
Redis for Market Monitoring
Dirk Eddelbuettel1

1Department of Statistics, University of Illinois, Urbana-Champaign, IL, USA

This version was compiled on March 15, 2022

This note shows how to use Redis cache (near-)real-time market data, and
utilise its publish/subscribe (“pub/sub”) facility to distribute the data.

Overview

Redis (Sanfilippo, 2009) is a popular, powerful, and widely-used
‘in-memory database-structure store’ or server. We provide a brief
introduction to it in a sibbling vignette (Eddelbuettel, 2022) that
is also included in package RcppRedis (Eddelbuettel and Lewis,
2022).

This note describes an interesting use case and illustrates both
the ability of Redis to act as a (short-term) data cache (for which
Redis is very frequently used) but also rely on its ability to act
as “pub/sub” message broker. The “pub/sub” (short for “pub-
lish/subscribe”) framework is common to distribute data in a con-
text where (possibly a large number of) “subscribers” consume data
provided by one or a few services, often on a local network. Entire
libraries and application frameworks such as ZeroMQ by Hintjens
and Sustrik (2010) (and literally hundreds more) have pub/sub at
its core. But as this note shows, one may not need anything apart
from a (possibly already existing) Redis client.

Use Case: Market Data

Basics. Monitoring financial market data is a very common task,
and many applications address it. In package dang we provide a
function intradayMarketMonitor() which extends earlier work
by Ulrich (2021) and does just that for the SP500 index and its sym-
bol ˆGSPC (at Yahoo! Finance). For non-tradeable index symbols
such as ˆGSPC one can retrieve near-“real-time” updates which
is nice. We put “real-time” in quotes here as there are of course
delays in the transmission from the exchange or index provide to a
service such as Yahoo! and then down a retail broadband line to
a consumer. Yet it is “close” to real-time—as opposed to explicitly
delayed data that we cover below. So intradayMarketMonitor()
runs in an endless loop, updates the symbol and plot, and after
market close once writes its history into an RDS file so that a restart
can access some history. It is nicely minimal and self-contained
design.

Figure 1 shows a plot resulting from calling the function on a
symbol, here again ˆGSPC, when two days of history have been
accumulated. (The plot was generated on a weekend with the
preceding Friday close providing the last data point.)

Possible Shortcomings. Some of the short-comings of the approach
in intradayMarketMonitor() and Ulrich (2021) are

• use of one R process per symbol
• same process used for monitoring and plotting
• no persistence until end of day

Moreover, the ‘real-time’ symbol for the main market index is
available only during (New York Stock Exchange) market hours.
Yet sometimes one wants to gauge a market reaction or ‘mood’ at
off-market hours.

Fig. 1. Intraday Market Monitoring Example

So with this, the idea arose to decouple market data acquisition
and caching from actual visualization or other monitoring. This
would also permit distributing the tasks over several machines: for
example an ‘always-on’ monitoring machine could always track the
data and store it for other ‘on-demand’ machines or applications to
access it. And as we have seen, Redis makes for a fine data ‘caching’
mechanism.

Building A Market Monitor

Data. The quantmod package by Ryan and Ulrich (2020a) provides
a function getQuote() we can use to obtain data snapshots. We
will look at ˆGSPC as before but also ES=F, the Yahoo! Finance
symbol for the ‘rolling front contract’ for the SP500 Futures trading
at CME Globex under symbol ES. (We will not get into details on
futures contracts here as the topic is extensively covered elsewhere.
We will just add that equity futures tend to trade in only one
contract (“no curve”) and roll to the next quarterly expiration at
particular dates well established and known by market practice.)

https://cran.r-project.org/package=RcppRedis Redis Market Monitoring | March 15, 2022 | 1–5

https://redis.io
https://redis.io
https://zeromq.org/
https://redis.io
https://redis.io
https://cran.r-project.org/package=RcppRedis

suppressMessages(library(quantmod))
res <- getQuote(c("ˆGSPC", "ES=F", "SPY"))
res[,1:3] # omitting chg, OHL, Vol
Trade Time Last Change
ˆGSPC 2022-02-11 17:05:08 4418.64 -85.43994
ES=F 2022-02-11 16:59:59 4418.00 -79.50000
SPY 2022-02-11 16:00:01 440.46 -8.86002

The preceding code display shows how the quantmod (Ryan
and Ulrich, 2020a) funtion getQuote() can access index data
(symbol ‘ˆGSPC’), futures data (symbol ‘ES=F’ as the rolling front
contract) as well as equity / ETF data (symbol ‘SPY’).

Storing and Publishing. Given per-security rows of data as shown
in the preceding example, we can use Redis to store the data using
the timestamp as a sorting criterion in a per-symbol stack. The
‘sorted set’ data structure is very appropriate for this. The function
get_data() transforms the result of getQuote() into a named
numeric vector suitable for our use of ‘sorted sets’.

get_data <- function(symbol) {
quote <- getQuote(symbol)
vec <- c(Time = as.numeric(quote$`Trade Time`),

Close = quote$Last,
Change = quote$Change,
PctChange = quote$`% Change`,
Volume = quote$Volume)

vec
}

Similarly, given the symbol, we can also ‘publish’ a datum with
the current values and timestamp. In the example application
included with Redis, this is done by relying on the following short
function which receives the current data record and then stores
and publish it.

store_data <- function(vec, symbol) {
redis$zadd(symbol, matrix(vec, 1))
redis$publish(symbol, paste(vec,collapse=";"))

}

In this example, the redis instance is a script-level global sym-
bol. This could easily be rewritten where it is also be passed into
the function, and vec is a simple vector of observations procured
by getQuote() as discussed in the preceding code example. The
timestamp is transformed into a numeric value making the vector
all-numeric which the format used by zadd() to added a ‘sorted’
(by the timestamp) numeric one-row matrix. Beside storing the
data, we also publish it via Redis on channel named as the symbol.
Here the numeric data is simply concatenated with a ; as separator
and sent as text.

The core functionality in the main loop is then as follows below
where we also omitted some of the error or status messaging for
brevity.

In that example, the change is volume is used as a ‘tell’ for actual
new data. This works reliably for the (main futures) markets we
follow here which have essentially constant trading activity. When
some tranquil periods occur, the gaps between stored and published
data points may be longer than the default sleep period of ten
seconds used here.

y <- try(get_data(symbol), silent = TRUE)
if (inherits(y, "try-error")) {

msg(curr_t, "Error ...") # rest omitted
errored <- TRUE
Sys.sleep(15)
next

} else if (errored) {
errored <- FALSE
msg(curr_t, "...recovered")

}
v <- y["Volume"]
if (v != prevVol) {

store_data(y, symbol)
msg(curr_t, "Storing ...") # same

}
prevVol <- v
Sys.sleep(10)

The remainder of the ‘acquiring data and storing in Redis’ code is
similar to the non-Redis using variant intradayMarketMonitor()
in dang (Eddelbuettel, 2021) that is based on the earlier work by
Ulrich (2021).

Retrieving and Subscribing. Two core routines to receive data from
Redis to plot both read the most recent stored data at startup, and
then grow this data set via a subscription to the updates published
to the channel.

We first show the initial request for all data, which is then
subset to the n most recent days. We can request ‘all’ data as we
also deploy a helper script referenced in the appendix to keep the
overall data volume that is stored at ‘manageable’ and finite levels.
Adding such a step is important for a process such as this which
continually appends data which, if unchecked, would ‘eventually’
exhaust system resources.

most_recent_n_days <- function(x, n=2,
minobs=1500) {

tt <- table(as.Date(index(x)))
if (length(tt) < n) return(x)
ht <- head(tail(tt[tt>minobs], n), 1)
cutoff <- paste(format(as.Date(names(ht))),

"00:00:00")
newx <- x[index(x) >= as.POSIXct(cutoff)]
msg(Sys.time(), "most recent data starting at",

format(head(index(newx),1)))
newx

}

get_all_data <- function(symbol, host) {
m <- redis$zrange(symbol, 0, -1)
colnames(m) <- c("Time", "Close", "Change",

"PctChange", "Volume")
y <- xts(m[,-1],

order.by=anytime(as.numeric(m[,1])))
y

}

... some setup
x <- get_all_data(symbol, host)
x <- most_recent_n_days(x,ndays)

2 | https://cran.r-project.org/package=RcppRedis Eddelbuettel

https://redis.io
https://cran.r-project.org/package=RcppRedis

The updates from subscription happen in the main while()
loop. The subscription is set up as follows:

This is the callback func. assigned to a symbol
.data2xts <- function(x) {

m <- read.csv(text=x, sep=";", header=FALSE,
col.names=c("Time", "Close",

"Change","PctChange",
"Volume"))

y <- xts(m[,-1,drop=FALSE],
anytime(as.numeric(m[,1,drop=FALSE])))

y
}
programmatic version of `ES=F` <- function(x) ...
assign(symbol, .data2xts)
redis$subscribe(symbol)

The .data2xts() callback function parses the concatenated
values, and constructs a one-row object xts object. The xts package
by Ryan and Ulrich (2020b) make time-ordered appending of such
data via rbind easy which is what is done in the main loop:

y <- redisMonitorChannels(redis)
if (!is.null(y)) {

x <- rbind(x,y)
x <- x[!duplicated(index(x))]

}
show_plot(symbol, x)

The redisMonitorChannels(redis) is key to our pub/sub
mechanism here. The subscriptions are stored in the redis in-
stance, along with any optional callbacks. The function will listen
to (one or more) channels using the key Redis function listen()
and consume the next message. The key here is our addition of an
optional per-symbol callback which, if present, is used to process
the returned data. This means that in our application with the
.data2xts() function used as a per-symbol callback, the returned
variable y above is a standard xts object which rbind efficiently
appends to an existing object which is how we grow x here. (For
brevity we have omitted two statements messaging data upgrade
process to the console when running, they are included in the full
source file included in the package.)

Extending to Multiple Symbol

The pub/sub mechanism is very powerful. Listening to a market
symbol, storing it, and publishing for use on local network enables
and facilitates further use of the data.

Naturally, the idea arises to listen to multiple symbols. At first
glance, one could run one listener process by symbol. The ad-
vantage is the ease of use. A clear disadvantage is the inefficient
resource utilization.

And it turns out that we do not have to. Just how the ini-
tial quantmod::getQuote() call shows access to several sym-
bols at once, we can then process a reply from getQuote()
and store and publish multiple symbols on multiple chan-
nels. This is done in files intraday-GLOBEX-to-Redis.r and
intraday-GLOBEX-from-Redis.r. Just like the initial examples
for ES, these files show how to cover several symbols. Here we use
for: Bitcoin, SP500, Gold, and WTI Crude Oil. By sticking to the
same exchanges, here CME Globex, we can use one set of ‘open’ or
‘close’ rules.

Fig. 2. Multi-Symbol Market Monitoring Example

Data and Publishing. The following snippet fetches the data and
stores and publishes it.

symbols <- c("BTC=F", "CL=F", "ES=F", "GC=F")

get_data <- function(symbols) {
quotes <- getQuote(symbols)
quotes$Open <- quotes$High <- quotes$Low <-NULL
colnames(quotes) <- c("Time","Close","Change",

"PctChange", "Volume")
quotes$Time <- as.numeric(quotes$Time)
quotes

}

store_data <- function(res) {
symbols <- rownames(res)
res <- as.matrix(res)
for (symbol in symbols) {

vec <- res[symbol,,drop=FALSE]
redis$zadd(symbol, vec)
redis$publish(symbol,

paste(vec,collapse=";"))
}

}

It is used in the main loop inside a try() statement and error
handler.

Eddelbuettel Redis Market Monitoring | March 15, 2022 | 3

res <- try(get_data(symbols), silent = TRUE)
if (inherits(res, "try-error")) {

msg(curr_t, "Error:",
attr(res, "condition")[["message"]])

errored <- TRUE
Sys.sleep(15)
next

} else if (errored) {
errored <- FALSE
msg(curr_t, "...recovered")

}
v <- res[3, "Volume"]
if (v != prevVol) {

store_data(res)
msg(...omitted for brevity...)

}
prevVol <- v
Sys.sleep(10)

Retrieving data. The receiving side of the application works simi-
larly. First, we need to subscribe to multiple channels:

env <- new.env() # local environment for callbacks

same .data2xts() function as above

With environment 'env', assign callback
function for each symbol
res <- sapply(symbols, function(symbol) {

progr. version of `ES=F` <- function(x) ...
assign(symbol, .data2xts, envir=env)
redis$subscribe(symbol)

})

We then use a slighly generalized listener:

Callback handler for convenience
multiSymbolRedisMonitorChannels <-

function(context,
type="rdata", env=.GlobalEnv) {

res <- context$listen(type)
if (length(res) != 3 ||

res[[1]] != "message") return(res)
if (exists(res[[2]], mode="function",

envir=env)) {
data <- do.call(res[[2]],

as.list(res[[3]]),
envir=env)

val <- list(symbol=res[[2]],
data=data)

return(val)
}
res

}

The listen methods returns an object which is checked for
correct length and first component. If appropriate, the second
element is the channel symbol so if a callback function of the same
names exists, it is called with the third element, the ‘payload’. This
creates the familiar xts object with is return along with the symbol
in a two-element list.

The data is consumed in the while loop in a very similar fashion
to the one-symbol case, but we now unpack the loop and operate
on the appropriate data element.

monitor channels in context of 'env'
rl <- multiSymbolRedisMonitorChannels(redis,

env=env)
if (is.list(rl)) {

sym <- rl[["symbol"]]
x[[sym]] <- rbind(x[[sym]], rl[["data"]])
z <- tail(x[[sym]],1)
if (sym == symbols[3]) msg(#...omitted...)

} else {
msg(index(now_t), "null data in y")

}
show_plot(symbols, x)

Finally, the plot function simply plots for all symbols in the
symbols vector.

Overall, this setup is robust to data ‘surprises’ as the try()
mechanism implements an error recovery in cases of temporary
network or remote server issues. The overall design is simple:
each of the two files for, respectively, receiving-and-storing data
and accessing-and-visualizing, contains only a few short helper
functions (most of which where shown above) and a core while()
loop. We have had these running uninterrupted and without issues
for months on end.

Summary

We describe a simple yet efficient mechanism to capture and publish
‘live’ market data by relying on Redis via the RcppRedis package.

Acknowledgements

Joshua Ulrich provided a first useable monotoring loop for a life
symbol which is gratefully acknowledged, as are numerous discus-
sions about quantmod and other packages. Bryan Lewis not only
put an elegant and working pub/sub mechanism in his rredis, but
also ported it into a very elegant callback-based solution in package
RcppRedis. These features, and this monitoring application, would
not exists without the help of either Josh or Bryan.

Appendix

Data Growth. The scripts do not write the data to Redis with a
‘time-to-live’ (TTL) expiry. This means the database is growing. A
simple way to limit the growth is to invoke a pruning script from
cron once a week. We include a simple script in the pub-sub/
directory of the package.

References

Eddelbuettel D (2021). dang: ’Dang’ Associated New Goodies. R package
version 0.0.15, URL https://CRAN.R-project.org/package=dang.

Eddelbuettel D (2022). “A Brief Introduction to Redis.” doi:
10.48550/arXiv.2203.06559.

Eddelbuettel D, Lewis BW (2022). RcppRedis: ’Rcpp’ Bindings for ’Redis’ using
the ’hiredis’ Library. R package version 0.2.0, URL https://CRAN.R-Project.
org/package=RcppRedis.

Hintjens P, Sustrik M (2010). “ZeroMQ: An open-source universal messaging
library.” https://zeromq.org.

Ryan JA, Ulrich JM (2020a). quantmod: Quantitative Financial Modelling Frame-
work. R package version 0.4.18, URL https://CRAN.R-project.org/package=
quantmod.

4 | https://cran.r-project.org/package=RcppRedis Eddelbuettel

https://CRAN.R-project.org/package=dang
http://dx.doi.org/10.48550/arXiv.2203.06559
http://dx.doi.org/10.48550/arXiv.2203.06559
https://CRAN.R-Project.org/package=RcppRedis
https://CRAN.R-Project.org/package=RcppRedis
https://zeromq.org
https://CRAN.R-project.org/package=quantmod
https://CRAN.R-project.org/package=quantmod
https://cran.r-project.org/package=RcppRedis

Ryan JA, Ulrich JM (2020b). xts: eXtensible Time Series. R package version
0.12.1, URL https://CRAN.R-project.org/package=xts.

Sanfilippo S (2009). “Redis In-memory Data Structure Server.” https://redis.io.
Ulrich JM (2021). “Market-Monitoring with R.” https://gist.github.com/joshuaulrich/

ee11ef67b1461df399b84efd3c8f9f67#file-intraday-sp500-r.

Eddelbuettel Redis Market Monitoring | March 15, 2022 | 5

https://CRAN.R-project.org/package=xts
https://redis.io
https://gist.github.com/joshuaulrich/ee11ef67b1461df399b84efd3c8f9f67#file-intraday-sp500-r
https://gist.github.com/joshuaulrich/ee11ef67b1461df399b84efd3c8f9f67#file-intraday-sp500-r

	Overview
	Use Case: Market Data
	Basics
	Possible Shortcomings
	Building A Market Monitor
	Data
	Storing and Publishing
	Retrieving and Subscribing
	Extending to Multiple Symbol
	Data and Publishing
	Retrieving data
	Summary
	Acknowledgements
	Appendix
	Data Growth

