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Abstract

The fact that many hedge fund returns exhibit extraordinary levels of serial cor-
relation is now well-known and generally accepted as fact.Because hedge fund strate-
gies have exceptionally high autocorrelations in reported returns and this is taken
as evidence of return smoothing, we first develop a method to completely eliminate
any order of serial correlation across a wide array of time series processes.Once this
is complete, we can determine the underlying risk factors to the ”true” hedge fund
returns and examine the incremental benefit attained from using nonlinear payoffs
relative to the more traditional linear factors.
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1 Okunev White Model Methodology

Given a sample of historical returns (R1, R2, ..., RT ),the method assumes the fund manager
smooths returns in the following manner:

r0,t =
∑
i

βir0,t−i + (1− α)rm,t (1)

where :
∑
i

βi = (1− α) (2)

r0,t : is the observed (reported) return at time t (with 0 adjustments’ to reported re-
turns),
rm,t : is the true underlying (unreported) return at time t (determined by making m ad-
justments to reported returns).

The objective is to determine the true underlying return by removing the autocorrela-
tion structure in the original return series without making any assumptions regarding the
actual time series properties of the underlying process. We are implicitly assuming by this
approach that the autocorrelations that arise in reported returns are entirely due to the
smoothing behavior funds engage in when reporting results. In fact, the method may be
adopted to produce any desired level of autocorrelation at any lag and is not limited to
simply eliminating all autocorrelations.

2 To Remove Up to m Orders of Autocorrelation

To remove the first m orders of autocorrelation from a given return series we would proceed
in a manner very similar to that detailed in Geltner Return. We would initially remove
the first order autocorrelation, then proceed to eliminate the second order autocorrelation
through the iteration process. In general, to remove any order, m, autocorrelations from
a given return series we would make the following transformation to returns:

rm,t =
rm−1,t − cmrm−1,t−m

1− cm
(3)

Where rm−1,t is the series return with the first (m-1) order autocorrelation coefficient’s
removed.The general form for all the autocorrelations given by the process is :

am,n =
am−1,n(1 + c2m)− cm(1 + am−1,2m)

1 + c2m − 2cmam−1,n

(4)
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Once a solution is found for cm to create rm,t , one will need to iterate back to remove
the first ’m’autocorrelations again. One will then need to once again remove the mth
autocorrelation using the adjustment in equation (3). It would continue the process until
the first m autocorrelations are sufficiently close to zero.

3 Time Series Characteristics

Given a series of historical returns (R1, R2, ..., RT ) from January-1997 to January-2008,
create a wealth index chart, bars for per-period performance, and underwater chart for
drawdown of the Hedge Funds Indiciesfrom EDHEC Database.

3.1 Performance Summary
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After applying the Okunev White Model to remove the serial correlation , we get
the following Performance Chart.
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3.2 Autocorrelation UnSmoothing Impact

One promiment feature visible by the summary chart is the removal of serial autocor-
relation and unsoomthing of the return series.The significant drop in autocorrelation,
is visible by the following chart based on indicies of the CTA global ,Distressed Securities
and Ememrging Markets which had the highest autocorrelation .
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The change can be evidently seen by the following chart :

5



ACF Lag PlotACF Lag Plot

0.
0

0.
5

1.
0

1.
5

V
al

ue
 o

f C
oe

ffi
ci

en
t

rho1 rho2 rho3 rho4 rho5 rho6

Convertible Arbitrage CTA Global Distressed Securities

3.3 Comparing Distributions

In this example we use edhec database, to compute true Hedge Fund Returns.

> library(PerformanceAnalytics)

> data(edhec)

> Returns = Return.Okunev(edhec[,1])

> skewness(edhec[,1])

[1] -2.683657

> skewness(Returns)

[1] -1.19068

6



> # Right Shift of Returns Ditribution for a negative skewed distribution

> kurtosis(edhec[,1])

[1] 16.17819

> kurtosis(Returns)

[1] 10.59337

> # Reduction in "peakedness" around the mean

> layout(rbind(c(1, 2), c(3, 4)))

> chart.Histogram(Returns, main = "Plain", methods = NULL)

> chart.Histogram(Returns, main = "Density", breaks = 40,

+ methods = c("add.density", "add.normal"))

> chart.Histogram(Returns, main = "Skew and Kurt",

+ methods = c("add.centered", "add.rug"))

> chart.Histogram(Returns, main = "Risk Measures",

+ methods = c("add.risk"))
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The above figure shows the behaviour of the distribution tending to a normal IID
distribution.For comparitive purpose, one can observe the change in the charateristics of
return as compared to the orignal.

> library(PerformanceAnalytics)

> data(edhec)

> Returns = Return.Okunev(edhec[,1])

> layout(rbind(c(1, 2), c(3, 4)))

> chart.Histogram(edhec[,1], main = "Plain", methods = NULL)

> chart.Histogram(edhec[,1], main = "Density", breaks = 40,

+ methods = c("add.density", "add.normal"))

> chart.Histogram(edhec[,1], main = "Skew and Kurt",

+ methods = c("add.centered", "add.rug"))

> chart.Histogram(edhec[,1], main = "Risk Measures",

+ methods = c("add.risk"))
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4 Risk Measure

4.1 Mean absolute deviation

To calculate Mean absolute deviation we take the sum of the absolute value of the difference
between the returns and the mean of the returns and we divide it by the number of returns.

MeanAbsoluteDeviation =

∑n
i=1 | ri − r |

n

where ns the number of observations of the entire series, ris the return in month i and
rs the mean return
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Convertible Arbitrage CTA Global Distressed Securities

Mean absolute deviation 191.5453 5.581807 89.59503

We can observe than due to the spurious serial autocorrelation, the true volatility was
hidden, which is more than 100 % in case of Distressed Securities to the one apparent
to the investor.CTA Global, has the lowerst change, which is consistent,with the fact
with it has the lowerst autocorreration.

4.2 Frequency (p.64)

Gives the period of the return distribution (ie 12 if monthly return, 4 if quarterly return)

> data(portfolio_bacon)

> print(Frequency(portfolio_bacon[,1])) #expected 12

[1] 12

4.3 Sharpe Ratio (p.64)

The Sharpe ratio is simply the return per unit of risk (represented by variability). In the
classic case, the unit of risk is the standard deviation of the returns.

(Ra −Rf )
√
σ(Ra−Rf )

> data(managers)

> SharpeRatio(managers[,1,drop=FALSE], Rf=.035/12, FUN="StdDev")

HAM1

StdDev Sharpe (Rf=0.3%, p=95%): 0.3201889

4.4 Risk-adjusted return: MSquared (p.67)

M2s a risk adjusted return useful to judge the size of relative performance between differ-
ents portfolios. With it you can compare portfolios with different levels of risk.

M2 = rP + SR ∗ (σM − σP ) = (rP − rF ) ∗ σM
σP

+ rF

where rP is the portfolio return annualized, σM is the market risk and σP s the portfolio
risk

> data(portfolio_bacon)

> print(MSquared(portfolio_bacon[,1], portfolio_bacon[,2])) #expected 0.1068

portfolio.monthly.return....

portfolio.monthly.return.... 0.1068296
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4.5 MSquared Excess (p.68)

M2xcess is the quantity above the standard M. There is a geometric excess return which
is better for Bacon and an arithmetic excess return

M2excess(geometric) =
1 +M2

1 + b
− 1

M2excess(arithmetic) = M2 − b

where M2 is MSquared and b is the benchmark annualised return.

> data(portfolio_bacon)

> print(MSquaredExcess(portfolio_bacon[,1], portfolio_bacon[,2])) #expected -0.00998

portfolio.monthly.return....

portfolio.monthly.return.... -0.009976721

> print(MSquaredExcess(portfolio_bacon[,1], portfolio_bacon[,2], Method="arithmetic")) #expected -0.011

portfolio.monthly.return....

portfolio.monthly.return.... -0.01115381

5 Downside Risk

As we have obtained the true hedge fund returns, what is the actual VaR,drawdown and
downside potential of the indices, can be illustrated by the following example, where
we CTA Global and Distressed Securities indicies have been as sample sata sets.

The following table, shows the change in absolute value in terms of percentage, when
the Okunev White Return model has been implemented as compared to the Orginal model.
We can observe, that for the given period , before the 2008 financial crisis, the hedge fund
returns have a 100 % increase in exposure.The result is consistent , when tested on other
indicies, which show that true risk was camouflaged under the haze of smoothing in the
hedge fund industry.

CTA Global Distressed Securities

Semi Deviation 5.780347 75.67568

Gain Deviation 1.775148 70.19231

Loss Deviation 7.407407 48.18653

Downside Deviation (MAR=10%) 6.521739 75.16779

Downside Deviation (Rf=0%) 8.759124 89.07563

Downside Deviation (0%) 8.759124 89.07563
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Maximum Drawdown 2.568493 17.88831

Historical VaR (95%) 5.932203 86.24339

Historical ES (95%) 5.518764 77.75176

Modified VaR (95%) 7.988166 96.72727

Modified ES (95%) 8.644860 85.38588

6 Impact on Performance Ratios
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