default. It will also search the midi, osc and dsp subfolders, if they exist, for the
corresponding types of files. Failing that, it finally searches the directories on the Pd library
path (including their midi, osc and dsp subfolders). To disable this search, just use absolute
pathnames (or pathnames relative to the . or .. directory) instead.

32.3.1 The fdsp˜ and fsynth˜ Objects

The fdsp~ object is invoked as follows:

fdsp~ dspname instname channel

• dspname denotes the name of the Faust dsp (usually this is just the name of the .dsp
file with the extension stripped off). Please note that the Faust dsp must be provided
in a form which can be loaded in Pure (not Pd!), so the pure.cpp architecture included
in recent Faust versions must be used to compile the dsp to a shared library. (If you’re
already running Faust2, you can also compile to an LLVM bitcode file instead; Pure has
built-in support for loading these.) The Makefiles included in the pd-faust distribution
show how to do this.
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• instname denotes the name of the instance of the Faust unit. Multiple instances of
the same Faust dsp can be used in a Pd patch, which must all have different instance
names. In addition, the instance name is also used to identify the GUI subpatch of the
unit (see below) and to generate unique OSC addresses for the unit’s control elements.

• channel is the number of the MIDI channel the unit responds to. This can be 1..16, or 0
to specify “omni” operation (listen to MIDI messages on all channels).

Note: Since the fdsp~ and fsynth~ objects are written in Pure, their creation arguments
should be specified in Pure syntax. In particular, both dspname or instname may either be
Pure identifiers or double-quoted strings (the former will automatically be translated to the
latter). Similarly, the channel argument (as well as the numvoices argument of the fsynth~
object, see below) must be an integer constant in Pure syntax, which is pretty much like Pd
syntax but also allows the integer to be specified in hexadecimal, octal or binary.

The fdsp~ object requires a Faust dsp which can work as an effect unit, processing audio
input and producing audio output. The unit can have as many audio input and output
channels as you like (including zero).

The fsynth~ object works in a similar fashion, but has an additional creation argument spec-
ifying the desired number of voices:

fsynth~ dspname instname channel numvoices

The fsynth~ object requires a Faust dsp which can work as a monophonic synthesizer. This
typically means that the unit has zero audio inputs and a nonzero number of audio outputs,
although it is possible to have synths processing any number of audio input channels as
well. (You can even have synths producing zero audio outputs, but this is generally not very
useful.) In addition, pd-faust assumes that the Faust unit provides three so-called “voice
controls” which indicate which note to play:

• freq is the fundamental frequency of the note in Hz.

• gain is the velocity of the note, as a normalized value between 0 and 1. This usually
controls the volume of the output signal.

• gate indicates whether a note is currently playing. This value is either 0 (no note to
play) or 1 (play a note), and usually triggers the envelop function (ADSR or similar).

pd-faust doesn’t care at which path inside the Faust dsp these controls are located, but they
must all be there, and the basenames of the controls must be unique throughout the entire
dsp. Otherwise the synth will not work as expected.

Like faust2pd, pd-faust implements the necessary logic to drive the given number of voices
of an fsynth~ object. That is, it will actually create a separate instance of the Faust dsp
for each voice and handle polyphony by allocating voices from this pool in a round-robin
fashion, performing the usual voice stealing if the number of simultaneous notes to play
exceeds the number of voices. Also note that an fsynth~ operated in omni mode (channel
= 0) automatically filters out messages on channel 10 which is reserved for percussion in the
General MIDI standard.
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The fdsp~ and fsynth~ objects respond to the following messages:

• bang outputs the current control settings on the control outlet in OSC format.

• write outputs the current control settings to external MIDI and/or OSC devices. This
message can also be invoked with a numeric argument to toggle the “write mode” of
the unit; please see External MIDI and OSC Controllers below for details.

• reload reloads the Faust unit. This also reloads the shared library or bitcode file if
the unit was recompiled since the object was last loaded. (Instead of feeding a reload
message to the control inlet of a Faust unit, you can also just send a bang to the reload
receiver.)

• addr value changes the control indicated by the OSC address addr. This is also used
internally for communication with the Pd GUI and for controller automation.

In addition, the fdsp~ and fsynth~ objects respond to MIDI controller messages of the form
ctl val num chan, and the fsynth~ object also understands note-related messages of the
form note num vel chan (note on/off) and bend val chan (pitch bend). In either case, pd-
faust provides the necessary logic to map controller and note-related messages to the corre-
sponding control changes in the Faust unit.

Note: Like pd-pure, pd-faust also remaps Pd’s menu-open command so that it lets you edit
the Faust source of an fdsp~ or fsynth~ object by right-clicking on the object and choosing
Open from the context menu.

32.3.2 GUI Subpatches

For each fdsp~ and fsynth~ object, the Pd patch should also contain an (initially empty)
“one-off” graph-on-parent subpatch with the same name as the instance name of the Faust
unit:

pd instname

You shouldn’t insert anything into this subpatch, its contents (a bunch of Pd GUI elements
corresponding to the control elements of the Faust unit) will be generated automatically by
pd-faust when the corresponding fdsp~ or fsynth~ object is created, and whenever the unit
gets reloaded at runtime.

As with faust2pd, the default appearance of the GUI can be adjusted in various ways; see
Tweaking the GUI Layout below for details.

The relative order in which you insert an fdsp~ or fsynth~ object and its GUI subpatch into
the main patch matters. Normally, the GUI subpatch should be inserted first, so that it will
be updated automatically when its associated Faust unit is first created, and also when the
main patch is saved and then reloaded later.

However, in some situations it may be preferable to insert the GUI subpatch after its asso-
ciated Faust unit. If you do this, the GUI will not be updated automatically when the main
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patch is loaded, so you’ll have to reload the dsp manually (sending it a reload message) to
force an update of the GUI subpatch. This is useful, in particular, if you’d like to edit the
GUI patch manually after it has been generated.

In some cases it may even be desirable to completely “lock down” the GUI subpatch. This
can be done by simply renaming the GUI subpatch after it has been generated. When Pd
saves the main patch, it saves the current status of the GUI subpatches along with it, so that
the renamed subpatch will remain static and will never be updated, even if its associated
Faust unit gets reloaded. This generally makes sense only if the control interface of the
Faust unit isn’t changed after locking down its GUI patch. To “unlock” a GUI subpatch, you
just rename it back to its original name. (In this case you might also want to reinsert the
corresponding Faust unit afterwards, if you want to have the GUI generated automatically
without an explicit reload again.)

32.3.3 Examples

The examples folder contains a few example patches which illustrate how this all works.
Having installed pd-faust as described above, you can run these from the examples directory,
e.g.: pd test.pd. (You can also run the examples without actually installing pd-faust if you
invoke Pd from the main pd-faust source directory, e.g., as follows: pd -lib lib/pdfaust
examples/test.pd.)

Here are some of the examples that are currently available:

• test.pd: Simple patch running a single Faust instrument.

• synth.pd: Slightly more elaborate patch featuring a synth-effects chain.

• bouree.pd: Full-featured example running various instruments.

For your convenience, related MIDI and OSC files as well as the Faust sources of the in-
struments and effects are contained in corresponding subdirectories (midi, osc, dsp) of the
examples directory. A slightly modified version of the faust-stk instruments from the Faust
distribution is also included, please check the examples/dsp/README-STK file for more
information about these.

The MIDI files are all in standard MIDI file format. (Some of these come from the faust-stk
distribution, others can be found on the web.) The OSC files used by pd-faust for controller
automation are plain ASCII files suitable for hand-editing if you know what you are doing;
the format should be fairly self-explanatory.

32.3.4 Operating the Patches

The generated Pd GUI elements for the Faust dsps are pretty much the same as with faust2pd
(which see). The only obvious change is the addition of a “record” button (gray toggle in the
upper right corner) which enables recording of OSC automation data.

In each example distributed with pd-faust you can also find an instance of the midiosc ab-
straction which serves as a little sequencer applet that enables you to control MIDI playback
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and OSC recording. The usage of this abstraction should be fairly obvious, but you can also
find a brief description below.

Note: If you use the midiosc abstraction in your own patches, you should copy it to the
directory containing your patch and other required files, so that MIDI and OSC files are
properly located. Alternatively, you can also set up Pd’s search path as described at the
beginning of the Usage section.

The first creation argument of midiosc is the name of the MIDI file, either as a Pure identifier
(in this case the .mid filename extension is supplied automatically) or as a double-quoted
string. Similarly, the second argument specifies the name of the OSC file. Both arguments
are optional; if the second argument is omitted, it defaults to the name of the MIDI file with
new extension .osc. You can also omit both arguments if neither MIDI file playback nor
saving recorded OSC data is required. Or you can leave the first parameter empty (specify
"" or 0 instead) to only set an OSC filename, if you don’t need MIDI playback. The latter is
useful, in particular, if you use midiosc with an external MIDI sequencer (see below).

The abstraction has a single control outlet through which it feeds the generated MIDI and
other messages to the connected fsynth~ and fdsp~ objects. Live MIDI input is also ac-
cepted and forwarded to the control outlet, after being translated to the format understood
by fsynth~ and fdsp~ objects. In addition, midiosc can also be controlled through an ex-
ternal MIDI sequencer connected to Pd’s MIDI input. To these ends, MIDI Machine Control
(MMC) can be used to start and stop OSC playback and recording with the transport con-
trols of the external sequencer program. To make this work, the external sequencer must be
configured as an MMC master.

At the bottom of the abstraction there is a little progress bar along with a time display which
indicates the current song position. If playback is stopped, you can also use these to change
the current position for playback, recording and a number of other operations as described
below. Note that if you drive midiosc from an external MIDI sequencer instead, then it is a
good idea to load the same MIDI file in midiosc anyway, so that it knows about the length
of the MIDI sequence. This will make the progress bar display the proper position in the file.

Here is a brief rundown of the available controls:

• The start, stop and cont controls in the first row of control elements start, stop and
continue MIDI and OSC playback, respectively. The echo toggle in this row causes
played MIDI events to be printed in the Pd main window.

• The gray “record” toggle in the upper right corner of the abstraction enables recording
of OSC controller automation data. Note that this toggle merely arms the OSC recorder;
you still have to actually start the recording with the start button. However, you can
also first start playback with start and then switch recording on and off as needed at
any point in the sequence (this is also known as “punch in/out” recording). In either
case, pushing the stop button stores the recorded sequence for later playback. Also
note that before you can start recording any OSC data, you first have to arm the Faust
units that you want to record. This is done with the “record” toggle in the Pd GUI of
each unit.
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• The “bang” button next to the “record” toggle lets you record a static snapshot of the
current parameter settings of all armed units. This is also done automatically when
starting a fresh recording. The “bang” button lets you change the starting defaults
of parameters of an existing recording. It is also useful if you just want to record a
static snapshot of the current parameter settings without recording any live parameter
changes. Moreover, you can also set the parameters at any given point in the piece
if you first position the progress bar or the time display accordingly; in this case you
may first want to recall the parameter settings at the given point with the send button
described below. In either case, recording must be enabled and playback must be off.
Then just arm the Faust units that you wish to record, set the playback position as
needed, change the controls to what you want their values to be (maybe after recalling
the current settings), and finally push the “bang” button.

• There are some additional controls related to OSC recording in the second row: save
saves the currently recorded data in an OSC file for later use; abort is like stop in that
it stops recording and playback, but also throws away the data recorded in this take
(rather than keeping it for later playback); and clear purges the entire recorded OSC
sequence so that you can start a new one.

• Once some automation data has been recorded, it will be played back along with the
MIDI file. You can then just listen to it, or go on to record more automation data as
needed. Use the echo toggle in the second row to print the OSC messages as they are
played back. If you save the automation data with the save button, it will be reloaded
from its OSC file next time the patch is opened.

• The controls in the third row provide some additional ways to configure the playback
process. The loop button can be used to enable looping, which repeats the playback of
the MIDI (and OSC) sequence ad infinitum. The thru button, when switched on, routes
the MIDI data during playback through Pd’s MIDI output so that it can be used to drive
an external MIDI device in addition to the Faust instruments. The write button does
the same with MIDI and OSC controller data generated either through automation
data or by manually operating the control elements in the Pd GUI, see External MIDI
and OSC Controllers below for details.

• There’s one additional button in the third row, the send button which recalls the
recorded OSC parameter settings at a given point in the sequence. Playback must be
off for this to work. After setting the playback position as desired, just push the send
button. This sets the controls to the current parameter values at the given point, for all
parameters which have been recorded up to (and including) this point.

Please note that midiosc is merely an example which should cover most common uses. If
you don’t need all the fancy functionality it provides, your patches may simply feed control
messages directly into fdsp~ and fsynth~ objects instead. On the other hand, if you need
even more elaborate input/output interfacing than what midiosc provides, midiosc can
be used as a starting point for your own input/output abstractions driving the fdsp~ and
fsynth~ objects in your patch.
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32.3.5 External MIDI and OSC Controllers

The fsynth~ object has built-in (and hard-wired) support for MIDI notes, pitch bend and
MIDI controller 123 (all notes off).

Other controller data received from external MIDI and OSC devices is interpreted according
to the controller mappings defined in the Faust source (this is explained below), by updating
the corresponding GUI elements and the control variables of the Faust dsp. For obvious
reasons, this only works with active Faust controls.

An fdsp~ or fsynth~ object can also be put in write mode by feeding a message of the form
write 1 into its control inlet (the write 0 message disables write mode again). For conve-
nience, the write toggle in the midiosc abstraction allows you to do this simultaneously for
all Faust units connected to midiosc‘s control outlet.

When an object is in write mode, it also outputs MIDI and OSC controller data in response to
both automation data and the manual operation of the Pd GUI elements, again according to
the controller mappings defined in the Faust source, so that it can drive an external device
such as a MIDI fader box or a multitouch OSC controller. Note that this works with both
active and passive Faust controls.

To configure MIDI controller assignments, the labels of the Faust control elements have to
be marked up with the special midi attribute in the Faust source. For instance, a pan control
(MIDI controller 10) may be implemented in the Faust source as follows:

pan = hslider("pan [midi:ctrl 10]", 0, -1, 1, 0.01);

pd-faust will then provide the necessary logic to handle MIDI input from controller 10 by
changing the pan control in the Faust unit accordingly, mapping the controller values 0..127
to the range and step size given in the Faust source. Moreover, in write mode corresponding
MIDI controller data will be generated and sent to Pd’s MIDI output, on the MIDI channel
specified in the creation arguments of the Faust unit (0 meaning “omni”, i.e., output on all
MIDI channels).

The same functionality is also available for external OSC devices, employing explicit OSC
controller assignments in the Faust source by means of the osc attribute. E.g., the following
enables input and output of OSC messages for the OSC /pan address:

pan = hslider("pan [osc:/pan]", 0, -1, 1, 0.01);

Note: In contrast to some other architectures included in the Faust distribution, pd-faust
only allows literal OSC addresses here. That is, glob-style OSC patterns are not supported
as values for the osc attribute.

Also note that while the necessary infrastructure to support OSC input and output is already
provided by pd-faust, the OSC input and output facilities themselves which are needed to
make this actually work are not implemented in the default version of the midiosc abstrac-
tion distributed with pd-faust. That’s because Pd doesn’t provide any built-in objects for
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OSC input and output, although a few different solutions exist and are included in Hans-
Christoph Steiner’s Pd-extended distribution, such as Martin Peach’s OSC externals.

The distribution includes a version of the midiosc abstraction which implements OSC input
and output using Martin Peach’s objects in the midiosc-mrpeach.pd file. You most likely
have to edit this abstraction for your purposes; at least you’ll have to change the network
addresses so that it works with the OSC device or application that you use.

32.3.6 Tweaking the GUI Layout

As already mentioned, pd-faust provides the same global GUI layout options as faust2pd.
Please check the faust2pd documentation for details. There are a few minor changes in the
meaning of some of the options, though, which we consider notable improvements after
some experience working with faust2pd. Here is a brief rundown of the available options,
as they are implemented in pd-faust:

• width=wd, height=ht: Specify the maximum horizontal and/or vertical dimensions of
the layout area. If one or both of these values are nonzero, pd-faust will try to make
the GUI fit within this area.

• font-size=sz: Specify the font size (default is 10).

• fake-buttons: Render button controls as Pd toggles rather than bangs.

• radio-sliders=max: Render sliders with up to max different values as Pd radio controls
rather than Pd sliders. Note that in pd-faust this option not only applies to sliders, but
also to numeric entries, i.e., nentry in the Faust source. However, as with faust2pd’s
radio-sliders option, the option is only applicable if the control is zero-based and
has a stepsize of 1.

• slider-nums: Add a number box to each slider control. Note that in pd-faust this is
actually the default, which can be disabled with the no-slider-nums option.

• exclude=pat,...: Exclude the controls whose labels match the given glob patterns
from the Pd GUI.

In pd-faust there is no way to specify the above options on the command line, so you’ll have
to put them as pd attributes on the main group of your Faust program, as described in the
faust2pd documentation. For instance:

process = vgroup("[pd:no-slider-nums][pd:font-size=12]", ...);

In addition, the following options can be used to change the appearance of individual control
items. If present, these options override the corresponding defaults. Each option can also be
prefixed with “no-” to negate the option value. (Thus, e.g., no-hidden makes items visible
which would otherwise, by means of the global exclude option, be removed from the GUI.)

• hidden: Hides the corresponding control in the Pd GUI. This is the only option which
can also be used for group controls, in which case all controls in the group will become
invisible in the Pd GUI.
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• fake-button, radio-slider, slider-num: These have the same meaning as the corre-
sponding global options, but apply to individual control items.

Again, these options are specified with the pd attribute in the label of the corresponding
Faust control. For instance, the following Faust code hides the controls in the aux group,
removes the number entry from the pan control, and renders the preset item as a Pd radio
control:

aux = vgroup("aux [pd:hidden]", aux_part);
pan = hslider("pan [pd:no-slider-num]", 0, -1, 1, 0.01);
preset = nentry("preset [pd:radio-slider]", 0, 0, 7, 1);

32.3.7 Remote Control

Also included in the sources is a helper abstraction faust-remote.pd and an accompany-
ing elisp program faust-remote.el. These work pretty much like pure-remote.pd and pure-
remote.el in the pd-pure distribution, but are tailored for the remote control of Faust dsps in
a Pd patch. In particular, they enable you to quickly reload the Faust dsps in Pd using a sim-
ple keyboard command (C-C C-X by default) from Emacs. The faust-remote.el program was
designed to be used with Juan Romero’s Emacs Faust mode; please see etc/pure-remote.el
in the pd-faust source for usage instructions.

32.4 Caveats and Bugs

Some parts of this software might still be experimental, under construction and/or bug-
ridden. Bug reports, patches and suggestions are welcome. Please send these directly to the
author, or post them either to the Faust or the Pure mailing list.

In particular, please note the following known limitations in the current implementation:

• Passive Faust controls are only supported in fdsp~ objects.

• The names of the voice controls in the fsynth~ object (freq, gain, gate) are currently
hard-coded, as are the names of the midi, osc and dsp subfolders used to locate various
kinds of files.

• Polyphonic aftertouch and channel pressure messages are not supported in the MIDI
interface right now, so you’ll have to use ordinary MIDI controllers for these parame-
ters instead. Coarse/fine pairs of MIDI controllers aren’t directly supported either, so
you’ll have to implement these yourself as two separate Faust controls.

Also, please check the TODO file included in the distribution for other issues which we are
already aware of and which will hopefully be addressed in future pd-faust versions.
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Chapter 33
pd-pure: Pd loader for Pure scripts

Version 0.18, September 17, 2014

Albert Graef <aggraef@gmail.com>

This is a Pd loader plugin for the Pure programming language which lets you write external
Pd objects in Pure.

Please note that the present version of the module is still somewhat experimental, but it
seems to work fairly well at least with Pure versions 0.34 and later. In particular, note that
Pure is a compiled language and thus there are some inevitable latencies at startup, when the
embedded Pure interpreter loads your Pure scripts and compiles them on the fly. However,
once the scripts have been compiled, they are executed very efficiently. As of pd-pure 0.15,
it is also possible to precompile a collection of Pure objects to a library in binary format which
can be loaded much faster with Pd’s -lib option. (This requires Pure 0.50 or later.)

33.1 Copying

Copyright (c) 2009-2014 by Albert Graef. pd-pure is distributed under a 3-clause BSD-style
license, please see the included COPYING file for details.

33.2 Installation

MS Windows users please see pd-pure on Windows below.

Get the latest source from https://bitbucket.org/purelang/pure-lang/downloads/pd-
pure-0.18.tar.gz.

Usually, make && sudo make install should do the trick. This will compile the exter-
nal (you need to have GNU make, Pd and Pure installed to do that) and install it in the
lib/pd/extra/pure directory.
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The Makefile tries to guess the installation prefix under which Pd is installed. If it guesses
wrong, you can tell it the right prefix with make prefix=/some/path. Or you can specify the
exact path of the lib/pd directory with make pdlibdir=/some/path; by default the Makefile
assumes $(prefix)/lib/pd.

It is also possible to specify an alternative flavour of Pd when building and installing the
module, by adding a definition like PD=pd-extended to the make command line. This is
known to work with pd-extended and pd-l2ork, two popular alternative Pd distributions
available on the web.

The Makefile also tries to guess the host system type and Pure version, and set up some
platform-specific things accordingly. If this doesn’t work for your system then you’ll have
to edit the Makefile accordingly.

33.2.1 pd-pure on Windows

There’s a binary package in MSI format available at the Pure website:
https://bitbucket.org/purelang/pure-lang/downloads/pd-pure-0.18.msi. Use that
if you can. You’ll also need the latest Pure version (0.50 at the time of this
writing), and Pd 0.43 or later, which is available from Miller Puckette’s website:
http://crca.ucsd.edu/~msp/software.html.

33.3 Usage

After installation, you still have to tell Pd to load the Pure external at startup, either with
the -lib option (pd -lib pure), or by specifying pure in the File/Startup options (Me-
dia/Preferences/Startup in Pd 0.43 and later). This setting can be saved so that the Pure
loader is always available when you run Pd. Once the Pure loader has been installed, you
should see a message in the Pd main window indicating that the external has been loaded.

Since version 0.12 pd-pure supports the definition of both control and audio objects in Pure.
The latter are also known as “tilde objects” in Pd parlance; pd-pure follows the Pd conven-
tion in that audio objects have a trailing tilde in their name. Audio objects are used primarily
for processing audio signals, whereas control objects are employed for asynchronous mes-
sage processing.

Simple “one-off” control objects can be created with the [pure] class which takes the func-
tion to be evaluated as its argument. For instance:

[pure (+5)]

This object takes numbers as inputs on its single inlet, adds 5 to them and outputs the result
on its single outlet.

Similarly, audio objects can be created with [pure~]. For instance, the following object pro-
cesses incoming vectors of samples, multiplying each sample with 2:
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[pure~ map (*2)]

Note that in this case the object has actually two inlet/outlet pairs. The leftmost inlet/outlet
pair is reserved for the processing of control messages (not used in this example), while the
actual signal input and output can be found on the right.

(Pure objects can also be configured to adjust the number of inlets and outlets. This will be
described later.)

The argument of [pure] and [pure~] can be any Pure expression (including local functions
and variables, conditionals, etc.). We also refer to these as anonymous Pure objects. If an object
is quite complicated or used several times in a patch, it is more convenient to implement it
as a named object instead. To these ends, the object function is stored in a corresponding Pure
script named after the object. For instance, we might put the following add function into a
script named add.pure:

add x y = x+y;

Now we can use the following object in a Pd patch:

[add 5]

The Pure loader then recognizes add as an instance of the object implemented by the
add.pure file and loads the script into the Pure interpreter. The creation parameter 5 is
passed as the first argument x of the add function in this example, while the y argument
comes from the object’s inlet. The function performed by this object is thus the same as with
[pure (+5)] above.

More examples can be found in the pure-help.pd and pure~-help.pd patches. These can
also be accessed in Pd by right-clicking on any Pure object and selecting the Help option.
(Recent pd-pure versions also allow you to right-click and select Open to open the script of
a named Pure object in a text editor, provided that your Pd version supports the menu-open
command.)

In the following section, we first discuss in detail how control objects are defined and used.
After that, the necessary adjustments for implementing audio objects are explained. Some
advanced uses of pd-pure are described under Advanced Features.

33.4 Control Objects

Basically, to implement a Pd control object named foo, all you have to do is supply a Pure
script named foo.pure which defines a function foo (and anything else that you might need
to define the function). This function is also called the object function. You can put the script
containing the object function in the same directory as the Pd patch in which you want to
use the foo object, or anywhere on Pd’s search path. (The latter is useful if the object is to
be used in several patches located in different subdirectories.) The script will be executed
once, at the time the first object with the given name is created, and will be executed in the
directory where it is located. Thus, if the script needs to import other Pure scripts or load
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some data files, you can put these into the same directory so that the object script can find
them.

The foo function gets evaluated at object creation time, receiving any additional parameters
the object is created with. The resulting Pure expression should be another function which
is executed at runtime, passing Pd messages from the inlets as parameters, and routing the
function results to the outlets of the object. This two-stage definition process is useful be-
cause it allows special processing (such as initialization of required data structures) to be
done at object creation time. However, the result of evaluating foo can also just be foo itself
if no such special processing is needed. If we need to distinguish these two stages, we also
call the two functions the creation and the runtime function of the object, respectively.

Pd messages are translated to corresponding Pure expressions and vice versa in a straight-
forward fashion. Special support is provided for converting between the natural Pd and
Pure representations of floating point numbers, symbols and lists. The following table sum-
marizes the available conversions.

Message Type Pd Pure
symbol foo foo

string a&b "a&b"

float float 1.23 1.23

list list 1 2 3 [1.0,2.0,3.0]

other foo a 2 3 foo a 2.0 3.0

Note that Pd symbols which are no valid Pure symbols become strings in Pure. Conversely,
both symbols and strings in Pure are mapped to corresponding Pd symbols. Pure (machine)
integers and floating point values both become float messages in Pd. Pd list messages are
translated to Pure list values, while other aggregate messages are mapped to Pure applica-
tions (and vice versa).

33.4.1 Simple Objects

By default, a Pure object has just one inlet and one outlet and thus acts like a simple function
with no internal state. For instance, the following object accepts Pd float messages and
adds 5 to each received value:

add5 x = x+5;

In the Pd patch each [add5] object then has a single inlet supplying parameters and a single
outlet for results of the add5 function.

33.4.2 Creation Arguments

You can parameterize an object with creation arguments, which are passed to the Pure func-
tion at object creation time. For instance:

add x y = x+y;
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This object can then be invoked, e.g., as [add 5] in the Pd patch to supply the needed cre-
ation argument x. Please note that only a fixed number of creation arguments can be pro-
cessed this way. However, the Pure loader also provides a mechanism to handle a variable
number of creation arguments, see Variadic Creation Functions below.

33.4.3 The [pure] Object

For simple kinds of objects like the above, the Pure loader provides the generic [pure] object
as a quick means to create Pure control objects without actually preparing a script file. The
creation parameter of [pure] is the object function. This can be a predefined Pure function,
or you can define it on the fly in a with clause. (It is also possible to explicitly load additional
script files needed to implement objects defined using [pure]; see Controlling the Runtime
for details.)

For instance, [pure succ] uses the predefined Pure function succ which adds 1 to its input,
while the object [pure add 5 with add x y = x+y end] produces the same results as the
[add 5] object defined using a separate add.pure script in the previous section. You can
also generate constant values that way. E.g., the object [pure cst 1.618] responds to any
message (such as bang) by producing the constant value 1.618, while the object [pure cst
[1..10]] yields the constant list containing the numbers 1..10.

33.4.4 Configuring Inlets and Outlets

To create an object with multiple inlets and outlets for control messages, the object creation
function must return the desired numbers of inlets and outlets, along with a second function
to be applied at runtime, as a tuple n,m,foo. The input arguments to the runtime function as
well as the corresponding function results are then encoded as pairs k,val where k denotes
the inlet or outlet index. (Note that the k index is provided only if there actually is more than
one inlet. Also, the outlet index is assumed to be zero if none is specified, so that it can be
omitted if there’s only one outlet.)

For instance, the following object, invoked as [cross] in the Pd patch, has two inlets and
two outlets and routes messages from the left inlet to the right outlet and vice versa:

cross = 2,2,cross with cross (k,x) = (1-k,x) end;

You can also emit multiple messages, possibly to different outlets, in one go. These must be
encoded as Pure vectors (or matrices) of values or index,value pairs, which are emitted in
the order in which they are written. E.g., the following [fan] object implements an “n-fan”
which routes its input to n outlets simultaneously:

fan n = 1,n,fan with fan x = reverse {k,x | k = 0..n-1} end;

(Note that, because of the use of reverse, the n outlets are served in right-to-left order here.
This is not strictly necessary, but matches the Pd convention.)

Another example is the following [dup] object with a single inlet and outlet, which just sends
out each received message twice:
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dup x = {x,x};

Note that this is different from the following, which outputs a list value to the outlet instead:

dup2 x = [x,x];

(Also, please note that this behaviour is new in pd-pure 0.14. Previously, a list return value
by itself would output multiple values instead. However, this made it very awkward to deal
with Pd list values in pd-pure, and so as of pd-pure 0.14 Pure matrices must now be used to
output multiple values.)

An object can also just “swallow” messages and generate no output at all. To these ends,
make the object return either an empty vector {} or the empty tuple (). (Note that, in con-
trast, returning the empty list [] does send a value back to Pd, namely an empty list value.)
For instance, the following object [echo] implements a sink which just prints received mes-
sages on standard output, which is useful for debugging purposes:

using system;
echo x = () when puts (str x) end;

You could also implement this object as follows, by just removing the superflous outlet (in
this case all return values from the function will be ignored anyway):

using system;
echo = 1,0,puts.str;

33.4.5 Variadic Creation Functions

Sometimes you may wish to implement an object which accepts a variable number of cre-
ation arguments. To these ends, the creation function foo may return an application of the
form varargs bar. In this case, the function bar becomes the actual object creation function
which is applied to a single argument, the list of all supplied creation arguments. For in-
stance, if you invoke foo through an object like [foo a b c] in a patch, the loader would
then create the object by calling bar [a,b,c] instead. Likewise, if the object gets created
without any arguments at all, i.e., [foo], then bar would be called as bar []. The function
bar may then be used as the runtime function of the object, or it may yield the object function
to be used, along with the desired number of inlets and outlets, as described in the previous
subsection. This makes it possible to configure the inlets and outlets of the object according
to the number and values of the supplied creation arguments, pretty much like some of the
built-in Pd objects do, such as pack and sel.

For instance, here is how you could implement something like Pd’s built-in sel object in
Pure. The object compares its input against a number of values given as creation arguments,
and bangs the corresponding outlet if it is found, or passes on the input on the rightmost
outlet otherwise:

mysel = varargs mysel with
mysel xs = 1,#xs+1,mysel with
mysel x = i,bang if i<#xs when i = #takewhile (~==x) xs end;
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= #xs,x otherwise;
end;

end;

Note that the runtime function is the innermost local mysel function (at line 3 in the exam-
ple). The outermost local mysel function (at line 2) is the actual creation function which gets
invoked by the loader on the list of all creation arguments; here it yields the number of inlets
and outlets (where the latter depends on the number of creation arguments) along with the
runtime function. You can invoke this object as, e.g., [mysel a b c], in which case there will
be four outlets, one for each given value and one for the rightmost “default” outlet.

33.4.6 Local State

Local state can be kept in Pure reference values. For instance, the following [mycounter]
object produces the next counter value when receiving a bang message:

nonfix bang;
mycounter = next (ref 0) with

next r bang = put r (get r+1);
next _ _ = () otherwise;

end;

Note that the state is kept as an additional first parameter to the local function next here.
Alternatively, you can also make the state a local variable of mycounter:

nonfix bang;
mycounter = next with
next bang = put r (get r+1);
next _ = () otherwise;

end when r = ref 0 end;

33.5 Audio Objects

If the name of a Pure object (i.e., the basename of the corresponding Pure script) ends with
the ~ character, pd-pure assumes that it denotes an audio object whose primary purpose is
to process sample data. The basic setup is similar to the case of control objects, with the
following differences:

• The object function for an audio object xyz~ is named xyz_dsp (rather than xyz). The
function is defined in the xyz~.pure script file, which must be located in the same
directory as the Pd patch or anywhere on Pd’s search path.

• To keep things simple, a Pure audio object is always equipped with exactly one control
inlet and one control outlet, which are the leftmost inlet and outlet of the object. These
can be used to process control messages in the usual fashion, in addition to the audio
processing performed by the object.
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• Any additional inlets and outlets of the object are signal inlets and outlets. By default,
one signal inlet/outlet pair will be provided. Configuring a custom number of signal
inlets and outlets works as with control objects. In this case the object creation function
must return a triple n,m,foo where n and m are the desired number of signal inlets and
outlets, respectively, and foo is the actual processing function to be invoked at runtime.

Whenever Pd has audio processing enabled, the object function is invoked with one block
of sample data for each iteration of Pd’s audio loop. The sample data is encoded as a double
matrix which has one row for each signal inlet of the object; row 0 holds the sample data
for the first signal inlet, row 1 the sample data for the second signal inlet, etc. The row size
corresponds to Pd’s block size which indicates how many samples per signal connection is
processed in one go for each iteration of the audio loop. (Usually the default block size is 64,
but this can be changed with Pd’s -blocksize option and also on a per-window basis using
the block~ object, see the Pd documentation for details.) Note that the input matrix will
have zero rows if the object has zero signal inlets, in which case the row size of the matrix
(as reported by the dim function) still indicates the block size.

When invoked with a signal matrix as argument, the object function should return another
double matrix with the resulting sample data for the signal outlets of the object, which nor-
mally has one row per outlet and the same row size as the input matrix. (A lack or surplus
of samples in the output matrix is handled gracefully, however. Missing samples are filled
with zeros, while extra samples are silently ignored.)

For instance, here’s a simple object with the default single signal inlet/outlet pair (in addi-
tion to the leftmost control inlet/outlet pair, which isn’t used in this example). This object
just multiplies its input signal by 2:

mul2_dsp x::matrix = map (*2) x;

This code would then be placed into a script file named mul2~.dsp and invoked in Pd as an
object of the form [mul2~].

As with control objects, there’s a shortcut to create simple objects like these without prepar-
ing a script file, using the built-in [pure~] object. Thus the dsp function in the previous
example could also be implemented using an object of the form [pure~ map (*2)] (which
uses the same function, albeit in curried form).

Creation parameters can also be used in the same way as with control objects. The following
object is to be invoked in Pd as [mul~ f] where f is the desired gain factor.

mul_dsp f::double x::matrix = map (*f) x;

Next, let’s try a custom number of signal inlets and outlets. The following object has two
signal inlets and one signal outlet. Like Pd’s built-in [*~] object, it multiplies the two input
signals, producing an amplitude (or ring) modulation effect:

sigmul_dsp = 2,1,sigmul with
sigmul x::matrix = zipwith (*) (row x 0) (row x 1);

end;
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Here’s another example which takes no inputs and produces one output signal, a random
wave (i.e., white noise). Note the use of the dim function to determine the number of samples
to be generated for each block.

extern double genrand_real1() = random1;
randomwave1_dsp = 0,1,randomwave with

randomwave in::matrix = {random | i=1..n} when _,n = dim in end;
random = random1*2-1;

end;

Control messages for the control outlet of the object may be added by returning a pair
sig,msg where sig is the output signal matrix and msg is a single control message or vector
of such messages (using the same format as with control objects). The signal matrix can also
be omitted if no signal output is needed (unless the control data takes the form of a dou-
ble matrix, which would be interpreted as signal data; in such a case you’d have to specify
an empty signal matrix instead). The object function may also return () if neither signal
nor control output is required. (This may be the case, e.g., for dsps which just analyze the
incoming signal data and store the results somewhere for later retrieval.)

Audio objects can also process control messages and generate responses on the leftmost
inlet/outlet pair as usual. This is commonly used to set and retrieve various control param-
eters used or generated by the audio processing part of the object.

For instance, here is an audio object which plays back a soundfile using the sndfile module
(cf. pure-audio). The object function reads the entire file (whose name is passed as a creation
argument) at creation time and turns over processing to the playsf function which returns
one block of samples from the file (along with the current position of the playback pointer)
for each invocation with an (empty) input matrix. In addition, a bang message is output
when the end of the file is reached. The object also responds to floating point values in the
range from 0 to 1 on the control inlet by adjusting the playback pointer accordingly.

using sndfile;

nonfix bang;

playsf_dsp name = 0,nchannels,playsf with
// Play one block of samples. Also output a number in the range 0..1 on the
// control outlet to indicate the current position.
playsf x::matrix = block,get pos/nsamples when
_,n = dim x; block = submat buf (0,get pos) (nchannels,n);
put pos (get pos+n);

end if get pos>=0 && get pos<=nsamples;
// Output a bang once to indicate that we’re done.
playsf x::matrix = bang when
_,n = dim x; put pos (-1);

end if get pos>=0;
playsf _::matrix = ();
// A number in the range 0..1 places the playback pointer accordingly.
playsf x::double = put pos $ int $ round $ x*nsamples $$ ();

end when
// Open the audio file for reading.
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info = sf_info (); sf = sf_open name SFM_READ info;
// Get some information about the file.
nsamples,rate,nchannels,_ = sf_get_info info;
nsamples = int nsamples;
// Read the file into memory.
buf = dmatrix (nsamples,nchannels);
nsamples = int $ sf_readf_double sf buf nsamples;
// Convert interleaved samples (nsamples x nchannels) to one channel per row
// (nchannels x nsamples).
buf = transpose buf;
// Initialize the playback pointer:
pos = ref 0;

end;

As another example, here’s a complete stereo amplifier stage with bass, treble, gain and
balance controls and a dB meter. The dsp part is implemented in Faust, Grame’s functional
dsp programming language. The Pure program just does the necessary interfacing to Pd,
which includes processing of incoming control messages for setting the control parameters
of the Faust dsp, and the generation of output control messages to send the dB meter values
(also computed in the Faust dsp) to Pd. (To run this example, you need the “faust2” branch
of the Faust compiler so that the dsp can be inlined into the Pure program. Note that the
entire section inside the %< %> braces is Faust code.)

%< -*- dsp:amp -*-

import("math.lib");
import("music.lib");

/* Fixed bass and treble frequencies. You might want to tune these for your
setup. */

bass_freq = 300;
treble_freq = 1200;

/* Bass and treble gain controls in dB. The range of +/-20 corresponds to a
boost/cut factor of 10. */

bass_gain = nentry("bass", 0, -20, 20, 0.1);
treble_gain = nentry("treble", 0, -20, 20, 0.1);

/* Gain and balance controls. */

gain = db2linear(nentry("gain", 0, -96, 96, 0.1));
bal = hslider("balance", 0, -1, 1, 0.001);

/* Balance a stereo signal by attenuating the left channel if balance is on
the right and vice versa. I found that a linear control works best here. */

balance = *(1-max(0,bal)), *(1-max(0,0-bal));

/* Generic biquad filter. */
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filter(b0,b1,b2,a0,a1,a2) = f : (+ ~ g)
with {

f(x) = (b0/a0)*x+(b1/a0)*x’+(b2/a0)*x’’;
g(y) = 0-(a1/a0)*y-(a2/a0)*y’;

};

/* Low and high shelf filters, straight from Robert Bristow-Johnson’s "Audio
EQ Cookbook", see http://www.musicdsp.org/files/Audio-EQ-Cookbook.txt. f0
is the shelf midpoint frequency, g the desired gain in dB. S is the shelf
slope parameter, we always set that to 1 here. */

low_shelf(f0,g) = filter(b0,b1,b2,a0,a1,a2)
with {

S = 1;
A = pow(10,g/40);
w0 = 2*PI*f0/SR;
alpha = sin(w0)/2 * sqrt( (A + 1/A)*(1/S - 1) + 2 );

b0 = A*( (A+1) - (A-1)*cos(w0) + 2*sqrt(A)*alpha );
b1 = 2*A*( (A-1) - (A+1)*cos(w0) );
b2 = A*( (A+1) - (A-1)*cos(w0) - 2*sqrt(A)*alpha );
a0 = (A+1) + (A-1)*cos(w0) + 2*sqrt(A)*alpha;
a1 = -2*( (A-1) + (A+1)*cos(w0) );
a2 = (A+1) + (A-1)*cos(w0) - 2*sqrt(A)*alpha;

};

high_shelf(f0,g) = filter(b0,b1,b2,a0,a1,a2)
with {

S = 1;
A = pow(10,g/40);
w0 = 2*PI*f0/SR;
alpha = sin(w0)/2 * sqrt( (A + 1/A)*(1/S - 1) + 2 );

b0 = A*( (A+1) + (A-1)*cos(w0) + 2*sqrt(A)*alpha );
b1 = -2*A*( (A-1) + (A+1)*cos(w0) );
b2 = A*( (A+1) + (A-1)*cos(w0) - 2*sqrt(A)*alpha );
a0 = (A+1) - (A-1)*cos(w0) + 2*sqrt(A)*alpha;
a1 = 2*( (A-1) - (A+1)*cos(w0) );
a2 = (A+1) - (A-1)*cos(w0) - 2*sqrt(A)*alpha;

};

/* The tone control. We simply run a low and a high shelf in series here. */

tone = low_shelf(bass_freq,bass_gain)
: high_shelf(treble_freq,treble_gain);

/* Envelop follower. This is basically a 1 pole LP with configurable attack/
release time. The result is converted to dB. You have to set the desired
attack/release time in seconds using the t parameter below. */

t = 0.1; // attack/release time in seconds
g = exp(-1/(SR*t)); // corresponding gain factor
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env = abs : *(1-g) : + ~ *(g) : linear2db;

/* Use this if you want the RMS instead. Note that this doesn’t really
calculate an RMS value (you’d need an FIR for that), but in practice our
simple 1 pole IIR filter works just as well. */

rms = sqr : *(1-g) : + ~ *(g) : sqrt : linear2db;
sqr(x) = x*x;

/* The dB meters for left and right channel. These are passive controls. */

left_meter(x) = attach(x, env(x) : hbargraph("left", -96, 10));
right_meter(x) = attach(x, env(x) : hbargraph("right", -96, 10));

/* The main program of the Faust dsp. */

process = (tone, tone) : (_*gain, _*gain) : balance
: (left_meter, right_meter);

%>

// These are provided by the Pd runtime.
extern float sys_getsr(), int sys_getblksize();
// Provide some reasonable default values in case the above are missing.
sys_getsr = 48000; sys_getblksize = 64;

// Get Pd’s default sample rate and block size.
const SR = int sys_getsr;
const n = sys_getblksize;

using faustui;

amp_dsp = k,l,amp with
// The dsp part. This also outputs the left and right dbmeter values for
// each processed block of samples on the control outlet, using messages of
// the form left <value> and right <value>, respectively.
amp in::matrix = amp::compute dsp n in out $$
out,{left (get_control left_meter),right (get_control right_meter)};

// Respond to control messages of the form <control> <value>. <control> may
// be any of the input controls supported by the Faust program (bass,
// treble, gain, etc.).
amp (c@_ x::double) = put_control (ui!str c) x $$ x;

end when
// Initialize the dsp.
dsp = amp::newinit SR;
// Get the number of inputs and outputs and the control variables.
k,l,ui = amp::info dsp;
ui = control_map $ controls ui;
{left_meter,right_meter} = ui!!["left","right"];
// Create a buffer large enough to hold the output from the dsp.
out = dmatrix (l,n);

end;
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Note that it is possible to load the above Faust program directly in Pd, using the facilities
described in faust2pd: Pd Patch Generator for Faust. This is also more efficient since it avoids
the overhead of the extra Pure layer. However, invoking Faust dsps via Pure also offers some
benefits. In particular, it enables you to add more sophisticated control processing, interface
to other 3rd party software for additional pre- and postprocessing of the signal data, or do
live editing of Faust programs using the facilities described in Livecoding below.

33.6 Advanced Features

This section discusses some advanced features of the Pd Pure loader. It explains the use of
timer callbacks, wireless connections and wave arrays, and the livecoding and interactive
control facilities. We also give an overview of the API provided for pd-pure programmers.

33.6.1 Asynchronous Messages

pd-pure provides a simple asynchronous messaging facility which allows a Pure object to
schedule a message to be delivered to itself later. This is useful for implementing all kinds of
delays and, more generally, any kind of object which, once triggered, does its own sequenc-
ing of control messages.

To these ends, the object function may return a special message of the form pd_delay t msg
(either by itself or as an element of a result list) to indicate that the message msg should
be delivered to the object function after t milliseconds (where t is either a machine int or
a double value). After the prescribed delay the object function will then be invoked on the
given message, and the results of this call are processed as usual (routing messages to outlets
and/or scheduling new timer events in response to further pd_delay messages). Note that
if the delay is zero or negative, the message is scheduled to be delivered immediately.

For instance, a simple kind of delay object can be implemented in Pure as follows:

mydelay _ (alarm msg) = msg;
mydelay t msg = pd_delay t (alarm msg) otherwise;

The desired delay time is specified as a creation argument. The first equation handles mes-
sages of the form alarm msg; the action is to just output the delayed message given by the
msg argument. All other input messages are scheduled by the second equation, which wraps
the message in an alarm term so that it gets processed by the first equation when it is deliv-
ered.

Note that pd-pure only allows you to schedule a single asynchronous event per call of the
object function. Thus, if the mydelay object above receives another message while it is still
waiting for the previous one to be delivered, the old timer is cancelled and the new one is
scheduled instead; this works like Pd’s builtin delay object.

Moreover, scheduling a new event at an infinite (or nan) time value cancels any existing
timer. (Note that you still have to specify the msg parameter, but it will be ignored in this
case.) We can use this to equip our mydelay object with a stop message as follows:
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nonfix stop;
mydelay _ (alarm msg) = msg;
mydelay _ stop = pd_delay inf ();
mydelay t msg = pd_delay t (alarm msg) otherwise;

More elaborate functionality can be built on top of the basic timer facility. The following
example shows how to maintain a timed message queue in a Pure list, in order to implement
a simple delay line similar to Pd’s builtin pipe object. Here we also employ the pd_time()
function, which is provided by the Pure loader so that Pure scripts can access the current
logical Pd time in milliseconds (see Programming Interface below). This is convenient if we
need to deal with absolute time values, which we use in this example to keep track of the
times at which messages in the queue are to be delivered:

extern double pd_time();
mypipe t = process (ref []) with
process q () = case dequeue q of

x,(t,_):_ = {x,pd_delay (t-pd_time) ()};
x,_ = x;

end;
process q x = enqueue q x $$ pd_delay t () if null (get q);

= enqueue q x $$ () otherwise;
enqueue q x = put q $ get q+[(pd_time+t,x)];
dequeue q = x,put q xs when (_,x):xs = get q end;

end;

33.6.2 Wireless Messaging

As of version 0.14, pd-pure offers some facilities for sending and receiving messages di-
rectly, without any wired connections to the inlets and outlets of an object (similar to what
the Pd [send] and [receive] objects provide). See the description for the pd_send() and
pd_receive() routines in the Programming Interface section.

For instance, here’s how you can use the pd_send function to send messages to the Pd run-
time:

pd_send "pd" (dsp 1); // turn on audio processing

This function also enables you to perform dynamic patching, by sending the appropriate
messages to patches (i.e., "pd-patch" receivers, where patch is the name of the target patch).
Useful messages to patches are listed in the Tips and Tricks section on the Pd community
website, and some examples can be found here. For instance, the following Pure object,
when banged, inserts a few objects into a subpatch named test and connects them to each
other:

extern void pd_send(char*, expr*);

pd_send_test _ = () when
pd_send "pd-test" (obj 10 0 "osc~" 220);
pd_send "pd-test" (obj 10 30 "*~" 0.1);
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pd_send "pd-test" (obj 10 60 "dac~");
pd_send "pd-test" (connect 0 0 1 0);
pd_send "pd-test" (connect 1 0 2 0);
pd_send "pd-test" (connect 1 0 2 1);

end;

An object can also receive messages from any named source by means of the pd_receive
function. This function must be called either at object creation time or when one of the dsp
or control processing methods of the object is invoked. For instance, the following object
calls pd_receive at creation time in order to receive messages sent to the left and right
receivers, and outputs them on its left or right outlet, respectively:

extern void pd_receive(char*);

pd_receive_test = 1,2,process with
process (left x) = 0,x;
process (right x) = 1,x;

end when
do pd_receive ["left","right"];

end;

Please note that pd_receive itself doesn’t return any message, it merely registers a receiver
symbol so that messages sent to that symbol may be received later. The received messages
are always delivered to the leftmost inlet when Pd does its control processing. Moreover,
the symbol identifying the source of the message is applied to the message itself, so that the
receiver can figure out where the message came from and adjust accordingly. This operation
is useful, in particular, to provide communication channels between Pd GUI elements and
Pure objects. Wireless connections are often preferred in such cases, to reduce display clutter.

33.6.3 Reading and Writing Audio Data

Besides the realtime processing of audio data, Pd also provides a means to store sample data
in arrays which can be displayed in a patch and modified interactively, see the section on
numeric arrays in the Pd documentation for details. Arrays can be used, e.g., as running
waveform displays, as wavetables which are played back in the audio loop, or as waveshap-
ing functions used to implement distortion effects.

Each array has a name (Pd symbol) under which it can be accessed from Pure code. pd-pure
makes it possible to transfer audio data directly between Pd arrays and Pure double vectors
by means of the pd_getbuffer() and pd_setbuffer() routines. Please see Programming
Interface below for a closer description of the provided routines.

For instance, here is a randomwave object which fills a Pd array (whose name is given as the
creation argument) with random values in response to a bang message:

extern double genrand_real1() = random1;

extern int pd_getbuffersize(char *name);
extern void pd_setbuffer(char *name, expr *x);
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nonfix bang;

randomwave name = 1,0,process with
process bang = pd_setbuffer name {random | i = 1..nsamples};
nsamples = pd_getbuffersize name;
random = random1*2-1;

end;

33.6.4 Controlling the Runtime

pd-pure provides a predefined [pure-runtime] object which makes it possible to control
the embedded Pure interpreter in some ways. There can be any number of [pure-runtime]
objects in a patch, which all refer to the same instance of the Pure interpreter.

The first use of [pure-runtime] is to load additional Pure scripts. To these ends,
[pure-runtime] can be invoked with the names of scripts to be loaded at object creation
time as arguments. The script names should be specified without the .pure suffix; it will be
added automatically. The scripts will be searched for in the directory of the patch containing
the [pure-runtime] object and on the Pd path. For instance, to load the scripts foo.pure
and bar.pure, you can add the following object to your patch:

[pure-runtime foo bar]

This facility can be used, e.g., to load any additional scripts needed for anonymous objects
defined with [pure] and [pure~].

Note: You’ll have to make sure that the [pure-runtime] object is inserted into the patch
before any anonymous objects which depend on the loaded scripts. Also note that you
shouldn’t explicitly load the scripts which implement named Pure objects; this will be han-
dled automatically by the Pure loader.

The [pure-runtime] object also accepts control messages which can be used to dynamically
reload all loaded scripts, and to implement “remote control” of a patch using the pdsend
program. This is described in the following subsection.

33.6.5 Livecoding

Livecoding means changing Pure objects on the fly while a patch is running. A simple, but
limited way to do this is to just edit the boxes containing Pure objects interactively, as you
can do with any kind of Pd object. In this case, the changes take effect immediately after
you finish editing a box. However, for more elaborate changes, you may have to edit the
underlying Pure scripts and notify the Pure interpreter so that it reloads the scripts. The
Pure loader provides the special [pure-runtime] object to do this.

Sending a bang to the [pure-runtime] object tells the plugin to reload all object scripts and
update the Pure objects in your patch accordingly. The object also provides two outlets to
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deal with the inevitable latencies caused by the compilation process. The right outlet is
banged when the compilation starts and the left outlet gets a bang when the compilation is
finished, so that a patch using this facility can respond to these events in the appropriate
way (e.g., disabling output during compilation).

The reload message works similarly, but while the bang message only reloads the object
scripts, reload restarts the Pure interpreter from scratch and reloads everything, including
the prelude and imported modules. This will usually take much longer, but is only necessary
if you edited imported library modules which won’t be reloaded with the bang message.

While this facility is very useful for interactive development, it does have some limitations:

• At present, the number of inlets and outlets of Pure objects never changes after reload-
ing scripts. Pd does not support this through its API right now. Thus by editing and
reloading the Pure scripts you can change the functionality of existing Pure objects in
a running patch, but not their interfaces. (It is possible to make changes to inlets and
outlets take effect by manually editing the affected objects afterwards. But this will be
cumbersome when you have to edit a lot of objects, so it might be easier to just restart
Pd and reload the patches in such cases.)

• Reloading scripts may need some time depending on how much Pure code has to be
recompiled and how fast your cpu is. With the bang message the delays will usually
be small, but still noticable. In order to keep the compilation times to a minimum, it
is a good idea to put all code which you don’t plan to edit “live” into library modules
which are imported in the object scripts. By these means, the number of definitions in
the object scripts themselves can be kept small, resulting in faster compilation.

Also note that the reloading of object scripts amounts to a “cold restart” of the Pure objects in
your patches. If a Pure object keeps some local state, it will be lost. As a remedy, the loader
implements a simple protocol which allows Pure objects to record their internal state before
a script gets reloaded, and restore it afterwards. To these ends, a Pure object may respond to
the following two messages:

• Before reloading, the Pure object will receive the pd_save message. In response, the
object should return a Pure expression encoding its internal state in a way which can
be serialized (see the description of the blob function in the Pure Library Manual for
details). Usually, it is sufficient to just pack up all state data in a tuple, list or some
other aggregate and return that as the response to the pd_save message.

• After reloading, the Pure object will receive a pd_restore state message, where state
is the previously recorded state, as returned by the object in response to the pd_save
message. It should then restore its internal state from the saved data. (The return value
of this message invocation is ignored.)

In order to participate in the pd_save/pd_restore protocol, an object must subscribe to
it. This is done by setting pd_save as a sentry on the object function (see the descrip-
tion of the sentry function in the Pure Library Manual for details). For instance, here’s
the mycounter example from Local State again, with the necessary additions to support the
pd_save/pd_restore protocol:
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nonfix bang pd_save;
mycounter = sentry pd_save $ next (ref 0) with

next r bang = put r (get r+1);
next r pd_save = get r;
next r (pd_restore n) = put r n;
next _ _ = () otherwise;

end;

33.6.6 Remote Control

The distribution also includes an abstraction pure-remote.pd which you can include in your
patch to enable live coding, as well as remote control of the patch through the pdsend pro-
gram. Sending a bang (or reload) causes a reload of the object scripts, as described above.
This can also be triggered directly by clicking the bang control of the abstraction. The bang
control also provides visual feedback indicating whether the compilation is still in progress.
Messages are routed through the embedded [pure-runtime] object using the single inlet
and the two outlets of the abstraction, so that pure-remote can also be controlled from within
the patch itself.

For added convenience, the [pure-runtime] and [pure-remote] objects also accept any
other message of the form receiver message and will route the given message to the given
receiver. This is intended to provide remote control of various parameters in patches. For
instance, by having pdsend send a play 0 or play 1 message, one might implement a sim-
ple playback control, provided that your patch includes an appropriate receiver (often a GUI
object). See the pure-help.pd patch for an example.

To make these features available in emacs, there’s an accompanying elisp program (pure-
remote.el) which contains some convenient keybindings for the necessary pdsend invoca-
tions, so that you can operate the pure-remote patch with simple keystrokes directly from
the text editor. The same bindings are also available in Emacs Pure mode, but need to be
enabled before you can use them; please see the pure-remote.el file for details. As shipped,
pure-remote.el and Pure mode implement the following commands:

C-C C-X Quick Reload Sends a bang message to reload object scripts.
C-C M-X Full Reload Sends a reload message to reload everything.
C-C C-M Message Prompts for a message and sends it to pure-remote.
C-C C-S Play Sends a play 1 message.
C-C C-T Stop Sends a play 0 message.
C-C C-G Restart Sends a play 0 message followed by play 1.
C-/ Dsp On Sends a pd dsp 1 (enable audio processing).
C-. Dsp Off Sends a pd dsp 0 (disable audio processing).

Of course you can easily add more like these, just have a look at how the keybindings are
implemented in pure-remote.el or pure-mode.el and create your own in an analogous fash-
ion. Together with Pure mode, this gives you a nice interactive environment for developing
pd-pure applications.
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33.6.7 Compiling Objects

pd-pure’s livecoding abilities require that objects are run from source code. As already men-
tioned, this needs some (in some cases, substantial) time at startup when the Pure interpreter
is loaded and your Pure scripts are compiled to native code on the fly. This is wasted effort
if you are finished developing your Pure objects and just want to run them as they are.

Therefore pd-pure also supports compiling a collection of Pure objects to a binary which
can be loaded with Pd’s -lib option just like any other external library of Pd objects. This
basically involves using the Pure interpreter as a batch compiler to translate the Pure scripts
implementing the objects to a shared library. You also have to link in a small amount of C
code so that the shared module can be loaded by Pd and registers its Pd object classes with
pd-pure. The examples/lib folder contains a complete example showing how this is done.

Note that even if you load all your pd-pure objects from such libraries, you still need to load
the pd-pure module first, since it provides the basic infrastructure required to run any kind
of pd-pure object (no matter whether it’s implemented in compiled or source form).

33.6.8 Programming Interface

The Pure loader provides a number of interface routines which can be called by Pure scripts
running in the Pd environment. Note that in order to access these functions, you’ll have to
add the corresponding extern declarations to your scripts.

extern char *pd_version_s()
Returns the Pd version number as a string. Note that this routine will only be available
when a script is running inside Pd, so you can quickly check if that’s the case as follows:

let ok = stringp $ eval "extern char *pd_version_s(); pd_version_s;";

The ok variable will then be true iff the script is running inside Pd.

extern expr *pd_path()
Returns the Pd path (set in Pd’s Path dialog or via the -path command line option) as
a list of directory names. This is useful if your Pure scripts need to locate files on the
Pd search path.

extern char *pd_libdir()
Returns the Pd library dir (as determined at compile time). This is useful if your Pure
scripts need to access files in that directory.

extern expr *pd_getdir()
Returns the directory of the patch the current object is in. This is useful if a Pure object
needs to access files in the patch directory. Please note that this function must be called
during object creation or in the method calls of an object, so that it is clear what the
current object is; otherwise the function will fail. Also note that the results may differ
for different instances of the same object class, depending on which patches the objects
are located in.
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extern expr *pd_getfile()
Returns the name of the file that will be opened with the menu-open action (accessible
by right-clicking on a Pure object and selecting Open). This is usually the Pure script of
the object, if available, but this can be changed with pd_setfile() below. The function
must be called during object creation or in the method calls of an object, so that it is
clear what the current object is; otherwise the function will fail.

extern void pd_setfile(char *s)
Sets the name of the file to be opened with the menu-open action. By default, this is the
Pure script of the object, if available; this function can be used to change the name of
the file on a per-object basis. The function must be called during object creation or in
the method calls of an object, so that it is clear what the current object is; otherwise the
function will have no effect.

extern void pd_post(char *s)
Posts a message in the Pd main window. A trailing newline is added automatically.
This is a convenience function which is equivalent to calling Pd’s post() (which is a
varargs function) as post "%s" s.

extern void pd_error_s(char *s)
Like pd_post(), but prints an error message instead. If this routine is invoked from an
object (i.e., during object creation or a method call) then Pd’s pd_error() function is
called, which allows the object to be tracked down with Pd’s Find Last Error menu
command. Otherwise (i.e., if the function is called at load time) Pd’s error() function
is called which just outputs the message.

extern double pd_time()
Retrieves the current Pd time as a double value in milliseconds, which is useful, in
particular, when used in conjunction with the asynchronous message facility described
under Asynchronous Messages.

extern void pd_send(char *sym, expr *x)
Sends a message, specified as a Pure term x, to the receiver given by the symbol sym
(specified as a string). This is a no-op if the receiver doesn’t exist.

extern void pd_receive(char *sym)
Prepares an object so that it can receive messages sent to the given symbol sym. This
function must be called during object creation or method calls. It can be called for
different symbols, as many times as needed. The messages are always delivered to
the leftmost inlet, and the given symbol is applied to the original message, so that the
receiver can figure out where the message came from.

extern void pd_unreceive(char *sym)
Switches off receiving messages for the given symbol sym. Use this to undo the effects
of a previous pd_receive call.

extern expr *pd_getbuffer(char *name)
extern void pd_setbuffer(char *name, expr *x)
extern int pd_getbuffersize(char *name)
extern void pd_setbuffersize(char *name, uint32_t sz)

Routines to access the Pd array (sample buffer) with the given name. These functions
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can be used to transfer audio data between Pd and Pure scripts; see Reading and Writ-
ing Audio Data above for an example.

pd_getbuffersize() and pd_setbuffersize() gets or sets the size of the given buffer,
respectively.

pd_getbuffer() reads the contents of the buffer and returns it as a Pure vector (or fails
if the array with the given name doesn’t exist).

pd_setbuffer() sets the contents of the buffer from the given Pure vector x. If the size
of the vector exceeds the size of the buffer, the former is truncated. Conversely, if the
size of the buffer exceeds the size of the Pure vector, the trailing samples are unaffected.
Note: The second argument of pd_setbuffer() can also be a pair (i,x) denoting an
offset i into the array at which the sample data is to be written, so that this routine
allows you to overwrite any part of the array.
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Chapter 34
pure-audio

Version 0.6, September 17, 2014

Albert Graef <aggraef@gmail.com>

This is a digital audio interface for the Pure programming language. It currently includes
the following modules:

• audio.pure: A PortAudio wrapper which gives you portable access to realtime audio
input and output on a variety of different host APIs. This uses the well-known Por-
tAudio library by Ross Bencina, Phil Burk et al, see http://www.portaudio.com/.

• fftw.pure: Compute real-valued FFTs of audio signals using Matteo Frigo’s and Steven
G. Johnson’s portable and fast FFTW library (“Fastest Fourier Transform in the West”).

• sndfile.pure: Reading and writing audio files in various formats. This is a
fairly straightforward wrapper for Erik de Castro Lopo’s libsndfile library, see
http://www.mega-nerd.com/libsndfile/.

• samplerate.pure: Perform sample rate conversion on audio data. This uses an-
other of Erik’s excellent libraries, libsamplerate (a.k.a. SRC), see http://www.mega-
nerd.com/SRC/.

• realtime.pure: A little utility module which provides access to realtime scheduling to
Pure programs. You may need this for low-latency realtime audio applications.

Documentation still needs to be written, so for the time being please read the source modules
listed above and have a look at the examples provided in the distribution.

34.1 Installation

Get the latest source from https://bitbucket.org/purelang/pure-lang/downloads/pure-
audio-0.6.tar.gz.
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You need to have libportaudio (v19), libsndfile (1.x), libsamplerate (0.1.x) and libfftw3 (3.x)
installed on your system. Any fairly recent version of these libraries should do. For the
realtime module you also need a POSIX threads library (libpthread) with the POSIX realtime
thread extension; Linux, OSX and other Un*x systems should offer this.

The Pure wrappers contained in the distribution are for 64 bit POSIX systems. If you’re
running a 32 bit system, or Windows, then you should regenerate them using ‘make gener-
ate’. This requires the header files portaudio.h, samplerate.h and sndfile.h (and pure-gen, of
course). If you do this, check the includedir variables defined in the Makefiles, these need to
point to the directories where the corresponding header files are to be found (the default is
/usr/include).

Then just run ‘make’ to compile the package. If you’re lucky and everything compiles
smoothly, you can install with ‘sudo make install’.

If you’re not so lucky, you can get help on the Pure mailing list, see
http://groups.google.com/group/pure-lang.

34.2 License

pure-audio is Copyright (c) 2010 by Albert Graef, licensed under the 3-clause BSD license,
see the COPYING file for details.

Please note that if you’re using these modules, you’re also bound by the license terms of the
PortAudio, libsamplerate and libsndfile libraries they are based on, see the corresponding
sources and websites for details.
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Chapter 35
pure-faust

Version 0.10, September 17, 2014

Albert Graef <aggraef@gmail.com>

This module lets you load and run Faust-generated signal processing modules in Pure. Faust
(an acronym for Functional AUdio STreams) is a functional programming language for real-
time sound processing and synthesis developed at Grame and distributed as GPL’ed soft-
ware.

Note: As of Pure 0.45, there’s also built-in support for Faust interoperability in the Pure core,
including the ability to inline Faust code in Pure programs; see Interfacing to Faust in the Pure
manual. The built-in Faust interface requires Faust2 which is still under development and
available as a separate package in the Faust git repository. Both interfaces provide pretty
much the same basic capabilities and should work equally well for most applications. In
fact, as of version 0.5 pure-faust comes with a compatibility module which provides the
pure-faust API on top of the built-in Faust interface, see the description of the faust2 module
below for details.

35.1 Copying

Unless explicitly stated otherwise, this software is Copyright (c) 2009-2012 by Albert Graef.
Please also see the source for the copyright and license notes pertaining to individual source
files.

pure-faust is free software: you can redistribute it and/or modify it under the terms of the
GNU Lesser General Public License as published by the Free Software Foundation, either
version 3 of the License, or (at your option) any later version.

pure-faust is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
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without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICU-
LAR PURPOSE. See the GNU Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with this
program. If not, see <http://www.gnu.org/licenses/>.

35.2 Installation

Get the latest source from https://bitbucket.org/purelang/pure-lang/downloads/pure-
faust-0.10.tar.gz.

Binary packages can be found at http://purelang.bitbucket.org/. To install from source, run
the usual make && sudo make install. This requires Pure, of course (the present version
will work with Pure 0.52 and later). The Makefile tries to guess the installation prefix un-
der which Pure is installed. If it guesses wrong, you can tell it the right prefix with make
prefix=/some/path. Or you can specify the exact path of the lib/pure directory with make
libdir=/some/path; by default the Makefile assumes $(prefix)/lib/pure. The Makefile
also tries to guess the host system type and set up some platform-specific things accord-
ingly. If this doesn’t work for your system then you’ll have to edit the Makefile accordingly.

The Faust compiler is not required to compile this module, but of course you’ll need it to
build the examples in the examples subdirectory and to compile your own Faust sources.
You’ll need Faust 0.9.46 or later.

To compile Faust programs for use with this module, you’ll also need the pure.cpp architec-
ture file. This should be included in recent Faust releases. If your Faust version doesn’t have
it yet, you can find a suitable version of this file in the examples folder. Simply copy the file
to your Faust library directory (usually /usr/local/lib/faust or similar) or the directory
holding the Faust sources to be compiled, and you should be set.

35.3 Usage

Once Faust and this module have been installed as described above, you should be able to
compile a Faust dsp to a shared module loadable by pure-faust as follows:

$ faust -a pure.cpp -o mydsp.cpp mydsp.dsp
$ g++ -shared -o mydsp.so mydsp.cpp

Note that, by default, Faust generates code which does all internal computations with sin-
gle precision. You can add the -double flag to the Faust command in order to use double
precision instead. (In either case, all data will be represented as doubles on the Pure side.)

Also note that the above compile command is for a Linux or BSD system using gcc. Add
-fPIC for 64 bit compilation. For Windows compilation, the output filename should be
mydsp.dll instead of mydsp.so; on Mac OSX, it should be mydsp.dylib. There’s a Make-
file in the examples folder which automates this process.
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Once the module has been compiled, you can fire up the Pure interpreter and load the dsp
as follows:

> using faust;
> let dsp = faust_init "mydsp" 48000;
> dsp;
#<pointer 0xf09220>

The faust_init function loads the "mydsp.so" module (the .so suffix is supplied automat-
ically) and returns a pointer to the Faust dsp object which can then be used in subsequent
operations.

Note: faust_init only loads the dsp module if it hasn’t been loaded before. However, as
of pure-faust 0.8, faust_init also checks the modification time of the module and reloads it
if the module was recompiled since it was last loaded. (This is for compatibility with Pure’s
built-in Faust interface which behaves in the same way.) If this happens, all existing dsp
instances created with the old version of the module become invalid immediately (i.e., all
subsequent operations on them will fail, except faust_exit) and must be recreated.

The second parameter of faust_init, 48000 in this example, denotes the sample rate in Hz.
This can be an arbitrary integer value which is available to the hosted dsp (it’s up to the dsp
whether it actually uses this value in some way). The sample rate can also be changed on
the fly with the faust_reinit function:

> faust_reinit dsp 44100;

It is also possible to create copies of an existing dsp with the faust_clone function, which
is quite handy if multiple copies of the same dsp are needed (a case which commonly arises
when implementing polyphonic synthesizers):

> let dsp2 = faust_clone dsp;

When you’re done with a dsp, you can invoke the faust_exit function to unload it (this also
happens automatically when a dsp object is garbage-collected):

> faust_exit dsp2;

Note that after invoking this operation the dsp pointer becomes invalid and must not be
used any more.

In the following, we use the following little Faust program as a running example:

declare descr "amplifier";
declare author "Albert Graef";
declare version "1.0";

gain = nentry("gain", 1.0, 0, 10, 0.01);
process = *(gain);

The faust_info function can be used to determine the number of input/output channels as
well as the “UI” (a data structure describing the available control variables) of the loaded
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dsp:

> let n,m,ui = faust_info dsp;

Global metadata of the dsp is available as a list of key=>val string pairs with the faust_meta
function. For instance:

> faust_meta dsp;
["descr"=>"amplifier","author"=>"Albert Graef","version"=>"1.0"]

To actually run the dsp, you’ll need two buffers capable of holding the required number of
audio samples for input and output. For convenience, the faust_compute routine lets you
specify these as Pure double matrices. faust_compute is invoked as follows:

> faust_compute dsp in out;

Here, in and out must be double matrices which have at least n or m rows, respectively
(corresponding to the number of input and output channels of the Faust dsp). The row size
of these matrices determines the number of samples which will be processed (if one of the
matrices has a larger row size than the other, the extra elements are ignored). The out matrix
will be modified in-place and also returned as the result of the call.

Some DSPs (e.g., synthesizers) only take control input without processing any audio input;
others (e.g., pitch detectors) might produce just control output without any audio output. In
such cases you can just specify an empty in or out matrix, respectively. For instance:

> faust_compute dsp {} out;

Most DSPs take additional control input. The control variables are listed in the “UI” com-
ponent of the faust_info return value. For instance, suppose that there’s a gain parameter
listed there, it might look as follows:

> controls ui!0;
hslider #<pointer 0x12780a4> [] ("gain",1.0,0.0,10.0,0.1)

The constructor itself denotes the type of control, which matches the name of the Faust
builtin used to create the control (see the Faust documentation for more details on this).
The third parameter is a tuple which indicates the arguments the control was created with
in the Faust program. The first parameter is a C double* which points to the current value
of the control variable. You can inspect and change this value with the get_double and
put_double routines available in the Pure prelude. (Note that, for compatibility with the
internal Faust interface which supports both single and double precision controls, you can
also use the get_control and put_control functions instead.) Changes of control variables
only take effect between different invocations of faust_compute. Example:

> let gain = control_ref (controls ui!0);
> get_double gain;
1.0
> put_double gain 2.0;
()
> faust_compute dsp in out;
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Output controls such as hbargraph and vbargraph are handled in a similar fashion, only that
the Faust dsp updates these values for each call to faust_compute and Pure scripts can then
read the values with get_double or get_control.

The second parameter of a control description is a list holding the Faust metadata of the
control. This list will be empty if the control does not have any metadata. Otherwise you
will find some of key=>val string pairs in this list. It is completely up to the application how
to interpret the metadata, which may consist, e.g., of GUI layout hints or various kinds of
controller definitions. For instance, a MIDI controller assignment might look as follows in
the Faust source:

gain = nentry("gain[midi:ctrl 7]", 1.0, 0, 10, 0.01);

In Pure this information will then be available as:

> control_meta (controls ui!0);
["midi"=>"ctrl 7"]

Let’s finally have a closer look at the contents of the UI data structure. You will find that it
is actually a tree, similar to the directory tree of a hierarchical file system, which reflects the
layout of the controls in the Faust program. For instance:

> ui;
vgroup [] ("mydsp",[nentry #<pointer 0x12780a4> [] ("gain",1.0,0.0,10.0,0.01)])

The leaves of the tree are the actual controls, while its interior nodes are so-called “control
groups”, starting from a root node which represents the entire dsp. There are different kinds
of control groups such as vgroup and hgroup; please check the Faust documentation for de-
tails. Control groups have a name and metadata just like individual controls, but there is no
control_ref component and the data stored at the node is the list of controls and subgroups
contained in the control group. The controls function returns a flat representation of the
controls in the UI tree as a list, omitting the group nodes of the tree:

> controls ui;
[hslider #<pointer 0x12780a4> [] ("gain",1.0,0.0,10.0,0.1)]

We’ve already employed this function above to extract the gain control of our example dsp.
There’s a variation of this function which yields the full “pathnames” of controls in the UI
tree:

> pcontrols ui;
[hslider #<pointer 0x12780a4> [] ("mydsp/gain",1.0,0.0,10.0,0.1)]

This is sometimes necessary to distinguish controls with identical names in different control
groups. There are two additional convenience functions which work with this flat represen-
tation of the UI data structure:

> let ctrls = ans;
> control_map ctrls;
{"mydsp/gain"=>#<pointer 0x12780a4>}
> control_metamap ctrls;
{"mydsp/gain"=>[]}
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The results are Pure records which provide convenient access to the pointers and metadata
of the controls by their name.

Please note that, as of Pure 0.45, the UI access functions described above are actually pro-
vided by the faustui standard library module which gets included by the faust module.

Further examples can be found in the examples subdirectory.

35.4 Faust2 Compatibility

As of version 0.5, pure-faust includes a Faust2 compatibility module which lets you use the
pure-faust API on top of Pure’s new Faust bitcode interface, using the same operations as
described under Usage above. This module is invoked with the following import clause:

using faust2;

To instantiate a Faust dsp using the faust2 interface, you’ll have to compile the Faust pro-
gram to LLVM bitcode format. The examples directory includes a pure.c Faust architecture
file to help with this. Please see the Interfacing to Faust section in the Pure manual for details.

Note that only one of the faust and faust2 modules may be imported into a program; trying
to use both modules in the same program will not work. Also note that the faust2 module
requires Faust2 and a fairly recent Pure version to work, whereas the faust module works
with both Faust2 and the mainline Faust version and doesn’t rely on the Faust bitcode loader
(only the pure.cpp architecture is needed).

35.5 Acknowledgements
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pure-liblo

Version 0.9, September 17, 2014

Albert Gräf <aggraef@gmail.com>

36.1 Copying

Copyright (c) 2009 by Albert Graef.

pure-liblo is free software: you can redistribute it and/or modify it under the terms of the
GNU Lesser General Public License as published by the Free Software Foundation, either
version 3 of the License, or (at your option) any later version.

pure-liblo is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICU-
LAR PURPOSE. See the GNU Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with this
program. If not, see <http://www.gnu.org/licenses/>.

36.2 Description

This is a quick and dirty Pure wrapper for the liblo library by Steve Harris and others, which
implements Berkeley’s Open Sound Control (OSC) protocol.

OSC is a protocol for exchanging data between multimedia devices and software across the
network (TCP, UDP and UNIX domain sockets are supported as the transport layer). It is also
useful as a general communication mechanism for both hard- and software. In difference to
the plain socket interface (on which it builds), OSC provides you with an efficient means to
send around binary data packets along with the corresponding type and timing information,
which makes it well-suited for both realtime and non-realtime applications.
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The OSC protocol is standardized and is supported by an abundance of different implemen-
tations, which includes controller hardware of all sorts and computer music software like
CSound, Pd and SuperCollider. Lots of implementations exist for different programming
languages. liblo aims to provide a lightweight and ubiquitous OSC implementation for the
C programming language.

The lo.pure module provides a fairly straight wrapper of the C library. A more high-level
and Purified interface is available in osc.pure. Most of the time, you’ll want to use the latter
for convenience, but if you need utmost flexibility then it is worth having a look at lo.pure,
too.

• Get the latest source from https://bitbucket.org/purelang/pure-
lang/downloads/pure-liblo-0.9.tar.gz.

• To install, run make and sudo make install. This will try to guess your Pure installa-
tion directory; if it guesses wrong, you can set the prefix variable accordingly, see the
Makefile for details.

• You can also regenerate the wrapper by running make generate; this requires the
pure-gen utility and the liblo headers. The present version was generated from li-
blo 0.26. If your liblo version differs from that then it’s always a good idea to run make
generate.

• Have a look at lo.pure and osc.pure for a description of the API provided to Pure
programmers.

• The examples folder contains some Pure code which illustrates how to use these mod-
ules.
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Chapter 37
pure-lilv: Pure Lilv Interface

Version 0.4, September 17, 2014

Albert Gräf <aggraef@gmail.com>

37.1 Copying

pure-lilv is Copyright (c) 2014 by Albert Gräf. It is distributed under a 3-clause BSD license,
please check the COPYING file included in the distribution for details.

37.2 Installation

Get the latest source from https://bitbucket.org/purelang/pure-lang/downloads/pure-
lilv-0.4.tar.gz.

Run make to compile the module and sudo make install to install it in the Pure library
directory. To uninstall the module, use sudo make uninstall. There are a number of other
targets (mostly for maintainers), please see the Makefile for details.

make tries to guess your Pure installation directory and platform-specific setup. If it gets this
wrong, you can set some variables manually. In particular, make install prefix=/usr sets
the installation prefix.

37.3 Description

This package provides a Pure module for David Robillard’s Lilv, a library for LV2 plugin
host writers. LV2 is the new Linux audio plugin standard (LADSPA successor) which aims
to be portable and extensible. Lilv makes it possible to load LV2 plugins in audio and other
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multimedia software. It is provided as a comprehensive and well-tested reference imple-
mentation for LV2 plugin hosts, so that authors of multimedia software don’t have to craft
their own (and often incomplete or bug-ridden) implementations of the LV2 plugin API.

This module is still under development, but we already offer operations to retrieve infor-
mation about the LV2 plugins installed on a system, and to instantiate and run most basic
plugins. Support for MIDI input and output and handling LV2 presets and plugin state is
also available. More work is still needed in order to support more exotic event types such as
transport state and tempo changes, and any other extensions which may be required to run
more advanced plugins. We’re still trying to figure these out, so if you notice anything that’s
missing in the current implementation then please submit a feature request.

Documentation still needs to be written. For the time being, please refer to the lilv.pure
script for a description of the programming interface, and to the scripts in the examples
folder for examples showing how to use the operations provided by this module. Specif-
ically, have a look at the lilv_examp.pure script which illustrates most the API functions
and how they are used in a Pure script. There’s also a fairly complete software synthe-
sizer example, synth.pure, which shows how to run instrument and effect plugins in a
synth/effects chain in order to synthesize audio from MIDI input. Another complete ex-
ample is the lv2plugin~ host for Pd which is written entirely in Pure; you can find this at
https://bitbucket.org/agraef/pd-lv2plugin.

Here’s a brief excerpt from lilv_examp.pure which shows the necessary steps involved in
running an LV2 audio plugin with Pure:

// Import the module.
using lilv;
// Load the LV2 world state.
let world = lilv::world;

// Instantiate a plugin.
let p = lilv::plugin world "http://faust-lv2.googlecode.com/amp" 44100 64;

// Get some information about the plugin (number of audio inputs and
// outputs, port descriptions).
let n,m = lilv::num_audio_inputs p, lilv::num_audio_outputs p;
let ports = [i, lilv::port_info p i | i = 0..lilv::num_ports p-1];

// Create some audio buffers for input and output.
let in = dmatrix {0,1,0,-1,0,1,-1,0;0,1,0,-1,0,1,-1,0};
let out = dmatrix (2,8);

// Activate the plugin.
lilv::activate p;

// Run some samples through the plugin.
lilv::run p in out;

// Set a control value.
lilv::set_control p 2 10;
// Compute some more samples.
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lilv::run p in out;
// Get the values of some output controls.
map (lilv::get_control p) [4,5];

// Send a MIDI message.
lilv::set_midi p 10 [{0xb0, 7, 127}];
// Compute some more samples.
lilv::run p in out;
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Chapter 38
pure-lv2

Version 0.2, September 17, 2014

Albert Gräf <aggraef@gmail.com>

38.1 Copying

pure-lv2 is Copyright (c) 2014 by Albert Gräf. It is distributed under a 3-clause BSD license,
please check the COPYING file included in the distribution for details.

38.2 Installation

Get the latest source from https://bitbucket.org/purelang/pure-lang/downloads/pure-
lv2-0.2.tar.gz.

Make sure that you have the latest Pure version installed. Pure 0.60 or later is needed.

Run make to compile and sudo make install to install the module. This installs the lv2.pure
module and the source of the LV2 plugin wrapper (lv2pure.c, lv2pure.h) in the Pure library
directory, and the pure2lv2 script in the bin directory, under the same installation prefix as
the Pure interpreter. To uninstall the module, use sudo make uninstall. There are a number
of other targets (mostly for maintainers), please see the Makefile for details.

make tries to guess your Pure installation directory and platform-specific setup. If it gets this
wrong, you can set some variables manually, please see the Makefile for details.

38.3 Description

LV2 is the new Linux audio plugin standard (successor of the venerable LADSPA standard)
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which aims to be portable and extensible. LV2 plugins can process any combination of audio,
MIDI and control data in order to implement various kinds of real-time signal processing
modules for use in digital audio and MIDI software such as Ardour and Qtractor. A com-
panion module is available which lets you implement LV2 plugin hosts in Pure, see pure-lilv:
Pure Lilv Interface. Support for Miller Puckette’s graphical computer music and multimedia
software Pd is available through the author’s lv2plugin~ external. Moreover, stand-alone
LV2 hosts such as jalv can be used to interface with other software which doesn’t support
LV2 directly, via the Jack audio connection kit.

This package provides a generic LV2 plugin wrapper for Pure which can be linked with
batch-compiled Pure scripts to obtain LV2 plugin modules. For convenience, a shell script
named pure2lv2 is included, which lets you compile the plugin and turn it into a complete
LV2 bundle (consisting of an LV2 plugin manifest and the plugin binary), ready to be loaded
by any LV2 host. The package also includes an lv2.pure module which provides the opera-
tions needed to implement the functionality of a plugin, such as functions to read and write
LV2 port data in Pure.

Our implementation supports all standard LV2 port types (including MIDI via LV2 atom
ports) and should thus be able to work with most LV2 hosts right out of the box. Experimen-
tal support for the LV2 time extension is also available, so that MIDI plugins written in Pure
can obtain musical time and position data if the host supports this; please check lv2.pure
for details. The package includes several examples which demonstrate how to write LV2
plugins of various kinds in Pure, specifically:

• pure_amp.pure shows how to do basic audio and control processing in order to am-
plify an incoming audio signal.

• pure_transp.pure demonstrates how to implement a simple MIDI processing module
which transposes incoming MIDI notes.

• pure_metro.pure shows how to implement a MIDI metronome by making use of the
musical time and tempo data provided by the LV2 time extension (this currently re-
quires Ardour to work).

Please also check the Usage section below for information on how to run the pure2lv2 script.

38.4 Requirements and Limitations

Our implementation uses LV2’s dynamic manifests, so that the plugin manifest, which de-
scribes the ports and other properties of the plugin, can be included in the plugin module.
This makes things easier, but requires an LV2 host which supports the dynamic manifest
extension (most LV2 hosts nowadays do; this includes all the hosts we mentioned above).

As the Pure runtime isn’t thread-safe yet, our implementation effectively serializes the plu-
gin callbacks (invocations of the plugin function) across all Pure plugins running inside a
host. While this won’t make a difference for single-threaded LV2 hosts such as jalv and Pd,
it also makes the Pure plugins work reliably in heavily multi-threaded hosts such as Ardour.
However, the serialization of callbacks may become a major bottleneck if a multi-threaded
host runs many Pure plugins concurrently on a multi-processor machine. At present there is
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no way around this, but hopefully this limitation will go away in the not-too-distant future
when the Pure runtime becomes thread-safe.

38.5 Usage

A summary of the command syntax and options of the pure2lv2 script can be printed
with purelv2 -h. Usually the script is invoked simply as pure2lv2 myplugin.pure, where
myplugin.pure is the Pure script implementing the plugin. The plugin script must provide
two functions in order to implement the functionality of the plugin:

• The manifest function returns the port descriptions from which the plugin manifest
is created when the LV2 host performs plugin discovery. This may be implemented
either as a parameter-less function or a global variable in the Pure script. In either
case it should return the list of port descriptions in a format described in the lv2.pure
module.

• The plugin function implements the plugin itself. It gets invoked with a pointer ob-
ject representing the plugin data which can be passed to the operations in the lv2.pure
module. Often the plugin will actually be implemented as a closure which also encap-
sulates the local state maintained by the plugin; please check the included examples
for details. At runtime, the plugin function gets invoked repeatedly with an additional
parameter, either a truth value denoting a change in the activation status, or the value
() to indicate that a block of samples (and/or MIDI messages and control data) is to
be processed.

Please check the included examples to get an idea how the plugin scripts look like. Here
is a simple example (an abridged version of pure_amp.pure) which multiplies an incoming
audio signal with a volume control:

using lv2;

manifest = [("vol", "Volume", lv2::controlin, 0.5, 0.0, 1.0),
("audioin", lv2::audioin), ("audioout", lv2::audioout)];

plugin self () = () when
// Process a block of samples.
vol = lv2::get_port self 0; // control value from port #0 (control input)
wav = lv2::get_port self 1; // sample data from port #1 (audio input)
// Multiply the sample data with the vol control value and output the
// resulting wave on port #2 (audio output).
lv2::set_port self 2 (map (*vol) wav);

end;

Running pure2lv2 myplugin.pure turns the plugin script into an LV2 bundle, which will be
written to myplugin.lv2 by default (i.e., using the same basename as the plugin script). You
can also specify a different name and path for the bundle directory with the -o (or --output)
option, and a custom URI prefix for the bundle with the -u (or --uriprefix) option. Before
you can use the plugin with your LV2 hosts, you still have to move the bundle directory to
a directory on your LV2_PATH (unless you already specified a suitable target path with -o).
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The examples folder in the source package contains a GNU Makefile which shows how to
automate this process.

Normally the Pure code of the plugin will be compiled to a native object file which gets
linked directly into the plugin binary. However, there’s also a -s (or --script) option which
copies the source script (along with any additional source files specified after the plugin
script on the command line) to the bundle directory instead, from where it will be loaded
dynamically when the plugin is used. This increases load times, sometimes substantially,
since the Pure interpreter will have to JIT-compile the Pure script every time the host starts
up and loads the plugins. But it also reduces turnaround times since you can easily change
the plugin script right inside the bundle, without having to run pure2lv2 in between; this
may be convenient when developing and testing a plugin.
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pure-midi

Version 0.6, September 17, 2014

Albert Graef <aggraef@gmail.com>

This is a MIDI interface for the Pure programming language (Pure 0.45 or later is required).
It includes the following modules:

• midi.pure: A PortMidi/PortTime wrapper which gives you portable access to realtime
MIDI input and output. This uses PortMidi (by Roger B. Dannenberg et al) from the
PortMedia project, see http://portmedia.sourceforge.net/.

• midifile.pure: Reading and writing standard MIDI files. This is based on David
G. Slomin’s light-weight midifile library, which comes bundled with the pure-midi
sources.

Documentation still needs to be written, so for the time being please read the source modules
listed above and have a look at the examples provided in the distribution.

39.1 Installation

Get the latest source from https://bitbucket.org/purelang/pure-lang/downloads/pure-
midi-0.6.tar.gz.

You need to have the PortMidi library installed on your system. This release was tested with
PortMidi 2.00 (I recommend using the svn version of PortMidi, since it fixes some 64 bit
compilation problems). If you have to use some earlier PortMidi version then you may have
to fiddle with portmidi.pure and/or midi.pure to make it work. (You can also just regenerate
the wrapper by copying portmidi.h and porttime.h from your PortMidi installation to the
pure-midi source directory and running ‘make generate’. This requires pure-gen. See the
toplevel Makefile for details.)

Run ‘make’ to compile the package. If you’re lucky and everything compiles smoothly, you
can install with ‘sudo make install’.
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If you’re not so lucky, you can get help on the Pure mailing list, see
http://groups.google.com/group/pure-lang.

NOTE: You may also want to install the related pure-audio package. In particular, pure-
audio also provides realtime.pure, a little utility module which gives Pure programs access
to realtime scheduling.

39.2 License

pure-midi is Copyright (c) 2010 by Albert Graef, licensed under the 3-clause BSD license, see
the COPYING file for details.

For convenience, I’ve bundled some (BSD-licensed or compatible) source files from
other packages with this release. portmidi.h and porttime.h are from PortMidi 2.00
(http://portmedia.sourceforge.net/) which is

Copyright (c) 1999-2000 Ross Bencina and Phil Burk Copyright (c) 2001-2006 Roger B. Dan-
nenberg

midifile.c and midifile.h in the midifile subdirectory are from “Div’s midi utilities”
(http://public.sreal.com:8000/~div/midi-utilities/) which is

Copyright (c) 2003-2006 David G. Slomin

Please see portmidi.h and midifile.h for the pertaining copyrights and license conditions.
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Chapter 40
Installing Pure (and LLVM)

Version 0.62, September 17, 2014

Albert Graef <aggraef@gmail.com>
Eddie Rucker <erucker@bmc.edu>

These instructions explain how to compile and install LLVM (which is the compiler back-
end required by Pure) and the Pure interpreter itself. The instructions are somewhat biased
towards Linux and other Unix-like systems; the System Notes section at the end of this file
details the tweaks necessary to make Pure compile and run on various other platforms. More
information about installing LLVM and the required LLVM source packages can be found at
http://llvm.org.

Pure is known to work on Linux, FreeBSD, NetBSD, Mac OS X and MS Windows, and should
compile (with the usual amount of tweaking) on all recent UNIX/POSIX- based platforms.
We recommend using version 4.x of the GNU C++ compiler; it should be available almost
everywhere (in fact, since you’ll need LLVM anyway, you may also use one of the LLVM-
based C/C++ compilers such as llvm-gcc or clang). You’ll also need a Bourne-compatible
shell and GNU make, which are also readily available on most platforms.

A binary package in msi format is provided for Windows users in the download area at
http://purelang.bitbucket.org. Information about ports and packages for other (UNIX-like)
systems is provided at the same location.

40.1 Quick Summary

Here is the executive summary for the impatient. This assumes that you’re using LLVM 3.4
and Pure 0.62, please substitute your actual version numbers in the commands given below.
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Note: If you’re reading this documentation online, then the Pure version described here
most likely is still under development, in which case you can either grab the latest available
release, or install from the development sources instead (see Installing From Development
Sources below).

Prerequisites: gcc, GNU make, flex/bison (development sources only), libltdl, libgmp and
libmpfr (including header files for development), wget (for downloading and installing the
online documentation), GNU emacs (if you want to use Emacs Pure mode). These should all
be available as binary packages on most systems.

You’ll probably need the latest Pure and LLVM tarballs which, at the time of this writing, are
available here:

https://bitbucket.org/purelang/pure-lang/downloads/pure-0.62.tar.gz
http://llvm.org/releases/3.4/llvm-3.4.src.tar.gz
http://llvm.org/releases/3.4/clang-3.4.src.tar.gz
http://llvm.org/releases/3.4/dragonegg-3.4.src.tar.gz

Installing LLVM and clang (the latter is optional but recommended):

$ tar xfvz llvm-3.4.src.tar.gz
$ tar xfvz clang-3.4.src.tar.gz && mv clang-3.4 llvm-3.4/tools/clang
$ cd llvm-3.4
$ ./configure --enable-shared --enable-optimized --enable-targets=host-only
$ make && sudo make install

You may want to leave out --enable-shared to install LLVM as static libraries only,
and --enable-targets=host-only if you want to enable cross compilation for all sup-
ported targets in LLVM. (With some older LLVM versions you may also have to add
--disable-assertions --disable-expensive-checks to disable stuff that makes LLVM
very slow and/or breaks it on some systems.)

If you’re running gcc 4.5 or later, you may also want to install the LLVM “DragonEgg” plugin
for gcc, please check the dragonegg section below for details.

Installing Pure:

$ tar xfvz pure-0.62.tar.gz
$ cd pure-0.62
$ ./configure --enable-release
$ make && sudo make install

Depending on your system you may have to run a utility to announce the shared LLVM and
Pure libraries to the dynamic loader. E.g., on Linux:

$ sudo /sbin/ldconfig
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It is also recommended that you run the following to make sure that the Pure interpreter
works correctly on your platform (see step 5 below for details):

$ make check

The following is optional, but if you want to read the online documentation in the interpreter
or in Emacs Pure mode, you’ll have to download and install the documentation files:

$ sudo make install-docs

This needs the wget program. You can also download and install the pure-docs tarball man-
ually in the usual way, e.g.:

$ tar xfvz pure-docs-0.62.tar.gz
$ cd pure-docs-0.62
$ sudo make install

That’s it, Pure should be ready to go now:

$ pure

Uninstalling:

$ cd pure-0.62
$ sudo make uninstall
$ cd ../llvm-3.4
$ sudo make uninstall

Please see below for much more detailed installation instructions.

40.2 Basic Installation

The basic installation process is as follows. Note that steps 1-3 are only required once.
Steps 2-3 can be avoided if binary LLVM packages are available for your system (but see
the caveats about broken LLVM packages on some systems below). Additional instructions
for compiling Pure from the latest repository sources can be found in the Installing From
Development Sources section below. Moreover, you can refer to the Other Build And Instal-
lation Options section below for details about various options available when building and
installing Pure.

Step 1. Make sure you have all the necessary dependencies installed (-dev denotes corre-
sponding development packages):

• GNU make, GNU C/C++ and the corresponding libraries;

• the GNU multiprecision library (libgmp, -dev) or some compatible replacement (see
comments below);

• the GNU multiprecision floating point library (libmpfr, -dev);

• GNU readline (libreadline, -dev) or some compatible replacement (only needed if
you want command line editing support in the interpreter; see comments below).
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• GNU Emacs (if you want to use the Emacs Pure mode).

• GNU TeXmacs (if you want to use the TeXmacs Pure plugin).

In addition, the following will be required to compile the development version (see the In-
stalling From Development Sources section below):

• autoconf and automake;

• flex and bison;

• mercurial (needed to fetch the development sources).

The following may be required to build some LLVM versions:

• GNU ltdl library (libltdl, -dev).

All dependencies are available as free software. Here are some links if you need or want to
install the dependencies from source:

• Autoconf: http://www.gnu.org/software/autoconf

• Automake: http://www.gnu.org/software/automake

• GNU C/C++: http://gcc.gnu.org

• GNU make: http://www.gnu.org/software/make

• Flex: http://flex.sourceforge.net

• Bison: http://www.gnu.org/software/bison

• GNU Emacs: http://www.gnu.org/software/emacs

• GNU TeXmacs: http://savannah.gnu.org/projects/texmacs

• GNU ltdl (part of the libtool software): http://www.gnu.org/software/libtool

• Mercurial: http://mercurial.selenic.com (There’s also a very nice Windows frontend,
TortoiseHg, see http://tortoisehg.bitbucket.org.)

The GNU multiprecision library or some compatible replacement is required for Pure’s big-
int support. Instead of GMP it’s also possible to use MPIR. You can find these here:

• GMP: http://www.gnu.org/software/gmp

• MPIR: http://www.mpir.org

If you have both GMP and MPIR installed, you can specify --with-mpir when configuring
Pure to indicate that Pure should be linked against MPIR. Note that using this option might
cause issues with some Pure modules which explicitly link against GMP. If you run into any
such problems then you should build MPIR with the --enable-gmpcompat configure option
so that it becomes a drop-in replacement for GMP (in this case the --with-mpir option isn’t
needed when configuring Pure).

In addition, Pure 0.48 and later also require the GNU multiprecision floating point library:

• MPFR: http://www.mpfr.org
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(Pure doesn’t really have built-in support for MPFR numbers, this is provided through a
separate pure-mpfr addon module instead, please check the Pure website for details. How-
ever, there is now some support for printing both GMP and MPFR numbers in the printf
and scanf functions of the system module, for which the MPFR library is needed.)

To make interactive command line editing work in the interpreter, you’ll also need GNU
readline or some compatible replacement such as BSD editline/libedit:

• GNU readline: http://cnswww.cns.cwru.edu/php/chet/readline/rltop.html

• BSD editline/libedit: http://www.thrysoee.dk/editline

We recommend GNU readline because it’s easier to use and has full UTF-8 support, but in
some situations BSD editline/libedit may be preferable for license reasons or because it’s
what the operating system provides. Pure’s configuration script automatically detects the
presence of both packages and also lets you disable readline and/or editline support using
the --without-readline and --without-editline options.

Step 2. Get and unpack the latest LLVM sources.

You can find these at http://llvm.org/releases/download.html.

You only need the llvm-2.x or 3.x tarball which contains the LLVM library as well as most
of the LLVM toolchain. LLVM 3.4 is the latest stable release at the time of this writing.
LLVM versions 2.5 thru 3.4 have all been tested and are known to work with Pure. We really
recommend using LLVM 2.8 or later, however, because LLVM has improved considerably in
recent releases. (Support for older versions may be dropped in the future.)

The latest LLVM from svn might work as well, but we don’t guarantee this. While we’re
committed to make Pure work with new LLVM versions as they become available, we’re not
able to track LLVM development in the trunk very closely. So you might run into intermittent
compilation problems, bugs and other incompatibilities when going with the svn version.

At this point we also recommend getting an LLVM-capable C/C++ compiler. This is com-
pletely optional, but you’ll need it to take advantage of the new bitcode loader in Pure 0.44
and later. The easiest way to go is to take the clang-2.x or 3.x tarball which corresponds
to your LLVM version, unpack its contents into the LLVM tools directory and rename the
clang-x.y directory to just clang. The clang compiler will then be built and installed along
with LLVM. You can also use llvm-gcc or dragonegg instead, please see Installing an LLVM-
capable C/C++ Compiler below for further details.

Note: Some (older) Linux and BSD distributions provide LLVM packages and ports which
are compiled with wrong configure options and are thus broken. If the Pure interpreter
segfaults on startup or fails its test suite (make check) then you should check whether there’s
a newer LLVM package available for your system, or compile LLVM yourself.

Step 3. Configure, build and install LLVM as follows:

$ cd llvm-3.4
$ ./configure --enable-shared --enable-optimized --enable-targets=host-only
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$ make
$ sudo make install

LLVM 2.7 and earlier may also require the flags --disable-assertions
--disable-expensive-checks to disable some features which make LLVM slow and/or
buggy on some systems. With LLVM 2.8 and later these options aren’t needed any more.

Note that the --enable-shared option builds and installs LLVM as a shared library, which is
often preferable if you’re running different LLVM-based tools and compilers on your system.
This requires LLVM 2.7 or later and may be broken on some systems. You can always leave
out that option, in which case LLVM will be linked statically into the Pure runtime library.
(You can also force Pure to be linked statically against LLVM even if you have the shared
LLVM library installed, by configuring Pure with the --with-static-llvm flag. This may
be useful if you plan to deploy the Pure runtime library on systems which don’t have LLVM
installed.)

Note: With LLVM 2.5, on x86-64 systems you have to add --enable-pic to the configure
command, so that the static LLVM libraries can be linked into the Pure runtime library. (Do
not add this option when compiling on a 32 bit system, it’s broken there.) With LLVM 2.6
and later this option isn’t needed anymore. See the comments on 32/64 bit support in the
System Notes section below for details.

Also note that the configure flags are for an optimized (non-debug) build and disable all
compilation targets but the one for your system. You might wish to play with the configure
options, but note that some options (especially --enable-expensive-checks) make LLVM
very slow and may even break the Pure interpreter on some systems.

Step 4. Get and unpack the Pure sources.

These can be downloaded from http://purelang.bitbucket.org. The latest source tarballs can
always be found under the “Featured Downloads” there.

Step 5. Configure, build and install Pure as follows (x.y denotes the current Pure version
number):

$ cd pure-x.y
$ ./configure --enable-release
$ make
$ sudo make install

The --enable-release option configures Pure for a release build. This is recommended for
maximum performance. If you leave away this option then you’ll get a default build which
includes debugging information and runtime checks useful for the Pure maintainers, but
also runs considerably slower.

To find out about other build options, you can invoke configure as ./configure --help.

The sudo make install command installs the pure program, the runtime.h header file, the
runtime library libpure.so, a Pure pkg-config file (pure.pc) and the library scripts in the
appropriate subdirectories of /usr/local; the installation prefix can be changed with the
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--prefix configure option, see Other Build And Installation Options for details. (The run-
time.h header file is not needed for normal operation, but can be used to write C/C++ ex-
tensions modules, if you need to access and manipulate Pure expressions from C/C++.)

In addition, if the presence of GNU Emacs was detected at configure time, then by default
pure-mode.el and pure-mode.elc will be installed in the Emacs site-lisp directory. make
tries to guess the proper location of the site-lisp directory, but if it guesses wrong or if you
want to install in some custom location then you can also set the elispdir make variable
accordingly. If you prefer, you can also disable the automatic installation of the elisp files
by running configure with ./configure --without-elisp. (In that case, it’s still possible to
install the elisp files manually with make install-el install-elc.)

Similarly, if you have GNU TeXmacs on your system and configure can locate it, the cor-
responding Pure plugin will be installed into the TeXmacs plugins directory. make tries to
guess the proper location of the TeXmacs plugins directory, but if it guesses wrong or if you
want to install in some custom location then you can also set the tmdir make variable accord-
ingly. If you prefer, you can also disable the automatic installation of the TeXmacs plugin by
running configure with ./configure --without-texmacs. (In that case, it’s still possible to
install the plugin manually with make install-tm.)

On some systems you have to tell the dynamic linker to update its cache so that it finds the
Pure runtime library. E.g., on Linux this is done as follows:

$ sudo /sbin/ldconfig

After the build is complete, you can (and should) also run a few tests to check that Pure is
working correctly on your computer:

$ make check

(This can be done before actually installing Pure, but make sure that you first run ldconfig
or similar if you installed LLVM as a shared library, otherwise make check may fail simply
because the LLVM library isn’t found.)

If all is well, all tests should pass. If not, the test directory will contain some *.diff files
containing further information about the failed tests. In that case please zip up the entire
test directory and mail it to the author, post it on the Pure mailing list, or enter a bug report
at https://bitbucket.org/purelang/pure-lang/issues. Also please include precise informa-
tion about your platform (operating system and cpu architecture) and the Pure and LLVM
versions and/or source revision numbers you’re running.

Note that make check executes the run-tests script which is generated at configure time. If
necessary, you can also run individual tests by running run-tests directly (e.g., ./run-tests
test/test020.pure test/test047.pure) or rerun only the tests that failed on the previous
invocation (./run-tests -f or, equivalently, make recheck).

Also note that MSYS 1.0.11 (or at least the diffutils package from that version) is required to
make make check work on Windows. Also, under MS Windows this step is expected to fail
on some math tests in test020.pure; this is nothing to worry about, it just indicates that some
math routines in Microsoft’s C library aren’t fully POSIX-compatible. The same applies to
BSD systems.
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If Pure appears to be broken on your system (make check reports a lot of failures), it’s often
because of a miscompiled LLVM. Please review the instructions under step 3, and check
the System Notes section to see whether your platform is known to have issues and which
workarounds may be needed. If all that doesn’t help then you might be running into LLVM
bugs and limitations on not-so-well supported platforms; in that case please also report the
results of make check as described above, so that we can try to figure out what is going on
and whether there’s a fix or workaround for the problem.

Note: If you have one of the LLVM C/C++ compilers installed (see Installing an LLVM-
capable C/C++ Compiler), you can use those to compile Pure by passing the appropriate
compiler names on the configure line:

$ ./configure --enable-release CC=clang CXX=clang++

Or, when using llvm-gcc:

$ ./configure --enable-release CC=llvm-gcc CXX=llvm-g++

llvm-gcc 4.2 and clang 2.8 or later should build Pure cleanly and pass all checks.

Step 6. Download and install the online documentation as follows:

$ sudo make install-docs

This isn’t necessary to run the interpreter, but highly recommended, as it gives you a com-
plete set of manuals in html format which covers the Pure language and interpreter, the
standard library, and all addon modules available from the Pure website. You can read these
manuals with the help command in the interpreter. You also need to have a html browser
installed to make this work. By default, the interpreter assumes w3m (a text-based browser),
you can change this by setting the BROWSER or the PURE_HELP variable accordingly.

The install-docs target requires a working Internet connection and the wget command.
Instead, you can also download the pure-docs-x.y.tar.gz tarball manually and then install
the documentation from the downloaded tarball in the usual way (the x.y version number
of the documentation tarball should correspond to your interpreter version):

$ tar xfvz pure-docs-x.y.tar.gz
$ cd pure-docs-x.y
$ sudo make install

As a bonus, downloading the package manually also gives you the documentation in pdf
format, so that you can print it if you like. In addition, as of version 0.56 the tarball also
contains the documentation in TeXmacs format so that you can read it inside TeXmacs (see
TeXmacs Plugin below). After unpacking the tarball and installing the html documentation,
you can install the TeXmacs-formatted documentation as follows:

$ sudo make install-tm

Step 7. The Pure interpreter should be ready to go now.

Run Pure interactively as:
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$ pure

__ \ | | __| _ \ Pure 0.62 (x86_64-unknown-linux-gnu)
| | | | | __/ Copyright (c) 2008-2014 by Albert Graef
.__/ \__,_|_| \___| (Type ’help’ for help, ’help copying’

_| for license information.)

Loaded prelude from /usr/lib/pure/prelude.pure.

Check that it works:

> 6*7;
42

Read the online documentation:

> help

Exit the interpreter (you can also just type the end-of-file character at the beginning of a line,
i.e., Ctrl-D on Unix):

> quit

You can also run the interpreter from GNU Emacs and GNU TeXmacs (see below), and for
Windows there is a nice GUI application named “PurePad” which makes it easy to edit and
run your Pure scripts.

40.3 Emacs Pure Mode

This step is optional, but if you’re friends with Emacs then you should definitely give Pure
mode a try. This is an Emacs programming mode which turns Emacs into an advanced IDE
to edit and run Pure programs. If Emacs was detected by configure then after running make
and sudo make install the required elisp files should already be installed in the Emacs
site-lisp directory (unless you specifically disabled this with the --without-elisp configure
option).

Note: make tries to guess the Emacs installation prefix. If it gets this wrong, you can also set
the make variable elispdir to point to your site-lisp directory. (In fact, you can specify any
directory on Emacs’ loadpath for elispdir.)

Before you can use Pure mode, you still have to add some stuff to your .emacs file to load
the mode at startup. A minimal setup looks like this:

(require ’pure-mode)
(setq auto-mode-alist

(cons ’("\\.pure\\(rc\\)?$" . pure-mode) auto-mode-alist))
(add-hook ’pure-mode-hook ’turn-on-font-lock)
(add-hook ’pure-eval-mode-hook ’turn-on-font-lock)
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This loads Pure mode, associates the .pure and .purerc filename extensions with it, and en-
ables syntax highlighting.

Other useful options are described at the beginning of the pure-mode.el file. In particular,
we recommend installing emacs-w3m and enabling it as follows in your .emacs file, so that
you can read the online documentation in Emacs:

(require ’w3m-load)

Also, you can enable code folding by adding this to your .emacs:

(require ’hideshow)
(add-hook ’pure-mode-hook ’hs-minor-mode)

These lines should come before the loading of Pure mode in your .emacs, so that Pure mode
can adjust accordingly.

Once Emacs has been configured to load Pure mode, you can just run it with a Pure file to
check that it works, e.g.:

$ emacs examples/hello.pure

The online help about Pure mode can be read with C-h m. The Pure documentation can be
accessed in Pure mode with C-c h.

40.4 TeXmacs Plugin

Pure 0.56 has full support for running Pure as a session in GNU TeXmacs. This is triggered
by the --texmacs option of the interpreter. If TeXmacs was detected by configure then after
running make and sudo make install the required plugin files should already be installed
in the system-wide TeXmacs plugins directory and you should be able to find Pure in TeX-
macs’ Insert / Session and Document / Scripts menus. TeXmacs help is also included; after
installation this should be available with the Help / Plug-ins / Pure menu option. Or you
can just go and read the TeXmacs documents (.tm files) in texmacs/plugins/pure/doc in-
cluded in the distribution.

Note: make tries to guess the TeXmacs installation prefix. If it gets this wrong, you can also
set the make variable tmdir to point to your TeXmacs plugins directory. By default, the plu-
gin files will be installed in the plugins/pure subdirectory of your system-wide TeXmacs
directory, usually /usr/local/share/TeXmacs or similar. Removing the plugins/pure direc-
tory is sufficient to uninstall the plugin; you can also do this with sudo make uninstall-tm.

It’s also possible to disable the automatic installation by invoking configure with the
--without-texmacs option. To do a manual installation, it should be sufficient to drop
the texmacs/plugins/pure directory in the distribution into your personal TeXmacs plu-
gins folder, usually ~/.TeXmacs/plugins. You can also do this with make install-tm
tmdir=~/.TeXmacs (in this case, uninstall with make uninstall-tm tmdir=~/.TeXmacs).
This has the advantage that it doesn’t require root access and you can easily edit the plu-
gin files under ~/.TeXmacs/plugins/pure/progs afterwards to tailor them to your needs.
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The distributed plugin has support for reading the Pure online help in TeXmacs format. See
Step 6 under Basic Installation above for instructions on how you can obtain the necessary
TeXmacs files and install them in the Pure library directory along with the html documen-
tation. (The TeXmacs-formatted documentation needs a little style file named puredoc.ts
which is included in the distribution and will be installed when doing make install or
make install-tm. You can also just drop the file into your ~/.TeXmacs/packages folder to
make TeXmacs find it.)

If the distributed plugin doesn’t work for you, as a fallback option you can try the following
minimal setup instead. This lacks all the bells and whistles of the distributed plugin, but
should be sufficient to run a basic Pure session in TeXmacs, and should hopefully work with
any TeXmacs version which has plugin support at all.

(plugin-configure pure
(:require (url-exists-in-path? "pure"))
(:launch "pure -i --texmacs")
(:session "Pure"))

This Scheme file should go into ~/.TeXmacs/plugins/pure/progs/init-pure.scm. Note that
both the -i and --texmacs options are required in the launch command to make this work
(you might also want to add the -q option to suppress the signon message of the interpreter).

40.5 Installing an LLVM-capable C/C++ Compiler

As already mentioned above, we suggest that you also install a C/C++ compiler with an
LLVM backend. Clang, llvm-gcc as well as the new dragonegg gcc plugin are all fully sup-
ported by Pure. Pure can be used without this, but then you’ll miss out on the LLVM bitcode
loader and C/C++ inlining facilities in Pure 0.44 and later. (However, you can always install
clang, llvm-gcc and/or dragonegg at a later time to enable these features.)

40.5.1 clang

With LLVM 2.8 and later, we recommend installing clang, the new LLVM-based C/C++
compiler (http://clang.llvm.org/). It’s much easier to build, runs faster and has better diag-
nostics than gcc. Also, as of Pure 0.55 it is the default for compiling inline C/C++ code, so
it’s the easiest way to go if you want to use that feature.

If you haven’t built clang along with LLVM yet, you can now just drop the contents of the
clang-x.y tarball into the llvm-x.y/tools directory, renaming the resulting clang-x.y direc-
tory to just clang. Then build and install clang as follows:

$ cd llvm-3.4/tools/clang
$ make
$ sudo make install
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40.5.2 llvm-gcc

Note: This section applies to LLVM versions up to 2.9. With LLVM 3.0 or later, llvm-gcc is
not supported any more and you should use clang or dragonegg instead.

If available, llvm-gcc can be installed either as an alternative or in addition to clang. The
main advantage of llvm-gcc over clang is that it has additional language frontends (Ada and
Fortran).

Installing llvm-gcc from source actually isn’t all that difficult, if a bit time-consuming. As-
suming that you have unpacked both the LLVM and the llvm-gcc sources in the same direc-
tory, you can build and install llvm-gcc as follows:

$ cd llvm-gcc-4.2-2.9.source
$ mkdir obj
$ cd obj
$ ../configure --program-prefix=llvm- --enable-llvm=$PWD/../../llvm-2.9 --enable-languages=c,c++
$ make
$ sudo make install

(You might wish to add fortran to --enable-languages if you also want to build the Fortran
compiler, and, likewise, ada for the Ada compiler.)

Be patient, this takes a while.

Having installed llvm-gcc, you can add something like the following lines to your shell
startup files, so that Pure uses it for inlined C/C++/Fortran code:

export PURE_CC=llvm-gcc
export PURE_CXX=llvm-g++
export PURE_FC=llvm-gfortran

40.5.3 dragonegg

If you’re running LLVM 3.x, then instead of llvm-gcc you should use “DragonEgg”
(http://dragonegg.llvm.org/), the new LLVM backend for gcc >=4.5. This is provided in
the form of a plugin which, if you have gcc 4.5 or later, readily plugs into your existing
system compiler.

If you already have a suitable gcc version, installing DragonEgg is a piece of cake. First, make
sure that you have the mpc and gcc plugin development files installed (packages mpc-dev
and gcc-plugin-dev on Ubuntu). Then, after unpacking the dragonegg source tarball or
downloading the svn sources, install dragonegg as follows:

$ make
$ sudo cp dragonegg.so ‘gcc -print-file-name=plugin‘

Finally, add something like the following lines to your shell startup files, so that Pure uses
gcc+dragonegg for all inlined C/C++/Fortran code:
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export PURE_CC="gcc -fplugin=dragonegg"
export PURE_CXX="g++ -fplugin=dragonegg"
export PURE_FC="gfortran -fplugin=dragonegg"

(Please also check the README file included in the dragonegg package for further instal-
lation and usage instructions. Also, examples/bitcode/Makefile in the Pure distribution
demonstrates how to use gcc+dragonegg as an external compiler to generate LLVM bitcode
from the command line.)

40.6 Installing From Development Sources

The latest development version of Pure is available in its Mercurial (Hg) source code reposi-
tory. You can browse the repository at:

https://bitbucket.org/purelang/pure-lang

(You’ll notice that the repository also contains various addon modules. See the pure subdi-
rectory for the latest sources of the Pure interpreter itself.)

Note that if you’re going with the development sources, you’ll also need fairly recent ver-
sions of autoconf, flex and bison (autoconf 2.63, flex 2.5.31 and bison 2.3 should be ok).

To compile from the development sources, replace steps 4 and 5 above with:

Step 4’. Fetch the latest sources from the repository:

$ hg clone https://bitbucket.org/purelang/pure-lang

This clones the repository and puts it into the pure-lang subdirectory in the current directory.
(Project members please use https: instead of http: if you’re planning to push any changes
back to the server.) This step needs to be done only once; once you’ve cloned the repository,
you can update it to the latest revision at any time by running hg pull -u.

Step 5’. Configure, build and install Pure.

This is pretty much the same as with the distribution tarball, except that you need to run ‘au-
toreconf’ once to generate the configure script which isn’t included in the source repository.

$ cd pure-lang/pure
$ autoreconf
$ ./configure --enable-release
$ make
$ sudo make install

(Don’t forget to also run make check to make sure that the interpreter is in good working
condition.)

Step 6’. In addition, you can also build and install a recent snapshot of the documentation
from the repository.
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You need to have a recent Sphinx version installed to do that; you can find this at
http://sphinx.pocoo.org/. Have a look at the Makefile in the pure-lang/sphinx subdirec-
tory or type make help there for instructions.

Alternatively, a ready-made recent snapshot of the documentation in html and pdf formats
is also available in its own repository, which can be cloned as follows (the documentation is
in the docs subdirectory):

$ hg clone https://bitbucket.org/purelang/purelang.bitbucket.org

40.7 Other Build and Installation Options

The Pure configure script takes a few options which enable you to change the installation
path and control a number of other build options. Moreover, there are some environment
variables which also affect compilation and installation.

Use ./configure --help to print a summary of the provided options.

40.7.1 Installation Path

By default, the pure program, the runtime.h header file, the runtime library, the pure.pc
file and the library scripts are installed in /usr/local/bin, /usr/local/include/pure,
/usr/local/lib, /usr/local/lib/pkg-config and /usr/local/lib/pure, respectively. This can
be changed by specifying the desired installation prefix with the --prefix option, e.g.:

$ ./configure --enable-release --prefix=/usr

In addition, the DESTDIR variable enables package maintainers to install Pure into a special
“staging” directory, so that installed files can be packaged more easily. If set at installation
time, DESTDIR will be used as an additional prefix to all installation paths. For instance, the
following command will put all installed files into the tmp-root subdirectory of the current
directory:

$ make install DESTDIR=tmp-root

Note that if you install Pure into a non-standard location, you may have to set
LD_LIBRARY_PATH or a similar variable so that the dynamic linker finds the Pure runtime
library, libpure.so. Also, when compiling and linking addon modules you might have to
set C_INCLUDE_PATH and LIBRARY_PATH (or similar) so that the header and library of the run-
time library is found. (This will become unnecessary once all addon modules have been
converted to use pkg-config, see below, but this isn’t the case right now.) On some systems
(notably, BSD) this is even necessary with the default prefix, because /usr/local is not in the
default search paths.

As of Pure 0.47, Pure also installs a pkg-config file which may be queried by module Make-
files to determine how to build a module and link it against the Pure runtime library; see Pkg-
config Support below. This file will usually be installed into $(prefix)/lib/pkg-config.
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Again, if you use a non-standard installation prefix, you will have to tell pkg-config about
the location of the file by adjusting the PKG_CONFIG_PATH environment variable accordingly,
see pkg-config(1) for details.

40.7.2 Tool Prefix and LLVM Version

On some systems the LLVM toolchain may be located in special directories not on the PATH,
so that different LLVM installations can coexist on the same system. This is often the case,
e.g., if LLVM was installed from a binary package.

To deal with this situation, the configure script distributed with Pure 0.55 and later allows
you to specify the directory with the LLVM toolchain using the --with-tool-prefix config-
ure option. E.g.:

$ ./configure --with-tool-prefix=/usr/lib/llvm-3.4/bin

This is also the directory where configure will first look for the llvm-config script, so that
the proper LLVM version is selected for compilation.

You can also specify the desired LLVM version with the --with-llvm-version option. This
causes configure to look for the llvm-config-x.y script on the PATH, where x.y is the speci-
fied version number. If this option isn’t specified, the default is to look for the llvm-config
script on the PATH (this should always work if you installed LLVM from source).

If none of these yield a usable llvm-config script, configure will try to locate an
llvm-config-x.y script by iterating through some recent LLVM releases, preferring the lat-
est version if found. If this fails, too, configure gives up and prints an error message indicat-
ing that it couldn’t locate a suitable LLVM installation. This is a fatal error, so if you see this
then you’ll either have to install LLVM yourself, or try to locate a suitable LLVM installation
and tell configure about it, using the options explained above.

40.7.3 Versioned Installations

Beginning with version 0.4, Pure fully supports parallel installations of different versions
of the interpreter. As of Pure 0.21, to enable this you have to specify --enable-versioned
when running configure:

$ ./configure --enable-release --enable-versioned

When this option is enabled, bin/pure, include/pure, lib/pure, lib/pkg-config/pure.pc
and man/man1/pure.1 are actually symbolic links to the current version (bin/pure-x.y,
include/pure-x.y etc., where x.y is the version number). If you install a new version of
the interpreter, the old version remains available as pure-x.y.

Note that versioned and unversioned installations don’t mix very well, it’s either one or the
other. If you already have an unversioned install of Pure, you must first remove it before
switching to the versioned scheme.
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It is possible, however, to have versioned and unversioned installations under different in-
stallation prefixes. For instance, having an unversioned install under /usr and several ver-
sioned installations under /usr/local is ok.

40.7.4 Separate Build Directory

It is possible to build Pure in a separate directory, in order to keep your source tree tidy and
clean, or to build multiple versions of the interpreter with different compilation flags from
the same source tree.

To these ends, just cd to the build directory and run configure and make there, e.g. (this
assumes that you start from the source directory):

$ mkdir BUILD
$ cd BUILD
$ ../configure --enable-release
$ make

40.7.5 Compiler and Linker Options

There are a number of environment variables you can set on the configure command line if
you need special compiler or linker options:

• CPPFLAGS: preprocessor options (-I, -D, etc.)

• CXXFLAGS: C++ compilation options (-g, -O, etc.)

• CFLAGS: C compilation options (-g, -O, etc.)

• LDFLAGS: linker flags (-s, -L, etc.)

• LIBS: additional objects and libraries (-lfoo, bar.o, etc.)

(The CFLAGS variable is only used to build the pure_main.o module which is linked into
batch-compiled executables, see “Batch Compilation” in the manual for details.)

For instance, the following configure command changes the default compilation options to
-g and adds /opt/include and /opt/lib to the include and library search paths, respectively:

$ ./configure CPPFLAGS=-I/opt/include CXXFLAGS=-g LDFLAGS=-L/opt/lib

More details on the build and installation process and other available targets and options
can be found in the Makefile.

40.7.6 Predefined Build Types

For convenience, configure provides some options to set up CPPFLAGS and CXXFLAGS for var-
ious build types. Please note that most of these options assume gcc right now, so if you use
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another compiler you’ll probably have to set up compilation flags manually by using the
variables described in the previous section instead.

The default build includes debugging information and additional runtime checks which pro-
vide diagnostics useful for maintainers if anything is wrong with the interpreter. It is also
noticeably slower than the “release” build. If you want to enjoy maximum performance, you
should configure Pure for a release build as follows:

$ ./configure --enable-release

This disables all runtime checks and debugging information in the interpreter, and uses
a higher optimization level (-O3), making the interpreter go substantially faster on most
systems.

To get smaller executables with either the default or the release build, add LDFLAGS=-s to
the configure command (gcc only, other compilers may provide a similar flag or a separate
command to strip compiled executables and libraries).

You can also do a “debug” build as follows:

$ ./configure --enable-debug

This is like the default build, but disables all optimizations, so compilation is faster but the
compiled interpreter is much slower than even the default build. Hence this build is only
recommended for debugging purposes.

You can combine all build types with the --enable-warnings option to enable compiler
warnings (-Wall):

$ ./configure --enable-release --enable-warnings

This option is useful to check the interpreter sources for questionable constructs which might
actually be bugs. However, for some older gcc versions it spits out lots of bogus warnings,
so it is not enabled by default.

In addition, there is an option to build a “monolithic” interpreter which is linked statically
instead of producing a separate runtime library:

$ ./configure --enable-release --disable-shared

We strongly discourage from using this option, since it drastically increases the size of the
executable and thereby the memory footprint of the interpreter if several interpreter pro-
cesses are running simultaneously. It also makes it impossible to use batch compilation and
addon modules which require the runtime library. We only provide this as a workaround
for older LLVM versions which cannot be linked into shared libraries on some systems.

In general, the build options can be combined freely with the variables described in the
previous section, except that --enable-release and --enable-debug will always override
the debugging (-g) and optimization (-O) options in CFLAGS and CXXFLAGS. Other options
will be preserved. For instance, the following configures for a release build, but sets the
warning flags manually and enables C++0x support in gcc:
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$ ./configure --enable-release CFLAGS="-Wall" CXXFLAGS="-std=c++0x -Wall"

If you mix build types and manual compilation flags in this way then it’s always a good idea
to check the resulting compilation options printed out at the end of the configure run. If
configure seems to get things wrong then you’ll have to set up all required flags manually
instead.

40.7.7 Running Pure From The Source Directory

After your build is done, you should also run make check to verify that your Pure interpreter
works correctly. This can be done without installing the software. In fact, there’s no need to
install the interpreter at all if you just want to take it for a test drive, you can simply run it
from the source directory, if you set up the following environment variables (this assumes
that you built Pure in the source directory; when using a separate build directory, you’ll have
to change the paths accordingly):

LD_LIBRARY_PATH=. This is required on Linux systems so that libpure.so is found. Other
systems may require an analogous setting, or none at all.

PURELIB=./lib This is required on all systems so that the interpreter finds the prelude and
other library scripts.

After that you should be able to run the Pure interpreter from the source directory, by typing
./pure.

40.7.8 Other Targets

The Makefile supports the usual clean and distclean targets, and realclean will remove
all files created by the maintainer, including test logs and C++ source files generated from
Flex and Bison grammars. (Only use the latter if you know what you are doing, since it will
remove files which require special tools to be regenerated.)

Maintainers can roll distribution tarballs with make dist and make distcheck (the latter is
like make dist, but also does a test build and installation to verify that your tarball contains
all needed bits and pieces).

Last but not least, if you modify configure.ac for some reason then you can regenerate the
configure script and config.h.in with make config. This needs autoconf, of course. (The
distribution was prepared using autoconf 2.68.)

40.7.9 Pkg-config Support

Pure 0.47 and later install a pkg-config file (pure.pc) which lets addon modules query the
installed Pure for the information needed to build and install a module. Besides the usual
information provided by pkg-config, such as --cflags and --libs (which are set up so that
the Pure runtime header and library will be found), pure.pc also defines a few additional
variables which can be queried with pkg-config’s --variable option:
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• DLL: shared library extension for the host platform

• PIC: position-independent code flag if required on the host platform

• shared: flag used to create shared libraries on the host platform

• extraflags: same as $shared $PIC

Together with the libdir variable, this provides you with the information needed to build
and install most Pure modules without much ado. As of Pure 0.55, pure.pc also defines the
tool_prefix variable which gives the LLVM toolchain prefix specified at configure time, cf.
Tool Prefix and LLVM Version.

If you want to use this information, you need to have pkg-config installed, see http://pkg-
config.freedesktop.org. This program should be readily available on most Unix-like plat-
forms, and a Windows version is available as well. An example illustrating the use of pkg-
config can be found in the examples/hellomod directory in the sources.

40.8 System Notes

Pure is known to work on recent Linux, Mac OS X and BSD versions under x86, x86-64
(AMD/Intel x86, 32 and 64 bit) and ppc (PowerPC), as well as on MS Windows (AMD/Intel
x86, 32 bit). There are a few known quirks for specific platforms and/or LLVM versions
which are discussed below, along with corresponding workarounds.

40.8.1 All Platforms

Compiling the default and release versions using gcc with all warnings turned on (-Wall)
might give you the warning “dereferencing type-punned pointer will break strict-aliasing
rules” at some point in util.cc with some gcc versions. This is harmless and can be ignored.

If your Pure program runs out of stack space, the interpreter may segfault. While the Pure
interpreter does advisory stack checks to avoid that kind of mishap and generate an orderly
exception instead, it has no way of knowing the actual stack size available to programs on
your system. So if you’re getting segfaults due to stack overflows then you’ll have to set
an appropriate stack size limit manually with the PURE_STACK environment variable; see the
Pure manual for details.

40.8.2 LLVM 2.5

The LLVM 2.5 JIT is broken on x86-32 if it is built with --enable-pic, so make sure you do
not use this option when compiling LLVM <=2.5 on 32 bit systems. Some older LLVM 2.5
packages for Linux are broken on x86-32 for this reason (this has been reported for Ubuntu
9.04 and Fedora Core 10), the symptom being that the Pure interpreter fails a lot of checks
and/or segfaults right at startup. In that case you’ll have to find a newer, corrected package
or build your own LLVM from source instead.
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On the other hand, building the Pure runtime library (libpure) on x86-64 systems requires
that you configure LLVM 2.5 with --enable-pic so that the static LLVM libraries can be
linked into the runtime library. With LLVM 2.6 and later, this option isn’t needed anymore.

This LLVM version also has issues on PowerPC. Use LLVM 2.6 or later instead and check the
notes on PowerPC below.

Please also note that LLVM 2.5 is the oldest LLVM version that we still support right now. If
you’re still running this version (or any of the 2.x versions) then you should really upgrade.
Newer LLVM versions offer substantial improvements in both compilation time and code
quality. Support for LLVM versions older than 3.0 is likely to be dropped in future Pure
releases.

40.8.3 LLVM 3.3

Reportedly the Pure batch compiler is broken when using LLVM 3.3 on Mac OS X. If you
need the batch compiler then use either LLVM 3.2 or 3.4+ on OS X instead, these are known
to work on that platform.

40.8.4 LLVM 3.4+

On Linux, the llc program from LLVM 3.4 and 3.5 is known to create native assembler
(.s) code which doesn’t mangle assembler symbols as it used to be in earlier releases. When
compiling Pure modules with the batch compiler, this results in native assembler code which
can’t be compiled using the system assemblers. As a remedy, the batch compiler in Pure 0.61
and later now creates native object (.o) files directly using llc, without going through the
native assembler stage.

40.8.5 PowerPC

You’ll need Pure >= 0.35 and LLVM >= 2.6. Also make sure that you always configure LLVM
with --disable-expensive-checks and Pure with --disable-fastcc. With these settings
Pure should work fine on ppc (tested on ppc32 running Fedora Core 11 and 12), but note that
tail call optimization doesn’t work on this platform right now because of LLVM limitations.

40.8.6 Linux

Linux is the primary development platform for this software, and the sources should build
out of the box on all recent Linux distributions. Packages for various Linux distributions are
also available, please check the Pure website for details.
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40.8.7 Mac OS X

Pure should build fine on recent OS X versions, and a port by Ryan Schmidt exists in the
MacPorts collection, see http://www.macports.org/. If you install straight from the source,
make sure that you use a recent LLVM version (LLVM 2.7 or later should work fine on all
flavours of Intel Macs).

Even if you compile Pure from source, we recommend installing LLVM and the other de-
pendencies from MacPorts. In that case you’ll have to add a few options to the configure
command so that the required header files, libraries and LLVM tools are found:

./configure --enable-release --prefix=/opt/local \
CPPFLAGS=-I/opt/local/include LDFLAGS=-L/opt/local/lib \
--with-tool-prefix=/opt/local/libexec/llvm-3.4/bin

This assumes that your MacPorts installation lives under /opt/local and that you’re using
LLVM 3.4; otherwise you’ll have to adjust the configure options accordingly.

On really old Macs from the bygone PPC era you’ll have to be prepared to deal with all kinds
of issues with compilers, LLVM toolchain etc. If you’re still using one of these, your best bet
is to find a port on MacPorts which works for your OS X version.

40.8.8 BSD

FreeBSD now offers a fairly extensive selection of Pure packages in their distribution.

Compilation from source should also work fine on recent NetBSD and FreeBSD versions if
you use Pure 0.33 or later. Also make sure that you install a recent port of LLVM which has
the --enable-optimized flag enabled.

Building Pure requires GNU make, thus you will have to use gmake instead of make. In
addition to gmake, you’ll need recent versions of the following packages: perl5, flex, bison,
gmp, mpfr and readline (or editline). Depending on your system, you might also have to set
up some compiler and linker paths. E.g., the following reportedly does the trick on NetBSD:

export C_INCLUDE_PATH=/usr/local/include:/usr/pkg/include
export LIBRARY_PATH=/usr/local/lib:/usr/pkg/lib
export LD_LIBRARY_PATH=/usr/pkg/lib:/usr/local/lib

40.8.9 MS Windows

Thanks to Jiri Spitz’ perseverance, tireless testing and bug reports, the sources compile and
run fine on Windows, using the Mingw port of the GNU C++ compiler and the MSYS envi-
ronment from http://www.mingw.org/. Just do the usual ./configure && make && make
install. You’ll need LLVM, of course (which builds with Mingw just fine), and a few ad-
ditional libraries for which headers and precompiled binaries are available from the Pure
website (http://purelang.bitbucket.org).
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However, the easiest way is to just go with the Pure MSI package available on the Pure
website. This includes all required libraries and some shortcuts to run the Pure interpreter
and read online documentation in html help format, as well as “PurePad”, an alternative
GUI frontend for editing and running Pure scripts on Windows.

After installing the MSI, you might also want to go to the LLVM website and grab the LLVM
toolchain for mingw32/x86. It is sufficient to install the “LLVM binaries” package on your
system to make the Pure batch compiler work. Just unzip these into some convenient loca-
tion on your harddrive and set up PATH so that it points to the llvm-x.y directory.
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Chapter 41
Running Pure on Windows

This document provides some information pertaining to the Windows version of Pure, avail-
able from the Pure website in the form of an MSI package. Please note that the Windows
version has a custom directory layout which is more in line with standard Windows appli-
cations, and will by default be installed in the standard Program Files directory on your
system.

Normally, most things should be set up properly after you installed the MSI package, but
here are a few things that you should know when running the Windows version:

• The Pure interpreter requires the PURELIB environment variable to point to the direc-
tory containing the prelude and other library modules, available in the lib subdirec-
tory of the Pure program directory. Also, the PATH environment variable should contain
both the Pure program directory and the lib subdirectory, so that you can run the in-
terpreter and compiled programs from the command line. Both environment variables
are set automatically during installation. To make this work, you have to install the
package with administrator rights.

• The package includes a shortcut to run the Pure interpreter in a command window, as
well as a shortcut for the online documentation that you’re looking at. It also includes
the PurePad application, a GUI frontend to the Pure interpreter which lets you edit
and run Pure scripts on Windows, see Using PurePad. After installation you can find
these items in the Pure submenu of the Program menu.

• Pure scripts can be edited in any text editor. Syntax highlighting and programming
modes are provided for Emacs, Vim and various other popular text editors. After
installation you can find these in the etc subdirectory of the program directory. Please
check the files in this directory for installation instructions.

• The interpreter has a few interactive commands (ls, pwd, etc.) which require Unix-like
utilities. To make these work, we recommend installing the CoreUtils package from
the GnuWin32 project, and setting your PATH accordingly.

Optional Bits and Pieces
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The Windows package contains all that’s needed to run Pure programs with the interpreter.
However, in order to be able to run the Pure batch compiler and to make full use of the
Pure/C interface on Windows, you may need to install some third-party programming tools:

• mingw is a full version of the GNU C/C++ compiler for Windows systems. You’ll need
this in order to create native executables and libraries with the Pure batch compiler. It
is also needed for running the pure-gen utility included in this package, which can be
used to create Pure interfaces to C libraries from the corresponding C headers. And,
last but not least you can also use mingw to compile the LLVM tools and the Pure
interpreter yourself, if you prefer that.

Using mingw 4.4 or later is recommended. There’s an installer available at the mingw
website, see http://www.mingw.org/wiki/Getting_Started for details. You’ll want
to install both the C/C++ compilers and the MSYS environment. You’ll also have to
modify the PATH environment variable so that it points to the directory containing the
mingw binaries, usually c:\mingw\bin.

• The batch compiler also requires the LLVM toolchain for mingw32/x86, available from
the LLVM download page. In addition, in order to use the C/C++ code inlining feature
of the Pure interpreter, you’ll need an LLVM-enabled C/C++ compiler such as clang.
(That’s pretty much the only option on Windows right now; at the time of this writing,
the dragonegg plugin for gcc hasn’t been ported to Windows yet.)

This Pure release has been built and tested with LLVM 3.1, so that is the version that
you should get. For your convenience, here is the direct download link of the binary
package which contains both the LLVM toolchain and the clang compiler:

http://llvm.org/releases/3.1/clang+llvm-3.1-i386-mingw32-
EXPERIMENTAL.tar.bz2

You should unpack this tarball (using, e.g., 7-Zip) to a directory on your harddisk
(say, c:\llvm), and modify the PATH environment variable so that it points to the bin
subdirectory of this folder.

• Finally, the Pure program directory needs to be added to the gcc LIBRARY_PATH en-
vironment variable, so that some Windows-specific addon libraries are found when
linking compiled programs. This should be done automatically during installation,
but it’s a good idea to check the value of LIBRARY_PATH after installation and edit it as
needed.
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Chapter 42
Using PurePad

The following information is available:

• Running Pure on Windows: important release notes that you should read first

• Getting Started: a brief overview of PurePad

• Editing Scripts: manage Pure scripts with PurePad

• Running Scripts: run Pure scripts using the Pure interpreter

• Using the Log: how to interact with the Pure interpreter

• Locating Source Lines: quickly find source lines in error messages from the interpreter

Please also check the sidebar for other available documentation, including The Pure Man-
ual, the Pure Library Manual and information about various bundled modules. (Note that at
present only a subset of all available addon modules is included in the Windows distribu-
tion.)

42.1 Getting Started

PurePad is a standard Windows application, with the menus, toolbar and status line you
are familiar with (see figure below). Like the standard Windows editor from ancient times,
PurePad is a single-document application, i.e., there is only one source file open at any time.
The main window is divided into two panes. The upper pane is the source pane which
usually contains the Pure script you are currently working with. The lower pane is the log
pane in which you interact with the interpreter (input expressions to be evaluated, watch the
interpreter’s output, etc.). Editing operations, as well as the Font and Tab Stops commands in
the View menu and the Print and Print Preview commands in the File menu, always apply to
the currently selected pane, i.e., the pane which contains the cursor.

To start up the interpreter you use Script→ Run (F9) and wait for the interpreter’s > prompt
to appear. This command will run the Pure interpreter with the script currently shown in
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Figure 42.1: PurePad main window.
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the source pane (or an empty script if you haven’t yet loaded a script using the File→ Open
(Ctrl-O) command). The cursor will be placed in the log pane (see Using the Log) and you
can start typing in expressions and definitions to be evaluated. See Running Scripts for more
information on this.

To begin a new script, use the File→ New (Ctrl-N) command. Probably the next thing you
want to do is to enter your first own little Pure script. For instance, here is a version of the
factorial function:

fact n = if n>0 then n*fact (n-1) else 1;

Enter this equation into the source editor pane, save the script as fact.pure with the File→
Save (Ctrl-S) command and press F9. The cursor will be placed into the log pane and after
a while the interpreter’s > prompt will appear. You can now type an expression like

map fact (1.. 10);

and see what happens.

The currently selected pane (source or log) can be printed using the File → Print (Ctrl-P)
command; you can also obtain a print preview with the Print Preview command in the File
menu. To change the font and tabulator settings in the current pane, use the Font and Tab
Stops commands in the View menu. (Usually it is best to choose a fixed-width font here, like
Fixedsys, which is also the default. Tab stops are set to 8 by default.)

42.2 Editing Scripts

The File menu contains the usual set of operations which let you create new script files, open
existing files, save a file that has been edited, preview and print the current file and exit the
application. The View menu allows you to change tabulator settings (Tab Stops option) and
the font used for display and printing (Font option). Scripts are edited in the upper (source)
pane of the main window just as in the Windows Notepad editor. In the Edit menu you find
the common editing operations (Undo, Cut, Copy, Paste, Select All, Find, Replace, and Go To,
which allows you to jump to the line number you specify). Many of these operations can
also be accessed by means of the familiar accelerator keys or the toolbar.

42.3 Running Scripts

Once you have entered your script and saved it in a file, you can run the script using the
Pure interpreter. The relevant commands can be found in the Script menu:

• Run runs your script with the Pure interpreter, in the directory where your source
script is located. If the interpreter is already running, it is terminated first.

• Debug invokes the interpreter with the built-in debugger. This allows you to trace the
calculations (“reductions” in Pure parlance) performed by your script. Note that to

42.2 Editing Scripts 877



Pure Language and Library Documentation, Release 0.62

actually debug a function, you must first set a breakpoint using the interpreter’s break
command; please see The Pure Manual for details.

• Break sends a Ctrl-C to the interpreter process. This allows you to interrupt the inter-
preter when it is doing a time-intensive evaluation, is producing output or is waiting
for input.

• Quit exits the interpreter. This usually has the same effect as typing quit at the in-
terpreter’s prompt and is performed automatically when PurePad is exited and the
interpreter is still active. It also kills off the interpreter process if it does not terminate
within a reasonable amount of time after it has been notified.

As soon as the script has been started, the cursor switches to the log (the lower pane), the
interpreter’s prompt will appear and you can start typing definitions and expressions, and
watch the interpreter print the results. The log pane is an edit control into which you can
type text as usual. It also has some special commands which allow you to access an input
history and to quickly locate positions in source files, see Using the Log for details.

If you run a script which has errors in it then the Pure compiler will display a list of error
messages. To quickly locate the source file positions listed in the error messages, use the
commands described in Locating Source Lines.

You can check whether a script is running by taking a look at the title bar of the PurePad
window. The name of the previously started script is shown there inside brackets. If it is
preceded with the text Terminated -, then the script is not currently running, either because
the interpreter was exited in a regular fashion, or because some other, unexpected event
happened, like a stack overflow.

There are a number of other items in the Script menu which deal with the running script and
the interpreter’s configuration:

• Open reopens the previously started script (the one whose name is shown inside brack-
ets in the title bar) in the upper source pane. This operation is useful when you have
opened other source files and now want to quickly reload your “main” script.

• The Prompt option allows you to change the interpreter’s prompt (this only becomes
effective when the interpreter is started the next time using the Run or the Debug com-
mand).

• History File, History Size. With these options you can set the name of the file used to
store the input history, and the size of the history, respectively (see Using the Log for
details).

• Reset Log. When this option is checked, the log is cleared any time a new script is run.

42.4 Using the Log

The log, the lower pane of the PurePad main window, is an edit control which logs both
your input to the interpreter and the interpreter’s output. In the log you can use all the
usual editing operations, as well as the commands in the Edit menu. Furthermore, printouts
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and print previews of the current contents of the log can be obtained using the corresponding
operations of the File menu, and the View menu allows you to change tabulator settings and
the font used for display and printing.

The size (i.e. number of lines) of the log is limited. This limit (500 lines by default, but
you can change this manually with the Windows regedit utility) is necessary because each
evaluation can produce an arbitrary amount of output, while the text size of a Windows edit
control is usually limited to 64 KB.

When the interpreter is currently running, typing Return in the last line (the current input
line) of the log sends the line (with the prompt removed) to the interpreter. In fact, any
line in the log window, not only the last one, can be edited and sent to the interpreter using
Ctrl-Return. When using this command, the line is copied down to the end of the log.

The log also maintains an input history for the (non-empty) lines you sent to the interpreter.
When positioned at the input line, you can browse through this history using the Ctrl-Up
and Ctrl-Down cursor keys (which recall and insert the previous and the next input line,
respectively). Ctrl-PgUp and Ctrl-PgDn go to the first and the last line of the history, respec-
tively. Finally, you can search the history using the Shift-Ctrl-Up and Shift-Ctrl-Down
keys which look for the closest previous (resp. next) history line which matches the text be-
fore the current cursor position. The size of the input history (100 lines by default) can be set
using the History Size option of the Script menu. Furthermore, the history is stored in a text
file (PurePadHistory by default) when PurePad is exited. You can switch to another history
file using the History File command in the Script menu.

42.5 Locating Source Lines

To quickly locate the source line of an error message shown in the log pane, PurePad pro-
vides some keyboard commands and toolbar buttons which can be invoked from both the
source and the log pane.

• F3 (Next Error, > button) finds and displays the position of the next source line reference
in the log, starting below the current line in the log.

• Shift-F3 (Previous Error, < button) finds and displays the position of the previous
source line reference in the log, starting above the current line in the log.

• Ctrl-F3 (Last Error, >> button) finds and displays the position of the last source line
reference in a sequence of consecutive messages in the log, starting at or above the
current line in the log.

• Shift-Ctrl-F3 (First Error, << button) finds and displays the position of the first source
line reference in a sequence of consecutive messages in the log, starting at or above the
current line in the log.

Each of these commands opens the file indicated by the message (if it is not open already)
and sets the cursor to the corresponding line. Furthermore, it marks the message in the
log and also displays the source position in the status line. Please note that since PurePad
is a single-document application, opening a new source file in this manner closes the file
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currently in the source pane. If this file has been modified, you will be prompted to save the
file, just as if you used the File→ Open command.

Another useful command in the View menu, which is often used in conjunction with the
above operations is To Input Line (Esc) which quickly returns you to the input (i.e., last) line
in the log pane.
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Chapter 43
Reporting Bugs

Pure is still under development, but the language and its standard library are fairly stable
and mature. If you find a bug or other deficiency in either the documentation, the Pure
interpreter or one of the library modules, we would like to know about it. You can submit
bug reports at the Pure issue tracker which is available here:

https://bitbucket.org/purelang/pure-lang/issues

If you are unsure if the problem you are hitting is really a bug, or if you’d like to discuss
possible enhancements and other kinds of fixes, then you might consider posting to the Pure
mailing list at Google Groups:

http://groups.google.com/group/pure-lang

Some issues are best discussed interactively. For these purposes we also have an IRC chat at
Freenode (archived here):

irc://irc.freenode.net/pure-lang
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gsl::cdf::exppow_Q (function), 611
gsl::cdf::fdist_P (function), 612
gsl::cdf::fdist_Pinv (function), 613
gsl::cdf::fdist_Q (function), 613
gsl::cdf::fdist_Qinv (function), 613
gsl::cdf::flat_P (function), 612
gsl::cdf::flat_Pinv (function), 612
gsl::cdf::flat_Q (function), 612
gsl::cdf::flat_Qinv (function), 612
gsl::cdf::gamma_P (function), 612
gsl::cdf::gamma_Pinv (function), 612
gsl::cdf::gamma_Q (function), 612
gsl::cdf::gamma_Qinv (function), 612
gsl::cdf::gaussian_P (function), 610

gsl::cdf::gaussian_Pinv (function), 611
gsl::cdf::gaussian_Q (function), 611
gsl::cdf::geometric_P (function), 615
gsl::cdf::geometric_Q (function), 615
gsl::cdf::guassian_Qinv (function), 611
gsl::cdf::gumbel1_P (function), 614
gsl::cdf::gumbel1_Pinv (function), 614
gsl::cdf::gumbel1_Q (function), 614
gsl::cdf::gumbel1_Qinv (function), 614
gsl::cdf::gumbel2_P (function), 614
gsl::cdf::gumbel2_Pinv (function), 614
gsl::cdf::gumbel2_Q (function), 614
gsl::cdf::gumbel2_Qinv (function), 614
gsl::cdf::hypergeometric_P (function), 615
gsl::cdf::hypergeometric_Q (function), 615
gsl::cdf::laplace_P (function), 611
gsl::cdf::laplace_Pinv (function), 611
gsl::cdf::laplace_Q (function), 611
gsl::cdf::laplace_Qinv (function), 611
gsl::cdf::logistic_P (function), 613
gsl::cdf::logistic_Pinv (function), 613
gsl::cdf::logistic_Q (function), 613
gsl::cdf::logistic_Qinv (function), 613
gsl::cdf::lognormal_P (function), 612
gsl::cdf::lognormal_Pinv (function), 612
gsl::cdf::lognormal_Q (function), 612
gsl::cdf::lognormal_Qinv (function), 612
gsl::cdf::negative_binomial_P (function), 614
gsl::cdf::negative_binomial_Q (function), 614
gsl::cdf::pareto_P (function), 613
gsl::cdf::pareto_Pinv (function), 613
gsl::cdf::pareto_Q (function), 613
gsl::cdf::pareto_Qinv (function), 613
gsl::cdf::pascal_P (function), 614
gsl::cdf::pascal_Q (function), 615
gsl::cdf::poisson_P (function), 614
gsl::cdf::poisson_Q (function), 614
gsl::cdf::rayleigh_P (function), 611
gsl::cdf::rayleigh_Pinv (function), 612
gsl::cdf::rayleigh_Q (function), 611
gsl::cdf::rayleigh_Qinv (function), 612
gsl::cdf::tdist_P (function), 613
gsl::cdf::tdist_Pinv (function), 613
gsl::cdf::tdist_Q (function), 613
gsl::cdf::tdist_Qinv (function), 613
gsl::cdf::ugaussian_P (function), 610
gsl::cdf::ugaussian_Pinv (function), 610
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gsl::cdf::ugaussian_Q (function), 610
gsl::cdf::ugaussian_Qinv (function), 610
gsl::cdf::weibull_P (function), 614
gsl::cdf::weibull_Pinv (function), 614
gsl::cdf::weibull_Q (function), 614
gsl::cdf::weibull_Qinv (function), 614
gsl::fit (module), 601
gsl::fit::linear (function), 602
gsl::fit::linear_est (function), 602
gsl::fit::mul (function), 602
gsl::fit::mul_est (function), 602
gsl::fit::wlinear (function), 602
gsl::fit::wmul (function), 602
gsl::matrix (module), 597
gsl::matrix::ceye (function), 598
gsl::matrix::cones (function), 598
gsl::matrix::czeros (function), 598
gsl::matrix::eye (function), 598
gsl::matrix::ieye (function), 598
gsl::matrix::iones (function), 598
gsl::matrix::izeros (function), 597, 598
gsl::matrix::ones (function), 598
gsl::matrix::pinv (function), 601
gsl::matrix::svd (function), 601
gsl::matrix::svd_jacobi (function), 601
gsl::matrix::svd_mod (function), 601
gsl::matrix::svd_solve (function), 601
gsl::matrix::zeros (function), 597
gsl::poly (module), 576
gsl::poly::complex_solve (function), 577
gsl::poly::complex_solve_cubic (function),

577
gsl::poly::complex_solve_quadratic (func-

tion), 577
gsl::poly::dd_eval (function), 577
gsl::poly::dd_init (function), 577
gsl::poly::dd_taylor (function), 577
gsl::poly::eval (function), 577
gsl::poly::solve_cubic (function), 577
gsl::poly::solve_quadratic (function), 577
gsl::ran::bernoulli_pdf (function), 610
gsl::ran::beta_pdf (function), 609
gsl::ran::binomial_pdf (function), 610
gsl::ran::bivariate_gaussian_pdf (function),

608
gsl::ran::cauchy_pdf (function), 609
gsl::ran::chisq_pdf (function), 609

gsl::ran::dirichlet_lnpdf (function), 610
gsl::ran::dirichlet_pdf (function), 609
gsl::ran::discrete_free (function), 610
gsl::ran::discrete_pdf (function), 610
gsl::ran::discrete_preproc (function), 610
gsl::ran::exponential_pdf (function), 608
gsl::ran::exppow_pdf (function), 609
gsl::ran::fdist_pdf (function), 609
gsl::ran::flat_pdf (function), 609
gsl::ran::gamma_pdf (function), 609
gsl::ran::gaussian_pdf (function), 608
gsl::ran::gaussian_tail_pdf (function), 608
gsl::ran::geometric_pdf (function), 610
gsl::ran::gumbel1_pdf (function), 609
gsl::ran::gumbel2_pdf (function), 609
gsl::ran::hypergeometric_pdf (function), 610
gsl::ran::landau_pdf (function), 609
gsl::ran::laplace_pdf (function), 608
gsl::ran::logarithmic_pdf (function), 610
gsl::ran::logistic_pdf (function), 609
gsl::ran::lognormal_pdf (function), 609
gsl::ran::multinomial_lnpdf (function), 610
gsl::ran::multinomial_pdf (function), 610
gsl::ran::negative_binomial_pdf (function),

610
gsl::ran::pareto_pdf (function), 609
gsl::ran::pascal_pdf (function), 610
gsl::ran::poisson_pdf (function), 610
gsl::ran::rayleigh_pdf (function), 609
gsl::ran::rayleigh_tail_pdf (function), 609
gsl::ran::tdist_pdf (function), 609
gsl::ran::ugaussian_pdf (function), 608
gsl::ran::ugaussian_tail_pdf (function), 608
gsl::ran::weibull_pdf (function), 609
gsl::randist (module), 608
gsl::sf (module), 578
gsl::sf::airy_Ai (function), 579
gsl::sf::airy_Ai_deriv (function), 579
gsl::sf::airy_Ai_deriv_e (function), 580
gsl::sf::airy_Ai_deriv_scaled (function), 580
gsl::sf::airy_Ai_deriv_scaled_e (function),

580
gsl::sf::airy_Ai_e (function), 579
gsl::sf::airy_Ai_scaled (function), 579
gsl::sf::airy_Ai_scaled_e (function), 579
gsl::sf::airy_Bi (function), 579
gsl::sf::airy_Bi_deriv (function), 580
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gsl::sf::airy_Bi_deriv_e (function), 580
gsl::sf::airy_Bi_deriv_scaled (function), 580
gsl::sf::airy_Bi_deriv_scaled_e (function), 580
gsl::sf::airy_Bi_e (function), 579
gsl::sf::airy_Bi_scaled (function), 579
gsl::sf::airy_Bi_scaled_e (function), 579
gsl::sf::airy_zero_Ai (function), 580
gsl::sf::airy_zero_Ai_deriv (function), 580
gsl::sf::airy_zero_Ai_deriv_e (function), 581
gsl::sf::airy_zero_Ai_e (function), 580
gsl::sf::airy_zero_Bi (function), 580
gsl::sf::airy_zero_Bi_deriv (function), 581
gsl::sf::airy_zero_Bi_deriv_e (function), 581
gsl::sf::airy_zero_Bi_e (function), 580
gsl::sf::bessel_I0 (function), 583
gsl::sf::bessel_I0_e (function), 583
gsl::sf::bessel_I0_scaled (function), 584
gsl::sf::bessel_i0_scaled (function), 586
gsl::sf::bessel_I0_scaled_e (function), 584
gsl::sf::bessel_i0_scaled_e (function), 586
gsl::sf::bessel_I1 (function), 583
gsl::sf::bessel_I1_e (function), 583
gsl::sf::bessel_I1_scaled (function), 584
gsl::sf::bessel_i1_scaled (function), 586
gsl::sf::bessel_I1_scaled_e (function), 584
gsl::sf::bessel_i1_scaled_e (function), 586
gsl::sf::bessel_i2_scaled (function), 586
gsl::sf::bessel_i2_scaled_e (function), 586
gsl::sf::bessel_il_scaled (function), 586
gsl::sf::bessel_il_scaled_array (function), 586
gsl::sf::bessel_il_scaled_e (function), 586
gsl::sf::bessel_In (function), 583
gsl::sf::bessel_In_array (function), 583
gsl::sf::bessel_In_e (function), 583
gsl::sf::bessel_In_scaled (function), 584
gsl::sf::bessel_In_scaled_array (function), 584
gsl::sf::bessel_In_scaled_e (function), 584
gsl::sf::bessel_Inu (function), 587
gsl::sf::bessel_Inu_e (function), 587
gsl::sf::bessel_Inu_scaled (function), 587
gsl::sf::bessel_Inu_scaled_e (function), 587
gsl::sf::bessel_J0 (function), 582
gsl::sf::bessel_j0 (function), 585
gsl::sf::bessel_J0_e (function), 582
gsl::sf::bessel_j0_e (function), 585
gsl::sf::bessel_J1 (function), 583
gsl::sf::bessel_j1 (function), 585

gsl::sf::bessel_J1_e (function), 583
gsl::sf::bessel_j1_e (function), 585
gsl::sf::bessel_j2 (function), 585
gsl::sf::bessel_j2_e (function), 585
gsl::sf::bessel_jl (function), 585
gsl::sf::bessel_jl_array (function), 585
gsl::sf::bessel_jl_e (function), 585
gsl::sf::bessel_jl_steed_array (function), 585
gsl::sf::bessel_Jn (function), 583
gsl::sf::bessel_Jn_array (function), 583
gsl::sf::bessel_Jn_e (function), 583
gsl::sf::bessel_Jnu (function), 587
gsl::sf::bessel_Jnu_e (function), 587
gsl::sf::bessel_K0 (function), 584
gsl::sf::bessel_K0_e (function), 584
gsl::sf::bessel_K0_scaled (function), 584
gsl::sf::bessel_k0_scaled (function), 586
gsl::sf::bessel_K0_scaled_e (function), 584
gsl::sf::bessel_k0_scaled_e (function), 586
gsl::sf::bessel_K1 (function), 584
gsl::sf::bessel_K1_e (function), 584
gsl::sf::bessel_K1_scaled (function), 584
gsl::sf::bessel_k1_scaled (function), 586
gsl::sf::bessel_K1_scaled_e (function), 584
gsl::sf::bessel_k1_scaled_e (function), 586
gsl::sf::bessel_k2_scaled (function), 586
gsl::sf::bessel_k2_scaled_e (function), 586
gsl::sf::bessel_kl_scaled (function), 586
gsl::sf::bessel_kl_scaled_array (function), 587
gsl::sf::bessel_kl_scaled_e (function), 587
gsl::sf::bessel_Kn (function), 584
gsl::sf::bessel_Kn_array (function), 584
gsl::sf::bessel_Kn_e (function), 584
gsl::sf::bessel_Kn_scaled (function), 585
gsl::sf::bessel_Kn_scaled_array (function),

585
gsl::sf::bessel_Kn_scaled_e (function), 585
gsl::sf::bessel_Knu (function), 587
gsl::sf::bessel_Knu_e (function), 587
gsl::sf::bessel_Knu_scaled (function), 587
gsl::sf::bessel_Knu_scaled_e (function), 587
gsl::sf::bessel_lnKnu (function), 587
gsl::sf::bessel_lnKnu_e (function), 587
gsl::sf::bessel_sequence_Jnu_e (function), 587
gsl::sf::bessel_Y0 (function), 583
gsl::sf::bessel_y0 (function), 585
gsl::sf::bessel_Y0_e (function), 583
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gsl::sf::bessel_y0_e (function), 585
gsl::sf::bessel_Y1 (function), 583
gsl::sf::bessel_y1 (function), 585
gsl::sf::bessel_Y1_e (function), 583
gsl::sf::bessel_y1_e (function), 585
gsl::sf::bessel_y2 (function), 585
gsl::sf::bessel_y2_e (function), 585
gsl::sf::bessel_yl (function), 586
gsl::sf::bessel_yl_array (function), 586
gsl::sf::bessel_yl_e (function), 586
gsl::sf::bessel_Yn (function), 583
gsl::sf::bessel_Yn_array (function), 583
gsl::sf::bessel_Yn_e (function), 583
gsl::sf::bessel_Ynu (function), 587
gsl::sf::bessel_Ynu_e (function), 587
gsl::sf::bessel_zero_J0 (function), 587
gsl::sf::bessel_zero_J0_e (function), 587
gsl::sf::bessel_zero_J1 (function), 588
gsl::sf::bessel_zero_J1_e (function), 588
gsl::sf::bessel_zero_Jnu (function), 588
gsl::sf::bessel_zero_Jnu_e (function), 588
gsl::sf::clausen (function), 592
gsl::sf::clausen_e (function), 592
gsl::sf::coulomb_CL_array (function), 593
gsl::sf::coulomb_CL_e (function), 593
gsl::sf::coulomb_wave_F_array (function),

592
gsl::sf::coulomb_wave_FG_array (function),

592
gsl::sf::coulomb_wave_FG_e (function), 592
gsl::sf::coulomb_wave_FGp_array (func-

tion), 593
gsl::sf::coulomb_wave_sphF_array (func-

tion), 593
gsl::sf::coupling_3j (function), 593
gsl::sf::coupling_3j_e (function), 593
gsl::sf::coupling_6j (function), 594
gsl::sf::coupling_6j_e (function), 594
gsl::sf::coupling_9j (function), 594
gsl::sf::coupling_9j_e (function), 594
gsl::sf::dawson (function), 594
gsl::sf::dawson_e (function), 594
gsl::sf::debye_1 (function), 595
gsl::sf::debye_1_e (function), 595
gsl::sf::debye_2 (function), 595
gsl::sf::debye_2_e (function), 595
gsl::sf::debye_3 (function), 595

gsl::sf::debye_3_e (function), 595
gsl::sf::debye_4 (function), 595
gsl::sf::debye_4_e (function), 595
gsl::sf::debye_5 (function), 595
gsl::sf::debye_5_e (function), 595
gsl::sf::debye_6 (function), 595
gsl::sf::debye_6_e (function), 595
gsl::sf::dilog (function), 596
gsl::sf::dilog_e (function), 596
gsl::sf::hydrogenicR (function), 592
gsl::sf::hydrogenicR_1 (function), 592
gsl::sf::hydrogenicR_1_e (function), 592
gsl::sf::hydrogenicR_e (function), 592
gsl::sf::multiply_e (function), 597
gsl::sf::multiply_err_e (function), 597
gsl::sort (module), 620
gsl::sort_vector (function), 620
gsl::sort_vector_index (function), 620
gsl::stats (module), 603
gsl::stats::absdev (function), 604
gsl::stats::absdev_m (function), 604
gsl::stats::correlation (function), 605
gsl::stats::covariance (function), 605
gsl::stats::covariance_m (function), 605
gsl::stats::kurtosis (function), 604
gsl::stats::kurtosis_m_sd (function), 604
gsl::stats::lag1_autocorrelation (function),

604
gsl::stats::lag1_autocorrelation_m (function),

604
gsl::stats::max (function), 605
gsl::stats::max_index (function), 606
gsl::stats::mean (function), 604
gsl::stats::median_from_sorted_data (func-

tion), 606
gsl::stats::min (function), 606
gsl::stats::min_index (function), 606
gsl::stats::minmax (function), 606
gsl::stats::minmax_index (function), 606
gsl::stats::quantile_from_sorted_data (func-

tion), 606
gsl::stats::sd (function), 604
gsl::stats::sd_m (function), 604
gsl::stats::sd_with_fixed_mean (function),

604
gsl::stats::skew (function), 604
gsl::stats::skew_m_sd (function), 604
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gsl::stats::tss (function), 604
gsl::stats::tss_m (function), 604
gsl::stats::variance (function), 604
gsl::stats::variance_with_fixed_mean (func-

tion), 604
gsl::stats::wabsdev (function), 605
gsl::stats::wabsdev_m (function), 605
gsl::stats::wkurtosis (function), 605
gsl::stats::wkurtosis_m_sd (function), 605
gsl::stats::wmean (function), 605
gsl::stats::wsd (function), 605
gsl::stats::wsd_m (function), 605
gsl::stats::wsd_with_fixed_mean (function),

605
gsl::stats::wskew (function), 605
gsl::stats::wskew_m_sd (function), 605
gsl::stats::wtss (function), 605
gsl::stats::wtss_m (function), 605
gsl::stats::wvariance (function), 605
gsl::stats::wvariance_m (function), 605
gsl::stats::wvariance_with_fixed_mean

(function), 605
gtk (module), 778

H
hash (function), 280
hash pair, 258
hash rocket, 258
hashdict (function), 386
hashdict (module), 383
hashdict (type), 384
hashdict_symbol (function), 391
hashdictp (function), 387
hashmdict (function), 386
hashmdict (type), 384
hashmdict_symbol (function), 391
hashmdictp (function), 387
hashxdict (type), 385
hashxdictp (function), 387
hbag (function), 319
hbag (type), 319
hbagp (function), 319
hdict (function), 315
hdict (type), 313
hdictp (function), 315
head (function), 259
heap (function), 312

heap (module), 312
heap (type), 312
heapp (function), 313
help (command), 192
hmdict (function), 315
hmdict (type), 314
hmdictp (function), 315
HOME, 212
hset (function), 319
hset (type), 319
hsetp (function), 319

I
i (constant), 304
id (function), 251
im (function), 273, 304, 628
imatrix (function), 270
imatrix (type), 271
imatrixp (function), 271
index (function), 260, 263
inexactp (function), 282, 643, 657
inf (constant), 277
infp (function), 282
init (function), 260
insert (function), 276, 311, 313, 316, 320, 388,

414, 442
insert_or_replace (function), 415
int (function), 280, 301, 626, 654
int (type), 50
int64_matrix (function), 275
int64_pointer (function), 274
int_matrix (function), 275
int_matrix_view (function), 275
int_pointer (function), 274
integer (type), 249
integerp (function), 282
interval::after (infix function), 659
interval::before (infix function), 659
interval::disjoint (infix function), 659
interval::interval (function), 657
interval::interval_valp (function), 657
interval::intervalp (function), 657
interval::intinterval_valp (function), 657
interval::lo_up (function), 657
interval::lower (function), 657
interval::ratinterval_valp (function), 657
interval::strictly_after (infix function), 659
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interval::strictly_before (infix function), 659
interval::strictly_disjoint (infix function), 659
interval::strictly_within (infix function), 659
interval::strictly_without (infix function), 659
interval::upper (function), 657
interval::within (infix function), 659
interval::without (infix function), 659
intp (function), 281
intval (type), 307
intvalp (function), 307
iterate (function), 261
iteraten (function), 261
iterwhile (function), 261

J
join (function), 264

K
key (function), 258
keys (function), 276, 315, 388, 419
kill (function), 339

L
lambda (type), 250
lambdap (function), 282
last (function), 260, 311, 315, 320, 442
lasterr (function), 289
lasterrpos (function), 289
lcd (function), 280
lcm (function), 648
LD_LIBRARY_PATH, 175
lilv (module), 841
lisp (function), 689
lispsym (function), 689
lispval (function), 689
list

arithmetic sequence, 255
concatenation, 254
equality, 254
indexing, 255
size, 254
slicing, 255

list (function), 256, 264, 270, 310, 313, 315,
320, 388

list (type), 249
list2 (function), 270, 310
listen (function), 379

listmap (function), 260, 420, 443
listp (function), 282
lists, 252
ln (function), 303, 627
lo (module), 839
localtime (function), 325
log (function), 303, 627
ls (command), 192
lstat (function), 332
lv2 (module), 845

M
make_ptrtag (function), 298
malloc (function), 294
malloc_error (constructor), 248
map (function), 260, 420, 443
matcat (function), 272
math (module), 302
matrix

dimensions, 267
size, 267

matrix (function), 264, 268
matrix (type), 50
matrixp (function), 281
max (function), 280
mdict (function), 315
mdict (type), 313
mdictp (function), 315
mem (command), 192
member (function), 276, 315, 320, 387, 417
members (function), 310, 313, 315, 320, 388,

419, 442
members2 (function), 310
midi (module), 849
midifile (module), 849
min (function), 280
mkarray (function), 310
mkarray2 (function), 310
mkdict (function), 315
mkhashdict (function), 387
mkhashmdict (function), 387
mkhdict (function), 315
mkhmdict (function), 315
mkmdict (function), 315
mkorddict (function), 387
mkordmdict (function), 387
mkstlmap (function), 412
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mkstlmmap (function), 412
mkstlmset (function), 412
mkstlset (function), 412
mkstlvec (function), 441
mktime (function), 325
mod (infix function), 279, 599, 600, 646
mpfr (function), 626
mpfr (module), 623
mpfr (type), 625
mpfr_get_default_prec (function), 625
mpfr_get_default_rounding_mode (func-

tion), 625
mpfr_get_prec (function), 625
mpfr_get_print_prec (function), 625
MPFR_RNDA (constant), 625
MPFR_RNDD (constant), 625
MPFR_RNDN (constant), 625
MPFR_RNDU (constant), 625
MPFR_RNDZ (constant), 625
mpfr_set_default_prec (function), 625
mpfr_set_default_rounding_mode (func-

tion), 625
mpfr_set_print_prec (function), 625
mpfrp (function), 625
mutable_stlvec (type), 437
mutable_svit (type), 437

N
nan (constant), 277
nanosleep (function), 324
nanp (function), 282
nargs (function), 287
nmatrix (type), 271
nmatrixp (function), 271
node info, 761
not (prefix function), 279, 600
NULL (constant), 277
null (function), 256, 262, 267, 282, 310, 313,

315, 320, 387
num (function), 306, 642, 667
number (type), 249
numberp (function), 282

O
octave (module), 631
octave_call (function), 633
octave_converters (function), 634

octave_eval (function), 632
octave_func (function), 634
octave_get (function), 632
octave_set (function), 632
octave_valuep (function), 635
odbc (module), 731
operators, 248
or (infix function), 279, 600, 601
ord (function), 263
orddict (function), 386
orddict (module), 383
orddict (type), 384
orddict_symbol (function), 391
orddictp (function), 387
ordmdict (function), 386
ordmdict (type), 384
ordmdict_symbol (function), 391
ordmdictp (function), 387
ordxdict (type), 385
ordxdictp (function), 387
osc (module), 839
out_of_bounds (constructor), 248, 440
override (command), 193

P
pack (function), 273
packed (function), 273
pango (module), 778
PATH, 11, 62, 137, 146, 179
pause (function), 339
pclose (function), 329
pd_error_s (C function), 828
pd_getbuffer (C function), 828
pd_getbuffersize (C function), 828
pd_getdir (C function), 827
pd_getfile (C function), 827
pd_libdir (C function), 827
pd_path (C function), 827
pd_post (C function), 828
pd_receive (C function), 828
pd_send (C function), 828
pd_setbuffer (C function), 828
pd_setbuffersize (C function), 828
pd_setfile (C function), 828
pd_time (C function), 828
pd_unreceive (C function), 828
pd_version_s (C function), 827
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perror (function), 322
pi (constant), 302
plotreset (function), 690
pointer (function), 274, 280
pointer (type), 50
pointer_cast (function), 299
pointer_tag (function), 299
pointer_type (function), 299
pointerp (function), 281
pointers (module), 301
polar (function), 304, 628
popen (function), 328
posix (module), 339
pow (function), 280, 601
precision (function), 690
pred (function), 280
printf (function), 330
ptrtag (function), 298
pure command line option

–, 9
–checks, 14
–const, 15
–ctags, 7
–disable optname, 8
–eager-jit, 8
–enable optname, 8
–escape char, 8
–etags, 7
–fold, 15
–help, 8
–main name, 8
–nochecks, 14
–noconst, 15
–noediting, 8
–nofold, 15
–noprelude, 8
–norc, 8
–nosymbolic, 15
–notc, 16
–symbolic, 15
–tc, 16
–texmacs, 9
–version, 9
-I directory, 8
-L directory, 8
-T filename, 9
-b, 7

-c, 7
-fPIC, 8
-fpic, 8
-g, 8
-h, 8
-i, 8
-l libname, 8
-mopt=val, 8
-n, 8
-o filename, 9
-q, 9
-u, 9
-v[level], 9
-w, 9
-x, 9

pure-gen command line option
–all, 365
–alt-template file, 365
–c-output file, 366
–cpp option, 364
–define name[=value], 364
–dry-run, 365
–echo, 364
–exclude pattern, 365
–help, 363
–include path, 364
–interface iface, 364
–lib-name lib, 364
–namespace name, 365
–noclobber, 365
–output file, 366
–prefix prefix, 365
–select pattern, 365
–template file, 365
–undefine name, 364
–verbose, 364
–version, 363
–warnings[=level], 364
–wrap prefix, 365
-C option, 364
-D name[=value], 364
-I path, 364
-N, 365
-P prefix, 365
-T file, 365
-U name, 364
-V, 363
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-a, 365
-c file, 366
-e, 364
-f iface, 364
-h, 363
-l lib, 364
-m name, 365
-n, 365
-o file, 366
-p prefix, 365
-s pattern, 365
-t file, 365
-v, 364
-w[level], 364
-x pattern, 365

pure-pragma command line option
–defined fun, 17
–disable option, 18
–eager fun, 16
–else, 18
–enable option, 18
–endif, 18
–if option, 18
–ifdef option, 18
–ifndef option, 18
–ifnot option, 18
–nodefined fun, 17
–nowarn, 21
–quoteargs fun, 17
–required fun, 17
–rewarn, 21
–warn, 21

PURE_CC, 179
PURE_CXX, 179
PURE_EAGER_JIT, 11
PURE_ESCAPE, 189
PURE_FAUST, 179, 182
PURE_FC, 179
PURE_HELP, 22, 190
PURE_INCLUDE, 136, 137, 175
PURE_LESS, 22
PURE_LIBRARY, 175
PURE_MORE, 196, 201
PURE_STACK, 231, 869
PURELIB, 10, 11, 22, 137
put (function), 300
put_byte (function), 295

put_double (function), 295
put_float (function), 295
put_int (function), 295
put_int64 (function), 295
put_long (function), 295
put_pointer (function), 295
put_short (function), 295
put_string (function), 295
puts (function), 329
pwd (command), 193

Q
quit (command), 193
quote (function), 39

R
raise (function), 339
random (function), 303
random31 (function), 303
random53 (function), 303
range_overflow (constructor), 440
range_overlap (constructor), 440
rat_interval (module), 656
rational (function), 305, 642
rational (module), 640
rational (type), 249
rational::_complexity_rel (prefix function),

651
rational::ceil_multiple (function), 655
rational::cmp (function), 646
rational::cmp_complexity (function), 650
rational::comp_simplify (function), 671
rational::complexity_rel (function), 651
rational::continued_fraction (function), 664
rational::continued_fraction_epsilon (func-

tion), 665
rational::continued_fraction_max_terms

(function), 664
rational::convergents (function), 665
rational::create_format (function), 673
rational::div_mod_gauss (function), 670
rational::divide (function), 645
rational::eq_cplx (infix function), 649
rational::euclid_alg (function), 670
rational::euclid_gcd (function), 670
rational::evaluate_continued_fraction (func-

tion), 665
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rational::farey (function), 652
rational::floor_multiple (function), 655
rational::fraction (function), 654
rational::gcd_gauss (function), 670
rational::intcompvalp (function), 668
rational::integer_and_fraction (function), 654
rational::join_str_real_approx (function), 680
rational::join_str_real_eng (function), 682
rational::join_str_real_recur (function), 678
rational::least_cplx (function), 650
rational::less_cplx (infix function), 649
rational::less_eq_cplx (infix function), 650
rational::mediant (function), 651
rational::modulus (function), 646
rational::more_cplx (infix function), 650
rational::more_eq_cplx (infix function), 650
rational::most_cplx (function), 651
rational::n_div_gauss (function), 670
rational::n_mod_gauss (function), 670
rational::norm_gauss (function), 670
rational::not_eq_cplx (infix function), 649
rational::num_den (function), 642, 667
rational::num_den_gauss (function), 667
rational::num_den_nat (function), 667
rational::quotient (function), 646
rational::rat_simplify (function), 652
rational::ratcomp_simplify (function), 671
rational::ratcompvalp (function), 668
rational::rational_approx_epsilon (function),

661
rational::rational_approx_max_den (func-

tion), 662
rational::rational_approxs_epsilon (func-

tion), 661
rational::rational_approxs_max_den (func-

tion), 663
rational::rational_interval_epsilon (func-

tion), 662
rational::rational_interval_max_den (func-

tion), 663
rational::reciprocal (function), 645
rational::round_multiple (function), 655
rational::round_multiple_unbiased (func-

tion), 655
rational::round_multiple_zero_bias (func-

tion), 655
rational::round_to_multiple (function), 654

rational::round_unbiased (function), 653
rational::round_zero_bias (function), 653
rational::split_str_real_eng (function), 682
rational::split_str_real_recur (function), 679
rational::str_mixed (function), 675
rational::str_real_approx_dp (function), 679
rational::str_real_approx_eng (function), 681
rational::str_real_approx_sci (function), 681
rational::str_real_approx_sf (function), 680
rational::str_real_recur (function), 677
rational::str_vulgar (function), 675
rational::str_vulgar_or_int (function), 675
rational::strs_real_approx_dp (function), 679
rational::strs_real_approx_eng (function),

681
rational::strs_real_approx_sci (function), 681
rational::strs_real_approx_sf (function), 680
rational::strs_real_recur (function), 677
rational::sval_real_eng (function), 682
rational::sval_real_recur (function), 679
rational::trunc_multiple (function), 655
rational::val_eng_approx_epsilon (function),

683
rational::val_eng_approx_max_den (func-

tion), 684
rational::val_eng_interval_epsilon (func-

tion), 684
rational::val_eng_interval_max_den (func-

tion), 684
rational::val_mixed (function), 676
rational::val_real_eng (function), 682
rational::val_real_recur (function), 678
rational::val_vulgar (function), 676
rationalp (function), 282, 643
ratval (type), 307
ratvalp (function), 306, 643
re (function), 273, 304, 628
read_history (function), 376
readdir (function), 333
readline (function), 375
readline (module), 373
real (type), 249
realloc (function), 294
realp (function), 282
realtime (module), 831
realval (type), 307
realvalp (function), 306
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record (function), 276
record (type), 276
recordp (function), 276
rect (function), 304, 628
recv (function), 379
recvfrom (function), 379
redim (function), 273
reduce (macro), 291
reduce (module), 685
reduce::capture (function), 688
reduce::feed (function), 688
reduce::finish (function), 688
reduce::in (function), 688
reduce::load (function), 688
reduce::output (function), 688
reduce::start (function), 687
reduce::switch (function), 688
reduce::verbosity (function), 688
REDUCE_PATH (variable), 687
reduce_with (function), 291
ref (function), 300
ref (type), 300
refp (function), 300
reg (function), 335
reg_info (function), 335
reg_result (function), 335
regex (function), 334
regex (module), 333
regexg (function), 335
regexgg (function), 335
regexggs (function), 336
regexgs (function), 336
regs (function), 335
regsplit (function), 335
regsplits (function), 336
regsub (function), 335
repeat (function), 261
repeatn (function), 261
replace (function), 415, 442
replace_with (function), 415
reverse (function), 256, 274
rewind (function), 329
rlist (type), 249
rlistp (function), 282
rmfirst (function), 311, 313, 316, 320, 442
rmlast (function), 311, 316, 320, 442
round (function), 281, 626, 653

row (function), 272
rowcat (function), 272
rowcatmap (function), 272, 420, 443
rowmap (function), 272, 420, 443
rowrev (function), 274
rows (function), 272
rowvector (function), 268
rowvectorp (function), 271
rowvectorseq (function), 269
run (command), 193

S
same (function), 281
samplerate (module), 831
save (command), 193
scanf (function), 331
scanl (function), 260
scanl1 (function), 260
scanr (function), 260
scanr1 (function), 260
send (function), 379
sendto (function), 379
sentry (function), 295
set (function), 319
set (module), 318
set (type), 318
set_errno (function), 322
setbuf (function), 329
setlocale (function), 323
setp (function), 319
setsockopt (function), 380
setvbuf (function), 329
sgn (function), 280, 647, 661
short_matrix (function), 275
short_pointer (function), 274
show (command), 193
shutdown (function), 379
simplify (function), 688
simplifyd (function), 689
sin (function), 303, 627
sinh (function), 303, 627
sleep (function), 324
slice (function), 257
smatrix (function), 270
smatrix (type), 271
smatrixp (function), 271
sndfile (module), 831
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sockaddr (function), 378
sockaddr_family (function), 378
sockaddr_hostname (function), 378
sockaddr_info (function), 379
sockaddr_ip (function), 378
sockaddr_path (function), 378
sockaddr_port (function), 379
sockaddr_service (function), 378
sockaddrs (function), 378
socket (function), 379
socketpair (function), 379
sockets (module), 377
sort (function), 260, 273
spawnv (function), 328
spawnve (function), 328
spawnvp (function), 328
split (function), 264
sprintf (function), 331
sql3 (module), 741
sql3::begin (function), 751
sql3::begin_exclusive (function), 751
sql3::begin_immediate (function), 751
sql3::close (function), 746
sql3::commit (function), 751
sql3::create_function (function), 753, 755
sql3::db_busy (constructor), 752
sql3::db_error (constructor), 752
sql3::exec (function), 748, 750
sql3::finalize (function), 751
sql3::is_open (function), 746
sql3::lexec (function), 749
sql3::open (function), 744
sql3::prep (function), 747
sql3::release (function), 751
sql3::rollback (function), 751
sql3::rollback_to (function), 751
sql3::savepoint (function), 751
sqrt (function), 303, 627
srandom (function), 303
sscanf (function), 331
stack_fault (constructor), 248
stat (function), 332
stats (command), 193
stderr (variable), 328
stdin (variable), 328
stdout (variable), 328
stl::accumulate (function), 453

stl::adjacent_difference (function), 453
stl::adjacent_find (function), 445
stl::allpairs (function), 443
stl::begin (function), 426
stl::beginp (function), 428
stl::binary_search (function), 449
stl::bounds (function), 413, 443
stl::bucket_size (function), 414
stl::capacity (function), 444
stl::container_info (function), 413
stl::copy (function), 446
stl::copy_backward (function), 446
stl::count (function), 413, 445
stl::count_if (function), 445
stl::dec (function), 427
stl::distance (function), 413
stl::empty (function), 413, 443
stl::equal (function), 445
stl::equal_range (function), 449
stl::fill (function), 446
stl::fill_n (function), 446
stl::find (function), 426, 444
stl::find_end (function), 445
stl::find_first_of (function), 444
stl::find_if (function), 444
stl::find_with_default (function), 427
stl::for_each (function), 444
stl::generate (function), 446
stl::generate_n (function), 447
stl::get_elm (function), 427
stl::get_info (function), 428
stl::get_key (function), 427
stl::get_val (function), 427
stl::hmap_reserve (function), 414
stl::inc (function), 427
stl::includes (function), 450
stl::inner_product (function), 453
stl::inplace_merge (function), 450
stl::insert_elm (function), 427
stl::iterator (function), 426
stl::l_bound (function), 427
stl::lexicographical_compare (function), 452
stl::lower_bound (function), 449
stl::lu_bounds (function), 427
stl::make_heap (function), 451
stl::map_difference (function), 423
stl::map_equal (function), 421
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stl::map_includes (function), 423
stl::map_intersection (function), 423
stl::map_merge (function), 423
stl::map_symmetric_difference (function),

423
stl::map_union (function), 423
stl::max_element (function), 452
stl::merge (function), 450
stl::min_element (function), 452
stl::mismatch (function), 445
stl::move (function), 427
stl::next_key (function), 417
stl::next_permutation (function), 452
stl::nth_element (function), 449
stl::partial_sort (function), 448
stl::partial_sort_copy (function), 448
stl::partial_sum (function), 453
stl::partition (function), 447
stl::pastend (function), 426
stl::pastendp (function), 428
stl::pop_heap (function), 451
stl::prev_key (function), 417
stl::prev_permutation (function), 452
stl::push_heap (function), 451
stl::put_val (function), 428
stl::random_shuffle (function), 447
stl::refc (function), 453
stl::remove (function), 447
stl::remove_copy (function), 447
stl::remove_copy_if (function), 447
stl::remove_if (function), 447
stl::replace_copy (function), 446
stl::replace_copy_if (function), 446
stl::replace_if (function), 446
stl::reserve (function), 444
stl::reverse (function), 447
stl::reverse_copy (function), 447
stl::rotate (function), 447
stl::rotate_copy (function), 447
stl::search (function), 445
stl::search_n (function), 445
stl::set_difference (function), 450
stl::set_intersection (function), 450
stl::set_symmetric_difference (function), 450
stl::set_union (function), 450
stl::shm_get (function), 424
stl::shm_member (function), 424

stl::shm_put (function), 424
stl::sm_get (function), 424
stl::sm_member (function), 424
stl::sm_put (function), 424
stl::smbeg (constructor), 410
stl::smend (constructor), 410
stl::smm_get (function), 424
stl::smm_member (function), 424
stl::smm_put (function), 424
stl::sort (function), 448
stl::sort_heap (function), 451
stl::stable_partition (function), 448
stl::stable_sort (function), 448
stl::svback (constant), 436
stl::svbeg (constant), 436
stl::svend (constant), 436
stl::swap (function), 417
stl::swap_ranges (function), 446
stl::transform (function), 446
stl::transform_2 (function), 446
stl::u_bound (function), 427
stl::unique (function), 447
stl::unique_copy (function), 447
stl::upper_bound (function), 449
stl::vector (function), 419, 443
stldict (module), 383
stldict (type), 385
stldict::begin (function), 390
stldict::dict (function), 390
stldict::end (function), 390
stldict::endp (function), 390
stldict::erase (function), 391
stldict::find (function), 390
stldict::get (function), 391
stldict::next (function), 390
stldict::put (function), 391
stldictp (function), 387
stlhmap (function), 412
stlhmap (module), 399
stlhmap (type), 410
stlhset (function), 412
stlhset (type), 410
stlmap (function), 412
stlmap (module), 399
stlmap (type), 411
stlmap_iter (type), 411
stlmap_rng (type), 411
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stlmdict (type), 385
stlmdictp (function), 387
stlmmap (function), 412
stlmmap (module), 399
stlmmap (type), 411
stlmmap_iter (type), 411
stlmmap_rng (type), 411
stlmset (function), 412
stlmset (type), 411
stlset (function), 412
stlset (type), 411
stlvec (function), 419, 441
stlvec (module), 431
stlvec (type), 437
stlvec::algorithms (module), 431
stlxdict (type), 385
stlxdictp (function), 387
str (function), 289, 626, 675
strcat (function), 264
stream (function), 257, 388, 420
strerror (function), 322
strftime (function), 325
stride (function), 272
string

comparisons, 262
concatenation, 262
indexing, 262
size, 262
slicing, 262

string (function), 264, 265
string (type), 50
string_dup (function), 265
string_list (function), 266
string_vector (function), 266
stringp (function), 281
strings, 262
strptime (function), 325
subdiag (function), 272
subdiagmat (function), 273
submat (function), 272
subseq (function), 257, 272
subseq2 (function), 272
substr (function), 263
succ (function), 280
supdiag (function), 272
supdiagmat (function), 273
svit (type), 437

symbol (type), 250
symbolp (function), 283
sysinfo (variable), 10
system (function), 327
system (module), 322

T
tail (function), 260
take (function), 260
takewhile (function), 261
tan (function), 303, 627
tanh (function), 303, 627
throw (function), 294
thunk (type), 250
thunkp (function), 282
time (function), 324
timezone (variable), 325
tk (function), 780
tk (module), 779
tk_get (function), 782
tk_join (function), 782
tk_main (function), 781
tk_quit (function), 780
tk_set (function), 782
tk_split (function), 782
tk_str (function), 783
tk_unset (function), 782
tk_val (function), 783
tmpfile (function), 329
trace (command), 194
transpose (function), 274
trap (function), 323
true (constant), 247
trunc (function), 281, 626, 653
tuple

equality, 254
indexing, 255
size, 254
slicing, 255

tuple (function), 256, 264, 270, 388
tuple (type), 249
tuplep (function), 282
tuples, 252
typep (function), 281, 745, 748
tzname (variable), 325
tzset (function), 324
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U
ubyte (function), 280
uint (function), 280
uint64 (function), 280
ulong (function), 280
uncurry (function), 252
uncurry3 (function), 252
underride (command), 194
unref (function), 300
unzip (function), 261
unzip3 (function), 261
update (function), 276, 311, 316, 388, 442
update2 (function), 311
ushort (function), 280

V
val (function), 258, 289, 293
vals (function), 276, 315, 388, 419
var (type), 250
varp (function), 283
vector (function), 268, 388
vectorp (function), 271
vectorseq (function), 269
version (variable), 10
void (function), 251

W
wait (function), 339
waitpid (function), 339
write_history (function), 376

X
xdict (type), 314
xml (module), 759
xml::add_first (function), 768
xml::add_last (function), 768
xml::add_next (function), 768
xml::add_prev (function), 768
xml::any_element (constructor), 762
xml::attr (constructor), 761
xml::attrs (function), 766
xml::cdata (constructor), 761
xml::cdata_attr (constructor), 762
xml::children (function), 765
xml::comment (constructor), 761
xml::default (constructor), 763
xml::doc (function), 765

xml::doc_info (function), 764
xml::docp (function), 760
xml::doctype (constructor), 761
xml::element (constructor), 761
xml::element_text (constructor), 761
xml::empty_element (constructor), 762
xml::entities_attr (constructor), 762
xml::entity_attr (constructor), 762
xml::entity_ref (constructor), 761
xml::enum_attr (constructor), 762
xml::ext_entity (constructor), 763
xml::ext_param_entity (constructor), 763
xml::ext_subset (function), 765
xml::first (function), 765
xml::first_attr (function), 765
xml::fixed (constructor), 763
xml::id_attr (constructor), 762
xml::idref_attr (constructor), 762
xml::idrefs_attr (constructor), 762
xml::implied (constructor), 763
xml::int_entity (constructor), 763
xml::int_param_entity (constructor), 763
xml::int_subset (function), 765
xml::is_blank_node (function), 766
xml::last (function), 765
xml::last_attr (function), 765
xml::load_file (function), 764
xml::load_string (function), 764
xml::mixed_element (constructor), 762
xml::mult (constructor), 763
xml::new_doc (function), 764
xml::next (function), 765
xml::nmtoken_attr (constructor), 762
xml::nmtokens_attr (constructor), 762
xml::node_attr (function), 767
xml::node_base (function), 767
xml::node_content (function), 767
xml::node_info (function), 766
xml::node_path (function), 767
xml::nodep (function), 760
xml::notation_attr (constructor), 762
xml::opt (constructor), 763
xml::parent (function), 765
xml::pcdata (constructor), 763
xml::pi (constructor), 761
xml::plus (constructor), 763
xml::prev (function), 765
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xml::replace (function), 767
xml::required (constructor), 763
xml::root (function), 765
xml::save_file (function), 764
xml::save_string (function), 764
xml::select (function), 766
xml::sequence (constructor), 763
xml::set_node_attr (function), 767
xml::std_element (constructor), 762
xml::text (constructor), 761
xml::undefined_element (constructor), 762
xml::union (constructor), 763
xml::unlink (function), 768
xml::unset_node_attr (function), 767
xset (type), 319
xslt::apply_stylesheet (function), 769
xslt::load_stylesheet (function), 769
xslt::save_result_file (function), 769
xslt::save_result_string (function), 769
xslt::stylesheetp (function), 760

Z
zip (function), 261
zip3 (function), 261
zipwith (function), 261
zipwith3 (function), 261
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