
Fast functions to perform common and specialized
data transformations (for panel data econometrics)

fscale(x, g = NULL, w = NULL, na.rm = TRUE,

mean = 0, sd = 1, ...)

fwithin(x, g = NULL, w = NULL, na.rm = TRUE,

mean = 0, theta = 1, ...)

fbetween(x, g = NULL, w = NULL, na.rm = TRUE,

fill = FALSE, ...)

fhdwithin(x, fl, w = NULL, na.rm = TRUE,

variable.wise = FALSE, ...)

fhdbetween(x, fl, w = NULL, na.rm = TRUE,

fill = FALSE, variable.wise = FALSE,)

Operators (function shortcuts with extra features):

STD(), W(), B(), HDW(), HDB()

flm(y, X, w = NULL, add.icpt = FALSE, method =

c(‘lm’,’solve’,’qr’,’arma’,’chol’,’eigen’),)

– fast (barebones) linear model fitting with 6 different solvers

fFtest(y, exc, X = NULL, w = NULL, ...)

– fast F-test of exclusion restrictions for lm’s (with HD FE)

Fast functions to perform time-based computations on
(irregular) time series and (unbalanced) panel data

flag(x, n = 1, g = NULL, t = NULL, fill = NA,)

fdiff(x, n = 1, diff = 1, g = NULL, t = NULL,

fill = NA, log = FALSE, rho = 1, ...)

fgrowth(x, n = 1, diff = 1, g = NULL, t = NULL,

fill = NA, logdiff = FALSE,

scale = 100, power = 1, ...)

Operators: L(), F(), D(), Dlog(), G()

Cumulative Sums: fcumsum(x, g, o, na.rm, fill,)

psacf(), pspacf(), psccf() | psmat()

Basics

Advanced and Fast Data Transformation with collapse : : CHEAT SHEET

CC BY SA Sebastian Krantz • sebastian.krantz@graduateinstitute.ch • sebkrantz.github.io/Rblog • Learn more at sebkrantz.github.io/collapse • package version 1.6.1 • Updated: 2021-07

collapse is a powerful (C/C++ based) package
supporting advanced (grouped, weighted, time
series, panel data and recursive) operations in R.

It also offers a fast, class-agnostic approach to data
manipulation - handling matrix and data frame
based objects in a uniform, non-destructive way.

It is well integrated with dplyr ((grouped) tibbles),
data.table, sf and plm classes for panel data, and
can be programmed using pipes (%>%, |>),
standard or non-standard evaluation.

Fast functions to perform column–wise grouped and
weighted computations on matrix-like objects:

Syntax:

Examples:

Examples:

Scaling, (Quasi-)Centering and Averaging

Advanced Transformations Advanced Data Aggregation

Fast Statistical Functions

High-Dimensional Centering and Averaging

Time Series and Panel Series

Lags / Leads, Differences and Growth Rates

Other Computations
Apply functions to rows or columns (by groups)

dapply(x, FUN, ..., MARGIN = 2) – column/row apply

BY(x, g, FUN, ...) – split-apply-combine computing

Fast multi-data-type, multi-function, weighted,
parallelized and fully customized data aggregation

collap(data, by, FUN = fmean, catFUN = fmode,

cols = NULL, w = NULL, wFUN = fsum,

custom = NULL, ...)

Where:

Examples:

Panel-ACF/PACF/CCF | Panel-Data Array

fmean, fmedian, fmode, fsum, fprod, fsd,
fvar, fmin, fmax, fnth, ffirst, flast,
fnobs, fndistinct

FUN(x, g = NULL, [w = NULL], TRA = NULL,
[na.rm = TRUE], use.g.names = TRUE,
[drop = TRUE])

x – vector, matrix, or (grouped) data frame

g – [optional]: (list of) vectors / factors or GRP() object

w – [optional]: vector of weights

TRA – [optional]: operation to transform data with computed
statistics (can also be done in post, see section below)

fmean(data[3:5], data$grp1, data$weights)

data %>% fgroup_by(grp1) %>% fmean(weights)

Using dplyr grouped tibble & centering on the median:

data %>% dplyr::group_by(grp1) %>%
fmedian(weights, TRA = “-“)

TRA(x, STATS, FUN = ‘-‘, g = NULL)

STATS – statistics matching columns of x
(e.g. aggregated matrix or data frame)

FUN – string indicating transformation to perform:

‘replace_fill‘– overwrite values with statistic
‘replace‘ – same but keep missing values in data,
‘-‘ – center, ‘-+‘ – center on overall average statistic,
‘/‘ – scale / divide , ‘%‘ – percentages, ‘+‘ – add,
‘*‘ – multiply, ‘%%‘ – modulus, ‘-%%‘ – flatten

TRA(mat, fmedian(mat, g), “-“, g)

fmedian(mat, g, TRA = “-“) – same thing

Transform by (Grouped) Replacing
or Sweeping out Statistics

Linear Models

by – one- or two-sided formula ([vars] ~ groups) or data (like g)

FUN – (list of) functions applied to numeric columns in data

catFUN – (list of) functions applied to categorical columns

cols – [optional]: columns to aggregate (if by is one-sided)

w – [optional]: one-sided formula or vector giving weights

wFUN – (list of) functions to aggregate weights passed to w

custom – [alternatively]: list mapping functions to columns e.g.
list(fmean = 1:3, fsum = 4:5, ...)

collap(data, var1 + var2 ~ grp1 + grp2)

collap(data, ~ grp1, fmedian, w = ~ weights)

collapg supports grouped data frames and NS eval:

data %>% gby(grp1) %>% collapg(w = weights)

Grouping and Ordering

Optimized functions for grouping, ordering, unique
values, and for creating and interacting factors

GRP(data, ~ grp1 + grp2) – create a grouping object
(class ‘GRP‘) from grp1 and grp2 – can be passed to g
argument – useful for programming and C/C++ development

fgroup_by(data, grp1, grp2) – attach ‘GRP‘ object to
data – a flexible grouped data frame that preserves the
attributes of data and supports fast computations

fgroup_vars(), fungroup() – get group vars & ungroup

qF(), qG() – quick conversion to factor and vector
grouping object (a factor-light class ‘qG‘)

groupid() – fast run-length-type group id (class ‘qG‘)

seqid() – group-id from integer-sequences (class ‘qG‘)

radixorder[v]() – fast Radix-based ordering

finteraction() – fast factor interactions

fdroplevels() – fast removal of unused factor levels

funique() – fast unique values / rows (by cols)

Quick Conversions
qDF(), qDT(), qTBL(), – convert vectors, arrays,
data.frames or lists to data.frame, data.table or tibble

qM() – to matrix, m[r/c]tl() – matrix rows/cols to list

as_numeric_factor(), as_character_factor()

– convert factors or all factors in a list / data.frame

List-Processing

Functions to process (nested) lists (of data objects)

ldepth() – level of nesting of list

is_unlistable() – is list composed of atomic objects

has_elem() – search if list contains certain elements

get_elem() – pull out elements from list / subset list

atomic_elem[<-](), list_elem[<-]() – get list with
atomic / sub-list elements, examining only first level of list

reg_elem(), irreg_elem() – get full list tree leading to
atomic (‘regular‘) or non-atomic (‘irregular‘) elements

rsplit() – efficient (recursive) splitting

rapply2d() – recursive apply to lists of data objects

unlist2d() – recursive row-binding to data.frame

Summary Statistics
qsu() – fast (grouped, weighted, panel-decomposed)
summary statistics for cross-sectional and panel data

descr() – detailed statistical description of data.frame

varying() – check variation within groups (panel-id‘s)

pwcor(), pwcov(), pwnobs() – pairwise correlations,
covariance and obs. (with P-value and pretty printing)

Utility Functions
.c, Vlabels[<-], namlab, na_rm, na_omit,
allNA, missing_cases, ckmatch, add_stub,

rm_stub, fnrow, seq_row, %!in%, unattrib etc...

Recode and Replace Values
recode_num(), recode_char() – recode numeric /
character values (+ regex recoding) in matrix-like objects

replace_NA(), replace_Inf(), replace_outliers()

– replace special values pad() – add observations / rows.

Fast Data
Manipulation
fselect[<-]() – select/replace cols

fsubset() – subset data (rows and cols)

colorder[v]() – reorder cols (‘v FUN‘s aid programming)

roworder[v]() – sort (reorder) rows

[f/set]transform[v][<-]() – transform cols (by reference)

fcompute[v]() – compute new cols dropping existing ones

[f/set]rename() – rename (any object with ‘names‘ attr.)

get_vars[<-]() – select/replace cols (standard evaluation)

num_vars[<-](), cat_vars[<-](), char_vars[<-](),

fact_vars[<-](), logi_vars[<-](),

date_vars[<-]() – select/replace cols by data type

add_vars[<-]() – add (column - bind) cols

https://creativecommons.org/licenses/by-sa/4.0/
mailto:sebastian.krantz@graduateinstitute.ch
https://sebkrantz.github.io/Rblog/
https://sebkrantz.github.io/collapse/

