
Package: projpred (via r-universe)
May 22, 2023

Encoding UTF-8

Title Projection Predictive Feature Selection

Version 2.5.0.9000

Date 2023-04-06

Description Performs projection predictive feature selection for generalized linear
models (Piironen, Paasiniemi, and Vehtari, 2020, <doi:10.1214/20-EJS1711>)
with or without multilevel or additive terms (Catalina, Bürkner, and
Vehtari, 2022, <https://proceedings.mlr.press/v151/catalina22a.html>), for
some ordinal and nominal regression models (Weber and Vehtari, 2023,
<arXiv:2301.01660>), and for many other regression models (using the latent
projection by Catalina, Bürkner, and Vehtari, 2021, <arXiv:2109.04702>,
which can also be applied to most of the former models). The package is
compatible with the 'rstanarm' and 'brms' packages, but other reference
models can also be used. See the vignettes and the documentation for more
information and examples.

License GPL-3 | file LICENSE

URL https://mc-stan.org/projpred/, https://discourse.mc-stan.org

BugReports https://github.com/stan-dev/projpred/issues/

Depends R (>= 3.5.0)

Imports methods,
utils,
Rcpp,
ggplot2,
scales,
rstantools (>= 2.0.0),
loo (>= 2.0.0),
lme4 (>= 1.1-28),
mvtnorm,
mgcv,
gamm4,
abind,
MASS,
ordinal,

1

https://doi.org/10.1214/20-EJS1711
https://proceedings.mlr.press/v151/catalina22a.html
https://arxiv.org/abs/2301.01660
https://arxiv.org/abs/2109.04702
https://mc-stan.org/projpred/
https://discourse.mc-stan.org
https://github.com/stan-dev/projpred/issues/

2 R topics documented:

nnet,
mclogit

Suggests ggrepel,
rstanarm,
brms,
nlme,
optimx,
ucminf,
parallel,
foreach,
iterators,
testthat,
vdiffr,
knitr,
rmarkdown,
glmnet,
cmdstanr,
rlang,
bayesplot (>= 1.5.0),
posterior,
doParallel,
future,
future.callr,
doFuture

LinkingTo Rcpp, RcppArmadillo

Additional_repositories https://mc-stan.org/r-packages/

LazyData TRUE

Roxygen list(markdown = TRUE)

RoxygenNote 7.2.3

VignetteBuilder knitr, rmarkdown

Repository https://stan-dev.r-universe.dev

RemoteUrl https://github.com/stan-dev/projpred

RemoteRef HEAD

RemoteSha a756eb7b3cac57f9967fa555b0b4f352899543f1

R topics documented:
projpred-package . 3
as.matrix.projection . 6
augdat_ilink_binom . 7
augdat_link_binom . 8
break_up_matrix_term . 9
cl_agg . 9
cv-indices . 10

https://mc-stan.org/r-packages/

projpred-package 3

cv_proportions . 11
cv_varsel . 13
df_binom . 17
df_gaussian . 18
extend_family . 19
extra-families . 23
mesquite . 24
plot.cv_proportions . 24
plot.vsel . 26
pred-projection . 30
predict.refmodel . 33
predictor_terms . 35
print.vsel . 36
print.vselsummary . 37
project . 37
ranking . 40
refmodel-init-get . 41
solution_terms . 48
suggest_size . 49
summary.vsel . 51
varsel . 54

Index 59

projpred-package Projection predictive feature selection

Description

The R package projpred performs the projection predictive variable (or "feature") selection for var-
ious regression models. We recommend to read the README file (available with enhanced formatting
online) and the main vignette (topic = "projpred", but also available online) before continuing
here.

Throughout the whole package documentation, we use the term "submodel" for all kinds of candi-
date models onto which the reference model is projected. For custom reference models, the can-
didate models don’t need to be actual submodels of the reference model, but in any case (even for
custom reference models), the candidate models are always actual submodels of the full formula
used by the search procedure. In this regard, it is correct to speak of submodels, even in case of a
custom reference model.

The following model type abbreviations will be used at multiple places throughout the documen-
tation: GLM (generalized linear model), GLMM (generalized linear multilevel—or "mixed"—
model), GAM (generalized additive model), and GAMM (generalized additive multilevel—or "mixed"—
model). Note that the term "generalized" includes the Gaussian family as well.

For the projection of the reference model onto a submodel, projpred currently relies on the fol-
lowing functions (in other words, these are the workhorse functions used by the default divergence
minimizers):

https://mc-stan.org/projpred/
https://mc-stan.org/projpred/articles/projpred.html

4 projpred-package

• Submodel without multilevel or additive terms:

– For the traditional (or latent) projection (or the augmented-data projection in case of the
binomial() or brms::bernoulli() family): An internal C++ function which basically
serves the same purpose as lm() for the gaussian() family and glm() for all other
families.

– For the augmented-data projection: MASS::polr() for the brms::cumulative() fam-
ily or rstanarm::stan_polr() fits, nnet::multinom() for the brms::categorical()
family.

• Submodel with multilevel but no additive terms:

– For the traditional (or latent) projection (or the augmented-data projection in case of the
binomial() or brms::bernoulli() family): lme4::lmer() for the gaussian() family,
lme4::glmer() for all other families.

– For the augmented-data projection: ordinal::clmm() for the brms::cumulative()
family, mclogit::mblogit() for the brms::categorical() family.

• Submodel without multilevel but additive terms: mgcv::gam().

• Submodel with multilevel and additive terms: gamm4::gamm4().

Setting the global option projpred.extra_verbose to TRUE will print out which submodel pro-
jpred is currently projecting onto as well as (if method = "forward" and verbose = TRUE in varsel()
or cv_varsel()) which submodel has been selected at those steps of the forward search for which
a percentage (of the maximum submodel size that the search is run up to) is printed. In gen-
eral, however, we cannot recommend setting this global option to TRUE for cv_varsel() with
validate_search = TRUE (simply due to the amount of information that will be printed, but also
due to the progress bar which will not work anymore as intended).

The projection of the reference model onto a submodel can be run on multiple CPU cores in par-
allel (across the projected draws). This is powered by the foreach package. Thus, any parallel (or
sequential) backend compatible with foreach can be used, e.g., the backends from packages doPar-
allel, doMPI, or doFuture. Using the global option projpred.prll_prj_trigger, the number
of projected draws below which no parallelization is applied (even if a parallel backend is regis-
tered) can be modified. Such a "trigger" threshold exists because of the computational overhead of
a parallelization which makes parallelization only useful for a sufficiently large number of projected
draws. By default, parallelization is turned off, which can also be achieved by supplying Inf (or
NULL) to option projpred.prll_prj_trigger. Note that we cannot recommend parallelizing the
projection on Windows because in our experience, the parallelization overhead is larger there, caus-
ing a parallel run to take longer than a sequential run. Also note that the parallelization works well
for GLMs, but for all other models, the fitted model objects are quite big, which—when running in
parallel—may lead to excessive memory usage which in turn may crash the R session. Thus, we
currently cannot recommend the parallelization for models other than GLMs.

In case of multilevel models, projpred offers two global options for "integrating out" group-level ef-
fects: projpred.mlvl_pred_new and projpred.mlvl_proj_ref_new. When setting projpred.mlvl_pred_new
to TRUE (default is FALSE), then at prediction time, projpred will treat group levels existing in the
training data as new group levels, implying that their group-level effects are drawn randomly from a
(multivariate) Gaussian distribution. This concerns both, the reference model and the (i.e., any) sub-
model. Furthermore, setting projpred.mlvl_pred_new to TRUE causes as.matrix.projection()
to omit the projected group-level effects (for the group levels from the original dataset). When set-
ting projpred.mlvl_proj_ref_new to TRUE (default is FALSE), then at projection time, the refer-
ence model’s fitted values (that the submodels fit to) will be computed by treating the group levels

projpred-package 5

from the original dataset as new group levels, implying that their group-level effects will be drawn
randomly from a (multivariate) Gaussian distribution (as long as the reference model is a multilevel
model, which—for custom reference models—does not need to be the case). This also affects the
latent response values for a latent projection correspondingly. Setting projpred.mlvl_pred_new
to TRUE makes sense, e.g., when the prediction task is such that any group level will be treated
as a new one. Typically, setting projpred.mlvl_proj_ref_new to TRUE only makes sense when
projpred.mlvl_pred_new is already set to TRUE. In that case, the default of FALSE for projpred.mlvl_proj_ref_new
ensures that at projection time, the submodels fit to the best possible fitted values from the reference
model, and setting projpred.mlvl_proj_ref_new to TRUE would make sense if the group-level ef-
fects should be integrated out completely.

Functions

init_refmodel(), get_refmodel() For setting up an object containing information about the ref-
erence model, the submodels, and how the projection should be carried out. Explicit calls to
init_refmodel() and get_refmodel() are only rarely needed.

varsel(), cv_varsel() For running the search part and the evaluation part for a projection pre-
dictive variable selection, possibly with cross-validation (CV).

summary.vsel(), print.vsel(), plot.vsel(), suggest_size.vsel(), ranking(), cv_proportions(), plot.cv_proportions()
For post-processing the results from varsel() and cv_varsel().

project() For projecting the reference model onto submodel(s). Typically, this follows the vari-
able selection, but it can also be applied directly (without a variable selection).

as.matrix.projection() For extracting projected parameter draws.
proj_linpred(), proj_predict() For making predictions from a submodel (after projecting the

reference model onto it).

Author(s)

Maintainer: Frank Weber <fweber144@protonmail.com>

Authors:

• Juho Piironen <juho.t.piironen@gmail.com>

• Markus Paasiniemi
• Alejandro Catalina <alecatfel@gmail.com>

• Aki Vehtari

Other contributors:

• Jonah Gabry [contributor]
• Marco Colombo [contributor]
• Paul-Christian Bürkner [contributor]
• Hamada S. Badr [contributor]
• Brian Sullivan [contributor]
• Sölvi Rögnvaldsson [contributor]
• The LME4 Authors (see file ’LICENSE’ for details) [copyright holder]
• Yann McLatchie [contributor]
• Juho Timonen [contributor]

6 as.matrix.projection

See Also

Useful links:

• https://mc-stan.org/projpred/

• https://discourse.mc-stan.org

• Report bugs at https://github.com/stan-dev/projpred/issues/

as.matrix.projection Extract projected parameter draws

Description

This is the as.matrix() method for projection objects (returned by project(), possibly as
elements of a list). It extracts the projected parameter draws and returns them as a matrix.

Usage

S3 method for class 'projection'
as.matrix(x, nm_scheme = "auto", ...)

Arguments

x An object of class projection (returned by project(), possibly as elements
of a list).

nm_scheme The naming scheme for the columns of the output matrix. Either "auto", "rstanarm",
or "brms", where "auto" chooses "rstanarm" or "brms" based on the class of
the reference model fit (and uses "rstanarm" if the reference model fit is of an
unknown class).

... Currently ignored.

Details

In case of the augmented-data projection for a multilevel submodel of a brms::categorical() ref-
erence model, the multilevel parameters (and therefore also their names) slightly differ from those
in the brms reference model fit (see section "Augmented-data projection" in extend_family()’s
documentation).

Value

An Sprj × Q matrix of projected draws, with Sprj denoting the number of projected draws and Q
the number of parameters.

https://mc-stan.org/projpred/
https://discourse.mc-stan.org
https://github.com/stan-dev/projpred/issues/

augdat_ilink_binom 7

Examples

if (requireNamespace("rstanarm", quietly = TRUE)) {
Data:
dat_gauss <- data.frame(y = df_gaussian$y, df_gaussian$x)

The "stanreg" fit which will be used as the reference model (with small
values for `chains` and `iter`, but only for technical reasons in this
example; this is not recommended in general):
fit <- rstanarm::stan_glm(

y ~ X1 + X2 + X3 + X4 + X5, family = gaussian(), data = dat_gauss,
QR = TRUE, chains = 2, iter = 500, refresh = 0, seed = 9876

)

Projection onto an arbitrary combination of predictor terms (with a small
value for `nclusters`, but only for the sake of speed in this example;
this is not recommended in general):
prj <- project(fit, solution_terms = c("X1", "X3", "X5"), nclusters = 10,

seed = 9182)
prjmat <- as.matrix(prj)
For further post-processing (e.g., via packages `bayesplot` and
`posterior`), we will here ignore the fact that clustering was used
(due to argument `nclusters` above). CAUTION: Ignoring the clustering
is not recommended and only shown here for demonstrative purposes. A
better solution for the clustering case is explained below.
If the `bayesplot` package is installed, the output from
as.matrix.projection() can be used there. For example:
if (requireNamespace("bayesplot", quietly = TRUE)) {

print(bayesplot::mcmc_intervals(prjmat))
}
If the `posterior` package is installed, the output from
as.matrix.projection() can be used there. For example:
if (requireNamespace("posterior", quietly = TRUE)) {

prjdrws <- posterior::as_draws_matrix(prjmat)
print(posterior::summarize_draws(

prjdrws,
"median", "mad", function(x) quantile(x, probs = c(0.025, 0.975))

))
}
Better solution for post-processing clustered draws (e.g., via
`bayesplot` or `posterior`): Don't ignore the fact that clustering was
used. Instead, resample the clusters according to their weights (e.g.,
via posterior::resample_draws()). However, this requires access to the
cluster weights which is not implemented in `projpred` yet. This
example will be extended as soon as those weights are accessible.

}

augdat_ilink_binom Inverse-link function for augmented-data projection with binomial
family

8 augdat_link_binom

Description

This is the function which has to be supplied to extend_family()’s argument augdat_ilink in
case of the augmented-data projection for the binomial() family.

Usage

augdat_ilink_binom(eta_arr, link = "logit")

Arguments

eta_arr An array as described in section "Augmented-data projection" of extend_family()’s
documentation.

link The same as argument link of binomial().

Value

An array as described in section "Augmented-data projection" of extend_family()’s documenta-
tion.

augdat_link_binom Link function for augmented-data projection with binomial family

Description

This is the function which has to be supplied to extend_family()’s argument augdat_link in case
of the augmented-data projection for the binomial() family.

Usage

augdat_link_binom(prb_arr, link = "logit")

Arguments

prb_arr An array as described in section "Augmented-data projection" of extend_family()’s
documentation.

link The same as argument link of binomial().

Value

An array as described in section "Augmented-data projection" of extend_family()’s documenta-
tion.

break_up_matrix_term 9

break_up_matrix_term Break up matrix terms

Description

Sometimes there can be terms in a formula that refer to a matrix instead of a single predictor. This
function breaks up the matrix term into individual predictors to handle separately, as that is probably
the intention of the user.

Usage

break_up_matrix_term(formula, data)

Arguments

formula A formula for a valid model.

data The original data.frame with a matrix as predictor.

Value

A list containing the expanded formula and the expanded data.frame.

cl_agg Weighted averaging within clusters of parameter draws

Description

This function aggregates S parameter draws that have been clustered into Scl clusters by averaging
across the draws that belong to the same cluster. This averaging can be done in a weighted fashion.

Usage

cl_agg(
draws,
cl = seq_len(nrow(draws)),
wdraws = rep(1, nrow(draws)),
eps_wdraws = 0

)

10 cv-indices

Arguments

draws An S×P matrix of parameter draws, with P denoting the number of parameters.
cl A numeric vector of length S, giving the cluster indices for the draws. Draws

that should be dropped (e.g., by thinning) need to have an NA in cl.
wdraws A numeric vector of length S, giving the weights of the draws. It doesn’t matter

whether these are normalized (i.e., sum to 1) or not because internally, these
weights are normalized to sum to 1 within each cluster. Draws that should be
dropped (e.g., by thinning) can (but must not necessarily) have an NA in wdraws.

eps_wdraws A positive numeric value (typically small) which will be used to improve numer-
ical stability: The weights of the draws within each cluster are multiplied by 1 -
eps_wdraws. The default of 0 should be fine for most cases; this argument only
exists to help in those cases where numerical instabilities occur (which must be
detected by the user; this function will not detect numerical instabilities itself).

Value

An Scl × P matrix of aggregated parameter draws.

Examples

set.seed(323)
S <- 100L
P <- 3L
draws <- matrix(rnorm(S * P), nrow = S, ncol = P)
Clustering example:
S_cl <- 10L
cl_draws <- sample.int(S_cl, size = S, replace = TRUE)
draws_cl <- cl_agg(draws, cl = cl_draws)
Clustering example with nonconstant `wdraws`:
w_draws <- rgamma(S, shape = 4)
draws_cl <- cl_agg(draws, cl = cl_draws, wdraws = w_draws)
Thinning example (implying constant `wdraws`):
S_th <- 50L
idxs_thin <- round(seq(1, S, length.out = S_th))
th_draws <- rep(NA, S)
th_draws[idxs_thin] <- seq_len(S_th)
draws_th <- cl_agg(draws, cl = th_draws)

cv-indices Create cross-validation folds

Description

These are helper functions to create cross-validation (CV) folds, i.e., to split up the indices from 1
to n into K subsets ("folds") for K-fold CV. These functions are potentially useful when creating the
cvfits and cvfun arguments for init_refmodel(). Function cvfolds() is deprecated; please
use cv_folds() instead (apart from the name, they are the same). The return value of cv_folds()
and cv_ids() is different, see below for details.

cv_proportions 11

Usage

cv_folds(n, K, seed = NA)

cvfolds(n, K, seed = NA)

cv_ids(n, K, out = c("foldwise", "indices"), seed = NA)

Arguments

n Number of observations.
K Number of folds. Must be at least 2 and not exceed n.
seed Pseudorandom number generation (PRNG) seed by which the same results can

be obtained again if needed. Passed to argument seed of set.seed(), but can
also be NA to not call set.seed() at all. If not NA, then the PRNG state is reset
(to the state before calling cv_folds() or cv_ids()) upon exiting cv_folds()
or cv_ids().

out Format of the output, either "foldwise" or "indices". See below for details.

Value

cv_folds() returns a vector of length n such that each element is an integer between 1 and K
denoting which fold the corresponding data point belongs to. The return value of cv_ids() depends
on the out argument. If out = "foldwise", the return value is a list with K elements, each being a
list with elements tr and ts giving the training and test indices, respectively, for the corresponding
fold. If out = "indices", the return value is a list with elements tr and ts each being a list
with K elements giving the training and test indices, respectively, for each fold.

Examples

n <- 100
set.seed(1234)
y <- rnorm(n)
cv <- cv_ids(n, K = 5)
Mean within the test set of each fold:
cvmeans <- sapply(cv, function(fold) mean(y[fold$ts]))

cv_proportions Ranking proportions from fold-wise predictor rankings

Description

Calculates the ranking proportions from the fold-wise predictor rankings in a cross-validation (CV)
with fold-wise searches. For a given predictor x and a given submodel size j, the ranking proportion
is the proportion of CV folds which have predictor x at position j of their predictor ranking. While
these ranking proportions are helpful for investigating variability in the predictor ranking, they can
also be cumulated across submodel sizes. The cumulated ranking proportions are more helpful
when it comes to model selection.

12 cv_proportions

Usage

cv_proportions(object, ...)

S3 method for class 'ranking'
cv_proportions(object, cumulate = FALSE, ...)

S3 method for class 'vsel'
cv_proportions(object, ...)

Arguments

object For cv_proportions.ranking(): an object of class ranking (returned by ranking()).
For cv_proportions.vsel(): an object of class vsel (returned by varsel()
or cv_varsel()) that ranking() will be applied to internally before then call-
ing cv_proportions.ranking().

... For cv_proportions.vsel(): arguments passed to ranking.vsel() and cv_proportions.ranking().
For cv_proportions.ranking(): currently ignored.

cumulate A single logical value indicating whether the ranking proportions should be cu-
mulated across increasing submodel sizes (TRUE) or not (FALSE).

Value

A numeric matrix containing the ranking proportions. This matrix has nterms_max rows and
nterms_max columns, with nterms_max as specified in the (possibly implicit) ranking() call.
The rows correspond to the submodel sizes and the columns to the predictor terms (sorted accord-
ing to the full-data predictor ranking). If cumulate is FALSE, then the returned matrix is of class
cv_proportions. If cumulate is TRUE, then the returned matrix is of classes cv_proportions_cumul
and cv_proportions (in this order).

Note that if cumulate is FALSE, then the values in the returned matrix only need to sum to 1
(column-wise and row-wise) if nterms_max (see above) is equal to the full model size. Likewise,
if cumulate is TRUE, then the value 1 only needs to occur in each column of the returned matrix if
nterms_max is equal to the full model size.

The cv_proportions() function is only applicable if the ranking object includes fold-wise predic-
tor rankings (i.e., if it is based on a vsel object created by cv_varsel() with validate_search =
TRUE). If the ranking object contains only a full-data predictor ranking (i.e., if it is based on a vsel
object created by varsel() or by cv_varsel(), but the latter with validate_search = FALSE),
then an error is thrown because in that case, there are no fold-wise predictor rankings from which
to calculate ranking proportions.

See Also

plot.cv_proportions()

Examples

For an example, see `?plot.cv_proportions`.

cv_varsel 13

cv_varsel Run search and performance evaluation with cross-validation

Description

Run the search part and the evaluation part for a projection predictive variable selection. The
search part determines the solution path, i.e., the best submodel for each submodel size (number
of predictor terms). The evaluation part determines the predictive performance of the submodels
along the solution path. In contrast to varsel(), cv_varsel() performs a cross-validation (CV) by
running the search part with the training data of each CV fold separately (an exception is explained
in section "Note" below) and running the evaluation part on the corresponding test set of each CV
fold.

Usage

cv_varsel(object, ...)

Default S3 method:
cv_varsel(object, ...)

S3 method for class 'refmodel'
cv_varsel(
object,
method = NULL,
cv_method = if (!inherits(object, "datafit")) "LOO" else "kfold",
ndraws = NULL,
nclusters = 20,
ndraws_pred = 400,
nclusters_pred = NULL,
refit_prj = !inherits(object, "datafit"),
nterms_max = NULL,
penalty = NULL,
verbose = TRUE,
nloo = NULL,
K = if (!inherits(object, "datafit")) 5 else 10,
lambda_min_ratio = 1e-05,
nlambda = 150,
thresh = 1e-06,
regul = 1e-04,
validate_search = TRUE,
seed = NA,
search_terms = NULL,
...

)

14 cv_varsel

Arguments

object An object of class refmodel (returned by get_refmodel() or init_refmodel())
or an object that can be passed to argument object of get_refmodel().

... Arguments passed to get_refmodel() as well as to the divergence minimizer
(during a forward search and also during the evaluation part, but the latter only
if refit_prj is TRUE).

method The method for the search part. Possible options are "L1" for L1 search and
"forward" for forward search. If NULL, then internally, "L1" is used, except if (i)
the reference model has multilevel or additive terms, (ii) if !is.null(search_terms),
or (iii) if the augmented-data projection is used. See also section "Details" be-
low.

cv_method The CV method, either "LOO" or "kfold". In the "LOO" case, a Pareto-smoothed
importance sampling leave-one-out CV (PSIS-LOO CV) is performed, which
avoids refitting the reference model nloo times (in contrast to a standard LOO
CV). In the "kfold" case, a K-fold CV is performed.

ndraws Number of posterior draws used in the search part. Ignored if nclusters is not
NULL or in case of L1 search (because L1 search always uses a single cluster).
If both (nclusters and ndraws) are NULL, the number of posterior draws from
the reference model is used for ndraws. See also section "Details" below.

nclusters Number of clusters of posterior draws used in the search part. Ignored in case
of L1 search (because L1 search always uses a single cluster). For the meaning
of NULL, see argument ndraws. See also section "Details" below.

ndraws_pred Only relevant if refit_prj is TRUE. Number of posterior draws used in the eval-
uation part. Ignored if nclusters_pred is not NULL. If both (nclusters_pred
and ndraws_pred) are NULL, the number of posterior draws from the reference
model is used for ndraws_pred. See also section "Details" below.

nclusters_pred Only relevant if refit_prj is TRUE. Number of clusters of posterior draws used
in the evaluation part. For the meaning of NULL, see argument ndraws_pred.
See also section "Details" below.

refit_prj A single logical value indicating whether to fit the submodels along the solution
path again (TRUE) or to retrieve their fits from the search part (FALSE) before
using those (re-)fits in the evaluation part.

nterms_max Maximum submodel size (number of predictor terms) up to which the search
is continued. If NULL, then min(19, D) is used where D is the number of terms
in the reference model (or in search_terms, if supplied). Note that nterms_max
does not count the intercept, so use nterms_max = 0 for the intercept-only model.
(Correspondingly, D above does not count the intercept.)

penalty Only relevant for L1 search. A numeric vector determining the relative penalties
or costs for the predictors. A value of 0 means that those predictors have no cost
and will therefore be selected first, whereas Inf means those predictors will
never be selected. If NULL, then 1 is used for each predictor.

verbose A single logical value indicating whether to print out additional information
during the computations.

cv_varsel 15

nloo Caution: Still experimental. Only relevant if cv_method = "LOO". Number of
subsampled LOO CV folds, i.e., number of observations used for the LOO CV
(anything between 1 and the original number of observations). Smaller values
lead to faster computation but higher uncertainty in the evaluation part. If NULL,
all observations are used, but for faster experimentation, one can set this to a
smaller value.

K Only relevant if cv_method = "kfold" and if the reference model was created
with cvfits being NULL (which is the case for get_refmodel.stanreg() and
brms::get_refmodel.brmsfit()). Number of folds in K-fold CV.

lambda_min_ratio

Only relevant for L1 search. Ratio between the smallest and largest lambda in
the L1-penalized search. This parameter essentially determines how long the
search is carried out, i.e., how large submodels are explored. No need to change
this unless the program gives a warning about this.

nlambda Only relevant for L1 search. Number of values in the lambda grid for L1-
penalized search. No need to change this unless the program gives a warning
about this.

thresh Only relevant for L1 search. Convergence threshold when computing the L1
path. Usually, there is no need to change this.

regul A number giving the amount of ridge regularization when projecting onto (i.e.,
fitting) submodels which are GLMs. Usually there is no need for regularization,
but sometimes we need to add some regularization to avoid numerical problems.

validate_search

Only relevant if cv_method = "LOO". A single logical value indicating whether
to cross-validate also the search part, i.e., whether to run the search separately
for each CV fold (TRUE) or not (FALSE). We strongly do not recommend setting
this to FALSE, because this is known to bias the predictive performance esti-
mates of the selected submodels. However, setting this to FALSE can sometimes
be useful because comparing the results to the case where this argument is TRUE
gives an idea of how strongly the search is (over-)fitted to the data (the differ-
ence corresponds to the search degrees of freedom or the effective number of
parameters introduced by the search).

seed Pseudorandom number generation (PRNG) seed by which the same results can
be obtained again if needed. Passed to argument seed of set.seed(), but can
also be NA to not call set.seed() at all. If not NA, then the PRNG state is re-
set (to the state before calling cv_varsel()) upon exiting cv_varsel(). Here,
seed is used for clustering the reference model’s posterior draws (if !is.null(nclusters)
or !is.null(nclusters_pred)), for subsampling LOO CV folds (if nloo is
smaller than the number of observations), for sampling the folds in K-fold CV,
and for drawing new group-level effects when predicting from a multilevel sub-
model (however, not yet in case of a GAMM).

search_terms Only relevant for forward search. A custom character vector of predictor term
blocks to consider for the search. Section "Details" below describes more pre-
cisely what "predictor term block" means. The intercept ("1") is always in-
cluded internally via union(), so there’s no difference between including it ex-
plicitly or omitting it. The default search_terms considers all the terms in the
reference model’s formula.

16 cv_varsel

Details

Arguments ndraws, nclusters, nclusters_pred, and ndraws_pred are automatically truncated
at the number of posterior draws in the reference model (which is 1 for datafits). Using less
draws or clusters in ndraws, nclusters, nclusters_pred, or ndraws_pred than posterior draws
in the reference model may result in slightly inaccurate projection performance. Increasing these
arguments affects the computation time linearly.

For argument method, there are some restrictions: For a reference model with multilevel or additive
formula terms or a reference model set up for the augmented-data projection, only the forward
search is available. Furthermore, argument search_terms requires a forward search to take effect.

L1 search is faster than forward search, but forward search may be more accurate. Furthermore,
forward search may find a sparser model with comparable performance to that found by L1 search,
but it may also start overfitting when more predictors are added.

An L1 search may select interaction terms before the corresponding main terms are selected. If this
is undesired, choose the forward search instead.

The elements of the search_terms character vector don’t need to be individual predictor terms. In-
stead, they can be building blocks consisting of several predictor terms connected by the + symbol.
To understand how these building blocks work, it is important to know how projpred’s forward
search works: It starts with an empty vector chosen which will later contain already selected pre-
dictor terms. Then, the search iterates over model sizes j ∈ {1, ..., J}. The candidate models at
model size j are constructed from those elements from search_terms which yield model size j
when combined with the chosen predictor terms. Note that sometimes, there may be no candidate
models for model size j. Also note that internally, search_terms is expanded to include the inter-
cept ("1"), so the first step of the search (model size 1) always consists of the intercept-only model
as the only candidate.

As a search_terms example, consider a reference model with formula y ~ x1 + x2 + x3. Then, to
ensure that x1 is always included in the candidate models, specify search_terms = c("x1", "x1 +
x2", "x1 + x3", "x1 + x2 + x3"). This search would start with y ~ 1 as the only candidate at model
size 1. At model size 2, y ~ x1 would be the only candidate. At model size 3, y ~ x1 + x2 and y ~ x1
+ x3 would be the two candidates. At the last model size of 4, y ~ x1 + x2 + x3 would be the only
candidate. As another example, to exclude x1 from the search, specify search_terms = c("x2",
"x3", "x2 + x3").

Value

An object of class vsel. The elements of this object are not meant to be accessed directly but
instead via helper functions (see the main vignette and projpred-package).

Note

If validate_search is FALSE, the search is not included in the CV so that only a single full-data
search is run.

For PSIS-LOO CV, projpred calls loo::psis() with r_eff = NA. This is only a problem if there
was extreme autocorrelation between the MCMC iterations when the reference model was built. In
those cases however, the reference model should not have been used anyway, so we don’t expect
projpred’s r_eff = NA to be a problem.

df_binom 17

References

Magnusson, Måns, Michael Andersen, Johan Jonasson, and Aki Vehtari. 2019. "Bayesian Leave-
One-Out Cross-Validation for Large Data." In Proceedings of the 36th International Conference
on Machine Learning, edited by Kamalika Chaudhuri and Ruslan Salakhutdinov, 97:4244–53.
Proceedings of Machine Learning Research. PMLR. https://proceedings.mlr.press/v97/
magnusson19a.html.

Vehtari, Aki, Andrew Gelman, and Jonah Gabry. 2017. "Practical Bayesian Model Evaluation
Using Leave-One-Out Cross-Validation and WAIC." Statistics and Computing 27 (5): 1413–32.
doi:10.1007/s1122201696964.

Vehtari, Aki, Daniel Simpson, Andrew Gelman, Yuling Yao, and Jonah Gabry. 2022. "Pareto
Smoothed Importance Sampling." arXiv. doi:10.48550/arXiv.1507.02646.

See Also

varsel()

Examples

Note: The code from this example is not executed when called via example().
To execute it, you have to copy and paste it manually to the console.
if (requireNamespace("rstanarm", quietly = TRUE)) {

Data:
dat_gauss <- data.frame(y = df_gaussian$y, df_gaussian$x)

The "stanreg" fit which will be used as the reference model (with small
values for `chains` and `iter`, but only for technical reasons in this
example; this is not recommended in general):
fit <- rstanarm::stan_glm(

y ~ X1 + X2 + X3 + X4 + X5, family = gaussian(), data = dat_gauss,
QR = TRUE, chains = 2, iter = 1000, refresh = 0, seed = 9876

)

Run cv_varsel() (with small values for `K`, `nterms_max`, `nclusters`,
and `nclusters_pred`, but only for the sake of speed in this example;
this is not recommended in general):
cvvs <- cv_varsel(fit, cv_method = "kfold", K = 2, nterms_max = 3,

nclusters = 5, nclusters_pred = 10, seed = 5555)
Now see, for example, `?print.vsel`, `?plot.vsel`, `?suggest_size.vsel`,
and `?ranking` for possible post-processing functions.

}

df_binom Binomial toy example

Description

Binomial toy example

https://proceedings.mlr.press/v97/magnusson19a.html
https://proceedings.mlr.press/v97/magnusson19a.html
https://doi.org/10.1007/s11222-016-9696-4
https://doi.org/10.48550/arXiv.1507.02646

18 df_gaussian

Usage

df_binom

Format

A simulated classification dataset containing 100 observations.

y response, 0 or 1.

x predictors, 30 in total.

Source

https://web.stanford.edu/~hastie/glmnet/glmnetData/BNExample.RData

df_gaussian Gaussian toy example

Description

Gaussian toy example

Usage

df_gaussian

Format

A simulated regression dataset containing 100 observations.

y response, real-valued.

x predictors, 20 in total. Mean and SD are approximately 0 and 1, respectively.

Source

https://web.stanford.edu/~hastie/glmnet/glmnetData/QSExample.RData

https://web.stanford.edu/~hastie/glmnet/glmnetData/BNExample.RData
https://web.stanford.edu/~hastie/glmnet/glmnetData/QSExample.RData

extend_family 19

extend_family Extend a family

Description

This function adds some internally required elements to an object of class family (see, e.g., family()).
It is called internally by init_refmodel(), so you will rarely need to call it yourself.

Usage

extend_family(
family,
latent = FALSE,
latent_y_unqs = NULL,
latent_ilink = NULL,
latent_ll_oscale = NULL,
latent_ppd_oscale = NULL,
augdat_y_unqs = NULL,
augdat_link = NULL,
augdat_ilink = NULL,
augdat_args_link = list(),
augdat_args_ilink = list(),
...

)

Arguments

family An object of class family.

latent A single logical value indicating whether to use the latent projection (TRUE) or
not (FALSE). Note that setting latent = TRUE causes all arguments starting with
augdat_ to be ignored.

latent_y_unqs Only relevant for a latent projection where the original response space has fi-
nite support (i.e., the original response values may be regarded as categories),
in which case this needs to be the character vector of unique response values
(which will be assigned to family$cats internally) or may be left at NULL (so
that projpred will try to infer it from family$cats). See also section "Latent
projection" below.

latent_ilink Only relevant for the latent projection, in which case this needs to be the inverse-
link function. If the original response family was the binomial() or the poisson()
family, then latent_ilink can be NULL, in which case an internal default will
be used. Can also be NULL in all other cases, but then an internal default based
on family$linkinv will be used which might not work for all families. See
also section "Latent projection" below.

latent_ll_oscale

Only relevant for the latent projection, in which case this needs to be the function
computing response-scale (not latent-scale) log-likelihood values. If !is.null(family$cats)

20 extend_family

(after taking latent_y_unqs into account) or if the original response family
was the binomial() or the poisson() family, then latent_ll_oscale can be
NULL, in which case an internal default will be used. Can also be NULL in all other
cases, but then downstream functions will have limited functionality (a message
thrown by extend_family() will state what exactly won’t be available). See
also section "Latent projection" below.

latent_ppd_oscale

Only relevant for the latent projection, in which case this needs to be the func-
tion sampling response values given latent predictors that have been transformed
to response scale using latent_ilink. If !is.null(family$cats) (after tak-
ing latent_y_unqs into account) or if the original response family was the
binomial() or the poisson() family, then latent_ppd_oscale can be NULL,
in which case an internal default will be used. Can also be NULL in all other
cases, but then downstream functions will have limited functionality (a message
thrown by extend_family() will state what exactly won’t be available). See
also section "Latent projection" below. Note that although this function has the
abbreviation "PPD" in its name (which stands for "posterior predictive distribu-
tion"), projpred currently only uses it in proj_predict(), i.e., for sampling
from what would better be termed posterior-projection predictive distribution
(PPPD).

augdat_y_unqs Only relevant for augmented-data projection, in which case this needs to be the
character vector of unique response values (which will be assigned to family$cats
internally) or may be left at NULL if family$cats is already non-NULL. See also
section "Augmented-data projection" below.

augdat_link Only relevant for augmented-data projection, in which case this needs to be
the link function. Use NULL for the traditional projection. See also section
"Augmented-data projection" below.

augdat_ilink Only relevant for augmented-data projection, in which case this needs to be the
inverse-link function. Use NULL for the traditional projection. See also section
"Augmented-data projection" below.

augdat_args_link

Only relevant for augmented-data projection, in which case this may be a named
list of arguments to pass to the function supplied to augdat_link.

augdat_args_ilink

Only relevant for augmented-data projection, in which case this may be a named
list of arguments to pass to the function supplied to augdat_ilink.

... Ignored (exists only to swallow up further arguments which might be passed to
this function).

Details

In the following, N , Ccat, Clat, Sref , and Sprj from help topic refmodel-init-get are used. Note
that N does not necessarily denote the number of original observations; it can also refer to new
observations. Furthermore, let S denote either Sref or Sprj, whichever is appropriate in the context
where it is used.

extend_family 21

Value

The family object extended in the way needed by projpred.

Augmented-data projection

As their first input, the functions supplied to arguments augdat_link and augdat_ilink have to
accept:

• For augdat_link: an S × N × Ccat array containing the probabilities for the response cat-
egories. The order of the response categories is the same as in family$cats (see argument
augdat_y_unqs).

• For augdat_ilink: an S ×N × Clat array containing the linear predictors.

The return value of these functions needs to be:

• For augdat_link: an S ×N × Clat array containing the linear predictors.

• For augdat_ilink: an S × N × Ccat array containing the probabilities for the response
categories. The order of the response categories has to be the same as in family$cats (see
argument augdat_y_unqs).

For the augmented-data projection, the response vector resulting from extract_model_data (see
init_refmodel()) is coerced to a factor (using as.factor()) at multiple places throughout this
package. Inside of init_refmodel(), the levels of this factor have to be identical to family$cats
(after applying extend_family() inside of init_refmodel()). Everywhere else, these levels
have to be a subset of <refmodel>$family$cats (where <refmodel> is an object resulting from
init_refmodel()). See argument augdat_y_unqs for how to control family$cats.

For ordinal brms families, be aware that the submodels (onto which the reference model is pro-
jected) currently have the following restrictions:

• The discrimination parameter disc is not supported (i.e., it is a constant with value 1).

• The thresholds are "flexible" (see brms::brmsfamily()).

• The thresholds do not vary across the levels of a factor-like variable (see argument gr of
brms::resp_thres()).

• The "probit_approx" link is replaced by "probit".

For the brms::categorical() family, be aware that:

• For multilevel submodels, the group-level effects are allowed to be correlated between differ-
ent response categories.

• For multilevel submodels, mclogit versions < 0.9.4 may throw the error 'a' (<number> x 1)
must be square. Updating mclogit to a version >= 0.9.4 should fix this.

Latent projection

The function supplied to argument latent_ilink needs to have the prototype

latent_ilink(lpreds, cl_ref, wdraws_ref = rep(1, length(cl_ref)))

where:

22 extend_family

• lpreds accepts an S ×N matrix containing the linear predictors.

• cl_ref accepts a numeric vector of length Sref , containing projpred’s internal cluster indices
for these draws.

• wdraws_ref accepts a numeric vector of length Sref , containing weights for these draws.
These weights should be treated as not being normalized (i.e., they don’t necessarily sum to
1).

The return value of latent_ilink needs to contain the linear predictors transformed to the original
response space, with the following structure:

• If is.null(family$cats) (after taking latent_y_unqs into account): an S ×N matrix.

• If !is.null(family$cats) (after taking latent_y_unqs into account): an S × N × Ccat

array. In that case, latent_ilink needs to return probabilities (for the response categories
given in family$cats, after taking latent_y_unqs into account).

The function supplied to argument latent_ll_oscale needs to have the prototype

latent_ll_oscale(ilpreds, y_oscale, wobs = rep(1, length(y_oscale)), cl_ref,
wdraws_ref = rep(1, length(cl_ref)))

where:

• ilpreds accepts the return value from latent_ilink.

• y_oscale accepts a vector of length N containing response values on the original response
scale.

• wobs accepts a numeric vector of length N containing observation weights.

• cl_ref accepts the same input as argument cl_ref of latent_ilink.

• wdraws_ref accepts the same input as argument wdraws_ref of latent_ilink.

The return value of latent_ll_oscale needs to be an S×N matrix containing the response-scale
(not latent-scale) log-likelihood values for the N observations from its inputs.

The function supplied to argument latent_ppd_oscale needs to have the prototype

latent_ppd_oscale(ilpreds_resamp, wobs, cl_ref,
wdraws_ref = rep(1, length(cl_ref)), idxs_prjdraws)

where:

• ilpreds_resamp accepts the return value from latent_ilink, but possibly with resampled
(clustered) draws (see argument nresample_clusters of proj_predict()).

• wobs accepts a numeric vector of length N containing observation weights.

• cl_ref accepts the same input as argument cl_ref of latent_ilink.

• wdraws_ref accepts the same input as argument wdraws_ref of latent_ilink.

• idxs_prjdraws accepts a numeric vector of length dim(ilpreds_resamp)[1] containing the
resampled indices of the projected draws (i.e., these indices are values from the set {1, ..., dim(ilpreds)[1]}
where ilpreds denotes the return value of latent_ilink).

extra-families 23

The return value of latent_ppd_oscale needs to be a dim(ilpreds_resamp)[1]×N matrix con-
taining the response-scale (not latent-scale) draws from the posterior(-projection) predictive distri-
butions for the N observations from its inputs.

If the bodies of these three functions involve parameter draws from the reference model which
have not been projected (e.g., for latent_ilink, the thresholds in an ordinal model), cl_agg()
is provided as a helper function for aggregating these reference model draws in the same way as
the draws have been aggregated for the first argument of these functions (e.g., lpreds in case of
latent_ilink).

In fact, the weights passed to argument wdraws_ref are nonconstant only in case of cv_varsel()
with cv_method = "LOO" and validate_search = TRUE. In that case, the weights passed to this ar-
gument are the PSIS-LOO CV weights for one observation. Note that although argument wdraws_ref
has the suffix _ref, wdraws_ref does not necessarily obtain weights for the initial reference model’s
posterior draws: In case of cv_varsel() with cv_method = "kfold", these weights may refer to
one of the K reference model re-fits (but in that case, they are constant anyway).

If family$cats is not NULL (after taking latent_y_unqs into account), then the response vec-
tor resulting from extract_model_data (see init_refmodel()) is coerced to a factor (using
as.factor()) at multiple places throughout this package. Inside of init_refmodel(), the lev-
els of this factor have to be identical to family$cats (after applying extend_family() inside of
init_refmodel()). Everywhere else, these levels have to be a subset of <refmodel>$family$cats
(where <refmodel> is an object resulting from init_refmodel()).

extra-families Extra family objects

Description

Family objects not in the set of default family objects.

Usage

Student_t(link = "identity", nu = 3)

Arguments

link Name of the link function. In contrast to the default family objects, this has to
be a character string here.

nu Degrees of freedom for the Student-t distribution.

Value

A family object analogous to those described in family.

Note

Support for the Student_t() family is still experimental.

24 plot.cv_proportions

mesquite Mesquite data set

Description

The mesquite bushes yields dataset from Gelman and Hill (2006) (http://www.stat.columbia.
edu/~gelman/arm/).

Usage

mesquite

Format

The response variable is the total weight (in grams) of photosynthetic material as derived from
actual harvesting of the bush. The predictor variables are:

diam1 diameter of the canopy (the leafy area of the bush) in meters, measured along the longer
axis of the bush.

diam2 canopy diameter measured along the shorter axis.

canopy height height of the canopy.

total height total height of the bush.

density plant unit density (# of primary stems per plant unit).

group group of measurements (0 for the first group, 1 for the second group).

Source

http://www.stat.columbia.edu/~gelman/arm/examples/mesquite/mesquite.dat

References

Gelman, Andrew, and Jennifer Hill. 2006. Data Analysis Using Regression and Multilevel/Hierarchical
Models. Cambridge, UK: Cambridge University Press. doi:10.1017/CBO9780511790942.

plot.cv_proportions Plot ranking proportions from fold-wise predictor rankings

Description

Plots the ranking proportions (see cv_proportions()) from the fold-wise predictor rankings in a
cross-validation with fold-wise searches. This is a visualization of the transposed matrix returned
by cv_proportions(). The proportions printed as text inside of the colored tiles are rounded to
whole percentage points (the plotted proportions themselves are not rounded).

http://www.stat.columbia.edu/~gelman/arm/
http://www.stat.columbia.edu/~gelman/arm/
http://www.stat.columbia.edu/~gelman/arm/examples/mesquite/mesquite.dat
https://doi.org/10.1017/CBO9780511790942

plot.cv_proportions 25

Usage

S3 method for class 'cv_proportions'
plot(x, text_angle = NULL, ...)

S3 method for class 'ranking'
plot(x, ...)

Arguments

x For plot.cv_proportions(): an object of class cv_proportions (returned by
cv_proportions(), possibly with cumulate = TRUE). For plot.ranking(): an
object of class ranking (returned by ranking()) that cv_proportions() will
be applied to internally before then calling plot.cv_proportions().

text_angle Passed to argument angle of ggplot2::element_text() for the y-axis tick
labels. In case of long predictor names, text_angle = 45 might be helpful (for
example).

... For plot.ranking(): arguments passed to cv_proportions.ranking() and
plot.cv_proportions(). For plot.cv_proportions(): currently ignored.

Value

A ggplot2 plotting object (of class gg and ggplot).

Author(s)

Idea and original code by Aki Vehtari. Slight modifications of the original code by Frank Weber,
Yann McLatchie, and Sölvi Rögnvaldsson. Final implementation in projpred by Frank Weber.

Examples

Note: The code from this example is not executed when called via example().
To execute it, you have to copy and paste it manually to the console.
if (requireNamespace("rstanarm", quietly = TRUE)) {

Data:
dat_gauss <- data.frame(y = df_gaussian$y, df_gaussian$x)

The "stanreg" fit which will be used as the reference model (with small
values for `chains` and `iter`, but only for technical reasons in this
example; this is not recommended in general):
fit <- rstanarm::stan_glm(

y ~ X1 + X2 + X3 + X4 + X5, family = gaussian(), data = dat_gauss,
QR = TRUE, chains = 2, iter = 1000, refresh = 0, seed = 9876

)

Run cv_varsel() (with small values for `K`, `nterms_max`, `nclusters`,
and `nclusters_pred`, but only for the sake of speed in this example;
this is not recommended in general):
cvvs <- cv_varsel(fit, cv_method = "kfold", K = 2, nterms_max = 3,

nclusters = 5, nclusters_pred = 10, seed = 5555)

26 plot.vsel

Extract predictor rankings:
rk <- ranking(cvvs)

Compute ranking proportions:
pr_rk <- cv_proportions(rk)

Visualize the ranking proportions:
gg_pr_rk <- plot(pr_rk)
print(gg_pr_rk)

Since the object returned by plot.cv_proportions() is a standard ggplot2
plotting object, you can modify the plot easily, e.g., to remove the
legend:
print(gg_pr_rk + theme(legend.position = "none"))

}

plot.vsel Plot predictive performance

Description

This is the plot() method for vsel objects (returned by varsel() or cv_varsel()). It visualizes
the predictive performance of the reference model (possibly also that of some other "baseline"
model) and that of the submodels along the full-data predictor ranking. Basic information about
the (CV) variability in the ranking of the predictors is included as well (if available; inferred from
cv_proportions()). For a tabular representation, see summary.vsel().

Usage

S3 method for class 'vsel'
plot(
x,
nterms_max = NULL,
stats = "elpd",
deltas = FALSE,
alpha = 2 * pnorm(-1),
baseline = if (!inherits(x$refmodel, "datafit")) "ref" else "best",
thres_elpd = NA,
resp_oscale = TRUE,
ranking_nterms_max = NULL,
ranking_abbreviate = FALSE,
ranking_abbreviate_args = list(),
ranking_repel = NULL,
ranking_repel_args = list(),
cumulate = FALSE,
text_angle = NULL,
...

)

plot.vsel 27

Arguments

x An object of class vsel (returned by varsel() or cv_varsel()).

nterms_max Maximum submodel size (number of predictor terms) for which the performance
statistics are calculated. Using NULL is effectively the same as length(ranking(object)[["fulldata"]]).
Note that nterms_max does not count the intercept, so use nterms_max = 0 for
the intercept-only model. For plot.vsel(), nterms_max must be at least 1.

stats One or more character strings determining which performance statistics (i.e.,
utilities or losses) to estimate based on the observations in the evaluation (or
"test") set (in case of cross-validation, these are all observations because they
are partitioned into multiple test sets; in case of varsel() with d_test = NULL,
these are again all observations because the test set is the same as the training
set). Available statistics are:

• "elpd": expected log (pointwise) predictive density (for a new dataset). Es-
timated by the sum of the observation-specific log predictive density values
(with each of these predictive density values being a—possibly weighted—
average across the parameter draws).

• "mlpd": mean log predictive density, that is, "elpd" divided by the number
of observations.

• "mse": mean squared error (only available in the situations mentioned in
section "Details" below).

• "rmse": root mean squared error (only available in the situations mentioned
in section "Details" below). For the corresponding standard error and lower
and upper confidence interval bounds, bootstrapping is used.

• "acc" (or its alias, "pctcorr"): classification accuracy (only available in
the situations mentioned in section "Details" below).

• "auc": area under the ROC curve (only available in the situations men-
tioned in section "Details" below). For the corresponding standard error
and lower and upper confidence interval bounds, bootstrapping is used.

deltas If TRUE, the submodel statistics are estimated as differences from the baseline
model (see argument baseline). With a "difference from the baseline model",
we mean to take the submodel statistic minus the baseline model statistic (not
the other way round).

alpha A number determining the (nominal) coverage 1 - alpha of the normal-approximation
(or bootstrap; see argument stats) confidence intervals. For example, in case of
the normal approximation, alpha = 2 * pnorm(-1) corresponds to a confidence
interval stretching by one standard error on either side of the point estimate.

baseline For summary.vsel(): Only relevant if deltas is TRUE. For plot.vsel(): Al-
ways relevant. Either "ref" or "best", indicating whether the baseline is the
reference model or the best submodel found (in terms of stats[1]), respec-
tively.

thres_elpd Only relevant if any(stats %in% c("elpd", "mlpd")). The threshold for the
ELPD difference (taking the submodel’s ELPD minus the baseline model’s ELPD)
above which the submodel’s ELPD is considered to be close enough to the base-
line model’s ELPD. An equivalent rule is applied in case of the MLPD. See
suggest_size() for a formalization. Supplying NA deactivates this.

28 plot.vsel

resp_oscale Only relevant for the latent projection. A single logical value indicating whether
to calculate the performance statistics on the original response scale (TRUE) or
on latent scale (FALSE).

ranking_nterms_max

Maximum submodel size (number of predictor terms) for which the predictor
names and the corresponding ranking proportions are added on the x-axis. Us-
ing NULL is effectively the same as using nterms_max. Using NA causes the pre-
dictor names and the corresponding ranking proportions to be omitted. Note that
ranking_nterms_max does not count the intercept, so ranking_nterms_max =
1 corresponds to the submodel consisting of the first (non-intercept) predictor
term.

ranking_abbreviate

A single logical value indicating whether the predictor names in the full-data
predictor ranking should be abbreviated by abbreviate() (TRUE) or not (FALSE).
See also argument ranking_abbreviate_args and section "Value".

ranking_abbreviate_args

A list of arguments (except for names.arg) to be passed to abbreviate() in
case of ranking_abbreviate = TRUE.

ranking_repel Either NULL, "text", or "label". By NULL, the full-data predictor ranking and
the corresponding ranking proportions are placed below the x-axis. By "text"
or "label", they are placed within the plotting area, using ggrepel::geom_text_repel()
or ggrepel::geom_label_repel(), respectively. See also argument ranking_repel_args.

ranking_repel_args

A list of arguments (except for mapping) to be passed to ggrepel::geom_text_repel()
or ggrepel::geom_label_repel() in case of ranking_repel = "text" or ranking_repel
= "label", respectively.

cumulate Passed to argument cumulate of cv_proportions(). Affects the ranking pro-
portions given on the x-axis (below the full-data predictor ranking).

text_angle Passed to argument angle of ggplot2::element_text() for the x-axis tick
labels. In case of long predictor names (and/or large nterms_max), text_angle
= 45 might be helpful (for example).

... Arguments passed to the internal function which is used for bootstrapping (if
applicable; see argument stats). Currently, relevant arguments are B (the num-
ber of bootstrap samples, defaulting to 2000) and seed (see set.seed(), but
defaulting to NA so that set.seed() is not called within that function at all).

Details

The stats options "mse" and "rmse" are only available for:

• the traditional projection,

• the latent projection with resp_oscale = FALSE,

• the latent projection with resp_oscale = TRUE in combination with <refmodel>$family$cats
being NULL.

The stats option "acc" (= "pctcorr") is only available for:

• the binomial() family in case of the traditional projection,

plot.vsel 29

• all families in case of the augmented-data projection,

• the binomial() family (on the original response scale) in case of the latent projection with
resp_oscale = TRUE in combination with <refmodel>$family$cats being NULL,

• all families (on the original response scale) in case of the latent projection with resp_oscale
= TRUE in combination with <refmodel>$family$cats being not NULL.

The stats option "auc" is only available for:

• the binomial() family in case of the traditional projection,

• the binomial() family (on the original response scale) in case of the latent projection with
resp_oscale = TRUE in combination with <refmodel>$family$cats being NULL.

Value

A ggplot2 plotting object (of class gg and ggplot). If ranking_abbreviate is TRUE, the output
of abbreviate() is stored in an attribute called projpred_ranking_abbreviated (to allow the
abbreviations to be easily mapped back to the original predictor names).

Horizontal lines

As long as the reference model’s performance is computable, it is always shown in the plot as a
dashed red horizontal line. If baseline = "best", the baseline model’s performance is shown as a
dotted black horizontal line. If !is.na(thres_elpd) and any(stats %in% c("elpd", "mlpd")),
the value supplied to thres_elpd (which is automatically adapted internally in case of the MLPD
or deltas = FALSE) is shown as a dot-dashed gray horizontal line for the reference model and, if
baseline = "best", as a long-dashed green horizontal line for the baseline model.

Examples

if (requireNamespace("rstanarm", quietly = TRUE)) {
Data:
dat_gauss <- data.frame(y = df_gaussian$y, df_gaussian$x)

The "stanreg" fit which will be used as the reference model (with small
values for `chains` and `iter`, but only for technical reasons in this
example; this is not recommended in general):
fit <- rstanarm::stan_glm(

y ~ X1 + X2 + X3 + X4 + X5, family = gaussian(), data = dat_gauss,
QR = TRUE, chains = 2, iter = 500, refresh = 0, seed = 9876

)

Run varsel() (here without cross-validation and with small values for
`nterms_max`, `nclusters`, and `nclusters_pred`, but only for the sake of
speed in this example; this is not recommended in general):
vs <- varsel(fit, nterms_max = 3, nclusters = 5, nclusters_pred = 10,

seed = 5555)
print(plot(vs))

}

30 pred-projection

pred-projection Predictions from a submodel (after projection)

Description

After the projection of the reference model onto a submodel, the linear predictors (for the original
or a new dataset) based on that submodel can be calculated by proj_linpred(). These linear
predictors can also be transformed to response scale and averaged across the projected parameter
draws. Furthermore, proj_linpred() returns the corresponding log predictive density values if
the (original or new) dataset contains response values. The proj_predict() function draws from
the predictive distributions (there is one such distribution for each observation from the original or
new dataset) of the submodel that the reference model has been projected onto. If the projection
has not been performed yet, both functions call project() internally to perform the projection.
Both functions can also handle multiple submodels at once (for objects of class vsel or objects
returned by a project() call to an object of class vsel; see project()).

Usage

proj_linpred(
object,
newdata = NULL,
offsetnew = NULL,
weightsnew = NULL,
filter_nterms = NULL,
transform = FALSE,
integrated = FALSE,
.seed = NA,
...

)

proj_predict(
object,
newdata = NULL,
offsetnew = NULL,
weightsnew = NULL,
filter_nterms = NULL,
nresample_clusters = 1000,
.seed = NA,
resp_oscale = TRUE,
...

)

Arguments

object An object returned by project() or an object that can be passed to argument
object of project().

pred-projection 31

newdata Passed to argument newdata of the reference model’s extract_model_data
function (see init_refmodel()). Provides the predictor (and possibly also the
response) data for the new (or old) observations. May also be NULL (see argu-
ment extract_model_data of init_refmodel()). If not NULL, any NAs will
trigger an error.

offsetnew Passed to argument orhs of the reference model’s extract_model_data func-
tion (see init_refmodel()). Used to get the offsets for the new (or old) obser-
vations.

weightsnew Passed to argument wrhs of the reference model’s extract_model_data func-
tion (see init_refmodel()). Used to get the weights for the new (or old) ob-
servations.

filter_nterms Only applies if object is an object returned by project(). In that case, filter_nterms
can be used to filter object for only those elements (submodels) with a number
of solution terms in filter_nterms. Therefore, needs to be a numeric vector
or NULL. If NULL, use all submodels.

transform For proj_linpred() only. A single logical value indicating whether the linear
predictor should be transformed to response scale using the inverse-link function
(TRUE) or not (FALSE). In case of the latent projection, argument transform is
similar in spirit to argument resp_oscale from other functions and affects the
scale of both output elements pred and lpd (see sections "Details" and "Value"
below).

integrated For proj_linpred() only. A single logical value indicating whether the output
should be averaged across the projected posterior draws (TRUE) or not (FALSE).

.seed Pseudorandom number generation (PRNG) seed by which the same results can
be obtained again if needed. Passed to argument seed of set.seed(), but can
also be NA to not call set.seed() at all. If not NA, then the PRNG state is reset
(to the state before calling proj_linpred() or proj_predict()) upon exiting
proj_linpred() or proj_predict(). Here, .seed is used for drawing new
group-level effects in case of a multilevel submodel (however, not yet in case of
a GAMM) and for drawing from the predictive distributions of the submodel(s)
in case of proj_predict(). If a clustered projection was performed, then in
proj_predict(), .seed is also used for drawing from the set of projected clus-
ters of posterior draws (see argument nresample_clusters). If project() is
called internally with seed = NA (or with seed being a lazily evaluated expres-
sion that uses the PRNG), then .seed also affects the PRNG usage there.

... Arguments passed to project() if object is not already an object returned by
project().

nresample_clusters

For proj_predict() with clustered projection only. Number of draws to return
from the predictive distributions of the submodel(s). Not to be confused with
argument nclusters of project(): nresample_clusters gives the number
of draws (with replacement) from the set of clustered posterior draws after pro-
jection (with this set being determined by argument nclusters of project()).

resp_oscale Only relevant for the latent projection. A single logical value indicating whether
to draw from the posterior-projection predictive distributions on the original re-
sponse scale (TRUE) or on latent scale (FALSE).

32 pred-projection

Details

Currently, proj_predict() ignores observation weights that are not equal to 1. A corresponding
warning is thrown if this is the case.

In case of the latent projection and transform = FALSE:

• Output element pred contains the linear predictors without any modifications that may be
due to the original response distribution (e.g., for a brms::cumulative() model, the ordered
thresholds are not taken into account).

• Output element lpd contains the latent log predictive density values, i.e., those corresponding
to the latent Gaussian distribution. If newdata is not NULL, this requires the latent response val-
ues to be supplied in a column called .<response_name> of newdata where <response_name>
needs to be replaced by the name of the original response variable (if <response_name> con-
tained parentheses, these have been stripped off by init_refmodel(); see the left-hand side
of formula(<refmodel>)). For technical reasons, the existence of column <response_name>
in newdata is another requirement (even though .<response_name> is actually used).

Value

In the following, Sprj, N , Ccat, and Clat from help topic refmodel-init-get are used. (For proj_linpred()
with integrated = TRUE, we have Sprj = 1.) Furthermore, let C denote either Ccat (if transform
= TRUE) or Clat (if transform = FALSE). Then, if the prediction is done for one submodel only (i.e.,
length(nterms) == 1 || !is.null(solution_terms) in the call to project()):

• proj_linpred() returns a list with the following elements:

– Element pred contains the actual predictions, i.e., the linear predictors, possibly trans-
formed to response scale (depending on argument transform).

– Element lpd is non-NULL only if newdata is NULL or if newdata contains response values
in the corresponding column. In that case, it contains the log predictive density values
(conditional on each of the projected parameter draws if integrated = FALSE and aver-
aged across the projected parameter draws if integrated = TRUE).

In case of (i) the traditional projection, (ii) the latent projection with transform = FALSE,
or (iii) the latent projection with transform = TRUE and <refmodel>$family$cats (where
<refmodel> is an object resulting from init_refmodel(); see also extend_family()’s
argument latent_y_unqs) being NULL, both elements are Sprj × N matrices. In case of
(i) the augmented-data projection or (ii) the latent projection with transform = TRUE and
<refmodel>$family$cats being not NULL, pred is an Sprj × N × C array and lpd is an
Sprj ×N matrix.

• proj_predict() returns an Sprj×N matrix of predictions where Sprj denotes nresample_clusters
in case of clustered projection. In case of (i) the augmented-data projection or (ii) the latent
projection with resp_oscale = TRUE and <refmodel>$family$cats being not NULL, this ma-
trix has an attribute called cats (the character vector of response categories) and the values of
the matrix are the predicted indices of the response categories (these indices refer to the order
of the response categories from attribute cats).

If the prediction is done for more than one submodel, the output from above is returned for each
submodel, giving a named list with one element for each submodel (the names of this list being
the numbers of solution terms of the submodels when counting the intercept, too).

predict.refmodel 33

Examples

if (requireNamespace("rstanarm", quietly = TRUE)) {
Data:
dat_gauss <- data.frame(y = df_gaussian$y, df_gaussian$x)

The "stanreg" fit which will be used as the reference model (with small
values for `chains` and `iter`, but only for technical reasons in this
example; this is not recommended in general):
fit <- rstanarm::stan_glm(

y ~ X1 + X2 + X3 + X4 + X5, family = gaussian(), data = dat_gauss,
QR = TRUE, chains = 2, iter = 500, refresh = 0, seed = 9876

)

Projection onto an arbitrary combination of predictor terms (with a small
value for `nclusters`, but only for the sake of speed in this example;
this is not recommended in general):
prj <- project(fit, solution_terms = c("X1", "X3", "X5"), nclusters = 10,

seed = 9182)

Predictions (at the training points) from the submodel onto which the
reference model was projected:
prjl <- proj_linpred(prj)
prjp <- proj_predict(prj, .seed = 7364)

}

predict.refmodel Predictions or log posterior predictive densities from a reference
model

Description

This is the predict() method for refmodel objects (returned by get_refmodel() or init_refmodel()).
It offers three types of output which are all based on the reference model and new (or old) observa-
tions: Either the linear predictor on link scale, the linear predictor transformed to response scale, or
the log posterior predictive density.

Usage

S3 method for class 'refmodel'
predict(
object,
newdata = NULL,
ynew = NULL,
offsetnew = NULL,
weightsnew = NULL,
type = "response",
...

)

34 predict.refmodel

Arguments

object An object of class refmodel (returned by get_refmodel() or init_refmodel()).

newdata Passed to argument newdata of the reference model’s extract_model_data
function (see init_refmodel()). Provides the predictor (and possibly also the
response) data for the new (or old) observations. May also be NULL (see argu-
ment extract_model_data of init_refmodel()). If not NULL, any NAs will
trigger an error.

ynew If not NULL, then this needs to be a vector of new (or old) response values.
See also section "Value" below. In case of (i) the augmented-data projection
or (ii) the latent projection with type = "response" and object$family$cats
being not NULL, ynew is internally coerced to a factor (using as.factor()).
The levels of this factor have to be a subset of object$family$cats (see
extend_family()’s arguments augdat_y_unqs and latent_y_unqs, respec-
tively).

offsetnew Passed to argument orhs of the reference model’s extract_model_data func-
tion (see init_refmodel()). Used to get the offsets for the new (or old) obser-
vations.

weightsnew Passed to argument wrhs of the reference model’s extract_model_data func-
tion (see init_refmodel()). Used to get the weights for the new (or old) ob-
servations.

type Usually only relevant if is.null(ynew), but for the latent projection, this also
affects the !is.null(ynew) case (see below). The scale on which the pre-
dictions are returned, either "link" or "response" (see predict.glm() but
note that predict.refmodel() does not adhere to the typical R convention
of a default prediction on link scale). For both scales, the predictions are av-
eraged across the posterior draws. In case of the latent projection, argument
type is similar in spirit to argument resp_oscale from other functions: If (i)
is.null(ynew), then argument type affects the predictions as described above.
In that case, note that type = "link" yields the linear predictors without any
modifications that may be due to the original response distribution (e.g., for a
brms::cumulative() model, the ordered thresholds are not taken into account).
If (ii) !is.null(ynew), then argument type also affects the scale of the log pos-
terior predictive densities (type = "response" for the original response scale,
type = "link" for the latent Gaussian scale).

... Currently ignored.

Details

Argument weightsnew is only relevant if !is.null(ynew).

In case of a multilevel reference model, group-level effects for new group levels are drawn randomly
from a (multivariate) Gaussian distribution. When setting projpred.mlvl_pred_new to TRUE, all
group levels from newdata (even those that already exist in the original dataset) are treated as new
group levels (if is.null(newdata), all group levels from the original dataset are considered as new
group levels in that case).

predictor_terms 35

Value

In the following, N , Ccat, and Clat from help topic refmodel-init-get are used. Furthermore, let C
denote either Ccat (if type = "response") or Clat (if type = "link"). Then, if is.null(ynew), the
returned object contains the reference model’s predictions (with the scale depending on argument
type) as:

• a length-N vector in case of (i) the traditional projection, (ii) the latent projection with type
= "link", or (iii) the latent projection with type = "response" and object$family$cats
being NULL;

• an N ×C matrix in case of (i) the augmented-data projection or (ii) the latent projection with
type = "response" and object$family$cats being not NULL.

If !is.null(ynew), the returned object is a length-N vector of log posterior predictive densities
evaluated at ynew.

predictor_terms Predictor terms used in a project() run

Description

For a projection object (returned by project(), possibly as elements of a list), this function
extracts the combination of predictor terms onto which the projection was performed.

Usage

predictor_terms(object, ...)

S3 method for class 'projection'
predictor_terms(object, ...)

Arguments

object An object of class projection (returned by project(), possibly as elements
of a list) from which to retrieve the predictor terms.

... Currently ignored.

Value

A character vector of predictor terms.

Examples

if (requireNamespace("rstanarm", quietly = TRUE)) {
Data:
dat_gauss <- data.frame(y = df_gaussian$y, df_gaussian$x)

The "stanreg" fit which will be used as the reference model (with small
values for `chains` and `iter`, but only for technical reasons in this

36 print.vsel

example; this is not recommended in general):
fit <- rstanarm::stan_glm(

y ~ X1 + X2 + X3 + X4 + X5, family = gaussian(), data = dat_gauss,
QR = TRUE, chains = 2, iter = 500, refresh = 0, seed = 9876

)

Projection onto an arbitrary combination of predictor terms (with a small
value for `nclusters`, but only for the sake of speed in this example;
this is not recommended in general):
prj <- project(fit, solution_terms = c("X1", "X3", "X5"), nclusters = 10,

seed = 9182)
print(predictor_terms(prj)) # gives `c("X1", "X3", "X5")`

}

print.vsel Print results (summary) of a varsel() or cv_varsel() run

Description

This is the print() method for vsel objects (returned by varsel() or cv_varsel()). It dis-
plays a summary of a varsel() or cv_varsel() run by first calling summary.vsel() and then
print.vselsummary().

Usage

S3 method for class 'vsel'
print(x, ...)

Arguments

x An object of class vsel (returned by varsel() or cv_varsel()).

... Arguments passed to summary.vsel() (apart from argument digits which is
passed to print.vselsummary()).

Value

The output of summary.vsel() (invisible).

print.vselsummary 37

print.vselsummary Print summary of a varsel() or cv_varsel() run

Description

This is the print() method for summary objects created by summary.vsel(). It displays a sum-
mary of the results from a varsel() or cv_varsel() run.

Usage

S3 method for class 'vselsummary'
print(x, ...)

Arguments

x An object of class vselsummary.

... Arguments passed to print.data.frame().

Details

In the table printed at the bottom, column solution_terms contains the full-data predictor ranking
and column cv_proportions_diag contains the main diagonal of the matrix returned by cv_proportions()
(with cumulate as set in the summary.vsel() call that created x).

Value

The output of summary.vsel() (invisible).

project Projection onto submodel(s)

Description

Project the posterior of the reference model onto the parameter space of a single submodel con-
sisting of a specific combination of predictor terms or (after variable selection) onto the parameter
space of a single or multiple submodels of specific sizes.

Usage

project(
object,
nterms = NULL,
solution_terms = NULL,
refit_prj = TRUE,
ndraws = 400,

38 project

nclusters = NULL,
seed = NA,
regul = 1e-04,
...

)

Arguments

object An object which can be used as input to get_refmodel() (in particular, objects
of class refmodel).

nterms Only relevant if object is of class vsel (returned by varsel() or cv_varsel()).
Ignored if !is.null(solution_terms). Number of terms for the submodel
(the corresponding combination of predictor terms is taken from object). If a
numeric vector, then the projection is performed for each element of this vec-
tor. If NULL (and is.null(solution_terms)), then the value suggested by
suggest_size() is taken (with default arguments for suggest_size(), imply-
ing that this suggested size is based on the ELPD). Note that nterms does not
count the intercept, so use nterms = 0 for the intercept-only model.

solution_terms If not NULL, then this needs to be a character vector of predictor terms for the
submodel onto which the projection will be performed. Argument nterms is
ignored in that case. For an object which is not of class vsel, solution_terms
must not be NULL.

refit_prj A single logical value indicating whether to fit the submodels (again) (TRUE) or
to retrieve the fitted submodels from object (FALSE). For an object which is
not of class vsel, refit_prj must be TRUE. Note that currently, refit_prj =
FALSE requires some caution, see GitHub issue #168.

ndraws Only relevant if refit_prj is TRUE. Number of posterior draws to be projected.
Ignored if nclusters is not NULL or if the reference model is of class datafit
(in which case one cluster is used). If both (nclusters and ndraws) are NULL,
the number of posterior draws from the reference model is used for ndraws. See
also section "Details" below.

nclusters Only relevant if refit_prj is TRUE. Number of clusters of posterior draws to
be projected. Ignored if the reference model is of class datafit (in which case
one cluster is used). For the meaning of NULL, see argument ndraws. See also
section "Details" below.

seed Pseudorandom number generation (PRNG) seed by which the same results can
be obtained again if needed. Passed to argument seed of set.seed(), but can
also be NA to not call set.seed() at all. If not NA, then the PRNG state is reset
(to the state before calling project()) upon exiting project(). Here, seed is
used for clustering the reference model’s posterior draws (if !is.null(nclusters))
and for drawing new group-level effects when predicting from a multilevel sub-
model (however, not yet in case of a GAMM) and having global option projpred.mlvl_pred_new
set to TRUE. (Such a prediction takes place when calculating output elements dis
and ce.)

regul A number giving the amount of ridge regularization when projecting onto (i.e.,
fitting) submodels which are GLMs. Usually there is no need for regularization,
but sometimes we need to add some regularization to avoid numerical problems.

project 39

... Arguments passed to get_refmodel() (if get_refmodel() is actually used;
see argument object) as well as to the divergence minimizer (if refit_prj is
TRUE).

Details

Arguments ndraws and nclusters are automatically truncated at the number of posterior draws
in the reference model (which is 1 for datafits). Using less draws or clusters in ndraws or
nclusters than posterior draws in the reference model may result in slightly inaccurate projec-
tion performance. Increasing these arguments affects the computation time linearly.

Note that if project() is applied to output from cv_varsel(), then refit_prj = FALSE will take
the results from the full-data search.

Value

If the projection is performed onto a single submodel (i.e., length(nterms) == 1 || !is.null(solution_terms)),
an object of class projection which is a list containing the following elements:

dis Projected draws for the dispersion parameter.

ce The cross-entropy part of the Kullback-Leibler (KL) divergence from the reference model to
the submodel. For some families, this is not the actual cross-entropy, but a reduced one where
terms which would cancel out when calculating the KL divergence have been dropped. In
case of the Gaussian family, that reduced cross-entropy is further modified, yielding merely a
proxy.

wdraws_prj Weights for the projected draws.

solution_terms A character vector of the submodel’s predictor terms.

outdmin A list containing the submodel fits (one fit per projected draw). This is the same as the
return value of the div_minimizer function (see init_refmodel()), except if project()
was used with an object of class vsel based on an L1 search as well as with refit_prj =
FALSE, in which case this is the output from an internal L1-penalized divergence minimizer.

cl_ref A numeric vector of length equal to the number of posterior draws in the reference model,
containing the cluster indices of these draws.

wdraws_ref A numeric vector of length equal to the number of posterior draws in the reference
model, giving the weights of these draws. These weights should be treated as not being nor-
malized (i.e., they don’t necessarily sum to 1).

p_type A single logical value indicating whether the reference model’s posterior draws have been
clustered for the projection (TRUE) or not (FALSE).

refmodel The reference model object.

If the projection is performed onto more than one submodel, the output from above is returned for
each submodel, giving a list with one element for each submodel.

The elements of an object of class projection are not meant to be accessed directly but in-
stead via helper functions (see the main vignette and projpred-package). An exception is element
wdraws_prj which is currently needed to weight quantities derived from the projected draws in case
of clustered projection, e.g., after applying as.matrix.projection() (which throws a warning in
case of clustered projection to make users aware of this problem).

40 ranking

Examples

if (requireNamespace("rstanarm", quietly = TRUE)) {
Data:
dat_gauss <- data.frame(y = df_gaussian$y, df_gaussian$x)

The "stanreg" fit which will be used as the reference model (with small
values for `chains` and `iter`, but only for technical reasons in this
example; this is not recommended in general):
fit <- rstanarm::stan_glm(

y ~ X1 + X2 + X3 + X4 + X5, family = gaussian(), data = dat_gauss,
QR = TRUE, chains = 2, iter = 500, refresh = 0, seed = 9876

)

Run varsel() (here without cross-validation and with small values for
`nterms_max`, `nclusters`, and `nclusters_pred`, but only for the sake of
speed in this example; this is not recommended in general):
vs <- varsel(fit, nterms_max = 3, nclusters = 5, nclusters_pred = 10,

seed = 5555)

Projection onto the best submodel with 2 predictor terms (with a small
value for `nclusters`, but only for the sake of speed in this example;
this is not recommended in general):
prj_from_vs <- project(vs, nterms = 2, nclusters = 10, seed = 9182)

Projection onto an arbitrary combination of predictor terms (with a small
value for `nclusters`, but only for the sake of speed in this example;
this is not recommended in general):
prj <- project(fit, solution_terms = c("X1", "X3", "X5"), nclusters = 10,

seed = 9182)
}

ranking Predictor ranking(s)

Description

Extracts the predictor ranking(s) from an object of class vsel (returned by varsel() or cv_varsel()).
A predictor ranking is simply a character vector of predictor terms ranked by predictive relevance
(with the most relevant term first). In any case, objects of class vsel contain the predictor ranking
based on the full-data search. If an object of class vsel is based on a cross-validation (CV) with
fold-wise searches (i.e., if it was created by cv_varsel() with validate_search = TRUE), then it
also contains fold-wise predictor rankings.

Usage

ranking(object, ...)

S3 method for class 'vsel'
ranking(object, nterms_max = NULL, ...)

refmodel-init-get 41

Arguments

object The object from which to retrieve the predictor ranking(s). Possible classes
may be inferred from the names of the corresponding methods (see also the
description).

... Currently ignored.

nterms_max Maximum submodel size (number of predictor terms) for the predictor rank-
ing(s), i.e., the submodel size at which to cut off the predictor ranking(s). Using
NULL is effectively the same as setting nterms_max to the full model size, i.e.,
this means to not cut off the predictor ranking(s) at all. Note that nterms_max
does not count the intercept, so nterms_max = 1 corresponds to the submodel
consisting of the first (non-intercept) predictor term.

Value

An object of class ranking which is a list with the following elements:

• fulldata: The predictor ranking from the full-data search.

• foldwise: The predictor rankings from the fold-wise searches in the form of a character
matrix (only available if object is based on a CV with fold-wise searches, otherwise element
foldwise is NULL). The rows of this matrix correspond to the CV folds and the columns to the
submodel sizes. Each row contains the predictor ranking from the search of that CV fold.

See Also

cv_proportions()

Examples

For an example, see `?plot.cv_proportions`.

refmodel-init-get Reference model and more general information

Description

Function get_refmodel() is a generic function whose methods usually call init_refmodel()
which is the underlying workhorse (and may also be used directly without a call to get_refmodel()).

Both, get_refmodel() and init_refmodel(), create an object containing information needed for
the projection predictive variable selection, namely about the reference model, the submodels, and
how the projection should be carried out. For the sake of simplicity, the documentation may refer
to the resulting object also as "reference model" or "reference model object", even though it also
contains information about the submodels and the projection.

A "typical" reference model object is created by get_refmodel.stanreg() and brms::get_refmodel.brmsfit(),
either implicitly by a call to a top-level function such as project(), varsel(), and cv_varsel()

42 refmodel-init-get

or explicitly by a call to get_refmodel(). All non-"typical" reference model objects will be called
"custom" reference model objects.
Some arguments are for K-fold cross-validation (K-fold CV) only; see cv_varsel() for the use
of K-fold CV in projpred.

Usage

get_refmodel(object, ...)

S3 method for class 'refmodel'
get_refmodel(object, ...)

S3 method for class 'vsel'
get_refmodel(object, ...)

Default S3 method:
get_refmodel(object, formula, family = NULL, ...)

S3 method for class 'stanreg'
get_refmodel(object, latent = FALSE, dis = NULL, ...)

init_refmodel(
object,
data,
formula,
family,
ref_predfun = NULL,
div_minimizer = NULL,
proj_predfun = NULL,
extract_model_data,
cvfun = NULL,
cvfits = NULL,
dis = NULL,
cvrefbuilder = NULL,
...

)

Arguments

object For init_refmodel(), an object that the functions from arguments extract_model_data
and ref_predfun can be applied to, with a NULL object being treated specially
(see section "Value" below). For get_refmodel.default(), an object of type
list that (i) function family() can be applied to in order to retrieve the fam-
ily (if argument family is NULL) and (ii) has an element called data contain-
ing the original dataset (see argument data of init_refmodel()), additionally
to the properties required for init_refmodel(). For non-default methods of
get_refmodel(), an object of the corresponding class.

... For get_refmodel.default() and get_refmodel.stanreg(): arguments passed
to init_refmodel(). For the get_refmodel() generic: arguments passed to

refmodel-init-get 43

the appropriate method. For init_refmodel(): arguments passed to extend_family()
(apart from family).

formula The full formula to use for the search procedure. For custom reference models,
this does not necessarily coincide with the reference model’s formula. For gen-
eral information about formulas in R, see formula. For information about possi-
ble right-hand side (i.e., predictor) terms in formula here, see the main vignette
and section "Formula terms" below. For multilevel formulas, see also package
lme4 (in particular, functions lme4::lmer() and lme4::glmer()). For addi-
tive formulas, see also packages mgcv (in particular, function mgcv::gam())
and gamm4 (in particular, function gamm4::gamm4()).

family An object of class family representing the observation model (i.e., the distri-
butional family for the response) of the submodels. (However, the link and
the inverse-link function of this family are also used for quantities like pre-
dictions and fitted values related to the reference model.) May be NULL for
get_refmodel.default() in which case the family is retrieved from object.
For custom reference models, family does not have to coincide with the family
of the reference model (if the reference model possesses a formal family at all).
In typical reference models, however, these families do coincide.

latent A single logical value indicating whether to use the latent projection (TRUE) or
not (FALSE). Note that setting latent = TRUE causes all arguments starting with
augdat_ to be ignored.

dis A vector of posterior draws for the reference model’s dispersion parameter or—
more precisely—the posterior values for the reference model’s parameter-conditional
predictive variance (assuming that this variance is the same for all observations).
May be NULL if the submodels have no dispersion parameter or if the submodels
do have a dispersion parameter, but object is NULL (in which case 0 is used for
dis). Note that for the gaussian() family, dis is the standard deviation, not
the variance.

data A data.frame containing the data to use for the projection predictive variable
selection. Any contrasts attributes of the dataset’s columns are silently re-
moved. For custom reference models, the columns of data do not necessarily
have to coincide with those of the dataset used for fitting the reference model,
but keep in mind that a row-subset of data is used for argument newdata of
ref_predfun during K-fold CV.

ref_predfun Prediction function for the linear predictor of the reference model, including
offsets (if existing). See also section "Arguments ref_predfun, proj_predfun,
and div_minimizer" below. If object is NULL, ref_predfun is ignored and an
internal default is used instead.

div_minimizer A function for minimizing the Kullback-Leibler (KL) divergence from the ref-
erence model to a submodel (i.e., for performing the projection of the refer-
ence model onto a submodel). The output of div_minimizer is used, e.g., by
proj_predfun’s argument fits. See also section "Arguments ref_predfun,
proj_predfun, and div_minimizer" below.

proj_predfun Prediction function for the linear predictor of a submodel onto which the refer-
ence model is projected. See also section "Arguments ref_predfun, proj_predfun,
and div_minimizer" below.

44 refmodel-init-get

extract_model_data

A function for fetching some variables (response, observation weights, offsets)
from the original dataset (supplied to argument data) or from a new dataset. See
also section "Argument extract_model_data" below.

cvfun For K-fold CV only. A function that, given a fold indices vector, fits the ref-
erence model separately for each fold and returns the K model fits as a list.
Each of the K model fits needs to be a list. If object is NULL, cvfun may be
NULL for using an internal default. Only one of cvfits and cvfun needs to be
provided (for K-fold CV). Note that cvfits takes precedence over cvfun, i.e.,
if both are provided, cvfits is used.

cvfits For K-fold CV only. A list containing a sub-list called fits containing the
K model fits from which reference model structures are created. The cvfits
list (i.e., the super-list) needs to have attributes K and folds: K has to be a
single integer giving the number of folds and folds has to be an integer vec-
tor giving the fold indices (one fold index per observation). Each element of
cvfits$fits (i.e., each of the K model fits) needs to be a list. Only one of
cvfits and cvfun needs to be provided (for K-fold CV). Note that cvfits
takes precedence over cvfun, i.e., if both are provided, cvfits is used.

cvrefbuilder For K-fold CV only. A function that, given a reference model fit for fold
k ∈ {1, ...,K} (this model fit is the k-th element of the return value of cvfun or
the k-th element of cvfits$fits, extended by elements omitted (containing
the indices of the left-out observations in that fold) and projpred_k (contain-
ing the integer k)), returns an object of the same type as init_refmodel()
does. Argument cvrefbuilder may be NULL for using an internal default:
get_refmodel() if object is not NULL and a function calling init_refmodel()
appropriately (with the assumption dis = 0) if object is NULL.

Value

An object that can be passed to all the functions that take the reference model fit as the first ar-
gument, such as varsel(), cv_varsel(), project(), proj_linpred(), and proj_predict().
Usually, the returned object is of class refmodel. However, if object is NULL, the returned ob-
ject is of class datafit as well as of class refmodel (with datafit being first). Objects of class
datafit are handled differently at several places throughout this package.

The elements of the returned object are not meant to be accessed directly but instead via downstream
functions (see the functions mentioned above as well as predict.refmodel()).

Formula terms

Although bad practice (in general), a reference model lacking an intercept can be used within pro-
jpred. However, it will always be projected onto submodels which include an intercept. The reason
is that even if the true intercept in the reference model is zero, this does not need to hold for the
submodels.

In multilevel (group-level) terms, function calls on the right-hand side of the | character (e.g., (1 |
gr(group_variable)), which is possible in brms) are currently not allowed in projpred.

For additive models (still an experimental feature), only mgcv::s() and mgcv::t2() are currently
supported as smooth terms. Furthermore, these need to be called without any arguments apart from

refmodel-init-get 45

the predictor names (symbols). For example, for smoothing the effect of a predictor x, only s(x)
or t2(x) are allowed. As another example, for smoothing the joint effect of two predictors x and
z, only s(x, z) or t2(x, z) are allowed (and analogously for higher-order joint effects, e.g., of
three predictors). Note that all smooth terms need to be included in formula (there is no random
argument as in rstanarm::stan_gamm4(), for example).

Arguments ref_predfun, proj_predfun, and div_minimizer

Arguments ref_predfun, proj_predfun, and div_minimizer may be NULL for using an internal
default (see projpred-package for the functions used by the default divergence minimizers). Other-
wise, let N denote the number of observations (in case of CV, these may be reduced to each fold),
Sref the number of posterior draws for the reference model’s parameters, and Sprj the number of
draws for the parameters of a submodel that the reference model has been projected onto (short:
the number of projected draws). For the augmented-data projection, let Ccat denote the number of
response categories, Clat the number of latent response categories (which typically equals Ccat−1),
and define Naugcat := N ·Ccat as well as Nauglat := N ·Clat. Then the functions supplied to these
arguments need to have the following prototypes:

• ref_predfun: ref_predfun(fit, newdata = NULL) where:

– fit accepts the reference model fit as given in argument object (but possibly re-fitted to
a subset of the observations, as done in K-fold CV).

– newdata accepts either NULL (for using the original dataset, typically stored in fit) or
data for new observations (at least in the form of a data.frame).

• proj_predfun: proj_predfun(fits, newdata) where:

– fits accepts a list of length Sprj containing this number of submodel fits. This list is
the same as that returned by project() in its output element outdmin (which in turn is
the same as the return value of div_minimizer, except if project() was used with an
object of class vsel based on an L1 search as well as with refit_prj = FALSE).

– newdata accepts data for new observations (at least in the form of a data.frame).

• div_minimizer does not need to have a specific prototype, but it needs to be able to be called
with the following arguments:

– formula accepts either a standard formula with a single response (if Sprj = 1 or in
case of the augmented-data projection) or a formula with Sprj > 1 response variables
cbind()-ed on the left-hand side in which case the projection has to be performed for
each of the response variables separately.

– data accepts a data.frame to be used for the projection. In case of the traditional or the
latent projection, this dataset has N rows. In case of the augmented-data projection, this
dataset has Naugcat rows.

– family accepts an object of class family.
– weights accepts either observation weights (at least in the form of a numeric vector) or
NULL (for using a vector of ones as weights).

– projpred_var accepts an N × Sprj matrix of predictive variances (necessary for pro-
jpred’s internal GLM fitter) in case of the traditional or the latent projection and an
Naugcat × Sprj matrix (containing only NAs) in case of the augmented-data projection.

– projpred_regul accepts a single numeric value as supplied to argument regul of project(),
for example.

46 refmodel-init-get

– projpred_ws_aug accepts an N×Sprj matrix of expected values for the response in case
of the traditional or the latent projection and an Naugcat×Sprj matrix of probabilities for
the response categories in case of the augmented-data projection.

– ... accepts further arguments specified by the user.

The return value of these functions needs to be:

• ref_predfun: for the traditional or the latent projection, an N×Sref matrix; for the augmented-
data projection, an Sref ×N ×Clat array (the only exception is the augmented-data projection
for the binomial() family in which case ref_predfun needs to return an N × Sref matrix
just like for the traditional projection because the array is constructed by an internal wrapper
function).

• proj_predfun: for the traditional or the latent projection, an N × Sprj matrix; for the
augmented-data projection, an N × Clat × Sprj array.

• div_minimizer: a list of length Sprj containing this number of submodel fits.

Argument extract_model_data

The function supplied to argument extract_model_data needs to have the prototype

extract_model_data(object, newdata, wrhs = NULL, orhs = NULL,
extract_y = TRUE)

where:

• object accepts the reference model fit as given in argument object (but possibly re-fitted to
a subset of the observations, as done in K-fold CV).

• newdata accepts either NULL (for using the original dataset, typically stored in object) or data
for new observations (at least in the form of a data.frame).

• wrhs accepts at least either NULL (for using a vector of ones) or a right-hand side formula
consisting only of the variable in newdata containing the weights.

• orhs accepts at least either NULL (for using a vector of zeros) or a right-hand side formula
consisting only of the variable in newdata containing the offsets.

• extract_y accepts a single logical value indicating whether output element y (see below)
shall be NULL (TRUE) or not (FALSE).

The return value of extract_model_data needs to be a list with elements y, weights, and
offset, each being a numeric vector containing the data for the response, the observation weights,
and the offsets, respectively. An exception is that y may also be NULL (depending on argument
extract_y), a non-numeric vector, or a factor.

The weights and offsets returned by extract_model_data will be assumed to hold for the reference
model as well as for the submodels.

refmodel-init-get 47

Augmented-data projection

If a custom reference model for an augmented-data projection is needed, see also extend_family().

For the augmented-data projection, the response vector resulting from extract_model_data is
internally coerced to a factor (using as.factor()). The levels of this factor have to be identical
to family$cats (after applying extend_family() internally; see extend_family()’s argument
augdat_y_unqs).

Note that response-specific offsets (i.e., one length-N offset vector per response category) are not
supported by projpred yet. So far, only offsets which are the same across all response categories
are supported. This is why in case of the brms::categorical() family, offsets are currently not
supported at all.

Currently, object = NULL (i.e., a datafit; see section "Value") is not supported in case of the
augmented-data projection.

Latent projection

If a custom reference model for a latent projection is needed, see also extend_family().

For the latent projection, family$cats (after applying extend_family() internally; see extend_family()’s
argument latent_y_unqs) currently must not be NULL if the original (i.e., non-latent) response is a
factor. Conversely, if family$cats (after applying extend_family()) is non-NULL, the response
vector resulting from extract_model_data is internally coerced to a factor (using as.factor()).
The levels of this factor have to be identical to that non-NULL element family$cats.

Currently, object = NULL (i.e., a datafit; see section "Value") is not supported in case of the latent
projection.

Examples

if (requireNamespace("rstanarm", quietly = TRUE)) {
Data:
dat_gauss <- data.frame(y = df_gaussian$y, df_gaussian$x)

The "stanreg" fit which will be used as the reference model (with small
values for `chains` and `iter`, but only for technical reasons in this
example; this is not recommended in general):
fit <- rstanarm::stan_glm(

y ~ X1 + X2 + X3 + X4 + X5, family = gaussian(), data = dat_gauss,
QR = TRUE, chains = 2, iter = 500, refresh = 0, seed = 9876

)

Define the reference model explicitly:
ref <- get_refmodel(fit)
print(class(ref)) # gives `"refmodel"`
Now see, for example, `?varsel`, `?cv_varsel`, and `?project` for
possible post-processing functions. Most of the post-processing functions
call get_refmodel() internally at the beginning, so you will rarely need
to call get_refmodel() yourself.

A custom reference model which may be used in a variable selection where
the candidate predictors are not a subset of those used for the reference
model's predictions:

48 solution_terms

ref_cust <- init_refmodel(
fit,
data = dat_gauss,
formula = y ~ X6 + X7,
family = gaussian(),
extract_model_data = function(object, newdata = NULL, wrhs = NULL,

orhs = NULL, extract_y = TRUE) {
if (!extract_y) {

resp_form <- NULL
} else {

resp_form <- ~ y
}

if (is.null(newdata)) {
newdata <- dat_gauss

}

args <- projpred:::nlist(object, newdata, wrhs, orhs, resp_form)
return(projpred::do_call(projpred:::.extract_model_data, args))

},
cvfun = function(folds) {

kfold(
fit, K = max(folds), save_fits = TRUE, folds = folds, cores = 1

)$fits[, "fit"]
},
dis = as.matrix(fit)[, "sigma"]

)
Now, the post-processing functions mentioned above (for example,
varsel(), cv_varsel(), and project()) may be applied to `ref_cust`.

}

solution_terms Retrieve the full-data solution path from a varsel() or cv_varsel()
run or the predictor combination from a project() run

Description

The solution_terms.vsel() method retrieves the solution path from a full-data search (vsel ob-
jects are returned by varsel() or cv_varsel()). The solution_terms.projection() method
retrieves the predictor combination onto which a projection was performed (projection objects
are returned by project(), possibly as elements of a list). Both methods (and hence also the
solution_terms() generic) are deprecated and will be removed in a future release. Please use
ranking() instead of solution_terms.vsel() (ranking()’s output element fulldata contains
the full-data predictor ranking that is extracted by solution_terms.vsel(); ranking()’s output
element foldwise contains the fold-wise predictor rankings—if available—which were previously
not accessible via a built-in function) and predictor_terms() instead of solution_terms.projection().

suggest_size 49

Usage

solution_terms(object, ...)

S3 method for class 'vsel'
solution_terms(object, ...)

S3 method for class 'projection'
solution_terms(object, ...)

Arguments

object The object from which to retrieve the predictor terms. Possible classes may be
inferred from the names of the corresponding methods (see also the description).

... Currently ignored.

Value

A character vector of predictor terms.

suggest_size Suggest submodel size

Description

This function can suggest an appropriate submodel size based on a decision rule described in section
"Details" below. Note that this decision is quite heuristic and should be interpreted with caution. It
is recommended to examine the results via plot.vsel() and/or summary.vsel() and to make the
final decision based on what is most appropriate for the problem at hand.

Usage

suggest_size(object, ...)

S3 method for class 'vsel'
suggest_size(
object,
stat = "elpd",
pct = 0,
type = "upper",
thres_elpd = NA,
warnings = TRUE,
...

)

50 suggest_size

Arguments

object An object of class vsel (returned by varsel() or cv_varsel()).
... Arguments passed to summary.vsel(), except for object, stats (which is set

to stat), type, and deltas (which is set to TRUE). See section "Details" below
for some important arguments which may be passed here.

stat Performance statistic (i.e., utility or loss) used for the decision. See argument
stats of summary.vsel() for possible choices.

pct A number giving the proportion (not percents) of the relative null model utility
one is willing to sacrifice. See section "Details" below for more information.

type Either "upper" or "lower" determining whether the decision is based on the
upper or lower confidence interval bound, respectively. See section "Details"
below for more information.

thres_elpd Only relevant if stat %in% c("elpd", "mlpd"). The threshold for the ELPD
difference (taking the submodel’s ELPD minus the baseline model’s ELPD)
above which the submodel’s ELPD is considered to be close enough to the base-
line model’s ELPD. An equivalent rule is applied in case of the MLPD. See
section "Details" for a formalization. Supplying NA deactivates this.

warnings Mainly for internal use. A single logical value indicating whether to throw warn-
ings if automatic suggestion fails. Usually there is no reason to set this to FALSE.

Details

In general (beware of special extensions below), the suggested model size is the smallest model
size j ∈ {0, 1, ..., nterms_max} for which either the lower or upper bound (depending on argument
type) of the normal-approximation (or bootstrap; see argument stat) confidence interval (with
nominal coverage 1 - alpha; see argument alpha of summary.vsel()) for Uj − Ubase (with Uj

denoting the j-th submodel’s true utility and Ubase denoting the baseline model’s true utility) falls
above (or is equal to)

pct · (u0 − ubase)

where u0 denotes the null model’s estimated utility and ubase the baseline model’s estimated util-
ity. The baseline model is either the reference model or the best submodel found (see argument
baseline of summary.vsel()).

If !is.na(thres_elpd) and stat = "elpd", the decision rule above is extended: The suggested
model size is then the smallest model size j fulfilling the rule above or uj − ubase > thres_elpd.
Correspondingly, in case of stat = "mlpd" (and !is.na(thres_elpd)), the suggested model size
is the smallest model size j fulfilling the rule above or uj − ubase >

thres_elpd
N with N denoting the

number of observations.

For example (disregarding the special extensions in case of !is.na(thres_elpd) with stat =
"elpd" or stat = "mlpd"), alpha = 2 * pnorm(-1), pct = 0, and type = "upper" means that we
select the smallest model size for which the upper bound of the 1 - 2 * pnorm(-1) (approximately
68.3%) confidence interval for Uj − Ubase exceeds (or is equal to) zero, that is (if stat is a per-
formance statistic for which the normal approximation is used, not the bootstrap), for which the
submodel’s utility estimate is at most one standard error smaller than the baseline model’s utility
estimate (with that standard error referring to the utility difference).

Apart from the two summary.vsel() arguments mentioned above (alpha and baseline), resp_oscale
is another important summary.vsel() argument that may be passed via

summary.vsel 51

Value

A single numeric value, giving the suggested submodel size (or NA if the suggestion failed).

The intercept is not counted by suggest_size(), so a suggested size of zero stands for the intercept-
only model.

Note

Loss statistics like the root mean squared error (RMSE) and the mean squared error (MSE) are
converted to utilities by multiplying them by -1, so a call such as suggest_size(object, stat =
"rmse", type = "upper") finds the smallest model size whose upper confidence interval bound for
the negative RMSE or MSE exceeds the cutoff (or, equivalently, has the lower confidence interval
bound for the RMSE or MSE below the cutoff). This is done to make the interpretation of argument
type the same regardless of argument stat.

Examples

if (requireNamespace("rstanarm", quietly = TRUE)) {
Data:
dat_gauss <- data.frame(y = df_gaussian$y, df_gaussian$x)

The "stanreg" fit which will be used as the reference model (with small
values for `chains` and `iter`, but only for technical reasons in this
example; this is not recommended in general):
fit <- rstanarm::stan_glm(

y ~ X1 + X2 + X3 + X4 + X5, family = gaussian(), data = dat_gauss,
QR = TRUE, chains = 2, iter = 500, refresh = 0, seed = 9876

)

Run varsel() (here without cross-validation and with small values for
`nterms_max`, `nclusters`, and `nclusters_pred`, but only for the sake of
speed in this example; this is not recommended in general):
vs <- varsel(fit, nterms_max = 3, nclusters = 5, nclusters_pred = 10,

seed = 5555)
print(suggest_size(vs))

}

summary.vsel Summary of a varsel() or cv_varsel() run

Description

This is the summary() method for vsel objects (returned by varsel() or cv_varsel()). Apart
from some general information about the varsel() or cv_varsel() run, it shows the full-data
predictor ranking, basic information about the (CV) variability in the ranking of the predictors (if
available; inferred from cv_proportions()), and estimates for user-specified predictive perfor-
mance statistics. For a graphical representation, see plot.vsel().

52 summary.vsel

Usage

S3 method for class 'vsel'
summary(
object,
nterms_max = NULL,
stats = "elpd",
type = c("mean", "se", "diff", "diff.se"),
deltas = FALSE,
alpha = 2 * pnorm(-1),
baseline = if (!inherits(object$refmodel, "datafit")) "ref" else "best",
resp_oscale = TRUE,
cumulate = FALSE,
...

)

Arguments

object An object of class vsel (returned by varsel() or cv_varsel()).

nterms_max Maximum submodel size (number of predictor terms) for which the performance
statistics are calculated. Using NULL is effectively the same as length(ranking(object)[["fulldata"]]).
Note that nterms_max does not count the intercept, so use nterms_max = 0 for
the intercept-only model. For plot.vsel(), nterms_max must be at least 1.

stats One or more character strings determining which performance statistics (i.e.,
utilities or losses) to estimate based on the observations in the evaluation (or
"test") set (in case of cross-validation, these are all observations because they
are partitioned into multiple test sets; in case of varsel() with d_test = NULL,
these are again all observations because the test set is the same as the training
set). Available statistics are:

• "elpd": expected log (pointwise) predictive density (for a new dataset). Es-
timated by the sum of the observation-specific log predictive density values
(with each of these predictive density values being a—possibly weighted—
average across the parameter draws).

• "mlpd": mean log predictive density, that is, "elpd" divided by the number
of observations.

• "mse": mean squared error (only available in the situations mentioned in
section "Details" below).

• "rmse": root mean squared error (only available in the situations mentioned
in section "Details" below). For the corresponding standard error and lower
and upper confidence interval bounds, bootstrapping is used.

• "acc" (or its alias, "pctcorr"): classification accuracy (only available in
the situations mentioned in section "Details" below).

• "auc": area under the ROC curve (only available in the situations men-
tioned in section "Details" below). For the corresponding standard error
and lower and upper confidence interval bounds, bootstrapping is used.

type One or more items from "mean", "se", "lower", "upper", "diff", and "diff.se"
indicating which of these to compute for each item from stats (mean, standard

summary.vsel 53

error, lower and upper confidence interval bounds, mean difference to the corre-
sponding statistic of the reference model, and standard error of this difference,
respectively). The confidence interval bounds belong to normal-approximation
(or bootstrap; see argument stats) confidence intervals with (nominal) cover-
age 1 - alpha. Items "diff" and "diff.se" are only supported if deltas is
FALSE.

deltas If TRUE, the submodel statistics are estimated as differences from the baseline
model (see argument baseline). With a "difference from the baseline model",
we mean to take the submodel statistic minus the baseline model statistic (not
the other way round).

alpha A number determining the (nominal) coverage 1 - alpha of the normal-approximation
(or bootstrap; see argument stats) confidence intervals. For example, in case of
the normal approximation, alpha = 2 * pnorm(-1) corresponds to a confidence
interval stretching by one standard error on either side of the point estimate.

baseline For summary.vsel(): Only relevant if deltas is TRUE. For plot.vsel(): Al-
ways relevant. Either "ref" or "best", indicating whether the baseline is the
reference model or the best submodel found (in terms of stats[1]), respec-
tively.

resp_oscale Only relevant for the latent projection. A single logical value indicating whether
to calculate the performance statistics on the original response scale (TRUE) or
on latent scale (FALSE).

cumulate Passed to argument cumulate of cv_proportions(). Affects column cv_proportions_diag
of the summary table.

... Arguments passed to the internal function which is used for bootstrapping (if
applicable; see argument stats). Currently, relevant arguments are B (the num-
ber of bootstrap samples, defaulting to 2000) and seed (see set.seed(), but
defaulting to NA so that set.seed() is not called within that function at all).

Details

The stats options "mse" and "rmse" are only available for:

• the traditional projection,

• the latent projection with resp_oscale = FALSE,

• the latent projection with resp_oscale = TRUE in combination with <refmodel>$family$cats
being NULL.

The stats option "acc" (= "pctcorr") is only available for:

• the binomial() family in case of the traditional projection,

• all families in case of the augmented-data projection,

• the binomial() family (on the original response scale) in case of the latent projection with
resp_oscale = TRUE in combination with <refmodel>$family$cats being NULL,

• all families (on the original response scale) in case of the latent projection with resp_oscale
= TRUE in combination with <refmodel>$family$cats being not NULL.

The stats option "auc" is only available for:

54 varsel

• the binomial() family in case of the traditional projection,

• the binomial() family (on the original response scale) in case of the latent projection with
resp_oscale = TRUE in combination with <refmodel>$family$cats being NULL.

Value

An object of class vselsummary.

See Also

print.vselsummary()

Examples

if (requireNamespace("rstanarm", quietly = TRUE)) {
Data:
dat_gauss <- data.frame(y = df_gaussian$y, df_gaussian$x)

The "stanreg" fit which will be used as the reference model (with small
values for `chains` and `iter`, but only for technical reasons in this
example; this is not recommended in general):
fit <- rstanarm::stan_glm(

y ~ X1 + X2 + X3 + X4 + X5, family = gaussian(), data = dat_gauss,
QR = TRUE, chains = 2, iter = 500, refresh = 0, seed = 9876

)

Run varsel() (here without cross-validation and with small values for
`nterms_max`, `nclusters`, and `nclusters_pred`, but only for the sake of
speed in this example; this is not recommended in general):
vs <- varsel(fit, nterms_max = 3, nclusters = 5, nclusters_pred = 10,

seed = 5555)
print(summary(vs), digits = 1)

}

varsel Run search and performance evaluation without cross-validation

Description

Run the search part and the evaluation part for a projection predictive variable selection. The
search part determines the solution path, i.e., the best submodel for each submodel size (number of
predictor terms). The evaluation part determines the predictive performance of the submodels along
the solution path.

varsel 55

Usage

varsel(object, ...)

Default S3 method:
varsel(object, ...)

S3 method for class 'refmodel'
varsel(
object,
d_test = NULL,
method = NULL,
ndraws = NULL,
nclusters = 20,
ndraws_pred = 400,
nclusters_pred = NULL,
refit_prj = !inherits(object, "datafit"),
nterms_max = NULL,
verbose = TRUE,
lambda_min_ratio = 1e-05,
nlambda = 150,
thresh = 1e-06,
regul = 1e-04,
penalty = NULL,
search_terms = NULL,
seed = NA,
...

)

Arguments

object An object of class refmodel (returned by get_refmodel() or init_refmodel())
or an object that can be passed to argument object of get_refmodel().

... Arguments passed to get_refmodel() as well as to the divergence minimizer
(during a forward search and also during the evaluation part, but the latter only
if refit_prj is TRUE).

d_test A list of the structure outlined in section "Argument d_test" below, providing
test data for evaluating the predictive performance of the submodels as well as
of the reference model. If NULL, the training data is used.

method The method for the search part. Possible options are "L1" for L1 search and
"forward" for forward search. If NULL, then internally, "L1" is used, except if (i)
the reference model has multilevel or additive terms, (ii) if !is.null(search_terms),
or (iii) if the augmented-data projection is used. See also section "Details" be-
low.

ndraws Number of posterior draws used in the search part. Ignored if nclusters is not
NULL or in case of L1 search (because L1 search always uses a single cluster).
If both (nclusters and ndraws) are NULL, the number of posterior draws from
the reference model is used for ndraws. See also section "Details" below.

56 varsel

nclusters Number of clusters of posterior draws used in the search part. Ignored in case
of L1 search (because L1 search always uses a single cluster). For the meaning
of NULL, see argument ndraws. See also section "Details" below.

ndraws_pred Only relevant if refit_prj is TRUE. Number of posterior draws used in the eval-
uation part. Ignored if nclusters_pred is not NULL. If both (nclusters_pred
and ndraws_pred) are NULL, the number of posterior draws from the reference
model is used for ndraws_pred. See also section "Details" below.

nclusters_pred Only relevant if refit_prj is TRUE. Number of clusters of posterior draws used
in the evaluation part. For the meaning of NULL, see argument ndraws_pred.
See also section "Details" below.

refit_prj A single logical value indicating whether to fit the submodels along the solution
path again (TRUE) or to retrieve their fits from the search part (FALSE) before
using those (re-)fits in the evaluation part.

nterms_max Maximum submodel size (number of predictor terms) up to which the search
is continued. If NULL, then min(19, D) is used where D is the number of terms
in the reference model (or in search_terms, if supplied). Note that nterms_max
does not count the intercept, so use nterms_max = 0 for the intercept-only model.
(Correspondingly, D above does not count the intercept.)

verbose A single logical value indicating whether to print out additional information
during the computations.

lambda_min_ratio

Only relevant for L1 search. Ratio between the smallest and largest lambda in
the L1-penalized search. This parameter essentially determines how long the
search is carried out, i.e., how large submodels are explored. No need to change
this unless the program gives a warning about this.

nlambda Only relevant for L1 search. Number of values in the lambda grid for L1-
penalized search. No need to change this unless the program gives a warning
about this.

thresh Only relevant for L1 search. Convergence threshold when computing the L1
path. Usually, there is no need to change this.

regul A number giving the amount of ridge regularization when projecting onto (i.e.,
fitting) submodels which are GLMs. Usually there is no need for regularization,
but sometimes we need to add some regularization to avoid numerical problems.

penalty Only relevant for L1 search. A numeric vector determining the relative penalties
or costs for the predictors. A value of 0 means that those predictors have no cost
and will therefore be selected first, whereas Inf means those predictors will
never be selected. If NULL, then 1 is used for each predictor.

search_terms Only relevant for forward search. A custom character vector of predictor term
blocks to consider for the search. Section "Details" below describes more pre-
cisely what "predictor term block" means. The intercept ("1") is always in-
cluded internally via union(), so there’s no difference between including it ex-
plicitly or omitting it. The default search_terms considers all the terms in the
reference model’s formula.

seed Pseudorandom number generation (PRNG) seed by which the same results can
be obtained again if needed. Passed to argument seed of set.seed(), but can

varsel 57

also be NA to not call set.seed() at all. If not NA, then the PRNG state is re-
set (to the state before calling varsel()) upon exiting varsel(). Here, seed is
used for clustering the reference model’s posterior draws (if !is.null(nclusters)
or !is.null(nclusters_pred)) and for drawing new group-level effects when
predicting from a multilevel submodel (however, not yet in case of a GAMM).

Details

Arguments ndraws, nclusters, nclusters_pred, and ndraws_pred are automatically truncated
at the number of posterior draws in the reference model (which is 1 for datafits). Using less
draws or clusters in ndraws, nclusters, nclusters_pred, or ndraws_pred than posterior draws
in the reference model may result in slightly inaccurate projection performance. Increasing these
arguments affects the computation time linearly.

For argument method, there are some restrictions: For a reference model with multilevel or additive
formula terms or a reference model set up for the augmented-data projection, only the forward
search is available. Furthermore, argument search_terms requires a forward search to take effect.

L1 search is faster than forward search, but forward search may be more accurate. Furthermore,
forward search may find a sparser model with comparable performance to that found by L1 search,
but it may also start overfitting when more predictors are added.

An L1 search may select interaction terms before the corresponding main terms are selected. If this
is undesired, choose the forward search instead.

The elements of the search_terms character vector don’t need to be individual predictor terms. In-
stead, they can be building blocks consisting of several predictor terms connected by the + symbol.
To understand how these building blocks work, it is important to know how projpred’s forward
search works: It starts with an empty vector chosen which will later contain already selected pre-
dictor terms. Then, the search iterates over model sizes j ∈ {1, ..., J}. The candidate models at
model size j are constructed from those elements from search_terms which yield model size j
when combined with the chosen predictor terms. Note that sometimes, there may be no candidate
models for model size j. Also note that internally, search_terms is expanded to include the inter-
cept ("1"), so the first step of the search (model size 1) always consists of the intercept-only model
as the only candidate.

As a search_terms example, consider a reference model with formula y ~ x1 + x2 + x3. Then, to
ensure that x1 is always included in the candidate models, specify search_terms = c("x1", "x1 +
x2", "x1 + x3", "x1 + x2 + x3"). This search would start with y ~ 1 as the only candidate at model
size 1. At model size 2, y ~ x1 would be the only candidate. At model size 3, y ~ x1 + x2 and y ~ x1
+ x3 would be the two candidates. At the last model size of 4, y ~ x1 + x2 + x3 would be the only
candidate. As another example, to exclude x1 from the search, specify search_terms = c("x2",
"x3", "x2 + x3").

Value

An object of class vsel. The elements of this object are not meant to be accessed directly but
instead via helper functions (see the main vignette and projpred-package).

Argument d_test

If not NULL, then d_test needs to be a list with the following elements:

58 varsel

• data: a data.frame containing the predictor variables for the test set.

• offset: a numeric vector containing the offset values for the test set (if there is no offset, use
a vector of zeros).

• weights: a numeric vector containing the observation weights for the test set (if there are no
observation weights, use a vector of ones).

• y: a vector or a factor containing the response values for the test set. In case of the latent
projection, this has to be a vector containing the latent response values, but it can also be a
vector full of NAs if latent-scale post-processing is not needed.

• y_oscale: Only needs to be provided in case of the latent projection where this needs to be a
vector or a factor containing the original (i.e., non-latent) response values for the test set.

See Also

cv_varsel()

Examples

if (requireNamespace("rstanarm", quietly = TRUE)) {
Data:
dat_gauss <- data.frame(y = df_gaussian$y, df_gaussian$x)

The "stanreg" fit which will be used as the reference model (with small
values for `chains` and `iter`, but only for technical reasons in this
example; this is not recommended in general):
fit <- rstanarm::stan_glm(

y ~ X1 + X2 + X3 + X4 + X5, family = gaussian(), data = dat_gauss,
QR = TRUE, chains = 2, iter = 500, refresh = 0, seed = 9876

)

Run varsel() (here without cross-validation and with small values for
`nterms_max`, `nclusters`, and `nclusters_pred`, but only for the sake of
speed in this example; this is not recommended in general):
vs <- varsel(fit, nterms_max = 3, nclusters = 5, nclusters_pred = 10,

seed = 5555)
Now see, for example, `?print.vsel`, `?plot.vsel`, `?suggest_size.vsel`,
and `?ranking` for possible post-processing functions.

}

Index

∗ datasets
df_binom, 17
df_gaussian, 18
mesquite, 24

abbreviate(), 28, 29
as.factor(), 21, 23, 34, 47
as.matrix(), 6
as.matrix.projection, 6
as.matrix.projection(), 5, 39
augdat_ilink_binom, 7
augdat_link_binom, 8

binomial(), 4, 8, 19, 20, 28, 29, 46, 53, 54
break_up_matrix_term, 9
brms::bernoulli(), 4
brms::brmsfamily(), 21
brms::categorical(), 4, 6, 21, 47
brms::cumulative(), 4, 32, 34
brms::get_refmodel.brmsfit(), 15, 41
brms::resp_thres(), 21

cbind(), 45
cl_agg, 9
cl_agg(), 23
cv-indices, 10
cv_folds (cv-indices), 10
cv_folds(), 10, 11
cv_ids (cv-indices), 10
cv_ids(), 10, 11
cv_proportions, 11
cv_proportions(), 5, 12, 24–26, 28, 37, 41,

51, 53
cv_proportions.ranking(), 12, 25
cv_proportions.vsel(), 12
cv_varsel, 13
cv_varsel(), 5, 12, 13, 15, 23, 26, 27, 36–42,

44, 48, 50–52, 58
cvfolds (cv-indices), 10
cvfolds(), 10

df_binom, 17
df_gaussian, 18

extend_family, 19
extend_family(), 6, 8, 20, 21, 23, 32, 34, 43,

47
extra-families, 23

family, 23
family(), 19, 42
formula, 3, 9, 43, 45

gamm4::gamm4(), 4, 43
gaussian(), 4, 43
get_refmodel (refmodel-init-get), 41
get_refmodel(), 5, 14, 33, 34, 38, 39, 41, 42,

44, 55
get_refmodel.default(), 42, 43
get_refmodel.stanreg(), 15, 41, 42
ggplot2::element_text(), 25, 28
ggrepel::geom_label_repel(), 28
ggrepel::geom_text_repel(), 28
glm(), 4

init_refmodel (refmodel-init-get), 41
init_refmodel(), 5, 10, 14, 19, 21, 23,

31–34, 39, 41–44, 55

lm(), 4
lme4::glmer(), 4, 43
lme4::lmer(), 4, 43
loo::psis(), 16

MASS::polr(), 4
mclogit::mblogit(), 4
mesquite, 24
mgcv::gam(), 4, 43
mgcv::s(), 44
mgcv::t2(), 44

nnet::multinom(), 4

59

60 INDEX

ordinal::clmm(), 4

plot(), 26
plot.cv_proportions, 24
plot.cv_proportions(), 5, 12, 25
plot.ranking (plot.cv_proportions), 24
plot.ranking(), 25
plot.vsel, 26
plot.vsel(), 5, 27, 49, 51–53
poisson(), 19, 20
pred-projection, 30
predict(), 33
predict.glm(), 34
predict.refmodel, 33
predict.refmodel(), 34, 44
predictor_terms, 35
predictor_terms(), 48
print(), 36, 37
print.data.frame(), 37
print.vsel, 36
print.vsel(), 5
print.vselsummary, 37
print.vselsummary(), 36, 54
proj_linpred (pred-projection), 30
proj_linpred(), 5, 30–32, 44
proj_predict (pred-projection), 30
proj_predict(), 5, 20, 22, 30–32, 44
project, 37
project(), 5, 6, 30–32, 35, 38, 39, 41, 44, 45,

48
projpred (projpred-package), 3
projpred-package, 3, 16, 39, 45, 57

ranking, 40
ranking(), 5, 12, 25, 48
ranking.vsel(), 12
refmodel-init-get, 20, 32, 35, 41
rstanarm::stan_gamm4(), 45
rstanarm::stan_polr(), 4

set.seed(), 11, 15, 28, 31, 38, 53, 56, 57
solution_terms, 48
solution_terms(), 48
solution_terms.projection(), 48
solution_terms.vsel(), 48
Student_t (extra-families), 23
Student_t(), 23
suggest_size, 49
suggest_size(), 27, 38, 51

suggest_size.vsel(), 5
summary(), 51
summary.vsel, 51
summary.vsel(), 5, 26, 27, 36, 37, 49, 50, 53

varsel, 54
varsel(), 5, 12, 13, 17, 26, 27, 36–38, 40, 41,

44, 48, 50–52, 57

	projpred-package
	as.matrix.projection
	augdat_ilink_binom
	augdat_link_binom
	break_up_matrix_term
	cl_agg
	cv-indices
	cv_proportions
	cv_varsel
	df_binom
	df_gaussian
	extend_family
	extra-families
	mesquite
	plot.cv_proportions
	plot.vsel
	pred-projection
	predict.refmodel
	predictor_terms
	print.vsel
	print.vselsummary
	project
	ranking
	refmodel-init-get
	solution_terms
	suggest_size
	summary.vsel
	varsel
	Index

