
stringi: Fast and Portable
Character String Processing in R

Marek Gagolewski
Deakin University, Geelong, VIC 3220, Australia

Systems Research Institute, Polish Academy of Sciences

Abstract

Effective processing of character strings is required at various stages of data analysis
pipelines: from data cleansing and preparation, through information extraction, to report
generation. Pattern searching, string collation and sorting, normalisation, transliteration,
and formatting are ubiquitous in text mining, natural language processing, and bioinfor-
matics. This paper discusses and demonstrates how and why stringi, a mature R package
for fast and portable handling of string data based on International Components for Uni-
code, should be included in each statistician’s or data scientist’s repertoire to complement
their numerical computing and data wrangling skills.

Keywords: stringi, character strings, text, ICU, Unicode, regular expressions, data cleansing,
natural language processing, R.

This is an older pre-print version of the paper on stringi.
Please cite it as: Gagolewski M (2022). stringi: Fast and Portable Character String Processing
in R. Journal of Statistical Software 103(2):1–59, 2022. DOI https://dx.doi.org/10.18637/
jss.v103.i02.
The most recent, Web browser-friendly version thereof is available at https://stringi.
gagolewski.com.

1. Introduction
Stringology (Crochemore and Rytter 2003) deals with algorithms and data structures for char-
acter string processing (Jurafsky and Martin 2008; Szpankowski 2001). From the perspective
of applied statistics and data science, it is worth stressing that many interesting data sets
first come in unstructured or contaminated textual forms, for instance when they have been
fetched from different APIs (application programming interface) or gathered by means of web
scraping techniques.
Diverse data cleansing and preparation operations (Dasu and Johnson 2003; van der Loo and
de Jonge 2018; see also Section 2 below for a real-world example) need to be applied before an
analyst can begin to enjoy an orderly and meaningful data frame, matrix, or spreadsheet being
finally at their disposal. Activities related to information retrieval, computer vision, bioinfor-
matics, natural language processing, or even musicology can also benefit from including them
in data processing pipelines (Jurafsky and Martin 2008; Kurtz et al. 2004).

https://dx.doi.org/10.18637/jss.v103.i02
https://dx.doi.org/10.18637/jss.v103.i02
https://stringi.gagolewski.com
https://stringi.gagolewski.com

2 stringi: Fast and Portable Character String Processing in R

Although statisticians and data analysts are usually very proficient in numerical computing
and data wrangling, the awareness of how crucial text operations are in the generic data-
oriented skill-set is yet to reach a more operational level. This paper aims to fill this gap.

Most statistical computing ecosystems provide only a basic set of text operations. In particu-
lar, base R (R Development Core Team 2021) is mostly restricted to pattern matching, string
concatenation, substring extraction, trimming, padding, wrapping, simple character case con-
version, and string collation, see (Chambers 2008, Chapter 8) and Table 5 below. The stringr
package (Wickham 2010), first released in November 2009, implemented an alternative, “tidy”
API for text data processing (cleaned-up function names, more beginner-friendly outputs, etc.;
the list of 21 functions that were available in stringr at that time is given in Table 5). The
early stringr featured a few wrappers around a subset of its base R counterparts. The lat-
ter, however – to this day – not only is of limited scope, but also suffers from a number of
portability issues; it may happen that the same code can yield different results on different
operating systems; see Section 3 for some examples.
In order to significantly broaden the array of string processing operations and assure that
they are portable, in 2013 the current author developed the open source stringi package
(pronounced “stringy”, IPA [stringi]). Its API was compatible with that of early stringr’s,
which some users found convenient. However, for the processing of text in different locales,
which are plentiful, stringi relies on ICU – International Components for Unicode (see https:
//icu.unicode.org/) – a mature library that fully conforms with the Unicode standard and
which provides globalisation support for a broad range of other software applications as well,
from web browsers to database systems. Services not covered by ICU were implemented from
scratch to guarantee that they are as efficient as possible.
Over the years, stringi confirmed itself as robust, production-quality software; for many years
now it has been one of the most often downloaded R extensions. Interestingly, in 2015 the
aforementioned stringr package has been rewritten as a set of wrappers around some of the
stringi functions instead of the base R ones. In Section 14.7 of R for Data Science (Wickham
and Grolemund 2017) we read: stringr is useful when you’re learning because it exposes a
minimal set of functions, which have been carefully picked to handle the most common string
manipulation functions. stringi, on the other hand, is designed to be comprehensive. It
contains almost every function you might ever need: stringi has 250 functions to stringr’s
49. Also, it is worth noting that the recently-introduced stringx package (Gagolewski 2021)
supplies a stringi-based set of portable and efficient replacements for and enhancements of
the base R functions.

This paper describes the most noteworthy facilities provided by stringi that statisticians and
data analysts may find useful in their daily activities. We demonstrate how important it is
for a modern data scientist to be aware of the challenges of natural language processing in the
internet era: how to force "groß" compare equal to "GROSS", count the number of occurrences
of "AGA" within "ACTGAGAGACGGGTTAGAGACT", make "a13" ordered before "a100", or convert
between "GRINNING FACE" and "," forth and back. Such operations are performed by the
very ICU itself; we therefore believe that what follows may be of interest to data-oriented
practitioners employing Python, Perl, Julia, PHP, etc., as ICU has bindings for many other
languages.
Here is the outline of the paper:

https://icu.unicode.org/
https://icu.unicode.org/

Marek Gagolewski 3

• Section 2 illustrates the importance of string processing in an example data preparation
activity.

• General package design principles are outlined in Section 3, including the use cases of
deep vectorisation, the concepts of data flow, and the main deviations from base R (also
with regards to portability and speed).

• Basic string operations, such as computing length and width of strings, string concate-
nation, extracting and replacing substrings, are discussed in Section 4.

• Section 5 discusses searching for fixed substrings: counting the number of matches,
locating their positions, replacing them with other data, and splitting strings into tokens.

• Section 6 details ICU regular expressions, which are a powerful tool for matching pat-
terns defined in a more abstract way, e.g., extracting numbers from text so that they can
be processed quantitatively, identifying hyperlinks, etc. We show where ICU is different
from other libraries like PCRE; in particular that it enables portable, Unicode-correct
look-ups, for instance, involving sequences of emojis or mathematical symbols.

• Section 7 deals with the locale-aware ICU Collator, which is suitable for natural language
processing activities; this is where we demonstrate that text processing in different
languages or regions is governed by quite diverse rules, deviating significantly from the
US-ASCII (“C/POSIX.1”) setting. The operations discussed therein include testing
string equivalence (which can turn out useful when we scrape data that consist of non-
normalised strings, ignorable punctuation, or accented characters) as well as arranging
strings with regards to different linear orderings.

• Section 8 covers some other useful operations such as text boundary analysis (for split-
ting text into words or sentences), trimming, padding, and other formatting, random
string generation, character transliteration (converting between cases and alphabets, re-
moving diacritic marks, etc.) as well as date-time formatting and parsing in any locale
(e.g., Japanese dates in a German R).

• Section 9 details on encoding conversion and detection (which is key when reading
or writing text files that are to be communicated across different systems) as well as
Unicode normalisation (which can be useful for removing formatting distinctions from
text, e.g., superscripts or font variants).

• Finally, Section 10 concludes the paper.

This paper is by no means a substitute for the comprehensive yet much more technical and
in-depth reference manual available via a call to help(package="stringi"), see also https:
//stringi.gagolewski.com/. Rather, below we explain the package’s key design principles
and broadly introduce the ideas and services that help program, correct, and optimise text
processing workflows.
Let us emphasise that all the below-presented illustrations, i.e., calls to stringi functions on
different example arguments together with the generated outputs, form an integral part of
this manuscript’s text. They have been included based on the author’s experience-based belief
that each ”picture” (that we print out below using a monospaced font) is worth hundreds of
words.

https://stringi.gagolewski.com/
https://stringi.gagolewski.com/

4 stringi: Fast and Portable Character String Processing in R

All code chunk outputs presented in this paper were obtained in R 4.1.2. The R environment
itself and all the packages used herein are available from CRAN (the Comprehensive R Archive
Network) at https://CRAN.R-project.org/. In particular, install.packages("stringi")
can be called to fetch the object of our focus. By calling:

library("stringi")
cat(stri_info(short=TRUE))

stringi_1.7.7 (en_AU.UTF-8; ICU4C 69.1 [bundle]; Unicode 13.0)

we can load and attach the package’s namespace and display some basic information thereon.
Hence, below we shall be working with stringi 1.7.7, however, as the package’s API is consid-
ered stable, the presented material should be relevant to any later versions.

2. Use case: Data preparation
Before going into details on the broad array of facilities offered by the stringi package itself,
let us first demonstrate that string processing is indeed a relevant part of statistical data
analysis workflows. What follows is a short case study where we prepare a web-scraped data
set for further processing.
Assume we wish to gather and analyse climate data for major cities around the world based
on information downloaded from Wikipedia. For each location from a given list of settle-
ments (e.g., fetched from one of the pages linked under https://en.wikipedia.org/wiki/
Lists_of_cities), we would like to harvest the relevant temperature and precipitation data.
Without harm in generality, let us focus on the city of Melbourne, VIC, Australia.
The parsing of the city’s Wikipedia page can be done by means of the functions from the
xml2 (Wickham, Hester, and Ooms 2020) and rvest (Wickham 2021) packages.

library("xml2")
library("rvest")

First, let us load and parse the HTML file downloaded on 2020–09–17 (see the accompanying
supplementary files):

f <- read_html("20200917_wikipedia_melbourne.html")

Second, we extract all table elements and gather them in a list of HTML nodes, all_tables.
We then extract the underlying raw text data and store them in a character vector named
text_tables.

all_tables <- html_nodes(f, "table")
text_tables <- sapply(all_tables, html_text)
str(text_tables, nchar.max=65, vec.len=5, strict.width="wrap") # preview

https://CRAN.R-project.org/
https://en.wikipedia.org/wiki/Lists_of_cities
https://en.wikipedia.org/wiki/Lists_of_cities

Marek Gagolewski 5

chr [1:45] "MelbourneVictoriaFrom top, left to right: Flinde"| __truncated__
"Mean max temp\n Mean min temp\n Annual rainfal"| __truncated__ "This
section needs additional citations for veri"| __truncated__ "Climate data
for Melbourne Regional Office (1991"| __truncated__ "Country of Birth
(2016)[178]Birthplace[N 1]\nPop"| __truncated__ ...

Most Wikipedia pages related to particular cities include a table labelled as “Climate data”.
We need to pinpoint it amongst all the other tables. For this, we will rely on stringi’s
stri_detect_fixed() function that, in the configuration below, is used to extract the index
of the relevant table.

library("stringi")
(idx <- which(stri_detect_fixed(text_tables, "climate data",

case_insensitive=TRUE, max_count=1)))

[1] 4

Of course, the detailed description of all the facilities brought by stringi is covered below. In
the meantime, let us use rvest’s html_table() to convert the above table to a data frame
object.

(x <- as.data.frame(html_table(all_tables[[idx]], fill=TRUE)))

Climate data for Melbourne Regional Office (1991–2015)
1 Month
2 Record high °C (°F)
3 Average high °C (°F)
4 Daily mean °C (°F)
5 Average low °C (°F)
6 Record low °C (°F)
7 Average rainfall mm (inches)
8 Average rainy days (� 1mm)
9 Average afternoon relative humidity (%)
10 Mean monthly sunshine hours
11 Source: Bureau of Meteorology.[85][86][87]
Climate data for Melbourne Regional Office (1991–2015).1 ...
1 Jan ...
2 45.6(114.1) ...
3 27.0(80.6) ...
4 21.6(70.9) ...
5 16.1(61.0) ...
6 5.5(41.9) ...
7 44.2(1.74) ...
8 5.6 ...
9 47 ...

6 stringi: Fast and Portable Character String Processing in R

10 279 ...
11 Source: Bureau of Meteorology.[85][86][87] ...
Climate data for Melbourne Regional Office (1991–2015).3
1 Year
2 46.4(115.5)
3 20.8(69.4)
4 16.2(61.2)
5 11.6(52.9)
6 −2.8(27.0)
7 600.9(23.66)
8 90.6
9 51
10 2,191
11 Source: Bureau of Meteorology.[85][86][87]

It is evident that this object requires some significant cleansing and transforming before it
can be subject to any statistical analyses. First, for the sake of convenience, let us convert it
to a character matrix so that the processing of all the cells can be vectorised (a matrix in R
is just a single “long” vector, whereas a data frame is a list of many atomic vectors).

x <- as.matrix(x)

The as.numeric() function will find the parsing of the Unicode MINUS SIGN (U+2212,
“−”) difficult, therefore let us call the transliterator first in order to replace it (and other
potentially problematic characters) with its simpler equivalent:

x[,] <- stri_trans_general(x, "Publishing-Any; Any-ASCII")

Note that it is the first row of the matrix that defines the column names. Moreover, the last
row just gives the data source and hence may be removed.

dimnames(x) <- list(x[, 1], x[1,]) # row, column names
x <- x[2:(nrow(x) - 1), 2:ncol(x)] # skip 1st/last row and 1st column
x[, c(1, ncol(x))] # example columns

Jan Year
Record high °C (°F) "45.6(114.1)" "46.4(115.5)"
Average high °C (°F) "27.0(80.6)" "20.8(69.4)"
Daily mean °C (°F) "21.6(70.9)" "16.2(61.2)"
Average low °C (°F) "16.1(61.0)" "11.6(52.9)"
Record low °C (°F) "5.5(41.9)" "-2.8(27.0)"
Average rainfall mm (inches) "44.2(1.74)" "600.9(23.66)"
Average rainy days (>= 1mm) "5.6" "90.6"
Average afternoon relative humidity (%) "47" "51"
Mean monthly sunshine hours "279" "2,191"

Marek Gagolewski 7

Commas that are used as thousands separators (commas surrounded by digits) should be
dropped:

x[,] <- stri_replace_all_regex(x, "(?<=\\d),(?=\\d)", "")

The numbers and alternative units in parentheses are redundant, therefore these should be
taken care of as well:

x[,] <- stri_replace_all_regex(x,
"(\\d+(?:\\.\\d+)?)\\(\\d+(?:\\.\\d+)?\\)", "$1")

dimnames(x)[[1]] <- stri_replace_all_fixed(dimnames(x)[[1]],
c(" (°F)", " (inches)"), c("", ""), vectorise_all=FALSE)

At last, as.numeric() can be used to re-interpret all the strings as numbers:

x <- structure(as.numeric(x), dim=dim(x), dimnames=dimnames(x))
x[, c(1, 6, ncol(x))] # example columns

Jan Jun Year
Record high °C 45.6 22.4 46.4
Average high °C 27.0 15.1 20.8
Daily mean °C 21.6 11.7 16.2
Average low °C 16.1 8.2 11.6
Record low °C 5.5 -2.2 -2.8
Average rainfall mm 44.2 49.5 600.9
Average rainy days (>= 1mm) 5.6 8.6 90.6
Average afternoon relative humidity (%) 47.0 61.0 51.0
Mean monthly sunshine hours 279.0 108.0 2191.0

We now have a cleansed matrix at our disposal. We can, for instance, compute the monthly
temperature ranges:

x["Record high °C", -ncol(x)] - x["Record low °C", -ncol(x)]

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
40.1 41.9 38.9 33.4 29.8 24.6 26.1 28.6 31.9 36.8 38.4 39.3

or the average daily precipitation:

sum(x["Average rainfall mm", -ncol(x)]) / 365.25

[1] 1.6463

and so forth.
For the climate data on other cities, very similar operations will need to be performed – the
whole process of scraping and cleansing data can be automated quite easily. The above func-
tions are not only convenient to use, but also efficient and portable across different platforms.

8 stringi: Fast and Portable Character String Processing in R

3. General design principles
The API of the early releases of stringi has been designed so as to be fairly compatible with
that of the 0.6.2 version of the stringr package (Wickham 2010) (dated 2012; see Table 5),
with some fixes in the consistency of the handling of missing values and zero-length vectors,
amongst others. However, instead of being merely thin wrappers around base R functions,
which we have identified as not necessarily portable across platforms and not really suitable for
natural language processing tasks, all the functionality has been implemented from the ground
up, with the use of ICU services wherever applicable. Since the initial release, an abundance
of new features has been added and the package can now be considered a comprehensive
workhorse for text data processing. Note that the stringi API is stable. Future releases are
aiming for as much backward compatibility as possible so that other software projects can
safely rely on it.

3.1. Naming
Function and argument names use a combination of lowercase letters and underscores (and no
dots). To avoid namespace clashes, all function names feature the “stri_” prefix. Names are
fairly self-explanatory, e.g., stri_locate_first_regex and stri_locate_all_fixed find,
respectively, the first match to a regular expression and all occurrences of a substring as-is.

3.2. Vectorisation
Individual character (or code point) strings can be entered using double quotes or apostrophes:

"spam" # or 'spam'

[1] "spam"

However, as the R language does not feature any classical scalar types, strings are wrapped
around atomic vectors of type “character”:

typeof("spam") # object type; see also is.character() and is.vector()

[1] "character"

length("spam") # how many strings are in this vector?

[1] 1

Hence, we will be using the terms “string” and “character vector of length 1” interchangeably.
Not having a separate scalar type is very convenient; the so-called vectorisation strategy
encourages writing code that processes whole collections of objects, all at once, regardless of
their size.
For instance, given the following character vector:

Marek Gagolewski 9

pythons <- c("Graham Chapman", "John Cleese", "Terry Gilliam",
"Eric Idle", "Terry Jones", "Michael Palin")

we can separate the first and the last names from each other (assuming for simplicity that no
middle names are given), using just a single function call:

(pythons <- stri_split_fixed(pythons, " ", simplify=TRUE))

[,1] [,2]
[1,] "Graham" "Chapman"
[2,] "John" "Cleese"
[3,] "Terry" "Gilliam"
[4,] "Eric" "Idle"
[5,] "Terry" "Jones"
[6,] "Michael" "Palin"

Due to vectorisation, we can generally avoid using the for- and while-loops (“for each string
in a vector…”), which makes the code much more readable, maintainable, and faster to execute.

3.3. Acting elementwise with recycling
Binary and higher-arity operations in R are oftentimes vectorised with respect to all arguments
(or at least to the crucial, non-optional ones). As a prototype, let us consider the binary
arithmetic, logical, or comparison operators (and, to some extent, paste(), strrep(), and
more generally mapply()), for example the multiplication:

c(10, -1) * c(1, 2, 3, 4) # == c(10, -1, 10, -1) * c(1, 2, 3, 4)

[1] 10 -2 30 -4

Calling “x * y” multiplies the corresponding components of the two vectors elementwisely.
As one operand happens to be shorter than another, the former is recycled as many times
as necessary to match the length of the latter (there would be a warning if partial recycling
occurred). Also, acting on a zero-length input always yields an empty vector.
All functions in stringi follow this convention (with some obvious exceptions, such as the
collapse argument in stri_join(), locale in stri_datetime_parse(), etc.). In partic-
ular, all string search functions are vectorised with respect to both the haystack and the
needle arguments (and, e.g., the replacement string, if applicable).
Some users, unaware of this rule, might find this behaviour unintuitive at the beginning
and thus miss out on how powerful it is. Therefore, let us enumerate the most note-
worthy scenarios that are possible thanks to the arguments’ recycling, using the call to
stri_count_fixed(haystack, needle) (which looks for a needle in a haystack) as an il-
lustration:

• many strings – one pattern:

10 stringi: Fast and Portable Character String Processing in R

stri_count_fixed(c("abcd", "abcabc", "abdc", "dab", NA), "abc")

[1] 1 2 0 0 NA

(there is 1 occurrence of "abc" in "abcd", 2 in "abcabc", and so forth);

• one string – many patterns:

stri_count_fixed("abcdeabc", c("def", "bc", "abc", NA))

[1] 0 2 2 NA

("def" does not occur in "abcdeabc", "bc" can be found therein twice, etc.);

• each string – its own corresponding pattern:

stri_count_fixed(c("abca", "def", "ghi"), c("a", "z", "h"))

[1] 2 0 1

(there are two "a"s in "abca", no "z" in "def", and one "h" in "ghi");

• each row in a matrix – its own corresponding pattern:

(haystack <- matrix(# example input
do.call(stri_join,

expand.grid(
c("a", "b", "c"), c("a", "b", "c"), c("a", "b", "c")

)), nrow=3))

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9]
[1,] "aaa" "aba" "aca" "aab" "abb" "acb" "aac" "abc" "acc"
[2,] "baa" "bba" "bca" "bab" "bbb" "bcb" "bac" "bbc" "bcc"
[3,] "caa" "cba" "cca" "cab" "cbb" "ccb" "cac" "cbc" "ccc"

needle <- c("a", "b", "c")
matrix(stri_count_fixed(haystack, needle), # call to stringi
nrow=3, dimnames=list(needle, NULL))

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9]
a 3 2 2 2 1 1 2 1 1
b 1 2 1 2 3 2 1 2 1
c 1 1 2 1 1 2 2 2 3

(this looks for "a" in the 1st row of haystack, "b" in the 2nd row, and "c" in the 3rd;
in particular, there are 3 "a"s in "aaa", 2 in "aba", and 1 "b" in "baa"; this is possible

Marek Gagolewski 11

due to the fact that matrices are represented as “flat” vectors of length nrow*ncol,
whose elements are read in a column-major (Fortran) order; therefore, here, pattern "a"
is being sought in the 1st, 4th, 7th, … string in haystack, i.e., "aaa", "aba", "aca", …;
pattern "b" in the 2nd, 5th, 8th, … string; and "c" in the 3rd, 6th, 9th, … one);

On a side note, to match different patterns with respect to each column, we can
(amongst others) apply matrix transpose twice (t(stri_count_fixed(t(haystack),
needle))).

• all strings – all patterns:

haystack <- c("aaa", "bbb", "ccc", "abc", "cba", "aab", "bab", "acc")
needle <- c("a", "b", "c")
structure(

outer(haystack, needle, stri_count_fixed),
dimnames=list(haystack, needle)) # add row and column names

a b c
aaa 3 0 0
bbb 0 3 0
ccc 0 0 3
abc 1 1 1
cba 1 1 1
aab 2 1 0
bab 1 2 0
acc 1 0 2

(which computes the counts over the Cartesian product of the two arguments);

3.4. Missing values
Some base R string processing functions, e.g., paste(), treat missing values as literal "NA"
strings. stringi, however, does enforce the consistent propagation of missing values (like
arithmetic operations):

paste(c(NA_character_, "b", "c"), "x", 1:2) # base R

[1] "NA x 1" "b x 2" "c x 1"

stri_join(c(NA_character_, "b", "c"), "x", 1:2) # stringi

Warning in stri_join(c(NA_character_, "b", "c"), "x", 1:2): longer object length
is not a multiple of shorter object length

[1] NA "bx2" "cx1"

12 stringi: Fast and Portable Character String Processing in R

For dealing with missing values, we may rely on the convenience functions such as stri_omit_na()
or stri_replace_na().

3.5. Data flow
All vector-like arguments (including factors and objects) in stringi are treated in the same
manner: for example, if a function expects a character vector on input and an object of other
type is provided, as.character() is called first (we see that in the example above, “1:2” is
treated as c("1", "2")).
Following (Wickham 2010), stringi makes sure the output data types are consistent and that
different functions are interoperable. This makes operation chaining easier and less error
prone.
For example, stri_extract_first_regex() finds the first occurrence of a pattern in each
string, therefore the output is a character of the same length as the input (with recycling rule
in place if necessary).

haystack <- c("bacon", "spam", "jam, spam, bacon, and spam")
stri_extract_first_regex(haystack, "\\b\\w{1,4}\\b")

[1] NA "spam" "jam"

Note that a no-match (here, we have been looking for words of at most 4 characters) is marked
with a missing string. This makes the output vector size consistent with the length of the
inputs.
On the other hand, stri_extract_all_regex() identifies all occurrences of a pattern, whose
counts may differ from input to input, therefore it yields a list of character vectors.

stri_extract_all_regex(haystack, "\\b\\w{1,4}\\b", omit_no_match=TRUE)

[[1]]
character(0)
##
[[2]]
[1] "spam"
##
[[3]]
[1] "jam" "spam" "and" "spam"

If the 3rd argument was not specified, a no-match would be represented by a missing value
(for consistency with the previous function).
Also, care is taken so that the “data” or “x” argument is most often listed as the first one (e.g.,
in base R we have grepl(needle, haystack) vs stri_detect(haystack, needle) here).
This makes the functions more intuitive to use, but also more forward pipe operator-friendly
(either when using “|>” introduced in R 4.1 or “%>%” from magrittr).
Furthermore, for increased convenience, some functions have been added despite the fact that
they can be trivially reduced to a series of other calls. In particular, writing:

Marek Gagolewski 13

stri_sub_all(haystack,
stri_locate_all_regex(haystack, "\\b\\w{1,4}\\b", omit_no_match=TRUE))

yields the same result as in the previous example, but refers to haystack twice.

3.6. Further deviations from base R
stringi can be used as a replacement of the existing string processing functions. Also, it
offers many facilities not available in base R. Except for being fully vectorised with respect
to all crucial arguments, propagating missing values and empty vectors consistently, and
following coherent naming conventions, our functions deviate from their classic counterparts
even further.

Following Unicode standards. Thanks to the comprehensive coverage of the most im-
portant services provided by ICU, its users gain access to collation, pattern searching, nor-
malisation, transliteration, etc., that follow the recent Unicode standards for text processing
in any locale. Due to this, as we state in Section 9.2, all inputs are converted to Unicode and
outputs are always in UTF-8.

Portability issues in base R. As we have mentioned in the introduction, base R string
operations have traditionally been limited in scope. There also might be some issues with
regards to their portability, reasons for which may be plentiful. For instance, varied versions
of the PCRE (8.x or 10.x) pattern matching libraries may be linked to during the compilation
of R. On Windows, there is a custom implementation of iconv that has a set of character
encoding IDs not fully compatible with that on GNU/Linux: to select the Polish locale, we
are required to pass "Polish_Poland" to Sys.setlocale() on Windows whereas "pl_PL"
on Linux. Interestingly, R can be built against the system ICU so that it uses its Collator for
comparing strings (e.g., using the “<=” operator), however this is only optional and does not
provide access to any other Unicode services.
For example, let us consider the matching of “all letters” by means of the built-in gregexpr()
function and the TRE (perl=FALSE) and PCRE (perl=TRUE) libraries using a POSIX-like
and Unicode-style character set (see Section 6 for more details):

R> x <- "AEZaezĄĘŻąęż" # "AEZaez\u0104\u0118\u017b\u0105\u0119\u017c"
R> stri_sub(x, gregexpr("[[:alpha:]]", x, perl=FALSE)[[1]], length=1)
R> stri_sub(x, gregexpr("[[:alpha:]]", x, perl=TRUE)[[1]], length=1)
R> stri_sub(x, gregexpr("\\p{L}", x, perl=TRUE)[[1]], length=1)

On Ubuntu Linux 20.04 (UTF-8 locale), the respective outputs are:

[1] "A" "E" "Z" "a" "e" "z" "Ą" "Ę" "Ż" "ą" "ę" "ż"
[1] "A" "E" "Z" "a" "e" "z"
[1] "A" "E" "Z" "a" "e" "z" "Ą" "Ę" "Ż" "ą" "ę" "ż"

On Windows, when x is marked as UTF-8 (see Section 9.2), the author obtained:

14 stringi: Fast and Portable Character String Processing in R

[1] "A" "E" "Z" "a" "e" "z"
[1] "A" "E" "Z" "a" "e" "z"
[1] "A" "E" "Z" "a" "e" "z" "Ą" "Ę" "Ż" "ą" "ę" "ż"

And again on Windows using the Polish locale but x marked as natively-encoded (CP-1250
in this case):

[1] "A" "E" "Z" "a" "e" "z" "Ę" "ę"
[1] "A" "E" "Z" "a" "e" "z" "Ą" "Ę" "Ż" "ą" "ę" "ż"
[1] "A" "E" "Z" "a" "e" "z" "Ę" "ę"

As we mention in Section 7, when stringi links to ICU built from sources (install.pa-
ckages("stringi", configure.args="--disable-pkg-config")), we are always guaran-
teed to get the same results on every platform.

High performance of stringi. Because of the aforementioned reasons, functions in stringi
do not refer to their base R counterparts. The operations that do not rely on ICU services
have been rewritten from scratch with speed and portability in mind. For example, here are
some timings of string concatenation:

x <- stri_rand_strings(length(LETTERS) * 1000, 1000)
microbenchmark::microbenchmark(

join2=stri_join(LETTERS, x, sep="", collapse=", "),
join3=stri_join(x, LETTERS, x, sep="", collapse=", "),
r_paste2=paste(LETTERS, x, sep="", collapse=", "),
r_paste3=paste(x, LETTERS, x, sep="", collapse=", ")

)

Unit: milliseconds
expr min lq mean median uq max neval
join2 38.709 41.789 56.454 44.435 54.954 112.79 100
join3 88.587 91.429 97.006 93.379 102.399 169.62 100
r_paste2 99.571 105.767 125.653 110.924 132.105 207.18 100
r_paste3 209.337 219.332 265.422 283.929 298.692 329.03 100

Another example – timings of fixed pattern searching:

x <- stri_rand_strings(100, 100000, "[actg]")
y <- "acca"
microbenchmark::microbenchmark(

fixed=stri_locate_all_fixed(x, y),
regex=stri_locate_all_regex(x, y),
coll=stri_locate_all_coll(x, y),
r_tre=gregexpr(y, x),
r_pcre=gregexpr(y, x, perl=TRUE),
r_fixed=gregexpr(y, x, fixed=TRUE)

)

Marek Gagolewski 15

Unit: milliseconds
expr min lq mean median uq max neval
fixed 5.4153 5.5769 5.7989 5.7007 5.9165 6.6195 100
regex 126.9775 129.5199 134.3005 131.5441 135.9457 158.8042 100
coll 404.0636 412.0106 428.2215 417.0754 435.0853 542.9017 100
r_tre 144.1503 147.8288 154.2366 150.4777 158.2060 220.8468 100
r_pcre 77.2884 79.2489 82.5763 80.6958 85.8608 97.1374 100
r_fixed 43.9071 44.8707 47.2532 45.8249 49.4261 56.0313 100

Different default arguments and greater configurability. Some functions in stringi
have different, more natural default arguments, e.g., paste() has sep=" " but stri_join()
has sep="". Also, as there is no one-fits-all solution to all problems, many arguments have
been introduced for more detailed tuning.

Preserving attributes. Generally, stringi preserves no object attributes whatsoever, but a
user can make sure themself that this is becomes the case, e.g., by calling “x[] <- stri_...(x,
...)” or “`attributes<-`(stri_...(x, ...), attributes(x))”.

4. Basic string operations
Let us proceed with a detailed description of the most important facilities in the stringi
package that might be of interest to the broad statistical and data analysis audience.

4.1. Computing length and width
First we shall review the functions related to determining the number of entities in each string.
Let us consider the following character vector:

x <- c("spam", "你好", "\u200b\u200b\u200b", NA_character_, "")

The x object consists of 5 character strings:

length(x)

[1] 5

stri_length() computes the length of each string. More precisely, the function gives the
number of Unicode code points in each string, see Section 9.1 for more details.

stri_length(x)

[1] 4 2 3 NA 0

16 stringi: Fast and Portable Character String Processing in R

The first string carries 4 ASCII (English) letters, the second consists of 2 Chinese charac-
ters (U+4F60, U+597D; a greeting), and the third one is comprised of 3 zero-width spaces
(U+200B). Note that the 5th element in x is an empty string, "", hence its length is 0. More-
over, there is a missing (NA) value at index 4, therefore the corresponding length is undefined
as well.
When formatting strings for display (e.g., in a report dynamically generated with Sweave()
or knitr; see Xie 2015), a string’s width estimate may be more informative – an approximate
number of text columns it will occupy when printed using a monospaced font. In particular,
many Chinese, Japanese, Korean, and most emoji characters take up two text cells. Some
code points, on the other hand, might be of width 0 (e.g., the above ZERO WIDTH SPACE,
U+200B).

stri_width(x)

[1] 4 4 0 NA 0

4.2. Joining
Below we describe the functions that are related to string concatenation.

Operator %s+%. To join the corresponding strings in two character vectors, we may use the
binary %s+% operator:

x <- c("tasty", "delicious", "yummy", NA)
x %s+% " " %s+% c("spam", "bacon")

[1] "tasty spam" "delicious bacon" "yummy spam" NA

Flattening. The elements in a character vector can be joined (“aggregated”) to form a
single string via a call to stri_flatten():

stri_flatten(stri_omit_na(x), collapse=", ")

[1] "tasty, delicious, yummy"

Note that the token separator, given by the collapse argument, defaults to the empty string.

Generalisation. Both the %s+% operator and the stri_flatten() function are generalised
by stri_join() (alias: stri_paste(), stri_c()):

stri_join(c("X", "Y", "Z"), 1:6, "a") # sep="", collapse=NULL

[1] "X1a" "Y2a" "Z3a" "X4a" "Y5a" "Z6a"

Marek Gagolewski 17

By default, the sep argument, which controls how corresponding strings are delimited, is set
to the empty string (like in the base paste0() but unlike in paste()). Moreover, collapse
is NULL, which means that the resulting outputs will not be joined to form a single string.
This can be changed if need be:

stri_join(c("X", "Y", "Z"), 1:6, "a", sep="_", collapse=", ")

[1] "X_1_a, Y_2_a, Z_3_a, X_4_a, Y_5_a, Z_6_a"

Note how the two (1st, 3rd) shorter vectors were recycled to match the longest (2nd) vec-
tor’s length. The latter was of numeric type, but it was implicitly coerced via a call to
as.character().

Duplicating. To duplicate given strings, we call stri_dup() or the %s*% operator:

stri_dup(letters[1:5], 1:5)

[1] "a" "bb" "ccc" "dddd" "eeeee"

The above is synonymous with letters[1:5] %s*% 1:5.

Within-list joining. There is also a convenience function that applies stri_flatten() on
each character vector in a given list:

words <- list(c("spam", "bacon", "sausage", "spam"), c("eggs", "spam"))
stri_join_list(words, sep=", ") # collapse=NULL

[1] "spam, bacon, sausage, spam" "eggs, spam"

This way, a list of character vectors can be converted to a character vector. Such sequences of
variable length sequences of strings are generated by, amongst others, stri_sub_all() and
stri_extract_all().

4.3. Extracting and replacing substrings
Next group of functions deals with the extraction and replacement of particular sequences of
code points in given strings.

Indexing vectors. Recall that in order to select a subsequence from any R vector, we use
the square-bracket operator1 with an index vector consisting of either non-negative integers,
negative integers, or logical values2.
For example, here is how to select specific elements in a vector:

1More precisely, x[i] is a syntactic sugar for a call to `[`(x, i). Moreover, if x is a list, x[[i]] can be
used to extract its i-th element (alias `[[`(x, i)). Knowing the “functional” form of the operators allows us
to, for instance, extract all first elements from each vector in a list by simply calling sapply(x, "[[", 1).

2If an object’s names attribute is set, indexing with a character vector is also possible.

18 stringi: Fast and Portable Character String Processing in R

x <- c("spam", "buckwheat", "", NA, "bacon")
x[1:3] # from 1st to 3rd string

[1] "spam" "buckwheat" ""

x[c(1, length(x))] # 1st and last

[1] "spam" "bacon"

Exclusion of elements at specific positions can be performed like:

x[-1] # all but 1st

[1] "buckwheat" "" NA "bacon"

Filtering based on a logical vector can be used to extract strings fulfilling desired criteria:

x[!stri_isempty(x) & !is.na(x)]

[1] "spam" "buckwheat" "bacon"

Extracting substrings. A character vector is, in its very own essence, a sequence of se-
quences of code points. To extract specific substrings from each string in a collection, we can
use the stri_sub() function.

y <- "spam, egg, spam, spam, bacon, and spam"
stri_sub(y, 18) # from 18th code point to end

[1] "spam, bacon, and spam"

stri_sub(y, 12, to=15) # from 12th to 15th code point (inclusive)

[1] "spam"

Negative indices count from the end of a string.

stri_sub(y, -15, length=5) # 5 code points from 15th last

[1] "bacon"

Marek Gagolewski 19

stri_sub_all() function. If some deeper vectorisation level is necessary, stri_sub_all()
comes in handy. It extracts multiple (possibly different) substrings from all the strings pro-
vided:

(z <- stri_sub_all(
c("spam", "bacon", "sorghum"),

from = list(c(1, 3, 4), -3, c(2, 4)),
length = list(1, 3, c(4, 3))))

[[1]]
[1] "s" "a" "m"
##
[[2]]
[1] "con"
##
[[3]]
[1] "orgh" "ghu"

As the number of substrings to extract from each string might vary, the result is a list of
character strings. We have obtained: substrings of length 1 starting at positions 1, 3, and 4
in x[1], then a length-3 substring that starts at the 3rd code point from the end of x[2],
and length-4 and -3 substrings starting at, respectively, the 2nd and 4th code point of x[3]
(where x denotes the subsetted vector).

“From–to” and “from–length” matrices. The second parameter of both stri_sub()
and stri_sub_list() can also be fed with a two-column matrix of the form cbind(from,
to). Here, the first column gives the start indices and the second column defines the end
ones. Such matrices are generated, amongst others, by the stri_locate_*() functions (see
below for details).

(from_to <- matrix(1:8, ncol=2, byrow=TRUE))

[,1] [,2]
[1,] 1 2
[2,] 3 4
[3,] 5 6
[4,] 7 8

stri_sub(c("abcdefgh", "ijklmnop"), from_to)

[1] "ab" "kl" "ef" "op"

Due to recycling, this has extracted elements at positions 1:2 from the 1st string, at 3:4 from
the 2nd one, 5:6 from the 1st, and 7:8 from the 2nd again.
Note the difference between the above output and the following one:

20 stringi: Fast and Portable Character String Processing in R

stri_sub_all(c("abcdefgh", "ijklmnop"), from_to)

[[1]]
[1] "ab" "cd" "ef" "gh"
##
[[2]]
[1] "ij" "kl" "mn" "op"

This time, we extract four identical sections from each of the two inputs.

Moreover, if the second column of the index matrix is named "length" (and only if this is
exactly the case), i.e., the indexer is of the form cbind(from, length=length), extraction
will be based on the extracted chunk size.

Replacing substrings. stri_sub_replace() returns a version of a character vector with
some chunks replaced by other strings:

stri_sub_replace(c("abcde", "ABCDE"),
from=c(2, 4), length=c(1, 2), replacement=c("X", "uvw"))

[1] "aXcde" "ABCuvw"

The above replaced “b” (the length-1 substring starting at index 2 of the 1st string) with “X”
and “DE” (the length-2 substring at index 4 of the 2nd string) with “uvw”.
Similarly, stri_sub_replace_all() replaces multiple substrings within each string in a char-
acter vector:

stri_sub_replace_all(
c("abcde", "ABCDE"),

from = list(c(2, 4), c(0, 3, 6)),
length = list(1, c(0, 2, 0)),
replacement = list("Z", c("uu", "v", "wwww")))

[1] "aZcZe" "uuABvEwwww"

Note how we have obtained the insertion of new content at the start and the end of the 2nd
input.

Replacing substrings in-place. The corresponding replacement functions modify a char-
acter vector in-place:

y <- "spam, egg, spam, spam, bacon, and spam"
stri_sub(y, 7, length=3) <- "spam" # in-place replacement, egg → spam
print(y) # y has changed

[1] "spam, spam, spam, spam, bacon, and spam"

Marek Gagolewski 21

Note that the state of y has changed in such a way that the substring of length 3 starting at
the 7th code point was replaced by a length-4 content.
Many replacements within a single string are also possible:

y <- "aa bb cc"
stri_sub_all(y, c(1, 4, 7), length=2) <- c("A", "BB", "CCC")
print(y) # y has changed

[1] "A BB CCC"

This has replaced 3 length-2 chunks within y with new content.

5. Code-pointwise comparing
There are many circumstances where we are faced with testing whether two strings (or parts
thereof) consist of exactly the same Unicode code points, in exactly the same order. These
include, for instance, matching a nucleotide sequence in a DNA profile and querying for system
resources based on file names or UUIDs. Such tasks, due to their simplicity, can be performed
very efficiently.

5.1. Testing for equality of strings
To quickly test whether the corresponding strings in two character vectors are identical (in a
code-pointwise manner), we can use the %s===% operator or, equivalently, the stri_cmp_eq()
function. Moreover, %s!==% and stri_cmp_neq() implement the not-equal-to relation.

"actg" %s===% c("ACTG", "actg", "act", "actga", NA)

[1] FALSE TRUE FALSE FALSE NA

Due to recycling, the first string was compared against the 5 strings in the 2nd operand.
There is only 1 exact match.

5.2. Searching for fixed strings
For detecting if a string contains a given fixed substring (code-pointwisely), the fast KMP
(Knuth, Morris, and Pratt 1977) algorithm, with worst time complexity of O(n + p) (where n
is the length of the string and p is the length of the pattern), has been implemented in stringi
(with numerous tweaks for even faster matching).
Table 1 lists the string search functions available in stringi. Below we explain their behaviour
in the context of fixed pattern matching. Notably, their description is quite detailed, because –
as we shall soon find out – the corresponding operations are available for the two other search
engines: based on regular expressions and the ICU Collator, see Section 6 and Section 7.

5.3. Counting matches
The stri_count_fixed() function counts the number of times a fixed pattern occurs in a
given string.

22 stringi: Fast and Portable Character String Processing in R

stri_count_fixed("abcabcdefabcabcabdc", "abc") # search pattern is "abc"

[1] 4

5.4. Search engine options

The pattern matching engine may be tuned up by passing further arguments to the search
functions (via “...”; they are redirected as-is to stri_opts_fixed()). Table 2 gives the list
of available options.
First, we may switch on the simplistic3 case-insensitive matching.

3Which is not suitable for real-world NLP tasks, as it assumes that changing the case of a single code point
always produces one and only one item; This way, "groß" does not compare equal to "GROSS", see Section 7
(and partially Section 6) for a workaround.

Name(s) Meaning
stri_count() count pattern matches
stri_detect() detect pattern matches
stri_endswith() [all but regex] detect pattern matches at end of string
stri_extract_all(),
stri_extract_first(),
stri_extract_last()

extract pattern matches

stri_locate_all(),
stri_locate_first(),
stri_locate_last()

locate pattern matches

stri_match_all(),
stri_match_first(),
stri_match_last()

[regex only] extract matches to regex capture groups

stri_replace_all(),
stri_replace_first(),
stri_replace_last()

substitute pattern matches with some replacement strings

stri_split() split up a string at pattern matches
stri_startswith() [all but regex] detect pattern matches at start of string
stri_subset(),
`stri_subset<-`()

return or replace strings that contain pattern matches

Table 1: String search/pattern matching functions in stringi. Each function, un-
less otherwise indicated, can be used in conjunction with any search engine, e.g., we
have stri_count_fixed() (see Section 5), stri_detect_regex() (see Section 6), and
stri_split_coll() (see Section 7).

Marek Gagolewski 23

Option Purpose
case_insensitive logical; whether to enable the simple case-insensitive matching

(defaults to FALSE)
overlap logical; whether to enable the detection of overlapping matches

(defaults to FALSE); available in stri_extract_all_fixed(),
stri_locate_all_fixed(), and stri_count_fixed()

Table 2: Options for the fixed pattern search engine, see stri_opts_fixed().

stri_count_fixed("ACTGACGacgggACg", "acg", case_insensitive=TRUE)

[1] 3

Second, we can indicate our interest in detecting overlapping pattern matches or whether
searching should continue at the end of each match (the latter being the default behaviour):

stri_count_fixed("acatgacaca", "aca") # overlap=FALSE (default)

[1] 2

stri_count_fixed("acatgacaca", "aca", overlap=TRUE)

[1] 3

5.5. Detecting and subsetting patterns
A somewhat simplified version of the above search task involves asking whether a pattern oc-
curs in a string at all. Such an operation can be performed with a call to stri_detect_fixed().

x <- c("abc", "abcd", "def", "xyzabc", "uabdc", "dab", NA, "abc")
stri_detect_fixed(x, "abc")

[1] TRUE TRUE FALSE TRUE FALSE FALSE NA TRUE

We can also indicate that a no-match is rather of our interest by passing negate=TRUE. What
is more, there is an option to stop searching once a given number of matches has been found
in the haystack vector (as a whole), which can speed up the processing of larger data sets:

stri_detect_fixed(x, "abc", negate=TRUE, max_count=2)

[1] FALSE FALSE TRUE FALSE TRUE NA NA NA

This can be useful in scenarios such as “find the first 2 matching resource IDs”.

24 stringi: Fast and Portable Character String Processing in R

There are also functions that verify whether a string starts or ends4 with a pattern match:

stri_startswith_fixed(x, "abc") # from=1 - match at start

[1] TRUE TRUE FALSE FALSE FALSE FALSE NA TRUE

stri_endswith_fixed(x, "abc") # to=-1 - match at end

[1] TRUE FALSE FALSE TRUE FALSE FALSE NA TRUE

Pattern detection is often performed in conjunction with character vector subsetting. This is
why we have a specialised (and hence slightly faster) function that returns only the strings
that match a given pattern.

stri_subset_fixed(x, "abc", omit_na=TRUE)

[1] "abc" "abcd" "xyzabc" "abc"

The above is equivalent to x[which(stri_detect_fixed(x, "abc"))] (note the argument
responsible for the removal of missing values), but avoids writing x twice. It hence is par-
ticularly convenient when x is generated programmatically on the fly, using some compli-
cated expression. Also, it works well with the forward pipe operator, as we can write “x |>
stri_subset_fixed("abc", omit_na=TRUE)”.
There is also a replacement version of this function:

stri_subset_fixed(x, "abc") <- c("*****", "***") # modifies x in-place
print(x) # x has changed

[1] "*****" "***" "def" "*****" "uabdc" "dab" NA "***"

5.6. Locating and extracting patterns
The functions from the stri_locate() family aim to pinpoint the positions of pattern
matches. First, we may be interested in getting to know the location of the first or the
last pattern occurrence:

x <- c("aga", "actg", NA, "AGagaGAgaga")
stri_locate_first_fixed(x, "aga")

start end
[1,] 1 3
[2,] NA NA
[3,] NA NA
[4,] 3 5

4Note that testing for a pattern match at the start or end of a string has not been implemented separately
for regex patterns, which support "^" and "$" anchors that serve exactly this very purpose.

Marek Gagolewski 25

stri_locate_last_fixed(x, "aga", get_length=TRUE)

start length
[1,] 1 3
[2,] -1 -1
[3,] NA NA
[4,] 9 3

In both examples we obtain a two-column matrix with the number of rows determined by
the recycling rule (here: the length of x). In the former case, we get a “from–to” matrix
(get_length=FALSE; the default) where missing values correspond to either missing inputs or
no-matches. The latter gives a “from–length”-type matrix, where negative lengths correspond
to the not-founds.
Second, we may be yearning for the locations of all the matching substrings. As the number
of possible answers may vary from string to string, the result is a list of index matrices.

stri_locate_all_fixed(x, "aga", overlap=TRUE, case_insensitive=TRUE)

[[1]]
start end
[1,] 1 3
##
[[2]]
start end
[1,] NA NA
##
[[3]]
start end
[1,] NA NA
##
[[4]]
start end
[1,] 1 3
[2,] 3 5
[3,] 5 7
[4,] 7 9
[5,] 9 11

Note again that a no-match is indicated by a single-row matrix with two missing values (or
with negative length if get_length=TRUE). This behaviour can be changed by setting the
omit_no_match argument to TRUE.

Let us recall that “from–to” and “from–length” matrices of the above kind constitute partic-
ularly fine inputs to stri_sub() and stri_sub_all(). However, if merely the extraction of
the matching substrings is needed, it will be more convenient to rely on the functions from
the stri_extract() family:

26 stringi: Fast and Portable Character String Processing in R

stri_extract_first_fixed(x, "aga", case_insensitive=TRUE)

[1] "aga" NA NA "AGa"

stri_extract_all_fixed(x, "aga",
overlap=TRUE, case_insensitive=TRUE, omit_no_match=TRUE)

[[1]]
[1] "aga"
##
[[2]]
character(0)
##
[[3]]
[1] NA
##
[[4]]
[1] "AGa" "aga" "aGA" "Aga" "aga"

5.7. Replacing pattern occurrences
In order to replace each match with a corresponding replacement string, we can refer to
stri_replace_all():

x <- c("aga", "actg", NA, "ggAGAGAgaGAca", "agagagaga")
stri_replace_all_fixed(x, "aga", "~", case_insensitive=TRUE)

[1] "~" "actg" NA "gg~G~GAca" "~g~ga"

Note that the inputs that are not part of any match are left unchanged. The input object is
left unchanged, because it is not a replacement function per se.
The operation is vectorised with respect to all the three arguments (haystack, needle, replace-
ment string), with the usual recycling behaviour if necessary. If a different arguments’ vectori-
sation scheme is required, we can set the vectorise_all argument of stri_replace_all()
to FALSE. Compare the following:

stri_replace_all_fixed("The quick brown fox jumped over the lazy dog.",
c("quick", "brown", "fox", "lazy", "dog"),
c("slow", "yellow-ish", "hen", "spamity", "llama"))

[1] "The slow brown fox jumped over the lazy dog."
[2] "The quick yellow-ish fox jumped over the lazy dog."
[3] "The quick brown hen jumped over the lazy dog."
[4] "The quick brown fox jumped over the spamity dog."
[5] "The quick brown fox jumped over the lazy llama."

Marek Gagolewski 27

stri_replace_all_fixed("The quick brown fox jumped over the lazy dog.",
c("quick", "brown", "fox", "lazy", "dog"),
c("slow", "yellow-ish", "hen", "spamity", "llama"),
vectorise_all=FALSE)

[1] "The slow yellow-ish hen jumped over the spamity llama."

Here, for every string in the haystack, we observe the vectorisation independently over the
needles and replacement strings. Each occurrence of the 1st needle is superseded by the 1st
replacement string, then the search is repeated for the 2nd needle so as to replace it with the
2nd corresponding replacement string, and so forth.
Moreover, stri_replace_first() and stri_replace_last() can identify and replace the
first and the last match, respectively.

5.8. Splitting
To split each element in the haystack into substrings, where the needles define the delimiters
that separate the inputs into tokens, we call stri_split():

x <- c("a,b,c,d", "e", "", NA, "f,g,,,h,i,,j,")
stri_split_fixed(x, ",", omit_empty=TRUE)

[[1]]
[1] "a" "b" "c" "d"
##
[[2]]
[1] "e"
##
[[3]]
character(0)
##
[[4]]
[1] NA
##
[[5]]
[1] "f" "g" "h" "i" "j"

The result is a list of character vectors, as each string in the haystack might be split into a
possibly different number of tokens.
There is also an option to limit the number of tokens (parameter n).

6. Regular expressions
Regular expressions (regexes) provide us with a concise grammar for defining systematic
patterns which can be sought in character strings. Examples of such patterns include: spe-
cific fixed substrings, emojis of any kind, stand-alone sequences of lower-case Latin letters

28 stringi: Fast and Portable Character String Processing in R

(“words”), substrings that can be interpreted as real numbers (with or without fractional
part, also in scientific notation), telephone numbers, email addresses, or URLs.
Theoretically, the concept of regular pattern matching dates back to the so-called regular
languages and finite state automata (Kleene 1951), see also (Hopcroft and Ullman 1979;
Rabin and Scott 1959). Regexes in the form as we know today have already been present
in one of the pre-Unix implementations of the command-line text editor qed (Ritchie and
Thompson 1970; the predecessor of the well-known sed).
Base R gives access to two different regex matching engines (via functions such as gregexpr()
and grep(), see Table 5):

• ERE5 (extended regular expressions that conform to the POSIX.2-1992 standard); used
by default,

• PCRE6 (Perl-compatible regular expressions); activated when perl=TRUE is set.

Other matchers are implemented in the ore (Clayden 2019; via the Onigmo library) and re2r
(Wenfeng 2020; RE2) packages.
Stringi, on the other hand, provides access to the regex engine implemented in ICU, which
was inspired by Java’s util.regex in JDK 1.4. Their syntax is mostly compatible with that
of PCRE, although certain more advanced facets might not be supported (e.g., recursive
patterns). On the other hand, ICU regexes fully conform to the Unicode Technical Standard
#18 (Davis and Heninger 2021) and hence provide comprehensive support for Unicode.
It is worth noting that most programming languages as well as advanced text editors and
development environments (including Kate, Eclipse, VSCode, and RStudio) support finding
or replacing patterns with regexes. Therefore, they should be amongst the instruments at
every data scientist’s disposal. One general introduction to regexes is (Friedl 2006). The
ICU flavour is summarised at https://unicode-org.github.io/icu/userguide/strings/
regexp.html.
Below we provide a concise yet comprehensive introduction to the topic from the perspective of
the stringi package users. This time we will use the pattern search routines whose names end
with the *_regex() suffix. Apart from stri_detect_regex(), stri_locate_all_regex(),
and so forth, in Section 6.4 we introduce stri_match_all_regex(). Moreover, Table 3 lists
the available options for the regex engine.

6.1. Matching individual characters
We begin by discussing different ways to define character sets. In this part, determining the
length of all matching substrings will be quite straightforward.
The following characters have special meaning to the regex engine:

. \ | () [{ } ^ $ * + ?

Any regular expression that does not contain the above behaves like a fixed pattern:

5Via the TRE library (https://github.com/laurikari/tre/).
6Via the PCRE2 library (https://www.pcre.org/).

https://unicode-org.github.io/icu/userguide/strings/regexp.html
https://unicode-org.github.io/icu/userguide/strings/regexp.html
https://github.com/laurikari/tre/
https://www.pcre.org/

Marek Gagolewski 29

Option Purpose
case_insensitive
[regex flag (?i)]

logical; defaults to FALSE; whether to enable (full) case-
insensitive matching

comments
[regex flag (?x)]

logical; defaults to FALSE; whether to allow white spaces and
comments within patterns

dot_all
[regex flag (?s)]

logical; defaults to FALSE; if set, “.” matches line termina-
tors; otherwise its matching stops at a line end

literal logical; defaults to FALSE; whether to treat the entire pattern
as a literal string; note that in most cases the code-pointwise
string search facilities (*_fixed() functions described in Sec-
tion 5) are faster

multi_line
[regex flag (?m)]

logical; defaults to FALSE; if set, “$” and “^” recognise line
terminators within a string; otherwise, they match only at
start and end of the input

unix_lines logical; defaults to FALSE; when enabled, only the Unix line
ending, i.e., U+000A, is honoured as a terminator by “.”,
“$”, and “^”

uword
[regex flag (?w)]

logical; defaults to FALSE; whether to use the Unicode defi-
nition of word boundaries (see Section 8.1), which are quite
different from the traditional regex word boundaries

error_on_unknown_escapes logical; defaults to FALSE; whether unrecognised backslash-
escaped characters trigger an error; by default, unknown
backslash-escaped ASCII letters represent themselves

time_limit integer; processing time limit for match operations in
∼milliseconds (depends on the CPU speed); 0 for no limit
(the default)

stack_limit integer; maximal size, in bytes, of the heap storage available
for the matcher’s backtracking stack; setting a limit is desir-
able if poorly written regexes are expected on input; 0 for no
limit (the default)

Table 3: Options for the regular expressions search engine, see stri_opts_regex().

stri_count_regex("spam, eggs, spam, bacon, sausage, and spam", "spam")

[1] 3

There are hence 3 occurrences of a pattern that is comprised of 4 code points, “s” followed
by “p”, then by “a”, and ending with “m”.
However, this time the case insensitive mode fully supports Unicode matching7:

7This does not mean, though, that it considers canonically equivalent strings as equal, see Section 7.2 for

30 stringi: Fast and Portable Character String Processing in R

stri_detect_regex("groß", "GROSS", case_insensitive=TRUE)

[1] TRUE

If we wish to include a special character as part of a regular expression – so that it is treated
literally – we will need to escape it with a backslash, “\”. Yet, the backlash itself has a special
meaning to R, see help("Quotes"), therefore it needs to be preceded by another backslash.

stri_count_regex("spam...", "\\.") # "\\" is a way to input a single \

[1] 3

In other words, the R string "\\." is seen by the regex engine as “\.” and interpreted as
the dot character (literally). Alternatively, since R 4.0 we can also input the so-called literal
strings like r"(\.)".

Matching any character. The (unescaped) dot, “.”, matches any code point except the
newline.

x <- "Ham, spam,\njam, SPAM, eggs, and spam"
stri_extract_all_regex(x, "..am", case_insensitive=TRUE)

[[1]]
[1] "spam" "SPAM" "spam"

The above matches non-overlapping length-4 substrings that end with “am”.
The dot’s insensitivity to the newline character is motivated by the need to maintain the com-
patibility with tools such as grep (when searching within text files in a line-by-line manner).
This behaviour can be altered by setting the dot_all option to TRUE.

stri_extract_all_regex(x, "..am", dot_all=TRUE, case_insensitive=TRUE)

[[1]]
[1] "spam" "\njam" "SPAM" "spam"

Defining character sets. Sets of characters can be introduced by enumerating their mem-
bers within a pair of square brackets. For instance, “[abc]” denotes the set {a, b, c} – such
a regular expression matches one (and only one) symbol from this set. Moreover, in:

stri_extract_all_regex(x, "[hj]am")

[[1]]
[1] "jam"

a discussion and a workaround.

Marek Gagolewski 31

the “[hj]am” regex matches: “h” or “j”, followed by “a”, followed by “m”. In other words,
"ham" and "jam" are the only two strings that are matched by this pattern (unless matching
is done case-insensitively).
The following characters, if used within square brackets, may be treated non-literally:

\ [] ^ - &

Therefore, to include them as-is in a character set, the backslash-escape must be used. For
example, “[\[\]\\]” matches the backslash or a square bracket.

Complementing sets. Including “^” after the opening square bracket denotes the set
complement. Hence, “[^abc]” matches any code point except “a”, “b”, and “c”. Here is an
example where we seek any substring that consists of 3 non-spaces.

x <- "Nobody expects the Spanish Inquisition!"
stri_extract_all_regex(x, "[^][^][^]")

[[1]]
[1] "Nob" "ody" "exp" "ect" "the" "Spa" "nis" "Inq" "uis" "iti" "on!"

Defining Code Point Ranges. Each Unicode code point can be referenced by its unique
numeric identifier, see Section 9.1 for more details. For instance, “a” is assigned code U+0061
and “z” is mapped to U+007A. In the pre-Unicode era (mostly with regards to the ASCII
codes, ≤ U+007F, representing English letters, decimal digits, some punctuation characters,
and a few control characters), we were used to relying on specific code ranges; e.g., “[a-z]”
denotes the set comprised of all characters with codes between U+0061 and U+007A, i.e.,
lowercase letters of the English (Latin) alphabet.

stri_extract_all_regex("In 2020, Gągolewski had fun once.", "[0-9A-Za-z]")

[[1]]
[1] "I" "n" "2" "0" "2" "0" "G" "g" "o" "l" "e" "w" "s" "k" "i" "h" "a" "d"
[19] "f" "u" "n" "o" "n" "c" "e"

The above pattern denotes a union of 3 code ranges: digits and ASCII upper- and lowercase
letters.
Nowadays, in the processing of text in natural languages, this notation should rather be
avoided. Note the missing “ą” (Polish “a” with ogonek) in the result.

Using predefined character sets. Each code point is assigned a unique general category,
which can be thought of as a character’s class, see (Whistler and Iancu 2021). Sets of char-
acters from each category can be referred to, amongst others, by using the “\p{category}”
(or, equivalently, “[\p{category}]”) syntax:

32 stringi: Fast and Portable Character String Processing in R

x <- "aąbßÆAĄB你123,.;'! \t-+=[]©←→”„²³¾"
p <- c("\\p{L}", "\\p{Ll}", "\\p{Lu}", "\\p{N}", "\\p{P}", "\\p{S}")
structure(stri_extract_all_regex(x, p), names=p)

$`\\p{L}`
[1] "a" "ą" "b" "ß" "Æ" "A" "Ą" "B" "你"
##
$`\\p{Ll}`
[1] "a" "ą" "b" "ß"
##
$`\\p{Lu}`
[1] "Æ" "A" "Ą" "B"
##
$`\\p{N}`
[1] "1" "2" "3" "²" "³" "¾"
##
$`\\p{P}`
[1] "," "." ";" "'" "!" "-" "[" "]" "”" "„"
##
$`\\p{S}`
[1] "+" "=" "©" "←" "→"

The above yield a match to: arbitrary letters, lowercase letters, uppercase letters, numbers,
punctuation marks, and symbols, respectively.
Characters’ binary properties and scripts can also be referenced in a similar manner. Some
other noteworthy classes include:

p <- c("\\w", "\\d", "\\s")
structure(stri_extract_all_regex(x, p), names=p)

$`\\w`
[1] "a" "ą" "b" "ß" "Æ" "A" "Ą" "B" "你" "1" "2" "3"
##
$`\\d`
[1] "1" "2" "3"
##
$`\\s`
[1] " " "\t"

These give: word characters, decimal digits (“\p{Nd}”), and spaces (“[\t\n\f\r\p{Z}]”), in
this order.
Moreover, e.g., the upper-cased “\P{category}” and “\W” are equivalent to “[^\p{category}]”
and “[^\w]”, respectively, i.e., denote their complements.

Avoiding POSIX classes. The use of the POSIX-like character classes should be avoided,
because they are generally not well-defined.

Marek Gagolewski 33

In particular, in POSIX-like regex engines, “[:punct:]” stands for the character class cor-
responding to the ispunct() function in C (see “man 3 ispunct” on Unix-like systems).
According to ISO/IEC 9899:1990 (ISO C90), ispunct() tests for any printing character ex-
cept for the space or a character for which isalnum() is true.
Base R with PCRE yields on the current author’s machine:

x <- ",./|\\<>?;:'\"[]{}-=_+()*&^%$€#@!`~×�„”"
regmatches(x, gregexpr("[[:punct:]]", x, perl=TRUE)) # base R

[[1]]
[1] "," "." "/" "|" "\\" "<" ">" "?" ";" ":" "'" "\"" "[" "]"
[15] "{" "}" "-" "=" "_" "+" "(" ")" "*" "&" "^" "%" "$" "#"
[29] "@" "!" "`" "~"

However, the details of the characters’ belongingness to this class depend on the current
locale. Therefore, the reader might obtain different results when calling the above.
ICU, on the other hand, always gives:

stri_extract_all_regex(x, "[[:punct:]]") # equivalently: \p{P}

[[1]]
[1] "," "." "/" "\\" "?" ";" ":" "'" "\"" "[" "]" "{" "}" "-"
[15] "_" "(" ")" "*" "&" "%" "#" "@" "!" "�" "„" "”"

Here, [:punct:] is merely a synonym for \p{P}. Further, \p{S} captures symbols:

stri_extract_all_regex(x, "\\p{S}") # symbols

[[1]]
[1] "|" "<" ">" "=" "+" "^" "$" "€" "`" "~" "×"

We strongly recommend, wherever possible, the use of the portable “[\p{P}\p{S}]” as an
alternative to the PCRE’s “[:punct:]”.

6.2. Alternating and grouping subexpressions
The alternation operator, “|”, matches either its left or its right branch, for instance:

x <- "spam, egg, ham, jam, algae, and an amalgam of spam, all al dente"
stri_extract_all_regex(x, "spam|ham")

[[1]]
[1] "spam" "ham" "spam"

34 stringi: Fast and Portable Character String Processing in R

“|” has a very low precedence. Therefore, if we wish to introduce an alternative of subex-
pressions, we need to group them, e.g., between round brackets8. For instance, “(sp|h)am”
matches either “spam” or “ham”.
Also, matching is always done left-to-right, on a first-come, first-served basis. Hence, if the
left branch is a subset of the right one, the latter will never be matched. In particular,
“(al|alga|algae)” can only match “al”. To fix this, we can write “(algae|alga|al)”.

Non-grouping parentheses. Some parenthesised subexpressions – those in which the
opening bracket is followed by the question mark – have a distinct meaning. In particu-
lar, “(?#...)” denotes a free-format comment that is ignored by the regex parser:

stri_extract_all_regex(x,
"(?# match 'sp' or 'h')(sp|h)(?# and 'am')am|(?# or match 'egg')egg")

[[1]]
[1] "spam" "egg" "ham" "spam"

Nevertheless, constructing more sophisticated regexes by concatenating subfragments thereof
may sometimes be more readable:

stri_extract_all_regex(x,
stri_join(

"(sp|h)", # match either 'sp' or 'h'
"am", # followed by 'am'

"|", # ... or ...
"egg" # just match 'egg'

))

[[1]]
[1] "spam" "egg" "ham" "spam"

What is more, e.g., “(?i)” enables the case_insensitive mode.

stri_count_regex("Spam spam SPAMITY spAm", "(?i)spam")

[1] 4

For more regex flags, we kindly refer the reader to Table 3 again.

6.3. Quantifiers
More often than not, a variable number of instances of the same subexpression needs to be
captured or its presence should be made optional. This can be achieved by means of the
following quantifiers:

8Which have the side-effect of creating new capturing groups, see below for a discussion.

Marek Gagolewski 35

• “?” matches 0 or 1 times;

• “*” matches 0 or more times;

• “+” matches 1 or more times;

• “{n,m}” matches between n and m times;

• “{n,}” matches at least n times;

• “{n}” matches exactly n times.

These operators are applied to the preceding atoms. For example, “ba+” captures "ba",
"baa", "baaa", etc., but not "b" alone.
By default, the quantifiers are greedy – they match the repeated subexpression as many times
as possible. The “?” suffix (hence, quantifiers such as “??”, “*?”, “+?”, and so forth) tries
with as few occurrences as possible (to obtain a match still).

x <- "sp(AM)(maps)(SP)am"
stri_extract_all_regex(x,

c("\\(.+\\)", # [[1]] greedy
"\\(.+?\\)", # [[2]] lazy
"\\([^)]+\\)" # [[3]] greedy (but clever)

))

[[1]]
[1] "(AM)(maps)(SP)"
##
[[2]]
[1] "(AM)" "(maps)" "(SP)"
##
[[3]]
[1] "(AM)" "(maps)" "(SP)"

The first regex is greedy: it matches an opening bracket, then as many characters as possible
(including “)”) that are followed by a closing bracket. The two other patterns terminate as
soon as the first closing bracket is found.
Let us stress that the quantifier is applied to the subexpression that stands directly before it.
Grouping parentheses can be used in case they are needed.

stri_extract_all_regex("12, 34.5, 678.901234, 37...629, ...",
c("\\d+\\.\\d+", "\\d+(\\.\\d+)?"))

[[1]]
[1] "34.5" "678.901234"
##
[[2]]
[1] "12" "34.5" "678.901234" "37" "629"

36 stringi: Fast and Portable Character String Processing in R

Here, the first regex matches digits, a dot, and another series of digits. The second one finds
digits which are possibly (but not necessarily) followed by a dot and a digit sequence.

Performance notes. ICU, just like PCRE, uses a nondeterministic finite automaton-type
algorithm. Hence, due to backtracking, some ill-defined regexes can lead to exponential
matching times (e.g., “(a+)+b” applied on "aaaa...aaaaac"). If such patterns are expected,
setting the time_limit or stack_limit option is recommended.

system.time(tryCatch({
stri_detect_regex("a" %s*% 1000 %s+% "c", "(a+)+b", time_limit=1e5)

}, error=function(e) cat("stopped.")))

stopped.
user system elapsed
22.746 0.004 22.770

Nevertheless, oftentimes such regexes can be naturally reformulated to fix the underlying issue.
The ICU User Guide on Regular Expressions also recommends using possessive quantifiers
(“?+”, “*+”, “++”, and so on), which match as many times as possible but, contrary to the
plain-greedy ones, never backtrack when they happen to consume too much data.
See also the re2r (a wrapper around the RE2 library; Wenfeng 2020) package’s documentation
and the references therein for a discussion.

6.4. Capture groups and references thereto
Round-bracketed subexpressions carry one additional characteristic: they form the so-called
capture groups that can be extracted separately or be referred to in other parts of the same
regex.

Extracting capture group matches. The above is evident when we use the versions of
stri_extract() that are sensitive to the presence of capture groups:

x <- "name='Sir Launcelot', quest='Seek the Grail', favecolour='blue'"
stri_match_all_regex(x, "(\\w+)='(.+?)'")

[[1]]
[,1] [,2] [,3]
[1,] "name='Sir Launcelot'" "name" "Sir Launcelot"
[2,] "quest='Seek the Grail'" "quest" "Seek the Grail"
[3,] "favecolour='blue'" "favecolour" "blue"

The findings are presented in a matrix form. The first column gives the complete matches,
the second column stores the matches to the first capture group, and so forth.
If we just need the grouping part of “(...)”, i.e., without the capturing feature, “(?:...)”
can be applied. Also, named capture groups defined like “(?<name>...)” are fully supported
since version 1.7.1 of our package (for historical notes see Hocking 2019).

Marek Gagolewski 37

stri_match_all_regex(x, "(?:\\w+)='(?<value>.+?)'")

[[1]]
value
[1,] "name='Sir Launcelot'" "Sir Launcelot"
[2,] "quest='Seek the Grail'" "Seek the Grail"
[3,] "favecolour='blue'" "blue"

Locating capture group matches. The capture_groups attribute in stri_locate_*_regex
enables us to pinpoint the matches to the parenthesised subexpressions as well:

stri_locate_all_regex(x, "(?<key>\\w+)='(?<value>.+?)'",
capture_groups=TRUE, get_length=TRUE)

[[1]]
start length
[1,] 1 20
[2,] 23 22
[3,] 47 17
attr(,"capture_groups")
attr(,"capture_groups")$key
start length
[1,] 1 4
[2,] 23 5
[3,] 47 10
##
attr(,"capture_groups")$value
start length
[1,] 7 13
[2,] 30 14
[3,] 59 4

Note that each item in the resulting list is equipped with a "capture_groups" attribute.
For instance, attr(result[[1]], "capture_groups")[[2]] extracts the locations of the
matches to the 2nd capture group in the first input string.

Replacing with capture group matches. Matches to particular capture groups can be
recalled in replacement strings when using stri_replace(). Here, the match in its entirety
is denoted with “$0”, then “$1” stores whatever was caught by the first capture group, “$2”
is the match to the second capture group, etc. Moreover, “\$” gives the dollar-sign.

stri_replace_all_regex(x, "(\\w+)='(.+?)'", "$2 is a $1")

[1] "Sir Launcelot is a name, Seek the Grail is a quest, blue is a favecolour"

38 stringi: Fast and Portable Character String Processing in R

Named capture groups can be referred to too:

stri_replace_all_regex(x, "(?<key>\\w+)='(?<value>.+?)'",
"${value} is a ${key}")

[1] "Sir Launcelot is a name, Seek the Grail is a quest, blue is a favecolour"

Back-referencing. Matches to capture groups can also be part of the regexes themselves.
For example, “\1” denotes whatever has been consumed by the first capture group.
Even though, in general, parsing HTML code with regexes is not recommended, let us consider
the following examples:

stri_extract_all_regex("spam<code>eggs</code>",
c("<[a-z]+>.*?</[a-z]+>", "<([a-z]+)>.*?</\\1>"))

[[1]]
[1] "spam" "<code>eggs</code>"
##
[[2]]
[1] "spam" "<code>eggs</code>"

The second regex guarantees that the match will include all characters between the opening
<tag> and the corresponding (not: any) closing </tag>. Named capture groups can be
referenced using the \k<name> syntax (the angle brackets are part of the token), as in, e.g.,
“<(?<tagname>[a-z]+)>.*?</\k<tagname>>”.

6.5. Anchoring
Lastly, let us mention the ways to match a pattern at a given abstract position within a
string.

Matching at the beginning or end of a string. “^” and “$” match, respectively, start
and end of the string (or each line within a string, if the multi_line option is set to TRUE).

x <- c("spam egg", "bacon spam", "spam", "egg spam bacon", "sausage")
p <- c("spam", "^spam", "spam$", "spam$|^spam", "^spam$")
structure(outer(x, p, stri_detect_regex), dimnames=list(x, p))

spam ^spam spam$ spam$|^spam ^spam$
spam egg TRUE TRUE FALSE TRUE FALSE
bacon spam TRUE FALSE TRUE TRUE FALSE
spam TRUE TRUE TRUE TRUE TRUE
egg spam bacon TRUE FALSE FALSE FALSE FALSE
sausage FALSE FALSE FALSE FALSE FALSE

Marek Gagolewski 39

The 5 regular expressions match “spam”, respectively, anywhere within the string, at the
beginning, at the end, at the beginning or end, and in strings that are equal to the pattern
itself.

Matching at word boundaries. Furthermore, “\b” matches at a “word boundary“, e.g.,
near spaces, punctuation marks, or at the start/end of a string (i.e., wherever there is a
transition between a word, “\w”, and a non-word character, “\W”, or vice versa).
In the following example, we match all stand-alone numbers9:

stri_extract_all_regex("12, 34.5, J23, 37.629cm", "\\b\\d+(\\.\\d+)?+\\b")

[[1]]
[1] "12" "34.5"

Note the possessive quantifier, “?+”: try matching a dot and a sequence of digits, and if it
is present but not followed by a word boundary, do not retry by matching a word boundary
only.

Looking behind and ahead. There are also ways to guarantee that a pattern occurrence
begins or ends with a match to some subexpression: “(?<=...)...” is the so-called look-
behind, whereas “...(?=...)” denotes the look-ahead. Moreover, “(?<!...)...” and
“...(?!...)” are their negated (“negative look-behind/ahead”) versions.

stri_extract_all_regex("I like spam, spam, eggs, and spam.",
c("\\w+(?=[,.])", "\\w++(?![,.])"))

[[1]]
[1] "spam" "spam" "eggs" "spam"
##
[[2]]
[1] "I" "like" "and"

The first regex captures words that end with “,” or “.”. The second one matches words that
end neither with “,” nor “.”.

7. Collation
Historically, code-pointwise comparison had been used in most string comparison activities,
especially when strings in ASCII (i.e., English) were involved. However, nowadays this does
not necessarily constitute the most suitable approach to the processing of natural-language
texts. In particular, a code-pointwise matching neither takes accented and conjoined letters
nor ignorable punctuation and case into account.

9This regular expression is provided for didactic purposes only.

40 stringi: Fast and Portable Character String Processing in R

The ICU Collation Service10 provides the basis for string comparison activities such as string
sorting and searching, or determining if two strings are equivalent. This time, though, due
to its conformance to the Unicode Collation Algorithm (Davis, Whistler, and Scherer 2021),
we may expect that the generated results will meet the requirements of the culturally correct
natural language processing in any locale.

7.1. Locales
String collation is amongst many locale-sensitive operations available in stringi. Before pro-
ceeding any further, we should first discuss how we can parameterise the ICU services so as
to deliver the results that reflect the expectations of a specific user community, such as the
speakers of different languages and their various regional variants.

Specifying locales. A locale specifier11 is of the form "Language", "Language_Country",
or "Language_Country_Variant", where:

• Language is, most frequently, a two- or three-letter code that conforms to the ISO-
639-1 or ISO-630-2 standard, respectively; e.g., "en" or "eng" for English, "es" or
"spa" for Spanish, "zh" or "zho" for Chinese, and "mas" for Masai (which lacks the
corresponding two-letter code); however, more specific language identifiers may also
be available, e.g., "zh_Hans" for Simplified- and "zh_Hant" for Traditional-Chinese or
"sr_Cyrl" for Cyrillic- and "sr_Latn" for Latin-Serbian;

• Country is a two-letter code following the ISO-3166 standard that enables different
language conventions within the same language; e.g., the US-English ("en_US") and
Australian-English ("en_AU") not only observe some differences in spelling and vocab-
ulary but also in the units of measurement;

• Variant is an identifier indicating a preference towards some convention within the same
country; e.g., "de_DE_PREEURO" formats currency values using the pre-2002 Deutsche
Mark (DEM).

Moreover, following the “@” symbol, semicolon-separated “key=value” pairs can be appended
to the locale specifier, in order to customise some locale-sensitive services even further (see be-
low for an example using “@collation=phonebook” and Section 8.5 for “@calendar=hebrew”,
amongst others).

Listing locales. To list the available locale identifiers, we call stri_locale_list().

length(stri_locale_list())

[1] 784

As the number of supported locales is very high, here we shall display only 5 randomly chosen
ones:

10See the ICU User Guide on Collation, https://unicode-org.github.io/icu/userguide/collation/.
11Locale specifiers in ICU are platform-independent. This is not the case for their base-R counterparts, see

help("locales"), e.g., we have "Polish_Poland" on Windows vs "pl_PL" on Linux.

https://unicode-org.github.io/icu/userguide/collation/

Marek Gagolewski 41

sample(stri_locale_list(), 5)

[1] "nl_CW" "pt_CH" "ff_Latn_SL" "en_PH" "en_HK"

Querying for locale-specific services. The availability of locale-specific services can only
be determined during the request for a particular resource12, which may depend on the ICU
library version actually in use as well as the way the ICU Data Library (icudt) has been
packaged. Therefore, for maximum portability, it is best to rely on the ICU library bundle
that is shipped with stringi. This is the case on Windows and macOS, whose users typically
download the pre-compiled versions of the package from CRAN. However, on various flavours
of GNU/Linux and other Unix-based systems, the system ICU is used more eagerly13. To
force building ICU from sources, we may call:

install.packages("stringi", configure.args="--disable-pkg-config")

Overall, if a requested service is unavailable in a given locale, the best possible match is
returned.

Default locale. Each locale-sensitive operation in stringi selects the current default locale if
no locale has been explicitly requested, i.e., when a function’s locale argument (see Table 4)
is left alone in its “NULL” state. The default locale is initially set to match the system locale
on the current platform, and may be changed with stri_locale_set(), e.g., in the very rare
case of improper automatic locale detection.
As we have stated in the introduction, in this paper we use:

stri_locale_get()

[1] "en_AU"

i.e., the Australian-English locale (which formats dates like “29 September 2021” and uses
metric units of measurement).

7.2. Testing string equivalence
In Unicode, some characters may have multiple representations. For instance, “LATIN
SMALL LETTER A WITH OGONEK” (“ą”) can be stored as a single code point U+0105
or as a sequence that is comprised of the letter “LATIN SMALL LETTER A”, U+0061, and
the “COMBINING OGONEK”, U+0328 (when rendered properly, they should appear as if
they were identical glyphs). This is an example of canonical equivalence of strings.

12For more details, see the ICU User Guide on Locales, https://unicode-org.github.io/icu/userguide/
locale/.

13See, e.g., software packages libicu-dev on Debian/Ubuntu or libicu-devel on RHL/Fedora/OpenSUSE.
For more details regarding the configure/build process of stringi, refer to the INSTALL file.

https://unicode-org.github.io/icu/userguide/locale/
https://unicode-org.github.io/icu/userguide/locale/

42 stringi: Fast and Portable Character String Processing in R

Testing for the Unicode equivalence between strings can be performed by calling %s==% and,
more generally, stri_cmp_equiv(), or their negated versions, %s!=% and stri_cmp_nequiv().
In the example below we have: a followed by ogonek (two code points) vs a with ogonek
(single code point).

"a\u0328" %s==% "ą" # a, ogonek == a with ogonek

[1] TRUE

There are also functions for removing and indicating duplicated elements in a character vector:

x <- c("Gągolewski", "Gagolewski", "Ga\u0328golewski")
stri_unique(x)

[1] "Gągolewski" "Gagolewski"

stri_duplicated(x) # from_last=FALSE

[1] FALSE FALSE TRUE

Moreover, stri_duplicated_any() returns the index of the first non-unique element.

7.3. Linear ordering of strings
Operators such as %s<%, %<=%, etc., and the corresponding functions stri_cmp_lt() (“less
than”), stri_cmp_le() (“less than or equal”), etc., implement locale-sensitive linear order-
ings of strings. Moreover, stri_sort() returns the lexicographically-sorted version of a
given input vector, stri_order() yields the corresponding (stable) ordering permutation,
and stri_rank() ranks strings within a vector.
For instance, here is a comparison in the current default locale (Australian-English):

"chaotic" %s<% "hard" # c < h

[1] TRUE

Similar comparison in Polish:

stri_cmp_lt("chłodny", "hardy", locale="pl_PL") # c < h

[1] TRUE

And now for something completely different – the Slovak language:

Marek Gagolewski 43

stri_cmp_lt("chladný", "hladný", locale="sk_SK") # ch > h

[1] FALSE

This is an example of the locale-aware comparison that is context-sensitive and which goes
beyond the simple code-pointwise comparison. In the example above, a contraction occurred:
in Slovak, two code points “ch” are treated as a single entity and are sorted after “h”:
Compare the ordering of Polish and Slovak words:

stri_sort(c("chłodny", "hardy", "cichy", "cenny"), locale="pl_PL")

[1] "cenny" "chłodny" "cichy" "hardy"

stri_sort(c("cudný", "chladný", "hladný", "čudný"), locale="sk_SK")

[1] "cudný" "čudný" "hladný" "chladný"

An opposite situation is called an expansion:

german_k_words <- c("können", "kondensieren", "kochen", "korrelieren")
stri_sort(german_k_words, locale="de_DE")

[1] "kochen" "kondensieren" "können" "korrelieren"

stri_sort(german_k_words, locale="de_DE@collation=phonebook")

[1] "kochen" "können" "kondensieren" "korrelieren"

In the latter example, where we used the German phone-book order, "ö" is treated as "oe".

7.4. Collator options
Table 4 lists the options that can be passed to stri_opts_collator() via the dot-dot-dot
parameter, “...”, in all the functions that rely on the ICU Collator. Below we would like to
attract the kind reader’s attention to some of them.

Collation strength. The Unicode Collation Algorithm (Davis et al. 2021) can go beyond
simple canonical equivalence: it can treat some other (depending on the context) differences
as negligible too.
The strength option controls the Collator’s “attention to detail”. For instance, it can be
used to make the ligature “ff” (U+FB00) compare equal to the two-letter sequence “ff”:

stri_cmp_equiv("\ufb00", "ff", strength=2)

[1] TRUE

44 stringi: Fast and Portable Character String Processing in R

Option Purpose
locale a string specifying the locale to use; NULL (default) or "" for the

current default locale as indicated by stri_locale_get()

strength an integer in {1, 2, 3, 4} defining collation strength; 1 for the most
permissive collation rules, 4 for the strictest ones; defaults to 3

uppercase_first logical; NA (default) orders upper and lower case letters in accor-
dance to their tertiary weights, TRUE forces upper case letters to
sort before lower case letters, FALSE does the opposite

numeric logical; if TRUE, a collation key for the numeric value of substrings of
digits is generated; this is a way to make "100" ordered after "2";
defaults to FALSE

case_level logical; if TRUE, an extra case level (positioned before the third level)
is generated; defaults to FALSE

normalisation logical; if TRUE, then an incremental check is performed to see
whether input data are in the FCD (“fast C or D”) form; if data
are not in the FCD form, the incremental NFD normalisation is
performed, see Section 9.4; defaults to FALSE

alternate_shifted logical; if FALSE (default), all code points with non-ignorable pri-
mary weights are handled in the same way; TRUE causes the code
points with primary weights that are less than or equal to the vari-
able top value to be ignored on the primary level and moved to the
quaternary level; this can be used to, e.g., ignore punctuation, see
the examples provided

french logical; TRUE results in secondary weights being considered back-
wards, i.e., ordering according to the last accent difference – nowa-
days only used in Canadian-French; defaults to FALSE

Table 4: Options for the ICU Collator that can be passed to stri_opts_collator().

which is not the case at the default strength level (3).
Generally, four (nested) levels of inter-string differences can be distinguished:

1. A primary difference – the strongest one – occurs where there is a mismatch between
base characters (e.g., "a" vs "b").

2. Some character accents can be considered a secondary difference in many languages.
However, in other ones, an accented letter is considered a unique letter.

3. Distinguishing between upper- and lower case typically happens on the tertiary level
(see, however, the case_level option).

4. If alternate_shifted is TRUE, differences in punctuation can be determined at the
quaternary level. This is also meaningful in the processing of Hiragana text.

Marek Gagolewski 45

Ignoring case. Note which strings are deemed equivalent when considering different colla-
tion strengths:

x <- c("gro\u00df", "gross", "GROSS", "Gro\u00df", "Gross")
stri_unique(x, strength=1) # ß == ss, case insensitive

[1] "groß"

stri_unique(x, strength=2) # ß != ss, case insensitive

[1] "groß" "gross"

Hence, strength equal to 1 takes only primary differences into account. Strength of 2 will
also be sensitive to secondary differences (distinguishes between “ß” and “ss” above), but will
ignore tertiary differences (case).
Also, introducing an extra case level yields a case sensitive comparison that ignores secondary
differences:

stri_unique(x, strength=1, case_level=TRUE) # ß == ss, case sensitive

[1] "groß" "GROSS" "Groß"

Ignoring some punctuation. Here are some effects of changing the alternate_shifted
option, which allows for ignoring some punctuation marks:

x <- c("code point", "code-point", "codepoint", "CODE POINT", "CodePoint")
stri_unique(x, alternate_shifted=TRUE) # strength=3

[1] "code point" "CODE POINT" "CodePoint"

stri_unique(x, alternate_shifted=TRUE, strength=2)

[1] "code point"

In the latter case, all strings are considered equivalent. Ignoring case but not punctuation
yields:

stri_unique(x, strength=2)

[1] "code point" "code-point" "codepoint"

46 stringi: Fast and Portable Character String Processing in R

Backward secondary sorting. The French Canadian Sorting Standard CAN/CSA Z243.4.1
(historically this had been the default for all French locales) requires the word ordering with
respect to the last accent difference. Such a behaviour can be applied either by setting the
French-Canadian locale or by passing the french=TRUE option to the Collator.

stri_sort(c("cote", "côte", "coté", "côté"), locale="fr_FR")

[1] "cote" "coté" "côte" "côté"

stri_sort(c("cote", "côte", "coté", "côté"), locale="fr_CA") # french=TRUE

[1] "cote" "côte" "coté" "côté"

Sorting numerals. By default, just like in base R and most other programming languages,
a lexicographic ordering is used: the corresponding code points are being compared one by
one, from left to right, and once a difference is detected, the result is returned immediately.

x <- c("a1", "a2", "a11", "a1", "a99", "a10", "a100", "a2", "a9", "a2")
stri_sort(x)

[1] "a1" "a1" "a10" "a100" "a11" "a2" "a2" "a2" "a9" "a99"

For example, "a99" is ordered after "a100", because "a" == "a" (first characters are equal)
but then "9" > "1" (second characters are already different).
Let us, however, note the effect of setting the numeric option on the sorting of strings that
involves numbers:

stri_sort(x, numeric=TRUE)

[1] "a1" "a1" "a2" "a2" "a2" "a9" "a10" "a11" "a99" "a100"

Here is an example of sorting a data frame with respect to two criteria:

X <- data.frame(a=x, b=runif(length(x)))
X[order(-stri_rank(X$a, numeric=TRUE), X$b),]

a b
7 a100 0.528105
5 a99 0.940467
3 a11 0.408977
6 a10 0.045556
9 a9 0.551435
10 a2 0.456615
2 a2 0.788305

Marek Gagolewski 47

8 a2 0.892419
1 a1 0.287578
4 a1 0.883017

The object is now ordered by the first column decreasingly (using a “numeric” order) and ties
are resolved based on increasing values in the second column.

A note on compatibility equivalence. In Section 9.4 we describe different ways to nor-
malise canonically equivalent code point sequences so that they are represented by the same
code points, which can account for some negligible differences (as in the “a with ogonek”
example above).
Apart from ignoring punctuation and case, the Unicode Standard Annex #15 (Davis and
Whistler 2021) also discusses the so-called compatibility equivalence of strings. This is a
looser form of similarity; it is observed where there is the same abstract content, yet displayed
by means of different glyphs, for instance “¼” (U+00BC) vs “1/4” or “R” vs “R”. In the latter
case, whether these should be treated as equal, depends on the context (e.g., this can be the
set of real numbers vs one’s favourite programming language). Compatibility decompositions
(NFKC, NFKD) mentioned in Section 9.4 or other types of transliteration can be used to
normalise strings so that such differences are not accounted for.
Also, for “fuzzy” matching of strings, the stringdist package (van der Loo 2014) might be
helpful.

7.5. Searching for fixed strings revisited
The ICU Collator can also be utilised where there is a need to locate the occurrences of simple
textual patterns. The counterparts of the string search functions described in Section 5 have
their names ending with *_coll(). They are slower than them, but are more appropriate in
NLP activities.
For instance:

stri_detect_coll("Er ist so groß.", "GROSS", strength=1, locale="de_AT")

[1] TRUE

stri_detect_coll("On je chladný", "chladny", strength=1, locale="sk_SK")

[1] TRUE

8. Other operations
In the sequel, we cover the functions that deal with text boundary detection, random string
generation, date/time formatting and parsing, amongst others.

8.1. Analysing text boundaries

48 stringi: Fast and Portable Character String Processing in R

Text boundary analysis aims at locating linguistic delimiters for the purpose of splitting text
into lines, word-wrapping, counting characters or words, locating particular text units (e.g.,
the 3rd sentence), etc.
Generally, text boundary analysis is a locale-sensitive operation, see (Davis and Chapman
2021). For example, in Japanese and Chinese, spaces are not used for separation of words
– a line break can occur even in the middle of a word. Nevertheless, these languages have
punctuation and diacritical marks that cannot start or end a line, so this must also be taken
into account.
The ICU Break Iterator14 comes in four flavours (see the type option in stri_opts_brkiter()):
character, work, line_break, and sentence.
We have access to functions such as stri_count_boundaries(), stri_split_boundaries(),
stri_extract_*_boundaries(), and stri_locate_*_boundaries(), as well as their spe-
cialised versions: stri_count_words(), stri_extract_*_words(), and stri_split_lines(),
amongst others. For example:

x <- "The\u00a0above-mentioned features are useful. " %s+%
"My hovercraft is full of eels, eggs, and spam."

Number of sentences:

stri_count_boundaries(x, type="sentence")

[1] 2

The list of all the words:

stri_extract_all_words(x)

[[1]]
[1] "The" "above" "mentioned" "features" "are"
[6] "useful" "My" "hovercraft" "is" "full"
[11] "of" "eels" "eggs" "and" "spam"

8.2. Trimming, padding, and other formatting
The following functions can be used for pretty-printing character strings or text on the console,
dynamically generating reports (e.g., with Sweave() or knitr; see Xie 2015), or creating text
files (e.g., with stri_write_lines(); see Section 9.3).

Padding. stri_pad() pads strings with some character so that they reach the desired
widths (as in stri_width()). This can be used to centre, left-, or right-align a message when
printed with, e.g., cat().

14See the ICU User Guide on Boundary Analysis, https://unicode-org.github.io/icu/userguide/
boundaryanalysis/.

https://unicode-org.github.io/icu/userguide/boundaryanalysis/
https://unicode-org.github.io/icu/userguide/boundaryanalysis/

Marek Gagolewski 49

cat(stri_pad("SPAMITY SPAM", width=77, side="both", pad="."))

................................SPAMITY SPAM.................................

Trimming. A dual operation is that of trimming from the left or right side of strings:

x <- " spam, eggs, and lovely spam.\n"
stri_trim(x) # side="both"

[1] "spam, eggs, and lovely spam."

Word wrapping. The stri_wrap() function splits each (possibly long) string in a charac-
ter vector into chunks of at most a given width. By default, the dynamic word wrap algorithm
(Knuth and Plass 1981) that minimises the raggedness of the formatted text is used. However,
there is also an option (cost_exponent=0) to use the greedy alignment, for compatibility with
the built-in strwrap().

x <- stri_rand_lipsum(1) # random text paragraph
cat(stri_wrap(x, width=74, indent=8, exdent=4, prefix="> "), sep="\n")

> Lorem ipsum dolor sit amet, quis donec pretium auctor, quis id.
> Mauris rhoncus donec amet egestas sagittis ipsum per. Sed, sociis
> amet. Aliquam fusce dictumst sed vehicula ultrices arcu. Eros,
> netus et. Amet amet mi vestibulum vitae dapibus ut felis. Magnis
> in vestibulum egestas massa curabitur a ut, eget in in facilisis.
> Etiam odio fermentum sit ante ridiculus sit elit. Sapien torquent
> fermentum tortor gravida ornare sapien consequat et sem turpis. Hac
> vel lacus habitasse et id non. Metus habitasse sed lacinia nibh ex
> metus. Amet nam vestibulum ornare tincidunt massa sed ullamcorper.

Applying string templates. stri_sprintf() is a Unicode-aware rewrite of the built-in
sprintf() function. In particular, it enables formatting and padding based on character
width, not just the number of code points. The function is also available as a binary operator
%s$%, which is similar to Python’s % overloaded for objects of type str.

cat(stri_sprintf("[%6s]", c("abcd", "\u200b\u200b\u200bąß²€")), sep="\n")

[abcd]
[ąß²€]

The above guarantees that the two output strings are of at least width of 6 (plus the square
brackets).

50 stringi: Fast and Portable Character String Processing in R

8.3. Generating random strings
Apart from stri_rand_lipsum(), which produces random-ish text paragraphs (“placehold-
ers” for real text), we have access to a function that generates sequences of characters uni-
formly sampled (with replacement) from a given set.
For example, here are 5 random ACTG strings of lengths from 2 to 6:

stri_rand_strings(5, 2:6, "[ACTG]")

[1] "CT" "CTT" "AGTG" "CTCGG" "ATAACT"

See Section 6.1 and help("stringi-search-charclass") for different ways to specify char-
acter sets.

8.4. Transliterating
Transliteration, in its broad sense, deals with the substitution of characters or their groups
for different ones, according to some well-defined, possibly context-aware, rules. It may be
useful, amongst others, when ”normalising” pieces of strings or identifiers so that they can be
more easily compared with each other.

Case mapping. Mapping to upper, lower, or title case is a language- and context-sensitive
operation that can change the total number of code points in a string.

stri_trans_toupper("groß")

[1] "GROSS"

stri_trans_tolower("Iİ", locale="tr_TR") # Turkish

[1] "ıi"

stri_trans_totitle("ijsvrij yoghurt", locale="nl_NL") # Dutch

[1] "IJsvrij Yoghurt"

Mapping between specific characters. When a fast 1-to-1 code point translation is
required, we can call:

stri_trans_char("GATAAATCTGGTCTTATTTCC", "ACGT", "tgca")

[1] "ctatttagaccagaataaagg"

Here, “A”, “C”, “G”, and “T” is replaced with “t”, “g”, “c”, and “a”, respectively.

Marek Gagolewski 51

General transforms. stri_trans_general() provides access to a wide range of text
transforms defined by ICU, whose catalogue can be accessed by calling stri_trans_list().

sample(stri_trans_list(), 9) # a few random entries

[1] "Any-und_FONIPA" "Any-FCD" "Deva-Guru" "yo-yo_BJ"
[5] "Taml-Orya" "Tamil-Arabic" "hy-ar" "de-ASCII"
[9] "Any-Kana"

For example, below we apply a transliteration chain: first, we convert to upper case, and then
we convert characters in the Latin script to ASCII.

stri_trans_general("groß© żółć La Niña köszönöm", "upper; latin-ascii")

[1] "GROSS(C) ZOLC LA NINA KOSZONOM"

Custom rule-based transliteration is also supported15. It can be used, for instance, to generate
different romanisations of non-Latin alphabets.

8.5. Parsing and formatting date and time
In base R, dealing with temporal data in regional settings other than the current locale is
somewhat difficult. For instance, many will find the task of parsing the following Polish date
problematic:

x <- "28 września 2021 r., godz. 17:17:32"

stringi connects to the ICU date and time services so that this becomes an easy exercise:

stri_datetime_parse(x, "dd MMMM yyyy 'r., godz.' HH:mm:ss",
locale="pl_PL", tz="Europe/Warsaw")

[1] "2021-09-28 17:17:32 CEST"

This function returns an object of class POSIXct, for compatibility with base R. Note, however,
that ICU uses its own format patterns16. For convenience, strftime()- and strptime()-like
templates can be converted with stri_datetime_fstr():

stri_datetime_parse(x,
stri_datetime_fstr("%d %B %Y r., godz. %H:%M:%S"),
locale="pl_PL", tz="Europe/Warsaw")

[1] "2021-09-28 17:17:32 CEST"
15See the ICU User Guide on General Transforms for more details, https://unicode-org.github.io/icu/

userguide/transforms/general/.
16See the ICU User Guide on Formatting Dates and Times, https://unicode-org.github.io/icu/

userguide/format_parse/datetime/.

https://unicode-org.github.io/icu/userguide/transforms/general/
https://unicode-org.github.io/icu/userguide/transforms/general/
https://unicode-org.github.io/icu/userguide/format_parse/datetime/
https://unicode-org.github.io/icu/userguide/format_parse/datetime/

52 stringi: Fast and Portable Character String Processing in R

For example, here is how we can access different calendars:

stri_datetime_format(
stri_datetime_create(2020, 1:12, 1),
"date_long",
locale="@calendar=hebrew")

[1] "4 Tevet 5780" "6 Shevat 5780" "5 Adar 5780" "7 Nisan 5780"
[5] "7 Iyar 5780" "9 Sivan 5780" "9 Tamuz 5780" "11 Av 5780"
[9] "12 Elul 5780" "13 Tishri 5781" "14 Heshvan 5781" "15 Kislev 5781"

stri_datetime_format(
stri_datetime_create(2020, c(2, 8), c(4, 7)),
"date_full",
locale="ja_JP@calendar=japanese")

[1] "令和2年2月4日火曜日" "令和2年8月7日金曜日"

Above we have selected the Hebrew calendar within the English locale and the Japanese
calendar in the Japanese locale.

9. Input and output
This section deals with some more advanced topics related to the operability of text processing
applications between different platforms. In particular, we discuss how to assure that data
read from various input connections are interpreted in the correct manner.

9.1. Dealing with Unicode code points
The Unicode Standard (as well as the Universal Coded Character Set, i.e., ISO/IEC 10646)
currently defines over 140,000 abstract characters together with their corresponding code
points – integers between 0 and 1,114,111 (or 000016 and 10FFFF16 in hexadecimal notation,
see https://www.unicode.org/charts/). In particular, here is the number of the code
points in some popular categories (compare Section 6.1), such as letters, numbers, and the
like.

z <- c("\\p{L}", "\\p{Ll}", "\\p{Lu}", "\\p{N}", "\\p{P}", "\\p{S}",
"\\w", "\\d", "\\s")

structure(stri_count_regex(stri_enc_fromutf32(
setdiff(1:0x10ffff, c(0xd800:0xf8ff))), z), names=z)

\\p{L} \\p{Ll} \\p{Lu} \\p{N} \\p{P} \\p{S} \\w \\d \\s
131241 2155 1791 1781 798 7564 134564 650 25

Yet, most of the code points are still unallocated. The Unicode standard is occasionally
updated, e.g., the most recent versions were supplemented with over 1,000 emojis.

https://www.unicode.org/charts/

Marek Gagolewski 53

The first 255 code points are identical to the ones defined by ISO/IEC 8859-1 (ISO Latin-1;
“Western European”), which itself extends US-ASCII (codes ≤ 127 = 7F16). For instance,
the code point that we are used to denoting as U+007A (the “U+” prefix is followed by
a sequence of hexadecimal digits; 7A16 corresponds to decimal 122) encodes the lower case
letter “z”. To input such a code point in R, we write:

"\u007A" # or "\U0000007A"

[1] "z"

For communicating with ICU and other libraries, we may need to escape a given string, for
example, as follows (recall that to input a backslash in R, we must escape it with another
backslash).

x <- "zß你好"
stri_escape_unicode(x)

[1] "z\\u00df\\u4f60\\u597d"

It is worth noting that despite the fact that some output devices might be unable to display
certain code points correctly (due to, e.g., missing fonts), the correctness of their processing
with stringi is still guaranteed by ICU.

9.2. Character encodings
When storing strings in RAM or on the disk, we need to decide upon the actual way of
representing the code points as sequences of bytes. The two most popular encodings in the
Unicode family are UTF-8 and UTF-16:

x <- "abz0ąß你好!"
stri_encode(x, to="UTF-8", to_raw=TRUE)[[1]]

[1] 61 62 7a 30 c4 85 c3 9f e4 bd a0 e5 a5 bd 21

stri_encode(x, to="UTF-16LE", to_raw=TRUE)[[1]] # little-endian

[1] 61 00 62 00 7a 00 30 00 05 01 df 00 60 4f 7d 59 21 00

R’s current platform-default encoding, which we shall refer to as the native encoding, is defined
via the LC_CTYPE locale category in Sys.getlocale(). This is the representation assumed,
e.g., when reading data from the standard input or from files (e.g., when scan() is called).
For instance, Central European versions of Windows will assume the “windows-1250” code
page. MacOS as well as most Linux boxes work with UTF-8 by default17.

17It is expected that future R releases will support UTF-8 natively thanks to the Universal C Runtime
(UCRT) that is available for Windows 10.

54 stringi: Fast and Portable Character String Processing in R

All strings in R have an associated encoding mark which can be read by calling Encoding()
or, more conveniently, stri_enc_mark(). Most importantly, strings in ASCII, ISO-8859-1
(“latin1”), UTF-8, and the native encoding can coexist. Whenever a non-Unicode string is
passed to a function in stringi, it is silently converted to UTF-8 or UTF-16, depending on
the requested operation (some ICU services are only available for UTF-16 data). Over the
years, this has proven a robust, efficient, and maximally portable design choice – Unicode
can be thought of as a superset of every other encoding. Moreover, in order to guarantee the
correctness and high performance of the string processing pipelines, stringi always18 outputs
UTF-8 data.

9.3. Reading and writing text files and converting between encodings
According to a report by W3Techs19, as of 2021–09–28, 97.3% of websites use UTF-8. Nev-
ertheless, other encodings can still be encountered.

Reading and writing text files. If we know the encoding of a text file in advance,
stri_read_lines() can be used to read the data in a manner similar to the built-in readLines()
function (but with a much easier access to encoding conversion):
For instance, below we read a text file encoded in ISO-8859-1:

x <- stri_read_lines("ES_latin1.txt", encoding="ISO-8859-1")
head(x, 4) # x is in UTF-8 now

[1] "CANTO DE CALÍOPE - Miguel de Cervantes"
[2] ""
[3] "Al dulce son de mi templada lira,"
[4] "prestad, pastores, el oído atento:"

We can call stri_write_lines() to write the contents of a character vector to a file (each
string will constitute a separate text line), with any output encoding.

Detecting encoding. However, if a file’s encoding is not known in advance, there are a
certain functions that can aid in encoding detection. First, we can read the resource in the
form of a raw-type vector:

x <- stri_read_raw("ES_latin1.txt")
head(x, 24) # vector of type raw

[1] 43 41 4e 54 4f 20 44 45 20 43 41 4c cd 4f 50 45 20 2d 20 4d 69 67 75 65

Then, to guess the encoding, we can call, e.g.:

18With a few obvious exceptions, such as stri_encode().
19See https://w3techs.com/technologies/cross/character_encoding/ranking.

https://w3techs.com/technologies/cross/character_encoding/ranking

Marek Gagolewski 55

stri_enc_isascii(x)

[1] FALSE

stri_enc_isutf8(x) # false positives are possible

[1] FALSE

Alternatively, we can use:

stri_enc_detect(x) # based on heuristics

[[1]]
Encoding Language Confidence
1 ISO-8859-1 es 0.81
2 ISO-8859-2 ro 0.36
3 ISO-8859-9 tr 0.20
4 UTF-16BE 0.10
5 UTF-16LE 0.10

Nevertheless, encoding detection is an operation that relies on heuristics, therefore there is a
chance that the output might be imprecise or even misleading.

Converting encodings. Knowing the desired source and destination encoding precisely,
stri_encode() can be called to perform the conversion. Contrary to the built-in iconv(),
which relies on different underlying libraries, the current function is portable across operating
systems.

y <- stri_encode(x, from="ISO-8859-1", to="UTF-8")

stri_enc_list() provides a list of supported encodings and their aliases in many differ-
ent forms. Encoding specifiers are normalised automatically, e.g., "utf8" is a synonym for
"UTF-8".
Splitting the output into text lines gives:

tail(stri_split_lines1(y), 4) # spoiler alert!

[1] "A Homero iguala si a escrebir intenta,"
[2] "y a tanto llega de su pluma el vuelo,"
[3] "cuanto es verdad que a todos es notorio"
[4] "el alto ingenio de don DIEGO OSORIO."

9.4. Normalising strings

56 stringi: Fast and Portable Character String Processing in R

In Section 7.2 we have provided some examples of canonically equivalent strings whose code
point representation was different. Unicode normalisation forms C (Canonical composition,
NFC) and D (Canonical decomposition, NFD) can be applied so that they will compare equal
using bytewise matching (Davis and Whistler 2021).

x <- "a\u0328 ą" # a, combining ogonek, space, a with ogonek
stri_enc_toutf32(# code points as decimals

c(x, stri_trans_nfc(x), stri_trans_nfd(x)))

[[1]]
[1] 97 808 32 261
##
[[2]]
[1] 261 32 261
##
[[3]]
[1] 97 808 32 97 808

Above we see some example code points before, after NFC, and after NFD normalisation,
respectively.
It might be a good idea to always normalise all the strings read from external sources (files,
URLs) with NFC.
Compatibility composition and decomposition normalisation forms (NFKC and NFKD, re-
spectively) are also available if the removal of the formatting distinctions (font variants,
subscripts, superscripts, etc.) is desired. For example:

stri_trans_nfkd("r²︷")

[1] "r2{"

Such text might be much easier to process or analyse statistically.

10. Closing remarks
We have reviewed the key design principles and facilities available in stringi, including nu-
merous operations that help implement and optimise data processing pipelines. Let us again
stress that many package features are provided by ICU, which is a platform-independent
project. Hence, information presented above might be of interest to statisticians and data
scientists employing different programming environments as well.
Users seeking Unicode-aware replacements for base R string processing functions are kindly
referred to the stringx package (Gagolewski 2021), which is a set of wrappers around stringi
offering a more classic API (functions such as grepl(), substring(), etc., compare Table 5).
stringi functions can also be accessed from within C++ code. Authors of statistical/data anal-
ysis software who would like to speed up their projects are encouraged to check out the Exam-
pleRcppStringi package available at https://github.com/gagolews/ExampleRcppStringi,
which serves as a working prototype developed using Rcpp (Eddelbuettel 2013).

https://github.com/gagolews/ExampleRcppStringi

Marek Gagolewski 57

Future of stringi. Over the years, many useful R packages related to text processing have
been developed, see (Feinerer, Hornik, and Meyer 2008; Welbers, Van Atteveldt, and Benoit
2017) for some reviews. Several of them are listed in the CRAN Task View on Natural
Language Processing20. At the time of the writing of this paper, stringi itself had over 200
strong (direct) reverse dependencies and has established itself as one of the most frequently
downloaded R extension. Its user base is growing steadily.
Most importantly, the package can be relied upon by other software projects as its API is
considered stable and most changes are backward compatible.
Future work will involve the porting of stringi to different scientific/statistical computing envi-
ronments, including Julia and Python with the NumPy (van der Walt, Colbert, and Varoquaux
2011) ecosystem, offering more Unicode-aware alternatives to the vectorised text processing
facilities from numpy.char and pandas (McKinney 2017, Chap. 7).
Moreover, further extensions of stringi shall be conveyed in order to provide an even broader
coverage of ICU services.

Acknowledgements
stringi is an open source project distributed under the terms of the BSD-3-clause license.
Its most recent development snapshot is available through GitHub at https://github.com/
gagolews/stringi. The bug- and feature request tracker can be accessed from https:
//github.com/gagolews/stringi/issues. Moreover, its homepage – which includes a ref-
erence manual documents the package’s API in detail – is located at https://stringi.
gagolewski.com/.
The author wishes to thank Hadley Wickham for coming up with the original stringr pack-
age API (see Table 5). Also, greatly appreciated are the contributions of all who have
donated their time and effort (in all the possible forms: code, feature suggestions, ideas,
criticism, testing) to make stringi better – Bartek Tartanus, Kenneth Benoit, Marcin Bu-
jarski, Bill Denney, Katrin Leinweber, Jeroen Ooms, Davis Vaughan, and many others, see
https://github.com/gagolews/stringi/graphs/contributors. More contributions are
always welcome.

References

Chambers J (2008). Software for Data Analysis. Programming with R. Springer-Verlag.

Clayden J (2019). ore: An R Interface to the Onigmo Regular Expression Library. R package
version 1.6.3, URL https://CRAN.R-project.org/package=ore.

Crochemore M, Rytter W (2003). Jewels of Stringology. Text Algorithms. World Scientific.

Dasu T, Johnson T (2003). Exploratory Data Mining and Data Cleaning. John Wiley & Sons.

Davis M, Chapman C (2021). “Unicode Standard Annex #29: Unicode Text Segmentation.”
URL https://unicode.org/reports/tr29/.

20See https://cran.r-project.org/web/views/NaturalLanguageProcessing.html.

https://github.com/gagolews/stringi
https://github.com/gagolews/stringi
https://github.com/gagolews/stringi/issues
https://github.com/gagolews/stringi/issues
https://stringi.gagolewski.com/
https://stringi.gagolewski.com/
https://github.com/gagolews/stringi/graphs/contributors
https://CRAN.R-project.org/package=ore
https://unicode.org/reports/tr29/
https://cran.r-project.org/web/views/NaturalLanguageProcessing.html

58 stringi: Fast and Portable Character String Processing in R

Davis M, Heninger A (2021). “Unicode Technical Standard #18: Unicode Regular Expres-
sions.” URL https://www.unicode.org/reports/tr18/.

Davis M, Whistler K (2021). “Unicode Standard Annex #15: Unicode Normalization Forms.”
URL https://www.unicode.org/reports/tr15/.

Davis M, Whistler K, Scherer M (2021). “Unicode Technical Standard #10: Unicode Collation
Algorithm.” URL https://www.unicode.org/reports/tr10/.

Eddelbuettel D (2013). Seamless R and C++ Integration with Rcpp. Springer-Verlag, New
York.

Feinerer I, Hornik K, Meyer D (2008). “Text Mining Infrastructure in R.” Journal of Statistical
Software, 25(5), 1–54.

Friedl J (2006). Mastering Regular Expressions. O’Reilly.

Gagolewski M (2021). stringx: Drop-in Replacements for Base R String Functions Powered
by stringi. R package version 0.2.2, URL https://stringx.gagolewski.com/.

Hocking TD (2019). “Comparing namedCapture with Other R Packages for Regular Expres-
sions.” The R Journal, 11/2, 328–346.

Hopcroft JE, Ullman JD (1979). Introduction to Automata Theory, Languages, and Compu-
tation. Addison-Wesley.

Jurafsky D, Martin JH (2008). Speech and Language Processing. Prentice Hall.

Kleene S (1951). “Representation of Events in Nerve Nets and Finite Automata.” Technical
Report RM-704, The RAND Corporation, Santa Monica, CA. URL https://www.rand.
org/content/dam/rand/pubs/research_memoranda/2008/RM704.pdf.

Knuth D, Morris JH, Pratt V (1977). “Fast Pattern Matching in Strings.” SIAM Journal on
Computing, 6(2), 323–350.

Knuth D, Plass M (1981). “Breaking Paragraphs into Lines.” Software: Practice and Expe-
rience, 11, 1119–1184.

Kurtz S, et al. (2004). “Versatile and Open Software for Comparing Large Genomes.” Genome
Biology, 5, R12.

McKinney W (2017). Python for Data Analysis. O’Reilly.

Rabin M, Scott D (1959). “Finite Automata and Their Decision Problems.” IBM Journal of
Research and Development, 3, 114–125.

R Development Core Team (2021). R: A Language and Environment for Statistical Computing.
R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org.

Ritchie D, Thompson K (1970). “QED Text Editor.” Technical Report 70107-002, Bell Tele-
phone Laboratories, Inc. URL https://wayback.archive-it.org/all/20150203071645/
http://cm.bell-labs.com/cm/cs/who/dmr/qedman.pdf.

https://www.unicode.org/reports/tr18/
https://www.unicode.org/reports/tr15/
https://www.unicode.org/reports/tr10/
https://stringx.gagolewski.com/
https://www.rand.org/content/dam/rand/pubs/research_memoranda/2008/RM704.pdf
https://www.rand.org/content/dam/rand/pubs/research_memoranda/2008/RM704.pdf
https://www.R-project.org
https://wayback.archive-it.org/all/20150203071645/http://cm.bell-labs.com/cm/cs/who/dmr/qedman.pdf
https://wayback.archive-it.org/all/20150203071645/http://cm.bell-labs.com/cm/cs/who/dmr/qedman.pdf

Marek Gagolewski 59

Szpankowski W (2001). Average Case Analysis of Algorithms on Sequences. John Wiley &
Sons.

van der Loo M (2014). “The stringdist Package for Approximate String Matching.” The R
Journal, 6(1), 111–122.

van der Loo M, de Jonge E (2018). Statistical Data Cleaning with Applications in R. John Wi-
ley & Sons.

van der Walt S, Colbert S, Varoquaux G (2011). “The NumPy Array: A Structure for Efficient
Numerical Computation.” Computing in Science Engineering, 13(2), 22–30.

Welbers K, Van Atteveldt W, Benoit K (2017). “Text Analysis in R.” Communication Methods
and Measures, 11(4), 245–265.

Wenfeng Q (2020). re2r: RE2 Regular Expression. R package version 1.0.0, URL https:
//github.com/qinwf/re2r.

Whistler K, Iancu L (2021). “Unicode Standard Annex #44: Unicode Character Database.”
URL https://unicode.org/reports/tr44/.

Wickham H (2010). “stringr: Modern, Consistent String Processing.” The R Journal, 2(2),
38–40.

Wickham H (2021). rvest: Easily Harvest (Scrape) Web Pages. R package version 1.0.0, URL
https://CRAN.R-project.org/package=rvest.

Wickham H, Grolemund G (2017). R for Data Science. O’Reilly.

Wickham H, Hester J, Ooms J (2020). xml2: Parse XML. R package version 1.3.2, URL
https://CRAN.R-project.org/package=xml2.

Xie Y (2015). Dynamic Documents with R and knitr. Chapman and Hall/CRC.

Affiliation:
Marek Gagolewski
School of Information Technology
Deakin University
Geelong, VIC 3220, Australia
and
Systems Research Institute
Polish Academy of Sciences
ul. Newelska 6, 01-447 Warsaw, Poland
E-mail: m.gagolewski@deakin.edu.au
URL: https://www.gagolewski.com/

https://github.com/qinwf/re2r
https://github.com/qinwf/re2r
https://unicode.org/reports/tr44/
https://CRAN.R-project.org/package=rvest
https://CRAN.R-project.org/package=xml2
mailto:m.gagolewski@deakin.edu.au
https://www.gagolewski.com/

60 stringi: Fast and Portable Character String Processing in R

stringr 0.6.2 Base R 4.1 Purpose
str_c() paste(), paste0(),

also sprintf()
join strings

str_count() gregexpr() count pattern matches
str_detect() grepl() detect pattern matches
str_dup() strrep() duplicate strings
str_extract(),
str_extract_all()

regmatches()
with regexpr(),
gregexpr()

extract (first, all) pattern matches

str_length() nchar() compute string length
nchar(type="width") compute string width

str_locate(),
str_locate_all()

regexpr(),
gregexpr()

locate (first, all) pattern matches

str_match(),
str_match_all()

regmatches()
with regexec(),
gregexec()

extract (first, all) matches to regex capture
groups

str_pad() add whitespaces at beginning or end
str_replace(),
str_replace_all()

sub(), gsub() replace (first, all) pattern matches with a
replacement string

str_split(),
str_split_fixed()

strsplit() split up a string into pieces

str_sub() substr(),
substring()

extract or replace substrings

str_trim() trimws() remove whitespaces from beginning or end
str_wrap() strwrap() split strings into text lines
word() extract words from a sentence

startsWith(),
endsWith()

determine if strings start or end with a pat-
tern match

tolower(),
toupper()

case mapping and folding

chartr() transliteration
sprintf() string formatting
strftime(),
strptime()

date-time formatting and parsing

Table 5: Functions in (the historical) stringr 0.6.2 and their counterparts in base R 4.1.

	Introduction
	Use case: Data preparation
	General design principles
	Naming
	Vectorisation
	Acting elementwise with recycling
	Missing values
	Data flow
	Further deviations from base R

	Basic string operations
	Computing length and width
	Joining
	Extracting and replacing substrings

	Code-pointwise comparing
	Testing for equality of strings
	Searching for fixed strings
	Counting matches
	Search engine options
	Detecting and subsetting patterns
	Locating and extracting patterns
	Replacing pattern occurrences
	Splitting

	Regular expressions
	Matching individual characters
	Alternating and grouping subexpressions
	Quantifiers
	Capture groups and references thereto
	Anchoring

	Collation
	Locales
	Testing string equivalence
	Linear ordering of strings
	Collator options
	Searching for fixed strings revisited

	Other operations
	Analysing text boundaries
	Trimming, padding, and other formatting
	Generating random strings
	Transliterating
	Parsing and formatting date and time

	Input and output
	Dealing with Unicode code points
	Character encodings
	Reading and writing text files and converting between encodings
	Normalising strings

	Closing remarks

