
Swiss Ephemeris 1

Programming interface to the Swiss Ephemeris

Copyright Astrodienst AG 1997-2016.
This document describes the proprietary programmer's interface to the Swiss Ephemeris DLL.

Swiss Ephemeris is made available by its authors under a dual licensing system. The software developer, who
uses any part of Swiss Ephemeris in his or her software, must choose between one of the two license models,
which are
 a) GNU public license version 2 or later
 b) Swiss Ephemeris Professional License

The choice must be made before the software developer distributes software containing parts of Swiss
Ephemeris to others, and before any public service using the developed software is activated.

If the developer chooses the GNU GPL software license, he or she must fulfill the conditions of that license, which
includes the obligation to place his or her whole software project under the GNU GPL or a compatible license.
See http://www.gnu.org/licenses/old-licenses/gpl-2.0.html

If the developer chooses the Swiss Ephemeris Professional license, he must follow the instructions as found in
http://www.astro.com/swisseph/ and purchase the Swiss Ephemeris Professional Edition from Astrodienst and
sign the corresponding license contract.

0. The programming steps to get a planet’s position ... 4

1. The Ephemeris file related functions .. 5
1.1 swe_set_ephe_path() ... 5
1.2 swe_close() ... 6
1.3 swe_set_jpl_file() ... 6
1.4 swe_version() .. 6
1.5 swe_get_library_path() ... 6

2. The functions swe_calc_ut() and swe_calc() ... 6
2.1. The call parameters ... 6
2.2. Bodies (int ipl) .. 7
2.3. Options chosen by flag bits (long iflag) ... 10
2.4. Position and Speed (double xx[6]) .. 13
2.5. Error handling and return values .. 13

3. The function swe_get_planet_name() ... 14

4. Fixed stars functions ... 15
4.1 Different functions for calculating fixed star positions ... 15
4.2 swe_fixstar2_ut(), swe_fixstar2(), swe_fixstar_ut(), swe_fixstar() ... 15
4.3 swe_fixstar2_mag(), swe_fixstar_mag() .. 17

5. Kepler elements, apsides and nodes, orbital periods .. 18
5.1 swe_nod_aps_ut ... 18
5.2 swe_nod_aps() ... 18
5.3 swe_get_orbital_elements() ... 18
5.4 swe_orbit_max_min_true_distance() ... 19

6. Eclipses, Risings, Settings, Meridian Transits, Planetary Phenomena 20
6.0. Example of a typical eclipse calculation ... 21
6.1. swe_sol_eclipse_when_loc() .. 21
6.2. swe_sol_eclipse_when_glob() .. 22
6.3. swe_sol_eclipse_how () .. 23
6.4. swe_sol_eclipse_where () .. 23
6.5. swe_lun_occult_when_loc() ... 24
6.6. swe_lun_occult_when_glob() ... 26
6.7. swe_lun_occult_where () ... 26
6.8.a. swe_lun_eclipse_when_loc () .. 27
6.8.b. swe_lun_eclipse_when () .. 28
6.9. swe_lun_eclipse_how () .. 29
6.10. swe_rise_trans() and swe_rise_trans_true_hor() (risings, settings, meridian transits) 29
6.11. swe_pheno_ut() and swe_pheno(), planetary phenomena ... 32
6.12. swe_azalt(), horizontal coordinates, azimuth, altitude ... 32

Swiss Ephemeris 2
6.13. swe_azalt_rev() ... 33
6.14. swe_refrac(), swe_refract_extended(), refraction ... 33
6.15. Heliacal risings etc.: swe_heliacal_ut() .. 34
6.16. Magnitude limit for visibility: swe_vis_limit_mag() .. 36
6.17. Heliacal Details: swe_heliacal_pheno_ut() ... 36

7. Date and time conversion functions ... 37
7.1 Calendar Date and Julian Day: swe_julday(), swe_date_conversion(), /swe_revjul() 37
7.2. UTC and Julian day: swe_utc_time_zone(), swe_utc_to_jd(), swe_jdet_to_utc(), swe_jdut1_to_utc()
 .. 38
7.3. Handling of leap seconds and the file seleapsec.txt ... 39
7.4. Mean solar time versus True solar time: swe_time_equ(), swe_lmt_to_lat(), swe_lat_to_lmt() 40

8. Delta T-related functions ... 40
8.1 swe_deltat_ex() .. 41
8.2 swe_deltat() ... 41
8.3 swe_set_tid_acc(), swe_get_tid_acc() ... 41
8.4. swe_set_delta_t_userdef() .. 42
8.4. Future updates of Delta T and the file swe_deltat.txt .. 42

9. The function swe_set_topo() for topocentric planet positions 42

10. Sidereal mode functions .. 43
10.1. swe_set_sid_mode() ... 43
10.2. swe_get_ayanamsa_ex_ut(), swe_get_ayanamsa_ex(), swe_get_ayanamsa() and
swe_get_ayanamsa_ut() .. 45

11. The Ephemeris file related functions (moved to 1.) ... 46

12. The sign of geographical longitudes in Swisseph functions 46

12.1. Geographic versus geocentric latitude .. 47

13. House cusp calculation .. 48
13.1 swe_house_name().. 48
13.2 swe_houses() .. 48
13.3 swe_houses_armc() ... 48
13.4 swe_houses_ex() ... 48

14. House position of a planet: swe_house_pos() ... 51

14.1. Calculating the Gauquelin sector position of a planet with swe_house_pos() or
swe_gauquelin_sector() .. 51

15. Sidereal time with swe_sidtime() and swe_sidtime0() .. 53

16. Summary of SWISSEPH functions .. 54
16.1. Calculation of planets and stars .. 54
16.2 Eclipses and planetary phenomena .. 55
16.3. Date and time conversion .. 58
16.4. Initialization, setup, and closing functions .. 60
16.5. House calculation .. 61
16.6. Auxiliary functions .. 63
16.7. Other functions that may be useful ... 64

17. The SWISSEPH DLLs .. 65
17.1 DLL Interface for brain damaged compilers ... 65

18. Using the DLL with Visual Basic 5.0 .. 66

19. Using the DLL with Borland Delphi and C++ Builder .. 66
19.1 Delphi 2.0 and higher (32-bit) ... 66
19.2 Borland C++ Builder .. 67

20. Using the Swiss Ephemeris with Perl ... 67

21. The C sample program ... 67

21. The source code distribution .. 69

22. The PLACALC compatibility API .. 69

23. Documentation files ... 69

Swiss Ephemeris 3

24. Swisseph with different hardware and compilers ... 70

25. Debugging and Tracing Swisseph .. 70
25.1. If you are using the DLL .. 70
25.2 If you are using the source code .. 71

Appendix ... 71
Update and release history ... 71
Changes from version 2.07.01 to 2.08 ... 73
Changes from version 2.07 to 2.07.01 ... 74
Changes from version 2.06 to 2.07 ... 74
Changes from version 2.05.01 to 2.06 ... 76
Changes from version 2.05 to 2.05.01 ... 76
Changes from version 2.04 to 2.05 ... 76
Changes from version 2.03 to 2.04 ... 78
Changes from version 2.02.01 to 2.03 ... 78
Changes from version 2.02 to 2.02.01 ... 79
Changes from version 2.01 to 2.02 ... 79
Changes from version 2.00 to 2.01 ... 81
Changes from version 1.80 to 2.00 ... 82
Changes from version 1.79 to 1.80 ... 83
Changes from version 1.78 to 1.79 ... 83
Changes from version 1.77 to 1.78 ... 83
Changes from version 1.76 to 1.77 ... 83
Changes from version 1.75 to 1.76 ... 84
Changes from version 1.74 to version 1.75 .. 84
Changes from version 1.73 to version 1.74 .. 84
Changes from version 1.72 to version 1.73 .. 84
Changes from version 1.71 to version 1.72 .. 85
Changes from version 1.70.03 to version 1.71 .. 85
Changes from version 1.70.02 to version 1.70.03 ... 85
Changes from version 1.70.01 to version 1.70.02 ... 85
Changes from version 1.70.00 to version 1.70.01 ... 85
Changes from version 1.67 to version 1.70 .. 85
Changes from version 1.66 to version 1.67 .. 86
Changes from version 1.65 to version 1.66 .. 86
Changes from version 1.64.01 to version 1.65.00 ... 86
Changes from version 1.64 to version 1.64.01 .. 86
Changes from version 1.63 to version 1.64 .. 86
Changes from version 1.62 to version 1.63 .. 86
Changes from version 1.61.03 to version 1.62 .. 86
Changes from version 1.61 to 1.61.01 ... 87
Changes from version 1.60 to 1.61 ... 87
Changes from version 1.51 to 1.60 ... 87
Changes from version 1.50 to 1.51 ... 87
Changes from version 1.40 to 1.50 ... 87
Changes from version 1.31 to 1.40 ... 88
Changes from version 1.30 to 1.31 ... 88
Changes from version 1.27 to 1.30 ... 88
Changes from version 1.26 to 1.27 ... 88
Changes from version 1.25 to 1.26 ... 88
Changes from version 1.22 to 1.23 ... 88
Changes from version 1.21 to 1.22 ... 88
Changes from version 1.20 to 1.21 ... 88
Changes from version 1.11 to 1.20 ... 89
Changes from version 1.10 to 1.11 ... 89
Changes from version 1.04 to 1.10 ... 89
Changes from Version 1.03 to 1.04 ... 89
Changes from Version 1.02 to 1.03 ... 89
Changes from Version 1.01 to 1.02 ... 89
Changes from Version 1.00 to 1.01 .. 90

Appendix A .. 90
What is missing ? .. 90

Index ... 91

Swiss Ephemeris 4

0. The programming steps to get a planet’s position

To compute a celestial body or point with SWISSEPH, you have to do the following steps (use swetest.c as an
example). The details of the functions will be explained in the following chapters.

1. Set the directory path of the ephemeris files, e.g.:

 swe_set_ephe_path(”C:\\SWEPH\\EPHE”);

2. From the birth date, compute the Julian day number:
 jul_day_UT = swe_julday(year, month, day, hour, gregflag);

3. Compute a planet or other bodies:

 ret_flag = swe_calc_ut(jul_day_UT, planet_no, flag, lon_lat_rad, err_msg);
 or a fixed star:

 ret_flag = swe_fixstar_ut(star_nam, jul_day_UT, flag, lon_lat_rad, err_msg);

 Note:
 The functions swe_calc_ut() and swe_fixstar_ut() were introduced with Swisseph version 1.60.

 If you use a Swisseph version older than 1.60 or if you want to work with Ephemeris Time, you have to proceed as follows instead:

 First, if necessary, convert Universal Time (UT) to Ephemeris Time (ET):

 jul_day_ET = jul_day_UT + swe_deltat(jul_day_UT);

 Then Compute a planet or other bodies:

 ret_flag = swe_calc(jul_day_ET, planet_no, flag, lon_lat_rad, err_msg);
 or a fixed star:

 ret_flag = swe_fixstar(star_nam, jul_day_ET, flag, lon_lat_rad, err_msg);

5. At the end of your computations close all files and free memory calling swe_close();

Here is a miniature sample program, it is in the source distribution as swemini.c

#include "swephexp.h" /* this includes "sweodef.h" */
int main()

{
 char *sp, sdate[AS_MAXCH], snam[40], serr[AS_MAXCH];
 int jday = 1, jmon = 1, jyear = 2000;
 double jut = 0.0;
 double tjd_ut, te, x2[6];
 long iflag, iflgret;
 int p;
 swe_set_ephe_path(NULL);
 iflag = SEFLG_SPEED;
 while (TRUE) {
 printf("\nDate (d.m.y) ?");
 gets(sdate);
 /* stop if a period . is entered */
 if (*sdate == '.')
 return OK;
 if (sscanf (sdate, "%d%*c%d%*c%d", &jday,&jmon,&jyear) < 1) exit(1);

 /*
 * we have day, month and year and convert to Julian day number
 */
 tjd_ut = swe_julday(jyear,jmon,jday,jut,SE_GREG_CAL);
 /*
 * compute Ephemeris time from Universal time by adding delta_t
 * not required for Swisseph versions smaller than 1.60
 */
 /* te = tjd_ut + swe_deltat(tjd_ut); */
 printf("date: %02d.%02d.%d at 0:00 Universal time\n", jday, jmon, jyear);
 printf("planet \tlongitude\tlatitude\tdistance\tspeed long.\n");
 /*
 * a loop over all planets
 */
 for (p = SE_SUN; p <= SE_CHIRON; p++) {
 if (p == SE_EARTH) continue;

Swiss Ephemeris 5
 /*
 * do the coordinate calculation for this planet p
 */

iflgret = swe_calc_ut(tjd_ut, p, iflag, x2, serr);
 /* Swisseph versions older than 1.60 require the following
 * statement instead */
/* iflgret = swe_calc(te, p, iflag, x2, serr); */
 /*
 * if there is a problem, a negative value is returned and an
 * error message is in serr.
 */
 if (iflgret < 0)
 printf("error: %s\n", serr);
 /*
 * get the name of the planet p
 */
 swe_get_planet_name(p, snam);
 /*
 * print the coordinates

 */
 printf("%10s\t%11.7f\t%10.7f\t%10.7f\t%10.7f\n",
 snam, x2[0], x2[1], x2[2], x2[3]);
 }
 }
 return OK;
}

1. The Ephemeris file related functions

1.1 swe_set_ephe_path()
This is the first function that should be called before any other function of the Swiss Ephemeris. Even if you don’t
want to set an ephemeris path and use the Moshier ephemeris, it is nevertheless recommended to call
swe_set_ephe_path(NULL), because this function makes important initializations. If you don’t do that, the Swiss
Ephemeris may work, but the results may be not 100% consistent.

If the environment variable SE_EPHE_PATH exists in the environment where Swiss Ephemeris is used, its
content is used to find the ephemeris files. The variable can contain a directory name, or a list of directory names

separated by ; (semicolon) on Windows or : (colon) on Unix.

void swe_set_ephe_path(char *path);

Usually an application will want to set its own ephemeris, e.g. as follows:

swe_set_ephe_path(”C:\\SWEPH\\EPHE”);

The argument can be a single directory name or a list of directories, which are then searched in sequence. The
argument of this call is ignored if the environment variable SE_EPHE_PATH exists and is not empty.

If you want to make sure that your program overrides any environment variable setting, you can use putenv() to
set it to an empty string.

If the path is longer than 256 bytes, swe_set_ephe_path() sets the path \SWEPH\EPHE instead.

If no environment variable exists and swe_set_ephe_path() is never called, the built-in ephemeris path is used.

On Windows it is ”\sweph\ephe” relative to the current working drive, on Unix it is "/users/ephe".

Asteroid ephemerides are looked for in the subdirectories ast0, ast1, ast2 .. ast9 of the ephemeris directory
and, if not found there, in the ephemeris directory itself. Asteroids with numbers 0 – 999 are expected in directory

ast0, those with numbers 1000 – 1999 in directory ast1 etc.

The environment variable SE_EPHE_PATH is most convenient when a user has several applications installed
which all use the Swiss Ephemeris but would normally expect the ephemeris files in different application-specific
directories. The use can override this by setting the environment variable, which forces all the different
applications to use the same ephemeris directory. This allows him to use only one set of installed ephemeris files
for all different applications. A developer should accept this override feature and allow the sophisticated users to
exploit it.

Swiss Ephemeris 6

1.2 swe_close()
/* close Swiss Ephemeris */
void swe_close(void);

At the end of your computations you can release all resources (open files and allocated memory) used by the
Swiss Ephemeris DLL.

After swe_close(), no Swiss Ephemeris functions should be used unless you call swe_set_ephe_path() again and,
if required, swe_set_jpl_file().

1.3 swe_set_jpl_file()

/* set name of JPL ephemeris file */
void swe_set_jpl_file(char *fname);

If you work with the JPL ephemeris, SwissEph uses the default file name which is defined in swephexp.h as

SE_FNAME_DFT. Currently, it has the value ”de406.eph” or ”de431.eph”.

If a different JPL ephemeris file is required, call the function swe_set_jpl_file() to make the file name known to
the software, e.g.

swe_set_jpl_file(”de405.eph”);

This file must reside in the ephemeris path you are using for all your ephemeris files.

If the file name is longer than 256 byte, swe_set_jpl_file() cuts the file name to a length of 256 bytes. The error

will become visible after the first call of swe_calc(), when it will return zero positions and an error message.

1.4 swe_version()

/* find out version number of your Swiss Ephemeris version */

char *swe_version(char *svers);
/* svers is a string variable with sufficient space to contain the version number (255 char) */

The function returns a pointer to the string svers, i.e. to the version number of the Swiss Ephemeris that your
software is using.

1.5 swe_get_library_path()

/* find out the library path of the DLL or executable */
char *swe_get_library_path(char *spath);
/* spath is a string variable with sufficient space to contain the library path (255 char) */

The function returns a pointer to the string spath, which contains the path in which the executable resides. If it is
running with a DLL, then spath contains the path of the DLL.

2. The functions swe_calc_ut() and swe_calc()
Before calling one of these functions or any other Swiss Ephemeris function, it is strongly recommended to call
the function swe_set_ephe_path(). Even if you don’t want to set an ephemeris path and use the Moshier
ephemeris, it is nevertheless recommended to call swe_set_ephe_path(NULL), because this function makes
important initializations. If you don’t do that, the Swiss Ephemeris may work but the results may be not 100%
consistent.

2.1. The call parameters

swe_calc_ut() was introduced with Swisseph version 1.60 and makes planetary calculations a bit simpler. For

the steps required, see the chapter The programming steps to get a planet’s position.

swe_calc_ut() and swe_calc() work exactly the same way except that swe_calc() requires Ephemeris Time

(more accurate: Dynamical Time) as a parameter whereas swe_calc_ut() expects Universal Time. For

Swiss Ephemeris 7

common astrological calculations, you will only need swe_calc_ut() and will not have to think anymore about the
conversion between Universal Time and Ephemeris Time.

swe_calc_ut() and swe_calc() compute positions of planets, asteroids, lunar nodes and apogees. They are
defined as follows:

int swe_calc_ut (double tjd_ut, int ipl, int iflag, double* xx, char* serr),

where

tjd_ut =Julian day, Universal Time

ipl =body number
iflag =a 32 bit integer containing bit flags that indicate what kind of computation is wanted
xx =array of 6 doubles for longitude, latitude, distance, speed in long., speed in lat., and speed in dist.
serr[256] =character string to return error messages in case of error.

and

int swe_calc(double tjd_et, int ipl, int iflag, double *xx, char *serr),
same but

tjd_et = Julian day, Ephemeris time, where tjd_et = tjd_ut + swe_deltat(tjd_ut)

A detailed description of these variables will be given in the following sections.

2.2. Bodies (int ipl)
To tell swe_calc() which celestial body or factor should be computed, a fixed set of body numbers is used. The

body numbers are defined in swephexp.h:
/* planet numbers for the ipl parameter in swe_calc() */
#define SE_ECL_NUT -1
#define SE_SUN 0
#define SE_MOON 1
#define SE_MERCURY 2
#define SE_VENUS 3
#define SE_MARS 4
#define SE_JUPITER 5
#define SE_SATURN 6
#define SE_URANUS 7

#define SE_NEPTUNE 8
#define SE_PLUTO 9
#define SE_MEAN_NODE 10
#define SE_TRUE_NODE 11
#define SE_MEAN_APOG 12
#define SE_OSCU_APOG 13
#define SE_EARTH 14
#define SE_CHIRON 15
#define SE_PHOLUS 16
#define SE_CERES 17
#define SE_PALLAS 18
#define SE_JUNO 19
#define SE_VESTA 20
#define SE_INTP_APOG 21
#define SE_INTP_PERG 22

#define SE_NPLANETS 23
#define SE_FICT_OFFSET 40
#define SE_NFICT_ELEM 15
#define SE_AST_OFFSET 10000

/* Hamburger or Uranian "planets" */
#define SE_CUPIDO 40
#define SE_HADES 41
#define SE_ZEUS 42
#define SE_KRONOS 43
#define SE_APOLLON 44
#define SE_ADMETOS 45
#define SE_VULKANUS 46
#define SE_POSEIDON 47

/* other fictitious bodies */

Swiss Ephemeris 8
#define SE_ISIS 48
#define SE_NIBIRU 49
#define SE_HARRINGTON 50

#define SE_NEPTUNE_LEVERRIER 51
#define SE_NEPTUNE_ADAMS 52
#define SE_PLUTO_LOWELL 53
#define SE_PLUTO_PICKERING 54

Additional asteroids

Body numbers of other asteroids are above SE_AST_OFFSET (=10000) and have to be constructed as follows:
ipl = SE_AST_OFFSET + Minor_Planet_Catalogue_number;
e.g. Eros : ipl = SE_AST_OFFSET + 433

The names of the asteroids and their catalogue numbers can be found in seasnam.txt.

Examples are:

5 Astraea
6 Hebe
7 Iris
8 Flora
9 Metis
10 Hygiea
30 Urania
42 Isis not identical with "Isis-Transpluto"
153 Hilda (has an own asteroid belt at 4 AU)
227 Philosophia
251 Sophia
259 Aletheia
275 Sapientia
279 Thule (asteroid close to Jupiter)
375 Ursula
433 Eros

763 Cupido different from Witte's Cupido
944 Hidalgo
1181 Lilith (not identical with Dark Moon 'Lilith')
1221 Amor
1387 Kama
1388 Aphrodite
1862 Apollo (different from Witte's Apollon)
3553 Damocles highly eccentric orbit betw. Mars and Uranus
3753 Cruithne ("second moon" of earth)
4341 Poseidon Greek Neptune (different from Witte's Poseidon)
4464 Vulcano fire god (different from Witte's Vulkanus and intramercurian Vulcan)
5731 Zeus Greek Jupiter (different from Witte's Zeus)
7066 Nessus third named Centaur (beween Saturn and Pluto)

There are two ephemeris files for each asteroid (except the main asteroids), a long one and a short one:

se09999.se1 long-term ephemeris of asteroid number 9999, 3000 BC – 3000 AD
se09999s.se1 short ephemeris of asteroid number 9999, 1500 – 2100 AD

The larger file is about 10 times the size of the short ephemeris. If the user does not want an ephemeris for the

time before 1500 he might prefer to work with the short files. If so, just copy the files ending with ”s.se1” to your

hard disk. Swe_calc() tries the long one and on failure automatically takes the short one.

Asteroid ephemerides are looked for in the subdirectories ast0, ast1, ast2 .. ast9 etc of the ephemeris
directory and, if not found there, in the ephemeris directory itself. Asteroids with numbers 0 – 999 are expected in

directory ast0, those with numbers 1000 – 1999 in directory ast1 etc.

Note that not all asteroids can be computed for the whole period of Swiss Ephemeris. The orbits of some of
them are extremely sensitive to perturbations by major planets. E.g. CHIRON, cannot be computed for the time
before 650 AD and after 4650 AD because of close encounters with Saturn. Outside this time range, Swiss

Swiss Ephemeris 9
Ephemeris returns the error code, an error message, and a position value 0. Be aware, that the user will have to

handle this case in his program. Computing Chiron transits for Jesus or Alexander the Great will not work.

The same is true for Pholus before 3850 BC, and for many other asteroids, as e.g. 1862 Apollo. He becomes
chaotic before the year 1870 AD, when he approaches Venus very closely. Swiss Ephemeris does not provide
positions of Apollo for earlier centuries !

Note on asteroid names

Asteroid names are listed in the file seasnam.txt. This file is in the ephemeris directory.

Fictitious planets

Fictitious planets have numbers greater than or equal to 40. The user can define his or her own fictitious planets.

The orbital elements of these planets must be written into the file seorbel.txt. The function swe_calc() looks for

the file seorbel.txt in the ephemeris path set by swe_set_ephe_path(). If no orbital elements file is found,

swe_calc() uses the built-in orbital elements of the above mentioned Uranian planets and some other bodies.
The planet number of a fictitious planet is defined as

ipl = SE_FICT_OFFSET_1 + number_of_elements_set;

e.g. for Kronos: ipl = 39 + 4 = 43.

The file seorbel.txt has the following structure:

 # Orbital elements of fictitious planets
 # 27 Jan. 2000
 #
 # This file is part of the Swiss Ephemeris, from Version 1.60 on.
 #
 # Warning! These planets do not exist!
 #
 # The user can add his or her own elements.
 # 960 is the maximum number of fictitious planets.
 #
 # The elements order is as follows:
 # 1. epoch of elements (Julian day)
 # 2. equinox (Julian day or "J1900" or "B1950" or "J2000" or “JDATE”)
 # 3. mean anomaly at epoch
 # 4. semi-axis
 # 5. eccentricity
 # 6. argument of perihelion (ang. distance of perihelion from node)
 # 7. ascending node
 # 8. inclination
 # 9. name of planet
 #
 # use '#' for comments
 # to compute a body with swe_calc(), use planet number
 # ipl = SE_FICT_OFFSET_1 + number_of_elements_set,
 # e.g. number of Kronos is ipl = 39 + 4 = 43
 #
 # Witte/Sieggruen planets, refined by James Neely
J1900, J1900, 163.7409, 40.99837, 0.00460, 171.4333, 129.8325, 1.0833, Cupido # 1
J1900, J1900, 27.6496, 50.66744, 0.00245, 148.1796, 161.3339, 1.0500, Hades # 2
J1900, J1900, 165.1232, 59.21436, 0.00120, 299.0440, 0.0000, 0.0000, Zeus # 3
J1900, J1900, 169.0193, 64.81960, 0.00305, 208.8801, 0.0000, 0.0000, Kronos # 4
J1900, J1900, 138.0533, 70.29949, 0.00000, 0.0000, 0.0000, 0.0000, Apollon # 5
J1900, J1900, 351.3350, 73.62765, 0.00000, 0.0000, 0.0000, 0.0000, Admetos # 6
J1900, J1900, 55.8983, 77.25568, 0.00000, 0.0000, 0.0000, 0.0000, Vulcanus # 7
J1900, J1900, 165.5163, 83.66907, 0.00000, 0.0000, 0.0000, 0.0000, Poseidon # 8
 #
 # Isis-Transpluto; elements from "Die Sterne" 3/1952, p. 70ff.
 # Strubell does not give an equinox. 1945 is taken in order to
 # reproduce the as best as ASTRON ephemeris. (This is a strange
 # choice, though.)
 # The epoch according to Strubell is 1772.76.
 # 1772 is a leap year!
 # The fraction is counted from 1 Jan. 1772
2368547.66, 2431456.5, 0.0, 77.775, 0.3, 0.7, 0, 0, Isis-Transpluto # 9
 # Nibiru, elements from Christian Woeltge, Hannover
1856113.380954, 1856113.380954, 0.0, 234.8921, 0.981092, 103.966, -44.567, 158.708, Nibiru #
10
 # Harrington, elements from Astronomical Journal 96(4), Oct. 1988
2374696.5, J2000, 0.0, 101.2, 0.411, 208.5, 275.4, 32.4, Harrington # 11

Swiss Ephemeris 10
 # according to W.G. Hoyt, "Planets X and Pluto", Tucson 1980, p. 63
2395662.5, 2395662.5, 34.05, 36.15, 0.10761, 284.75, 0, 0, Leverrier (Neptune) # 12
2395662.5, 2395662.5, 24.28, 37.25, 0.12062, 299.11, 0, 0, Adams (Neptune) # 13
2425977.5, 2425977.5, 281, 43.0, 0.202, 204.9, 0, 0, Lowell (Pluto) # 14
2425977.5, 2425977.5, 48.95, 55.1, 0.31, 280.1, 100, 15, Pickering (Pluto) # 15
J1900,JDATE, 252.8987988 + 707550.7341 * T, 0.13744, 0.019, 322.212069+1670.056*T,
47.787931-1670.056*T, 7.5, Vulcan # 16
Selena/White Moon
J2000,JDATE, 242.2205555, 0.05279142865925, 0.0, 0.0, 0.0, 0.0, Selena/White Moon, geo # 17

All orbital elements except epoch and equinox may have T terms, where
T = (tjd – epoch) / 36525.
(See, e.g., Vulcan, the second last elements set (not the ”Uranian” Vulcanus but the intramercurian hypothetical
planet Vulcan).) ”T * T”, ”T2”, ”T3” are also allowed.
The equinox can either be entered as a Julian day or as ”J1900” or ”B1950” or ”J2000” or, if the equinox of date is
required, as ”JDATE”. If you use T terms, note that precession has to be taken into account with JDATE, whereas
it has to be neglected with fixed equinoxes.

No T term is required with the mean anomaly, i.e. for the speed of the body, because our software can compute it
from semi-axis and gravity. However, a mean anomaly T term had to be added with Vulcan because its speed is
not in agreement with the laws of physics. In such cases, the software takes the speed given in the elements and
does not compute it internally.

From Version 1.62 on, the software also accepts orbital elements for fictitious bodies that move about the earth.
As an example, study the last elements set in the excerpt of seorbel.txt above. After the name of the body, ”, geo”
has to be added.

Obliquity and nutation

A special body number SE_ECL_NUT is provided to compute the obliquity of the ecliptic and the nutation. Of

course nutation is already added internally to the planetary coordinates by swe_calc() but sometimes it will be
needed as a separate value.

iflgret = swe_calc(tjd_et, SE_ECL_NUT, 0, x, serr);

x is an array of 6 doubles as usual. They will be filled as follows:

x[0] = true obliquity of the Ecliptic (includes nutation)
x[1] = mean obliquity of the Ecliptic
x[2] = nutation in longitude
x[3] = nutation in obliquity
x[4] = x[5] = 0

2.3. Options chosen by flag bits (long iflag)

2.3.1. The use of flag bits

If no bits are set, i.e. if iflag == 0, swe_calc() computes what common astrological ephemerides (as available

in book shops) supply, i.e. an apparent body position in geocentric ecliptic polar coordinates (longitude,

latitude, and distance) relative to the true equinox of the date.
If the speed of the body is required, set iflag = SEFLG_SPEED

For mathematical points as the mean lunar node and the mean apogee, there is no apparent position.

Swe_calc() returns true positions for these points.

If you need another kind of computation, use the flags explained in the following paragraphs (c.f. swephexp.h).
Their names begin with ‚SEFLG_‘. To combine them, you have to concatenate them (inclusive-or) as in the
following example:

iflag = SEFLG_SPEED | SEFLG_TRUEPOS; (or: iflag = SEFLG_SPEED + SEFLG_TRUEPOS;) // C
iflag = SEFLG_SPEED or SEFLG_TRUEPOS;(or: iflag = SEFLG_SPEED + SEFLG_TRUEPOS;) // Pascal

With this value of iflag, swe_calc() will compute true positions (i.e. not accounted for light-time) with speed.

The flag bits, which are defined in swephexp.h, are:

#define SEFLG_JPLEPH 1L // use JPL ephemeris

Swiss Ephemeris 11
#define SEFLG_SWIEPH 2L // use SWISSEPH ephemeris, default
#define SEFLG_MOSEPH 4L // use Moshier ephemeris

#define SEFLG_HELCTR 8L // return heliocentric position
#define SEFLG_TRUEPOS 16L // return true positions, not apparent
#define SEFLG_J2000 32L // no precession, i.e. give J2000 equinox
#define SEFLG_NONUT 64L // no nutation, i.e. mean equinox of date
#define SEFLG_SPEED3 128L // speed from 3 positions (do not use it, SEFLG_SPEED is
 // faster and preciser.)
#define SEFLG_SPEED 256L // high precision speed (analyt. comp.)
#define SEFLG_NOGDEFL 512L // turn off gravitational deflection
#define SEFLG_NOABERR 1024L // turn off 'annual' aberration of light
#define SEFLG_ASTROMETRIC (SEFLG_NOABERR|SEFLG_NOGDEFL) // astrometric positions
#define SEFLG_EQUATORIAL 2048L // equatorial positions are wanted
#define SEFLG_XYZ 4096L // cartesian, not polar, coordinates
#define SEFLG_RADIANS 8192L // coordinates in radians, not degrees
#define SEFLG_BARYCTR 16384L // barycentric positions
#define SEFLG_TOPOCTR (32*1024L) // topocentric positions
#define SEFLG_SIDEREAL (64*1024L) // sidereal positions

#define SEFLG_ICRS (128*1024L) // ICRS (DE406 reference frame)
#define SEFLG_DPSIDEPS_1980 (256*1024) /* reproduce JPL Horizons
 * 1962 - today to 0.002 arcsec. */
#define SEFLG_JPLHOR SEFLG_DPSIDEPS_1980
#define SEFLG_JPLHOR_APPROX (512*1024) /* approximate JPL Horizons 1962 - today */

2.3.2. Ephemeris flags

The flags to choose an ephemeris are: (s. swephexp.h)

SEFLG_JPLEPH /* use JPL ephemeris */
SEFLG_SWIEPH /* use Swiss Ephemeris */
SEFLG_MOSEPH /* use Moshier ephemeris */

If none of this flags is specified, swe_calc() tries to compute the default ephemeris. The default ephemeris is

defined in swephexp.h:
#define SEFLG_DEFAULTEPH SEFLG_SWIEPH

In this case the default ephemeris is Swiss Ephemeris. If you have not specified an ephemeris in iflag,

swe_calc() tries to compute a Swiss Ephemeris position. If it does not find the required Swiss Ephemeris file
either, it computes a Moshier position.

2.3.3. Speed flag

Swe_calc() does not compute speed if you do not add the speed flag SEFLG_SPEED. E.g.
iflag |= SEFLG_SPEED;

The computation of speed is usually cheap, so you may set this bit by default even if you do not need the speed.

2.3.4. Coordinate systems, degrees and radians

SEFLG_EQUATORIAL returns equatorial positions: right ascension and declination.
SEFLG_XYZ returns x, y, z coordinates instead of longitude, latitude, and distance.
SEFLG_RADIANS returns position in radians, not degrees.

E.g. to compute right ascension and declination, write:

iflag = SEFLG_SWIEPH | SEFLG_SPEED | SEFLG_EQUATORIAL;

Note concerning equatorial coordinates: With sidereal modes SE_SIDM_J2000, SE_SIDM_B1950,
SE_SIDM_J1900, SE_SIDM_GALALIGN_MARDYKS or if the sidereal flag SE_SIDBIT_ECL_T0 is set, the
function provides right ascension and declination relative to the mean equinox of the reference epoch (J2000,
B1950, J1900, etc.).
With other sidereal modes or ayanamshas right ascension and declination are given relative to the mean
equinox of date.

Swiss Ephemeris 12

2.3.5. Specialties (going beyond common interest)

a. True or apparent positions

Common ephemerides supply apparent geocentric positions. Since the journey of the light from a planet to the
earth takes some time, the planets are never seen where they actually are, but where they were a few minutes or
hours before. Astrology uses to work with the positions we see. (More precisely: with the positions we would see,
if we stood at the center of the earth and could see the sky. Actually, the geographical position of the observer

could be of importance as well and topocentric positions could be computed, but this is usually not taken into
account in astrology.). The geocentric position for the earth (SE_EARTH) is returned as zero.
To compute the true geometrical position of a planet, disregarding light-time, you have to add the flag
SEFLG_TRUEPOS.

b. Topocentric positions

To compute topocentric positions, i.e. positions referred to the place of the observer (the birth place) rather than to
the center of the earth, do as follows:

• call swe_set_topo(geo_lon, geo_lat, altitude_above_sea) (The geographic longitude and latitude must be

in degrees, the altitude in meters.)

• add the flag SEFLG_TOPOCTR to iflag
• call swe_calc(...)

c. Heliocentric positions

To compute a heliocentric position, add SEFLG_HELCTR.

A heliocentric position can be computed for all planets including the moon. For the sun, lunar nodes and lunar

apogees the coordinates are returned as zero; no error message appears.

d. Barycentric positions

SEFLG_BARYCTR yields coordinates as referred to the solar system barycenter. However, this option is not
completely implemented. It was used for program tests during development. It works only with the JPL and the
Swiss Ephemeris, not with the Moshier ephemeris; and only with physical bodies, but not with the nodes and
the apogees.
Moreover, the barycentric Sun of Swiss Ephemeris has ”only” a precision of 0.1”. Higher accuracy would have
taken a lot of storage, on the other hand it is not needed for precise geocentric and heliocentric positions. For
more precise barycentric positions the JPL ephemeris file should be used.

A barycentric position can be computed for all planets including the sun and moon. For the lunar nodes and
lunar apogees the coordinates are returned as zero; no error message appears.

e. Astrometric positions

For astrometric positions, which are sometimes given in the Astronomical Almanac, the light-time correction is
computed, but annual aberration and the light-deflection by the sun neglected. This can be done with
SEFLG_NOABERR and SEFLG_NOGDEFL. For positions related to the mean equinox of 2000, you must set
SEFLG_J2000 and SEFLG_NONUT, as well.

f. True or mean equinox of date

Swe_calc() usually computes the positions as referred to the true equinox of the date (i.e. with nutation). If you
want the mean equinox, you can turn nutation off, using the flag bit SEFLG_NONUT.

g. J2000 positions and positions referred to other equinoxes

Swe_calc() usually computes the positions as referred to the equinox of date. SEFLG_J2000 yields data referred
to the equinox J2000. For positions referred to other equinoxes, SEFLG_SIDEREAL has to be set and the

equinox specified by swe_set_sid_mode(). For more information, read the description of this function.

h. Sidereal positions

To compute sidereal positions, set bit SEFLG_SIDEREAL and use the function swe_set_sid_mode() in order to

define the ayanamsha you want. For more information, read the description of this function.

i. JPL Horizons positions

For apparent positions of the planets, JPL Horizons follows a different approach from Astronomical Almanac and
from the IERS Conventions 2003 and 2010. It uses the old precession models IAU 1976 (Lieske) and nutation IAU
1980 (Wahr) and corrects the resulting positions by adding daily-measured celestial pole offsets (delta_psi and

Swiss Ephemeris 13
delta_epsilon) to nutation. (IERS Conventions 1996, p. 22) While this approach is more accurate in some respect,
it is not referred to the same reference frame. For more details see the general documentation of the Swiss
Ephemeris in swisseph.doc or http://www.astro.com/swisseph/swisseph.htm , ch. 2.1.2.2.

Apparent positions of JPL Horizons can be reproduced with about 0.001 arcsec precision using the flag
SEFLG_JPLHOR. For best accuracy, the daily earth orientation parameters (EOP) delta_psi and delta_eps
relative to the IAU 1980 precession/nutation model must be downloaded and saved in the ephemeris path defined
by swe_set_ephe_path(). The EOP files are found on the IERS website:
http://www.iers.org/IERS/EN/DataProducts/EarthOrientationData/eop.html
The following files are required:
1. EOP 08 C04 (IAU1980) - one file (1962-now)
http://datacenter.iers.org/eop/-/somos/5Rgv/document/tx14iers.0z9/eopc04_08.62-now
Put this file into your ephemeris path and rename it as “eop_1962_today.txt”.
2. finals.data (IAU1980)
http://datacenter.iers.org/eop/-/somos/5Rgv/document/tx14iers.0q0/finals.data
Put this file into your ephemeris path, too, and rename it as “eop_finals.txt”.

If the Swiss Ephemeris does not find these files, it defaults to SEFLG_JPLHORA, which is a very good
approximation of Horizons, at least for 1962 to present.
SEFLG_JPLHORA can be used independently for the whole time range of the Swiss Ephemeris.

Note, the Horizons mode works only with planets and fixed stars. With lunar nodes and apsides, we use our
standard methods.

2.4. Position and Speed (double xx[6])

swe_calc() returns the coordinates of position and velocity in the following order:

Ecliptic position Equatorial position (SEFLG_EQUATORIAL)

Longitude Right ascension

Latitude Declination

Distance in AU distance in AU

Speed in longitude (deg/day) Speed in right ascension (deg/day)

Speed in latitude (deg/day) Speed in declination (deg/day)

Speed in distance (AU/day) Speed in distance (AU/day)

If you need rectangular coordinates (SEFLG_XYZ), swe_calc() returns x, y, z, dx, dy, dz in AU.
Once you have computed a planet, e.g., in ecliptic coordinates, its equatorial position or its rectangular

coordinates are available, too. You can get them very cheaply (little CPU time used), calling again swe_calc()

with the same parameters, but adding SEFLG_EQUATORIAL or SEFLG_XYZ to iflag. swe_calc() will not
compute the body again, just return the data specified from internal storage.

2.5. Error handling and return values

swe_calc() (as well as swe_calc_ut(), swe_fixstar(), and swe_fixstar_ut()) returns a 32-bit integer value.
This value is >= 0, if the function call was successful, and < 0, if a fatal error has occurred. In addition an error
string or a warning can be returned in the string parameter serr.

A fatal error code (< 0) and an error string are returned in one of the following cases:

• if an illegal body number has been specified

• if a Julian day beyond the ephemeris limits has been specified

• if the length of the ephemeris file is not correct (damaged file)

• on read error, e.g. a file index points to a position beyond file length (data on file are corrupt)

• if the copyright section in the ephemeris file has been destroyed.

If any of these errors occurs,

• the return code of the function is -1,

• the position and speed variables are set to zero,

• the type of error is indicated in the error string serr.

http://www.astro.com/swisseph/swisseph.htm
http://www.iers.org/IERS/EN/DataProducts/EarthOrientationData/eop.html
http://datacenter.iers.org/eop/-/somos/5Rgv/document/tx14iers.0z9/eopc04_08.62-now
http://datacenter.iers.org/eop/-/somos/5Rgv/document/tx14iers.0q0/finals.data

Swiss Ephemeris 14

On success, the return code contains flag bits that indicate what kind of computation has been done. This value

will usually be equal to iflag, however sometimes may differ from it. If an option specified by iflag cannot be

fulfilled or makes no sense, swe_calc just does what can be done. E.g., if you specify that you want JPL

ephemeris, but swe_calc cannot find the ephemeris file, it tries to do the computation with any available

ephemeris. The ephemeris actually used will be indicated in the return value of swe_calc. So, to make sure that

swe_calc () has found the ephemeris required, you may want to check, e.g.:
if (return_code > 0 && (return_code & SEFLG_JPLEPH))

However, usually it should be sufficient to do the ephemeris test once only, at the very beginning of the program.

In such cases, there is also a warning in the error string serr, saying that:

warning: SwissEph file 'sepl_18.se1' not found in PATH '…' ; using Moshier eph.;

Apart from that, positive values of return_code need not be checked, but maybe usefull for debugging purposes or
for understanding what exactly has been done by the function.

Some flags may be removed, if they are incompatible with other flags, e.g:

• if two or more ephemerides (SEFLG_JPLEPH, SEFLG_SWIEPH, SEFLG_MOSEPH) are combined.

• if the topocentric flag (SEFLG_TOPOCTR) is combined with the heliocentric (SEFLG_HELCTR) or the
barycentric flag (SEFLG_BARYCTR).

• etc.

Some flags may be added in the following cases:

• If no ephemeris flag was specified, the return value contains SEFLG_SWIEPH.

• With J2000 calculations (SEFLG_J2000) or other sidereal calculations (SEFLG_SIDEREAL), the no-nutation
flag (SEFLG_NONUT) is added

• With heliocentric (SEFLG_HELCTR) and barycentric (SEFLG_BARYCTR) calculations, the flags for “no
aberration” (SEFLG_NOABERR) and “no light deflection” (SEFLG_NOGDEFL) are added.

3. The function swe_get_planet_name()
This function allows to find a planetary or asteroid name, when the planet number is given. The function definition
is

char* swe_get_planet_name(int ipl, char *spname);

If an asteroid name is wanted, the function does the following:

• The name is first looked for in the asteroid file.

• Because many asteroids, especially the ones with high catalogue numbers, have no names yet (or have only
a preliminary designation like 1968 HB), and because the Minor Planet Center of the IAU add new names
quite often, it happens that there is no name in the asteroid file although the asteroid has already been given a

name. For this, we have the file seasnam.txt, a file that contains a list of all named asteroid and is usually

more up to date. If swe_calc() finds a preliminary designation, it looks for a name in this file.

The file seasnam.txt can be updated by the user. To do this, download the names list from the Minor Planet

Center http://cfa-www.harvard.edu/iau/lists/MPNames.html, rename it as seasnam.txt and move it into
your ephemeris directory.

The file seasnam.txt need not be ordered in any way. There must be one asteroid per line, first its catalogue
number, then its name. The asteroid number may or may not be in brackets.

http://cfa-www.harvard.edu/iau/lists/MPNames.html

Swiss Ephemeris 15
Example:

(3192) A'Hearn

(3654) AAS
(8721) AMOS
(3568) ASCII
(2848) ASP
(677) Aaltje
 ...

4. Fixed stars functions
The following functions are used to calculate positions of fixed stars.

4.1 Different functions for calculating fixed star positions

The function swe_fixstar_ut() does exactly the same as swe_fixstar() except that it expects Universal Time

rather than Terrestrial Time (Ephemeris Time) as an input value. (cf. swe_calc_ut() and swe_calc()) For more
details, see under 4.2 swe_fixstar().

In the same way, the function swe_fixstar2_ut() does the same as swe_fixstar2() except that it expects
Universal Time as input time.

The functions swe_fixstar2_ut() and swe_fixstar2() were introduced with SE 2.07. They do the same as

swe_fixstar_ut() and swe_fixstar2() except that they are a lot faster and have a slightly different behavior,
explained below.

For new projects, we recommend using the new functions swe_fixstar2_ut() and swe_fixstar2().

Performance will be a lot better if a great number of fixed star calculations are done. If performance
is a problem with your old projects, we recommend replacing the old functions by the new ones. However, the
output should be checked carefully, because the behavior of old and new functions is not exactly identical.
(explained below)

4.2 swe_fixstar2_ut(), swe_fixstar2(), swe_fixstar_ut(), swe_fixstar()

long swe_fixstar_ut(char* star, double tjd_ut, long iflag, double* xx, char* serr);

long swe_fixstar(char *star, double tjd_et, long iflag, double* xx, char* serr);

long swe_fixstar2_ut(char* star, double tjd_ut, long iflag, double* xx, char* serr);

long swe_fixstar2(char *star, double tjd_et, long iflag, double* xx, char* serr);

where
star =name of fixed star to be searched, returned name of found star
tjd_ut =Julian day in Universal Time (swe_fixstar_ut())
tjd_et =Julian day in Ephemeris Time (swe_fixstar())
iflag =an integer containing several flags that indicate what kind of computation is wanted

xx =array of 6 doubles for longitude, latitude, distance, speed in long., speed in lat., and speed in dist.
serr[256] =character string to contain error messages in case of error.

The fixed stars functions only work if the fixed stars data file sefstars.txt is found in the ephemeris path. If
the file sefstars.txt is not found, the old file fixstars.cat is searched and used instead, if present. However, it
is strongly recommended to *not* use the old file anymore. The data in the file are outdated, and the
algorithms are also not as accurate as those used with the file sefstars.txt.

The parameter star must provide for at least 41 characters for the returned star name. If a star is found, its name
is returned in this field in the following format:

traditional_name, nomenclature_name e.g. "Aldebaran,alTau".

The nomenclature name is usually the so-called Bayer designation or the Flamsteed designation, in some cases
also Henry Draper (HD) or other designations.

As for the explanation of the other parameters, see swe_calc().

Swiss Ephemeris 16
Barycentric positions are not implemented. The difference between geocentric and heliocentric fix star position is
noticeable and arises from parallax and gravitational deflection.

The function has three modes to search for a star in the file sefstars.txt:

Behavior of new functions swe_fixstar2() and swe_fixstar2_ut():

• star contains a traditional name: the first star in the file sefstars.txt is used whose traditional name fits the
given name. All names are mapped to lower case before comparison and white spaces are removed.
Changed behavior: The search string must match the complete star name. If you want to use a partial string,
you have to add the wildcard character ‘%’ to the search string, e.g. “aldeb%”. (The old functions treat each
search string as ending with a wildcard.)
The ‘%’ can only be used at the end of the search string and only wtith the traditional star name, not with
nomenclature names (i.e. not with Bayer or Flamsteed designations).

Note that the function overwrites the variable star. Both the full traditional name and the nomenclature name

are copied into the variable, separated by a comma. E.g. if star is given the value “aldeb”, then swe_fixstar()
overwrites this with “Aldebaran,alTau”. The new string can also be used for a new search of the same star.

• star contains a comma, followed by a nomenclature name, e.g. ",alTau": the search string is understood to be
the nomenclature name (the second field in a star record). Letter case is observed in the comparison for
nomenclature names.

• star contains a positive number (in ASCII string format, e.g. "234"):
Changed behavior: The numbering of stars follows a sorted list of nomenclature names. (With the old
functions, the n-th star of the fixed star file is returned.)

Behavior of old functions swe_fixstar() and swe_fixstar_ut():

• star contains a traditional name: the first star in the file sefstars.txt is used whose traditional name fits the
given name. All names are mapped to lower case before comparison and white spaces are removed.

If star has n characters, only the first n characters of the traditional name field are compared.

Note that the function overwrites the variable star. Both the full traditional name and the nomenclature name

are copied into the variable, separated by a comma. E.g. if star is given the value “aldeb”, then swe_fixstar()
overwrites this with “Aldebaran,alTau”. The new string can also be used for a new search of the same star.

• star begins with a comma, followed by a nomenclature name, e.g. ",alTau": the search string is understood to
be the nomenclature name (the second field in a star record). Letter case is observed in the comparison for

nomenclature names. Here again, star is overwritten by the string “Aldebaran,alTau”.

• star contains a positive number (in ASCII string format, e.g. "234"):

The star data in the 234-th non-comment line in the file sefstars.txt are used. Comment lines that begin with

and are ignored. Here again, star will be overwritten by the traditional name and the nomenclature name,
separated by a comma, e.g. “Aldebaran,alTau”.

For correct spelling of nomenclature names, see file sefstars.txt. Nomenclature names are usually Bayer
designations and are composed of a Greek letter and the name of a star constellation. The Greek letters were
originally used to write numbers, therefore they actually number the stars of the constellation. The abbreviated

nomenclature names we use in sefstars.txt are constructed from two lowercase letters for the Greek letter (e.g.

”al” for ”alpha”, except “omi” and “ome”) and three letters for the constellation (e.g. ”Tau” for ”Tauri”).

The searching of stars by sequential number (instead of name or nomenclature name) is a practical feature if one
wants to list all stars:
 for i=1; i<10000; i++) { // choose any number greater than number of lines (stars) in file
 sprintf(star, "%d", i);
 returncode = swe_fixstar2(star, tjd, ...);
 … whatever you want to do with the star positons …
 if (returncode == ERR)
 break;
 }

The function and the DLL should survive damaged sefstars.txt files which contain illegal data and star names
exceeding the accepted length. Such fields are cut to acceptable length.

There are a few special entries in the file sefstars.txt:

Gal. Center (SgrA*) according to Simbad database,
speed of SgrA* according to Reid (2004), "The Proper Motion of Sagittarius A*”,
p. 873: -3.151 +- 0.018 mas/yr, -5.547 +- 0.026 mas/yr. Component in RA must be

Swiss Ephemeris 17
multiplied with cos(decl).
Galactic Center,SgrA*,ICRS,17,45,40.03599,-29,00,28.1699,-2.755718425, -5.547, 0.0,0.125,999.99, 0, 0

Great Attractor, near Galaxy Cluster ACO 3627, at gal. coordinates
325.3, -7.2, 4844 km s-1 according to Kraan-Korteweg et al. 1996,
Woudt 1998
Great Attractor,GA,2000,16,15,02.836,-60,53,22.54,0.000, 0.00, 0.0,0.0000159,999.99, 0, 0

Virgo Cluster, according to NED (Nasa Extragalactic Database)
Virgo Cluster,VC,2000,12,26,32.1,12,43,24,0.000, 0.00, 0.0,0.0000,999.99, 0, 0

The solar apex, or the Apex of the Sun's Way, refers to the direction that the Sun travels
with respect to the so-called Local Standard of Rest.
Apex ,Apex,1950,18,03,50.2, 30,00,16.8, 0.000, 0.00,-16.5,0.0000,999.99, 0, 0

Galactic Pole acc. to Liu/Zhu/Zhang, „Reconsidering the galactic coordinate system“,
Astronomy & Astrophysics No. AA2010, Oct. 2010, p. 8.
It is defined relative to a plane that contains the galactic center and the Sun and
approximates the galactic plane.
Gal.Pole,GPol,ICRS,12,51,36.7151981,27,06,11.193172,0.0,0.0,0.0,0.0,0.0,0,0

Old Galactic Pole IAU 1958 relative to ICRS according to the same publication p. 7
Gal.Pole IAU1958,GP1958,ICRS,12,51,26.27469,27,07,41.7087,0.0,0.0,0.0,0.0,0.0,0,0

Old Galactic Pole relative to ICRS according to the same publication p. 7
Gal.Pole IAU1958,GP1958,ICRS,12,51,26.27469,27,07,41.7087,0.0,0.0,0.0,0.0,0.0,0,0

Pole of true galactic plane, calculated by DK
Gal.Plane Pole,GPPlan,ICRS,12,51,5.731104,27,10,39.554849,0.0,0.0,0.0,0.0,0.0,0,0

The following "object" played an important role in 2011 and 2017 dooms day predictions,
as well as in some conspiration theories. It consists of the infrared objects
IRAS 13458-0823 and IRAS 13459-0812. Central point measured by DK.
Infrared Dragon,IDrag, ICRS,13,48,0.0,-9,0,0.0,0,0,0,0,0.0, 19, 477

You may edit the star catalogue and move the stars you prefer to the top of the file. With older versions of the
Swiss Ephemeris, this will increase the speed of computations. The search mode is linear through the whole star

file for each call of swe_fixstar().
However, since SE 2.07 with the new functions swe_fixstar2() and swe_fixstar2_ut(), this won’t speed up
calculations anymore, and the calculation speed will be the same for all stars.

Attention:

With older versions of the Swiss Ephemeris, swe_fixstar() does not compute speeds of the fixed stars. Also,
distance is always returned as 1 for all stars. Since SE 2.07 distances and daily motions are included in the return
array.

Distances are given in AU. To convert them from AU to lightyears or parsec, please use the following defines,
which are located in swephexp.h:
#define SE_AUNIT_TO_LIGHTYEAR (1.0/63241.077088071)
#define SE_AUNIT_TO_PARSEC (1.0/206264.8062471)

The daily motions of the fixed stars contain components of precession, nutation, aberration, parallax and the
proper motions of the stars.

4.3 swe_fixstar2_mag(), swe_fixstar_mag()
long swe_fixstar_mag(char *star, double* mag, char* serr);
long swe_fixstar2_mag(char *star, double* mag, char* serr);

Function calculates the magnitude of a fixed star. The function returns OK or ERR. The magnitude value is
returned in the parameter mag.
For the definition and use of the parameter star see function swe_fixstar(). The parameter serr and is, as usually,
an error string pointer.

Swiss Ephemeris 18
The new function swe_fixstar2_mag() (since SE 2.07) is more efficient if great numbers of fixed stars are
calculated.

5. Kepler elements, apsides and nodes, orbital periods

5.1 swe_nod_aps_ut

The functions swe_nod_aps_ut() and swe_nod_aps() compute planetary nodes and apsides (perihelia,
aphelia, second focal points of the orbital ellipses). Both functions do exactly the same except that they expect a

different time parameter (cf. swe_calc_ut() and swe_calc()).

The definitions are:

int32 swe_nod_aps_ut(double tjd_ut, int32 ipl, int32 iflag, int32 method, double *xnasc, double
*xndsc, double *xperi, double *xaphe, char *serr);

where
tjd_ut =Julian day in Universal Time

ipl =planet number
iflag =same as with swe_calc_ut() and swe_fixstar_ut()
method =another integer that specifies the calculation method, see explanations below
xnasc =array of 6 doubles for ascending node
xndsc =array of 6 doubles for descending node
xperi =array of 6 doubles for perihelion
xaphe =array of 6 doubles for aphelion
serr[256] =character string to contain error messages in case of error.

5.2 swe_nod_aps()
int32 swe_nod_aps(double tjd_et, int32 ipl, int32 iflag, int32 method, double *xnasc, double *xndsc,

double *xperi, double *xaphe, char *serr);
same, but

tjd_et = Julian day in Ephemeris Time

The parameter iflag allows the same specifications as with the function swe_calc_ut(). I.e., it contains the
Ephemeris flag, the heliocentric, topocentric, speed, nutation flags etc. etc.

The parameter method tells the function what kind of nodes or apsides are required:

#define SE_NODBIT_MEAN 1
Mean nodes and apsides are calculated for the bodies that have them, i.e. for the Moon and the planets Mercury
through Neptune, osculating ones for Pluto and the asteroids. This is the default method, also used if method=0.

#define SE_NODBIT_OSCU 2
Osculating nodes and apsides are calculated for all bodies.

#define SE_NODBIT_OSCU_BAR 4
Osculating nodes and apsides are calculated for all bodies. With planets beyond Jupiter, the nodes and apsides

are calculated from barycentric positions and speed. Cf. the explanations in swisseph.doc.

If this bit is combined with SE_NODBIT_MEAN, mean values are given for the planets Mercury - Neptune.

#define SE_NODBIT_FOPOINT 256
The second focal point of the orbital ellipse is computed and returned in the array of the aphelion. This bit can be
combined with any other bit.

5.3 swe_get_orbital_elements()
This function calculates osculating elements (Kepler elements) and orbital periods for a planet, the Earth-Moon
barycenter, or an asteroid. The elements are calculated relative to the mean ecliptic J2000.
The elements define the orbital ellipse under the premise that it is a two-body system and there are no
perturbations from other celestial bodies. The elements are particularly bad for the Moon, which is strongly
perturbed by the Sun. It is not recommended to calculate ephemerides using Kepler elements.

int32 swe_get_orbital_elements(

Swiss Ephemeris 19
 double tjd_et,
 int32 ipl, int32 iflag,
 double *dret,

 char *serr);

/* Function calculates osculating orbital elements (Kepler elements) of a planet
 * or asteroid or the EMB. The function returns error, if called for the Sun, the lunar nodes,
 * or the apsides
 * Input parameters:
 * tjd_et Julian day number, in TT (ET)
 * ipl object number
 * iflag can contain
 * - ephemeris flag: SEFLG_JPLEPH, SEFLG_SWIEPH, SEFLG_MOSEPH
 * - center:
 * Sun: SEFLG_HELCTR (assumed as default) or
 * SS Barycentre: SEFLG_BARYCTR (rel. to solar system barycentre)
 * (only possible for planets beyond Jupiter)
 * For elements of the Moon, the calculation is geocentric.
 * - sum all masses inside the orbit to be computed (method

 * of Astronomical Almanac):
 * SEFLG_ORBEL_AA
 * - reference ecliptic: SEFLG_J2000;
 * if missing, mean ecliptic of date is chosen (still not implemented)
 * output parameters:
 * dret[] array of return values, declare as dret[50]
 * dret[0] semimajor axis (a)
 * dret[1] eccentricity (e)
 * dret[2] inclination (in)
 * dret[3] longitude of ascending node (upper case omega OM)
 * dret[4] argument of periapsis (lower case omega om)
 * dret[5] longitude of periapsis (peri)
 * dret[6] mean anomaly at epoch (M0)
 * dret[7] true anomaly at epoch (N0)
 * dret[8] eccentric anomaly at epoch (E0)
 * dret[9] mean longitude at epoch (LM)

 * dret[10] sidereal orbital period in tropical years
 * dret[11] mean daily motion
 * dret[12] tropical period in years
 * dret[13] synodic period in days,
 * negative, if inner planet (Venus, Mercury, Aten asteroids) or Moon
 * dret[14] time of perihelion passage
 * dret[15] perihelion distance
 * dret[16] aphelion distance
*/

5.4 swe_orbit_max_min_true_distance()
This function calculates calculates the maximum possible distance, the minimum possible distance, and the
current true distance of planet, the EMB, or an asteroid. The calculation can be done either heliocentrically or
geocentrically. With heliocentric calculations, it is based on the momentary Kepler ellipse of the planet. With
geocentric calculations, it is based on the Kepler ellipses of the planet and the EMB. The geocentric calculation is
rather expensive..

int32 swe_orbit_max_min_true_distance(double tjd_et, int32 ipl, int32 iflag, double *dmax,
double *dmin, double *dtrue, char *serr)

/* Input:
 * tjd_et epoch
 * ipl planet number
 * iflag ephemeris flag and optional heliocentrif flag (SEFLG_HELCTR)
 *
 * output:
 * dmax maximum distance (pointer to double)
 * dmin minimum distance (pointer to double)
 * dtrue true distance (pointer to double)
 * serr error string

Swiss Ephemeris 20
 */

6. Eclipses, Risings, Settings, Meridian Transits, Planetary Phenomena

There are the following functions for eclipse and occultation calculations.

Solar eclipses:

• swe_sol_eclipse_when_loc(tjd...) finds the next eclipse for a given geographic position.

• swe_sol_eclipse_when_glob(tjd...) finds the next eclipse globally.

• swe_sol_eclipse_where() computes the geographic location of a solar eclipse for a given tjd.

• swe_sol_eclipse_how() computes attributes of a solar eclipse for a given tjd, geographic longitude,

latitude and height.

Occultations of planets by the moon:
These functions can also be used for solar eclipses. But they are slightly less efficient.

• swe_lun_occult_when_loc(tjd...) finds the next occultation for a body and a given geographic position.

• swe_lun_occult_when_glob(tjd...) finds the next occultation of a given body globally.

• swe_lun_occult_where() computes the geographic location of an occultation for a given tjd.

Lunar eclipses:

• swe_lun_eclipse_when_loc(tjd...) finds the next lunar eclipse for a given geographic position.

• swe_lun_eclipse_when(tjd...) finds the next lunar eclipse.

• swe_lun_eclipse_how() computes the attributes of a lunar eclipse for a given tjd.

Risings, settings, and meridian transits of planets and stars:

• swe_rise_trans()
• swe_rise_trans_true_hor() returns rising and setting times for a local horizon with altitude != 0

Planetary phenomena:

• swe_pheno_ut() and swe_pheno() compute phase angle, phase, elongation, apparent diameter, and
apparent magnitude of the Sun, the Moon, all planets and asteroids.

Swiss Ephemeris 21

6.0. Example of a typical eclipse calculation
Find the next total eclipse, calculate the geographical position where it is maximal and the four contacts for that
position (for a detailed explanation of all eclipse functions see the next chapters):

double tret[10], attr[20], geopos[10];
char serr[255];
int32 whicheph = 0; /* default ephemeris */
double tjd_start = 2451545; /* Julian day number for 1 Jan 2000 */
int32 ifltype = SE_ECL_TOTAL ¦ SE_ECL_CENTRAL ¦ SE_ECL_NONCENTRAL;
/* find next eclipse anywhere on earth */
eclflag = swe_sol_eclipse_when_glob(tjd_start, whicheph, ifltype, tret, 0, serr);
if (eclflag == ERR)
 return ERR;
/* the time of the greatest eclipse has been returned in tret[0];
 * now we can find geographical position of the eclipse maximum */
tjd_start = tret[0];

eclflag = swe_sol_eclipse_where(tjd_start, whicheph, geopos, attr, serr);
if (eclflag == ERR)
 return ERR;
/* the geographical position of the eclipse maximum is in geopos[0] and geopos[1];
 * now we can calculate the four contacts for this place. The start time is chosen
 * a day before the maximum eclipse: */
tjd_start = tret[0] - 1;
eclflag = swe_sol_eclipse_when_loc(tjd_start, whicheph, geopos, tret, attr, 0, serr);
if (eclflag == ERR)
 return ERR;
/* now tret[] contains the following values:
 * tret[0] = time of greatest eclipse (Julian day number)
 * tret[1] = first contact
 * tret[2] = second contact
 * tret[3] = third contact
 * tret[4] = fourth contact */

6.1. swe_sol_eclipse_when_loc()

To find the next eclipse for a given geographic position, use swe_sol_eclipse_when_loc().

int32 swe_sol_eclipse_when_loc(
double tjd_start, /* start date for search, Jul. day UT */
int32 ifl, /* ephemeris flag */
double *geopos, /* 3 doubles for geographic lon, lat, height.
 Eastern longitude is positive,
 western longitude is negative,
 northern latitude is positive,
 southern latitude is negative */
double *tret, /* return array, 10 doubles, see below */

double *attr, /* return array, 20 doubles, see below */
AS_BOOL backward, /* TRUE, if backward search */
char *serr); /* return error string */

The function returns:

/* retflag -1 (ERR) on error (e.g. if swe_calc() for sun or moon fails)
 SE_ECL_TOTAL or SE_ECL_ANNULAR or SE_ECL_PARTIAL
 SE_ECL_VISIBLE,
 SE_ECL_MAX_VISIBLE,
 SE_ECL_1ST_VISIBLE, SE_ECL_2ND_VISIBLE
 SE_ECL_3ST_VISIBLE, SE_ECL_4ND_VISIBLE

 tret[0] time of maximum eclipse
 tret[1] time of first contact
 tret[2] time of second contact
 tret[3] time of third contact

Swiss Ephemeris 22
 tret[4] time of forth contact
 tret[5] time of sunrise between first and forth contact
 tret[6] time of sunset beween first and forth contact

 attr[0] fraction of solar diameter covered by moon;
 with total/annular eclipses, it results in magnitude acc. to IMCCE.
 attr[1] ratio of lunar diameter to solar one
 attr[2] fraction of solar disc covered by moon (obscuration)
 attr[3] diameter of core shadow in km
 attr[4] azimuth of sun at tjd
 attr[5] true altitude of sun above horizon at tjd
 attr[6] apparent altitude of sun above horizon at tjd
 attr[7] elongation of moon in degrees
 attr[8] magnitude acc. to NASA;
 = attr[0] for partial and attr[1] for annular and total eclipses
 attr[9] saros series number (if available; otherwise -99999999)
 attr[10] saros series member number (if available; otherwise -99999999)
*/

6.2. swe_sol_eclipse_when_glob()

To find the next eclipse globally:

int32 swe_sol_eclipse_when_glob(
double tjd_start, /* start date for search, Jul. day UT */
int32 ifl, /* ephemeris flag */
int32 ifltype, /* eclipse type wanted: SE_ECL_TOTAL etc. or 0, if any eclipse type */
double *tret, /* return array, 10 doubles, see below */
AS_BOOL backward, /* TRUE, if backward search */
char *serr); /* return error string */

This function requires the time parameter tjd_start in Universal Time and also yields the return values (tret[]) in
UT. For conversions between ET and UT, use the function swe_deltat().

Note: An implementation of this function with parameters in Ephemeris Time would have been possible. The
question when the next solar eclipse will happen anywhere on earth is independent of the rotational position of the
earth and therefore independent of Delta T. However, the function is often used in combination with other eclipse
functions (see example below), for which input and output in ET makes no sense, because they concern local
circumstances of an eclipse and therefore are dependent on the rotational position of the earth. For this reason,
UT has been chosen for the time parameters of all eclipse functions.

ifltype specifies the eclipse type wanted. It can be a combination of the following bits (see swephexp.h):

#define SE_ECL_CENTRAL 1
#define SE_ECL_NONCENTRAL 2
#define SE_ECL_TOTAL 4
#define SE_ECL_ANNULAR 8
#define SE_ECL_PARTIAL 16
#define SE_ECL_ANNULAR_TOTAL 32

Recommended values for ifltype:

/* search for any eclipse, no matter which type */
ifltype = 0;
/* search a total eclipse; note: non-central total eclipses are very rare */
ifltype = SE_ECL_TOTAL ¦ SE_ECL_CENTRAL ¦ SE_ECL_NONCENTRAL;
/* search an annular eclipse */
ifltype = SE_ECL_ANNULAR ¦ SE_ECL_CENTRAL ¦ SE_ECL_NONCENTRAL;
/* search an annular-total (hybrid) eclipse */
ifltype_ = SE_ECL_ANNULAR_TOTAL ¦ SE_ECL_CENTRAL ¦ SE_ECL_NONCENTRAL;
/* search a partial eclipse */
ifltype = SE_ECL_PARTIAL;

If your code does not work, please study the sample code in swetest.c.

The function returns:

Swiss Ephemeris 23
/* retflag -1 (ERR) on error (e.g. if swe_calc() for sun or moon fails)
 SE_ECL_TOTAL or SE_ECL_ANNULAR or SE_ECL_PARTIAL or SE_ECL_ANNULAR_TOTAL
 SE_ECL_CENTRAL

 SE_ECL_NONCENTRAL

 tret[0] time of maximum eclipse
 tret[1] time, when eclipse takes place at local apparent noon
 tret[2] time of eclipse begin
 tret[3] time of eclipse end
 tret[4] time of totality begin
 tret[5] time of totality end
 tret[6] time of center line begin
 tret[7] time of center line end
 tret[8] time when annular-total eclipsfe becomes total not implemented so far
 tret[9] time when annular-total eclipse becomes annular again not implemented so far

 declare as tret[10] at least !

 */

6.3. swe_sol_eclipse_how ()

To calculate the attributes of an eclipse for a given geographic position and time:

int32 swe_sol_eclipse_how(
double tjd_ut, /* time, Jul. day UT */
int32 ifl, /* ephemeris flag */
double *geopos /* geogr. longitude, latitude, height above sea.
 * eastern longitude is positive,
 * western longitude is negative,
 * northern latitude is positive,
 * southern latitude is negative */
double *attr, /* return array, 20 doubles, see below */
char *serr); /* return error string */

/* retflag -1 (ERR) on error (e.g. if swe_calc() for sun or moon fails)
 SE_ECL_TOTAL or SE_ECL_ANNULAR or SE_ECL_PARTIAL
 0, if no eclipse is visible at geogr. position.

 attr[0] fraction of solar diameter covered by moon;
 with total/annular eclipses, it results in magnitude acc. to IMCCE.
 attr[1] ratio of lunar diameter to solar one
 attr[2] fraction of solar disc covered by moon (obscuration)
 attr[3] diameter of core shadow in km
 attr[4] azimuth of sun at tjd
 attr[5] true altitude of sun above horizon at tjd
 attr[6] apparent altitude of sun above horizon at tjd
 attr[7] elongation of moon in degrees
 attr[8] magnitude acc. to NASA;
 = attr[0] for partial and attr[1] for annular and total eclipses
 attr[9] saros series number (if available; otherwise -99999999)

 attr[10] saros series member number (if available; otherwise -99999999)

6.4. swe_sol_eclipse_where ()

This function can be used to find out the geographic position, where, for a given time, a central eclipse is central
or where a non-central eclipse is maximal.
If you want to draw the eclipse path of a total or annular eclipse on a map, first compute the start and end time of

the total or annular phase with swe_sol_eclipse_when_glob(), then call swe_sol_eclipse_how() for several
time intervals to get geographic positions on the central path. The northern and southern limits of the umbra and
penumbra are not implemented yet.

int32 swe_sol_eclipse_where (
double tjd_ut, /* time, Jul. day UT */
int32 ifl, /* ephemeris flag */

Swiss Ephemeris 24
double *geopos, /* return array, 2 doubles, geo. long. and lat.
 * eastern longitude is positive,
 * western longitude is negative,

 * northern latitude is positive,
 * southern latitude is negative */
double *attr, /* return array, 20 doubles, see below */
char *serr); /* return error string */

The function returns:

/* -1 (ERR) on error (e.g. if swe_calc() for sun or moon fails)
 0 if there is no solar eclipse at tjd
 SE_ECL_TOTAL
 SE_ECL_ANNULAR
 SE_ECL_TOTAL | SE_ECL_CENTRAL
 SE_ECL_TOTAL | SE_ECL_NONCENTRAL
 SE_ECL_ANNULAR | SE_ECL_CENTRAL
 SE_ECL_ANNULAR | SE_ECL_NONCENTRAL
 SE_ECL_PARTIAL

 geopos[0]: geographic longitude of central line
 geopos[1]: geographic latitude of central line

 not implemented so far:
 geopos[2]: geographic longitude of northern limit of umbra
 geopos[3]: geographic latitude of northern limit of umbra
 geopos[4]: geographic longitude of southern limit of umbra
 geopos[5]: geographic latitude of southern limit of umbra
 geopos[6]: geographic longitude of northern limit of penumbra
 geopos[7]: geographic latitude of northern limit of penumbra
 geopos[8]: geographic longitude of southern limit of penumbra
 geopos[9]: geographic latitude of southern limit of penumbra

 eastern longitudes are positive,
 western longitudes are negative,
 northern latitudes are positive,

 southern latitudes are negative

 attr[0] fraction of solar diameter covered by the moon
 attr[1] ratio of lunar diameter to solar one
 attr[2] fraction of solar disc covered by moon (obscuration)
 attr[3] diameter of core shadow in km
 attr[4] azimuth of sun at tjd
 attr[5] true altitude of sun above horizon at tjd
 attr[6] apparent altitude of sun above horizon at tjd
 attr[7] angular distance of moon from sun in degrees
 attr[8] eclipse magnitude (= attr[0] or attr[1] depending on eclipse type)
 attr[9] saros series number (if available; otherwise -99999999)
 attr[10] saros series member number (if available; otherwise -99999999)

 declare as attr[20]!

 */

6.5. swe_lun_occult_when_loc()
To find the next occultation of a planet or star by the moon for a given location, use
swe_lun_occult_when_loc().
The same function can also be used for local solar eclipses instead of swe_sol_eclipse_when_loc(), but is a bit
less efficient.

/* Same declaration as swe_sol_eclipse_when_loc().
 * In addition:
 * int32 ipl planet number of occulted body
 * char* starname name of occulted star. Must be NULL or "", if a planetary
 * occultation is to be calculated. For use of this field,
 * see swe_fixstar().
 * int32 ifl ephemeris flag. If you want to have only one conjunction

Swiss Ephemeris 25
 * of the moon with the body tested, add the following flag:
 * backward |= SE_ECL_ONE_TRY. If this flag is not set,
 * the function will search for an occultation until it

 * finds one. For bodies with ecliptical latitudes > 5,
 * the function may search unsuccessfully until it reaches
 * the end of the ephemeris.
 */

int32 swe_lun_occult_when_loc(
double tjd_start, /* start date for search, Jul. day UT */
int32 ipl, /* planet number */
char* starname, /* star name, must be NULL or ”” if not a star */
int32 ifl, /* ephemeris flag */
double *geopos, /* 3 doubles for geogr. longitude, latitude, height above sea.
 * eastern longitude is positive,
 * western longitude is negative,
 * northern latitude is positive,
 * southern latitude is negative */
double *tret, /* return array, 10 doubles, see below */

double *attr, /* return array, 20 doubles, see below */
AS_BOOL backward, /* TRUE, if backward search */
char *serr); /* return error string */

Occultations of some stars may be very rare or do not occur at all. Usually the function searches an event
until it finds one or reaches the end of the ephemeris. In order to avoid endless loops, the function can be
called using the flag ifl |= SE_ECL_ONE_TRY. If called with this flag, the function searches the next date when
the Moon is in conjunction with the object and finds out whether it is an occultation. The function does not
check any other conjunctions in the future or past.

If the return value is > 0, there is an occulation and tret and attr contain the information about it.
If the return value is = 0, there is no occulation; tret[0] contains the date of closest conjunction.
If the return value is = -1, there is an error.

In order to find events in a particular time range (tjd_start < tjd < tjd_stop), one can write a loop and call
the function as often as date (tjd < tjd_stop). After each call, increase the tjd = tret[0] + 2.

If one has a set of stars or planets for which one wants to find occultations for the same time range, one has
to run the same loop for each of these object. If the events have to be listed in chronological order, one has
to sort them before output.

The function returns:

/* retflag
 -1 (ERR) on error (e.g. if swe_calc() for sun or moon fails)
 0 (if no occultation/no eclipse found)
 SE_ECL_TOTAL or SE_ECL_ANNULAR or SE_ECL_PARTIAL
 SE_ECL_VISIBLE,
 SE_ECL_MAX_VISIBLE,
 SE_ECL_1ST_VISIBLE, SE_ECL_2ND_VISIBLE
 SE_ECL_3ST_VISIBLE, SE_ECL_4ND_VISIBLE
 These return values (except the SE_ECL_ANNULAR) also appear with occultations.

 tret[0] time of maximum eclipse
 tret[1] time of first contact
 tret[2] time of second contact
 tret[3] time of third contact
 tret[4] time of forth contact
 tret[5] time of sunrise between first and forth contact (not implemented so far)
 tret[6] time of sunset beween first and forth contact (not implemented so far)

 attr[0] fraction of solar diameter covered by moon (magnitude)
 attr[1] ratio of lunar diameter to solar one
 attr[2] fraction of solar disc covered by moon (obscuration)
 attr[3] diameter of core shadow in km
 attr[4] azimuth of sun at tjd
 attr[5] true altitude of sun above horizon at tjd
 attr[6] apparent altitude of sun above horizon at tjd
 attr[7] elongation of moon in degrees */

Swiss Ephemeris 26

6.6. swe_lun_occult_when_glob()
To find the next occultation of a planet or star by the moon globally (not for a particular geographic location),
use swe_lun_occult_when_glob().
The same function can also be used for global solar eclipses instead of swe_sol_eclipse_when_glob(), but is a bit
less efficient.

/* Same declaration as swe_sol_eclipse_when_glob().
 * In addition:
 * int32 ipl planet number of occulted body
 * char* starname name of occulted star. Must be NULL or "", if a planetary
 * occultation is to be calculated. For use of this field,
 * see swe_fixstar().
 * int32 ifl ephemeris flag. If you want to have only one conjunction
 * of the moon with the body tested, add the following flag:
 * backward |= SE_ECL_ONE_TRY. If this flag is not set,
 * the function will search for an occultation until it

 * finds one. For bodies with ecliptical latitudes > 5,
 * the function may search successlessly until it reaches
 * the end of the ephemeris.
 */
int32 swe_lun_occult_when_glob(
double tjd_start, /* start date for search, Jul. day UT */
int32 ipl, /* planet number */
char* starname, /* star name, must be NULL or ”” if not a star */
int32 ifl, /* ephemeris flag */
int32 ifltype, /* eclipse type wanted */
double *tret, /* return array, 10 doubles, see below */
AS_BOOL backward, /* TRUE, if backward search */
char *serr); /* return error string */

An explanation of the ifl |= SE_ECL_ONE_TRY is given above in paragraph about the function

swe_lun_occult_when_loc().

The function returns:

/* retflag
 -1 (ERR) on error (e.g. if swe_calc() for sun or moon fails)
 0 (if no occultation / eclipse has been found)
 SE_ECL_TOTAL or SE_ECL_ANNULAR or SE_ECL_PARTIAL or SE_ECL_ANNULAR_TOTAL
 SE_ECL_CENTRAL
 SE_ECL_NONCENTRAL

 tret[0] time of maximum eclipse
 tret[1] time, when eclipse takes place at local apparent noon
 tret[2] time of eclipse begin
 tret[3] time of eclipse end
 tret[4] time of totality begin

 tret[5] time of totality end
 tret[6] time of center line begin
 tret[7] time of center line end
 tret[8] time when annular-total eclipse becomes total not implemented so far
 tret[9] time when annular-total eclipse becomes annular again not implemented so far

 declare as tret[10] at least !

 */

6.7. swe_lun_occult_where ()

Similar to swe_sol_eclipse_where(), this function can be used to find out the geographic position, where, for a
given time, a central eclipse is central or where a non-central eclipse is maximal. With occultations, it tells us, at

Swiss Ephemeris 27
which geographic location the occulted body is in the middle of the lunar disc or closest to it. Because occultations
are always visible from a very large area, this is not very interesting information. But it may
become more interesting as soon as the limits of the umbra (and penumbra) will be implemented.

int32 swe_lun_occult_where (
double tjd_ut, /* time, Jul. day UT */
int32 ipl, /* planet number */
char* starname, /* star name, must be NULL or ”” if not a star */
int32 ifl, /* ephemeris flag */
double *geopos, /* return array, 2 doubles, geo. long. and lat.
 * eastern longitude is positive,
 * western longitude is negative,
 * northern latitude is positive,
 * southern latitude is negative */
double *attr, /* return array, 20 doubles, see below */
char *serr); /* return error string */

The function returns:

/* -1 (ERR) on error (e.g. if swe_calc() for sun or moon fails)
 0 if there is no solar eclipse (occultation) at tjd
 SE_ECL_TOTAL
 SE_ECL_ANNULAR
 SE_ECL_TOTAL | SE_ECL_CENTRAL
 SE_ECL_TOTAL | SE_ECL_NONCENTRAL
 SE_ECL_ANNULAR | SE_ECL_CENTRAL
 SE_ECL_ANNULAR | SE_ECL_NONCENTRAL
 SE_ECL_PARTIAL

 geopos[0]: geographic longitude of central line
 geopos[1]: geographic latitude of central line

 not implemented so far:
 geopos[2]: geographic longitude of northern limit of umbra
 geopos[3]: geographic latitude of northern limit of umbra

 geopos[4]: geographic longitude of southern limit of umbra
 geopos[5]: geographic latitude of southern limit of umbra
 geopos[6]: geographic longitude of northern limit of penumbra
 geopos[7]: geographic latitude of northern limit of penumbra
 geopos[8]: geographic longitude of southern limit of penumbra
 geopos[9]: geographic latitude of southern limit of penumbra

 eastern longitudes are positive,
 western longitudes are negative,
 northern latitudes are positive,
 southern latitudes are negative

 attr[0] fraction of object's diameter covered by moon (magnitude)
 attr[1] ratio of lunar diameter to object's diameter
 attr[2] fraction of object's disc covered by moon (obscuration)
 attr[3] diameter of core shadow in km

 attr[4] azimuth of object at tjd
 attr[5] true altitude of object above horizon at tjd
 attr[6] apparent altitude of object above horizon at tjd
 attr[7] angular distance of moon from object in degrees
 declare as attr[20]!

 */

6.8.a. swe_lun_eclipse_when_loc ()
To find the next lunar eclipse observable from a given geographic position:

int32 swe_lun_eclipse_when_loc(
double tjd_start, /* start date for search, Jul. day UT */
int32 ifl, /* ephemeris flag */
double *geopos, /* 3 doubles for geogr. longitude, latitude, height above sea.
 * eastern longitude is positive,

Swiss Ephemeris 28
 * western longitude is negative,
 * northern latitude is positive,
 * southern latitude is negative */

double *tret, /* return array, 10 doubles, see below */
double *attr, /* return array, 20 doubles, see below */
AS_BOOL backward, /* TRUE, if backward search */
char *serr); /* return error string */

If your code does not work, please study the sample code in swetest.c.

The function returns:

/* retflag SE_ECL_TOTAL or SE_ECL_PENUMBRAL or SE_ECL_PARTIAL
 *
 * tret[0] time of maximum eclipse
 * tret[1]
 * tret[2] time of partial phase begin (indices consistent with solar eclipses)
 * tret[3] time of partial phase end
 * tret[4] time of totality begin

 * tret[5] time of totality end
 * tret[6] time of penumbral phase begin
 * tret[7] time of penumbral phase end
 * tret[8] time of moonrise, if it occurs during the eclipse
 * tret[9] time of moonset, if it occurs during the eclipse
 *
 * attr[0] umbral magnitude at tjd
 * attr[1] penumbral magnitude
 * attr[4] azimuth of moon at tjd
 * attr[5] true altitude of moon above horizon at tjd
 * attr[6] apparent altitude of moon above horizon at tjd
 * attr[7] distance of moon from opposition in degrees
 * attr[8] umbral magnitude at tjd (= attr[0])
 * attr[9] saros series number (if available; otherwise -99999999)
 * attr[10] saros series member number (if available; otherwise -99999999) */

6.8.b. swe_lun_eclipse_when ()
To find the next lunar eclipse:

int32 swe_lun_eclipse_when(
double tjd_start, /* start date for search, Jul. day UT */
int32 ifl, /* ephemeris flag */
int32 ifltype, /* eclipse type wanted: SE_ECL_TOTAL etc. or 0, if any eclipse type */
double *tret, /* return array, 10 doubles, see below */
AS_BOOL backward, /* TRUE, if backward search */
char *serr); /* return error string */

Recommended values for ifltype:

/* search for any lunar eclipse, no matter which type */
ifltype = 0;

/* search a total lunar eclipse */
ifltype = SE_ECL_TOTAL;
/* search a partial lunar eclipse */
ifltype = SE_ECL_PARTIAL;
/* search a penumbral lunar eclipse */
ifltype = SE_ECL_PENUMBRAL;

If your code does not work, please study the sample code in swetest.c.

The function returns:

/* retflag -1 (ERR) on error (e.g. if swe_calc() for sun or moon fails)
 SE_ECL_TOTAL or SE_ECL_PENUMBRAL or SE_ECL_PARTIAL
 tret[0] time of maximum eclipse
 tret[1]
 tret[2] time of partial phase begin (indices consistent with solar eclipses)

Swiss Ephemeris 29
 tret[3] time of partial phase end
 tret[4] time of totality begin
 tret[5] time of totality end

 tret[6] time of penumbral phase begin
 tret[7] time of penumbral phase end
 */

6.9. swe_lun_eclipse_how ()

This function computes the attributes of a lunar eclipse at a given time:

int32 swe_lun_eclipse_how(
double tjd_ut, /* time, Jul. day UT */
int32 ifl, /* ephemeris flag */
double *geopos, /* input array, geopos, geolon, geoheight
 eastern longitude is positive,
 western longitude is negative,

 northern latitude is positive,
 southern latitude is negative */
double *attr, /* return array, 20 doubles, see below */
char *serr); /* return error string */

The function returns:

/* retflag -1 (ERR) on error (e.g. if swe_calc() for sun or moon fails)
 SE_ECL_TOTAL or SE_ECL_PENUMBRAL or SE_ECL_PARTIAL
 0 if there is no eclipse

attr[0] umbral magnitude at tjd
attr[1] penumbral magnitude
attr[4] azimuth of moon at tjd. Not implemented so far
attr[5] true altitude of moon above horizon at tjd. Not implemented so far
attr[6] apparent altitude of moon above horizon at tjd. Not implemented so far

attr[7] distance of moon from opposition in degrees
attr[8] eclipse magnitude (= attr[0])
attr[9] saros series number (if available; otherwise -99999999)
attr[10] saros series member number (if available; otherwise -99999999)

 declare as attr[20] at least !

 */

6.10. swe_rise_trans() and swe_rise_trans_true_hor() (risings, settings, meridian

transits)

The function swe_rise_trans() computes the times of rising, setting and meridian transits for all planets, asteroids,
the moon, and the fixed stars. The function swe_rise_trans_true_hor() does the same for a local horizon that has
an altitude != 0.

The function returns a rising time of an object,
- if at t0 the object is below the horizon and a rising takes place before the next culmination of the object
- if at t0 the object is above the horizon and a rising takes place between the next lower and upper culminations of
the object.
And it returns a setting time of an object,
- if at t0 the object is above the horizon and a setting takes place before the next lower culmination of the object
- if at t0 the object is below the horizon and a setting takes place between the next upper and lower culminations.

Note, “culmination” does not mean meridian transit, especially not with the Sun, Moon, and planets. The
culmination of a moving body with changing declination does not take place exactly on the meridian but shortly
before or after the meridian transit. In polar regions, it even happens that the moon "rises" shortly after the
culmination, on the west side of the meridian. I. e., the upper limb if its disk will become visible for a short time.
The function swe_rise_trans() should catch these cases.

Function definitions are as follows:

Swiss Ephemeris 30
int32 swe_rise_trans(
double tjd_ut, /* search after this time (UT) */
int32 ipl, /* planet number, if planet or moon */

char *starname, /* star name, if star; must be NULL or empty, if ipl is used */
int32 epheflag, /* ephemeris flag */
int32 rsmi, /* integer specifying that rise, set, or one of the two meridian transits is
 wanted. see definition below */
double *geopos, /* array of three doubles containing
 * geograph. long., lat., height of observer */
double atpress, /* atmospheric pressure in mbar/hPa */
double attemp, /* atmospheric temperature in deg. C */
double *tret, /* return address (double) for rise time etc. */
char *serr); /* return address for error message */

int32 swe_rise_trans_true_hor(
double tjd_ut, /* search after this time (UT) */
int32 ipl, /* planet number, if planet or moon */
char *starname, /* star name, if star; must be NULL or empty, if ipl is used */
int32 epheflag, /* ephemeris flag */

int32 rsmi, /* integer specifying that rise, set, orone of the two meridian transits is
 wanted. see definition below */
double *geopos, /* array of three doubles containing
 * geograph. long., lat., height of observer */
double atpress, /* atmospheric pressure in mbar/hPa */
double attemp, /* atmospheric temperature in deg. C */
double horhgt, /* height of local horizon in deg at the point where the body rises or sets*/
double *tret, /* return address (double) for rise time etc. */
char *serr); /* return address for error message */

The second function has one additional parameter horhgt for the height of the local horizon at the point where the
body rises or sets.

The variable rsmi can have the following values:

/* for swe_rise_trans() and swe_rise_trans_true_hor() */

#define SE_CALC_RISE 1
#define SE_CALC_SET 2
#define SE_CALC_MTRANSIT 4 /* upper meridian transit (southern for northern geo. latitudes) */
#define SE_CALC_ITRANSIT 8 /* lower meridian transit (northern, below the horizon) */
/* the following bits can be added (or’ed) to SE_CALC_RISE or SE_CALC_SET */
#define SE_BIT_DISC_CENTER 256 /* for rising or setting of disc center */
#define SE_BIT_DISC_BOTTOM 8192 /* for rising or setting of lower limb of disc */
#define SE_BIT_GEOCTR_NO_ECL_LAT 128 /* use topocentric position of object and ignore its ecliptic

latitude */
#define SE_BIT_NO_REFRACTION 512 /* if refraction is not to be considered */
#define SE_BIT_CIVIL_TWILIGHT 1024 /* in order to calculate civil twilight */
#define SE_BIT_NAUTIC_TWILIGHT 2048 /* in order to calculate nautical twilight */
#define SE_BIT_ASTRO_TWILIGHT 4096 /* in order to calculate astronomical twilight */
#define SE_BIT_FIXED_DISC_SIZE (16*1024) /* neglect the effect of distance on disc size */
#define SE_BIT_HINDU_RISING

(SE_BIT_DISC_CENTER|SE_BIT_NO_REFRACTION|SE_BIT_GEOCTR_NO_ECL_LAT)

 /* risings according to Hindu astrology */

rsmi = 0 will return risings.

The rising times depend on the atmospheric pressure and temperature. atpress expects the atmospheric

pressure in millibar (hectopascal); attemp the temperature in degrees Celsius.

If atpress is given the value 0, the function estimates the pressure from the geographical altitude given in

geopos[2] and attemp. If geopos[2] is 0, atpress will be estimated for sea level.

Function return values are:
0 if a rising, setting or transit event was found
-1 if an error occurred (usually an ephemeris problem)
-2 if a rising or setting event was not found because the object is circumpolar

Swiss Ephemeris 31

6.10.1 Sunrise in Astronomy and in Hindu Astrology

The astronomical sunrise is defined as the time when the upper limb of the solar disk is seen appearing at the
horizon. The astronomical sunset is defined as the moment the upper limb of the solar disk disappears below the
horizon.

The function swe_rise_trans() by default follows this definition of astronomical sunrises and sunsets. Also,
astronomical almanacs and news papers publish astronomical sunrises and sunset according to this definition.

Hindu astrology and Hindu calendars use a different definition of sunrise and sunset. They consider the Sun as
rising or setting, when the center of the solar disk is exactly at the horizon. In addition, the Hindu method ignores
atmospheric refraction. Moreover, the geocentric rather than topocentric position position is used and the small
ecliptic latitude of the Sun is ignored.

In order to calculate correct Hindu rising and setting times, the flags SE_BIT_NO_REFRACTION and
SE_BIT_DISC_CENTER must be added (or'ed) to the parameter rsmi. From Swiss Ephemeris version 2.06 on, a
flag SE_BIT_HINDU_RISING is supported. It includes the flags flags SE_BIT_NO_REFRACTION,
SE_BIT_DISC_CENTER and SE_BIT_GEOCTR_NO_ECL_LAT.

In order to calculate the sunrise of a given date and geographic location, one can proceed as in the following
program (tested code!):

int main()
{
 char serr[AS_MAXCH];
 double epheflag = SEFLG_SWIEPH;
 int gregflag = SE_GREG_CAL;
 int year = 2017;
 int month = 4;
 int day = 12;
 int geo_longitude = 76.5; // positive for east, negative for west of Greenwich
 int geo_latitude = 30.0;
 int geo_altitude = 0.0;
 double hour;
 // array for atmospheric conditions
 double datm[2];
 datm[0] = 1013.25; // atmospheric pressure;
 // irrelevant with Hindu method, can be set to 0
 datm[1] = 15; // atmospheric temperature;
 // irrelevant with Hindu method, can be set to 0
 // array for geographic position
 double geopos[3];
 geopos[0] = geo_longitude;
 geopos[1] = geo_latitude;
 geopos[2] = geo_altitude; // height above see level in meters;
 // irrelevant with Hindu method, can be set to 0
 swe_set_topo(geopos[0], geopos[1], geopos[2]);
 int ipl = SE_SUN; // object whose rising is wanted
 char starname[255]; // name of star, if a star's rising is wanted
 // is "" or NULL, if Sun, Moon, or planet is calculated
 double trise; // for rising time
 double tset; // for setting time
 // calculate the julian day number of the date at 0:00 UT:
 double tjd = swe_julday(year,month,day,0,gregflag);
 // convert geographic longitude to time (day fraction) and subtract it from tjd
 // this method should be good for all geographic latitudes except near in
 // polar regions
 double dt = geo_longitude / 360.0;
 tjd = tjd - dt;
 // calculation flag for Hindu risings/settings
 int rsmi = SE_CALC_RISE | SE_BIT_HINDU_RISING;
 // or SE_CALC_RISE + SE_BIT_HINDU_RISING;
 // or SE_CALC_RISE | SE_BIT_DISC_CENTER | SE_BIT_NO_REFRACTION |
SE_BIT_GEOCTR_NO_ECL_LAT;
 int return_code = swe_rise_trans(tjd, ipl, starname, epheflag, rsmi, geopos, datm[0], datm[1], &trise, serr);
 if (return_code == ERR) {

Swiss Ephemeris 32
 // error action
 printf("%s\n", serr);
 }
 // conversion to local time zone must be made by the user. The Swiss Ephemeris
 // does not have a function for that.
 // After that, the julian day number of the rising time can be converted into
 // date and time:
 swe_revjul(trise, gregflag, &year, &month, &day, &hour);
 printf("sunrise: date=%d/%d/%d, hour=%.6f UT\n", year, month, day, hour);
 // To calculate the time of the sunset, you can either use the same
 // tjd increased or trise as start date for the search.
 rsmi = SE_CALC_SET | SE_BIT_DISC_CENTER | SE_BIT_NO_REFRACTION;
 return_code = swe_rise_trans(tjd, ipl, starname, epheflag, rsmi, geopos, datm[0], datm[1], &tset, serr);
 if (return_code == ERR) {
 // error action
 printf("%s\n", serr);
 }
 printf("sunset : date=%d/%d/%d, hour=%.6f UT\n", year, month, day, hour);
}

6.11. swe_pheno_ut() and swe_pheno(), planetary phenomena

These functions compute phase, phase angle, elongation, apparent diameter, apparent magnitude for the Sun,
the Moon, all planets and asteroids. The two functions do exactly the same but expect a different time parameter.

int32 swe_pheno_ut(
double tjd_ut, /* time Jul. Day UT */
int32 ipl, /* planet number */
int32 iflag, /* ephemeris flag */
double *attr, /* return array, 20 doubles, see below */
char *serr); /* return error string */

int32 swe_pheno(
double tjd_et, /* time Jul. Day ET */

int32 ipl, /* planet number */
int32 iflag, /* ephemeris flag */
double *attr, /* return array, 20 doubles, see below */
char *serr); /* return error string */

The function returns:

/*
 attr[0] = phase angle (earth-planet-sun)
 attr[1] = phase (illumined fraction of disc)
 attr[2] = elongation of planet
 attr[3] = apparent diameter of disc
 attr[4] = apparent magnitude

 declare as attr[20] at least !

 Note: the lunar magnitude is quite a complicated thing,

 but our algorithm is very simple.
 The phase of the moon, its distance from the earth and
 the sun is considered, but no other factors.

 iflag also allows SEFLG_TRUEPOS, SEFLG_HELCTR
 */

6.12. swe_azalt(), horizontal coordinates, azimuth, altitude

swe_azalt() computes the horizontal coordinates (azimuth and altitude) of a planet or a star from either ecliptical
or equatorial coordinates.

void swe_azalt(
 double tjd_ut, // UT

Swiss Ephemeris 33
 int32 calc_flag, // SE_ECL2HOR or SE_EQU2HOR
 double *geopos, // array of 3 doubles: geograph. long., lat., height
 double atpress, // atmospheric pressure in mbar (hPa)

 double attemp, // atmospheric temperature in degrees Celsius
 double *xin, // array of 3 doubles: position of body in either ecliptical or equatorial coordinates,
 // depending on calc_flag
 double *xaz); // return array of 3 doubles, containing azimuth, true altitude, apparent altitude

If calc_flag=SE_ECL2HOR, set xin[0]= ecl. long., xin[1]= ecl. lat., (xin[2]=distance (not required));
else

if calc_flag= SE_EQU2HOR, set xin[0]=right ascension, xin[1]=declination, (xin[2]= distance (not
required));

#define SE_ECL2HOR 0
#define SE_EQU2HOR 1

The return values are:

xaz[0] = azimuth, i.e. position degree, measured from the south point to west.
xaz[1] = true altitude above horizon in degrees.

xaz[2] = apparent (refracted) altitude above horizon in degrees.

The apparent altitude of a body depends on the atmospheric pressure and temperature. If only the true altitude is
required, these parameters can be neglected.

If atpress is given the value 0, the function estimates the pressure from the geographical altitude given in

geopos[2] and attemp. If geopos[2] is 0, atpress will be estimated for sea level.

6.13. swe_azalt_rev()

The function swe_azalt_rev() is not precisely the reverse of swe_azalt(). It computes either ecliptical or
equatorial coordinates from azimuth and true altitude. If only an apparent altitude is given, the true altitude has to

be computed first with the function swe_refrac() (see below).
It is defined as follows:

void swe_azalt_rev(
 double tjd_ut,
 int32 calc_flag, /* either SE_HOR2ECL or SE_HOR2EQU */
 double *geopos, /* array of 3 doubles for geograph. pos. of observer */
 double *xin, /* array of 2 doubles for azimuth and true altitude of planet */
 double *xout); // return array of 2 doubles for either ecliptic or
 // equatorial coordinates, depending on calc_flag

For the definition of the azimuth and true altitude, see chapter 4.9 on swe_azalt().
#define SE_HOR2ECL 0
#define SE_HOR2EQU 1

6.14. swe_refrac(), swe_refract_extended(), refraction

The refraction function swe_refrac() calculates either the true altitude from the apparent altitude or the apparent
altitude from the apparent altitude. Its definition is:

double swe_refrac(
double inalt,
double atpress, /* atmospheric pressure in mbar (hPa) */
double attemp, /* atmospheric temperature in degrees Celsius */
int32 calc_flag); /* either SE_TRUE_TO_APP or SE_APP_TO_TRUE */

where
#define SE_TRUE_TO_APP 0
#define SE_APP_TO_TRUE 1

The refraction depends on the atmospheric pressure and temperature at the location of the observer.

If atpress is given the value 0, the function estimates the pressure from the geographical altitude given in

geopos[2] and attemp. If geopos[2] is 0, atpress will be estimated for sea level.

Swiss Ephemeris 34

There is also a more sophisticated function swe_refrac_extended(), It allows correct calculation of refraction
for altitudes above sea > 0, where the ideal horizon and planets that are visible may have a negative height. (for
swe_refrac(), negative apparent heights do not exist!)

double swe_refrac_extended(
double inalt, /* altitude of object above geometric horizon in degrees, where
 geometric horizon = plane perpendicular to gravity */
double geoalt, /* altitude of observer above sea level in meters */
double atpress, /* atmospheric pressure in mbar (hPa) */
double lapse_rate, /* (dattemp/dgeoalt) = [°K/m] */
double attemp, /* atmospheric temperature in degrees Celsius */
int32 calc_flag,
double *dret /* array of 4 doubles; declare 20 ! */
 * - dret[0] true altitude, if possible; otherwise input value
 * - dret[1] apparent altitude, if possible; otherwise input value
 * - dret[2] refraction
 * - dret[3] dip of the horizon
); /* either SE_TRUE_TO_APP or SE_APP_TO_TRUE */

function returns:
case 1, conversion from true altitude to apparent altitude:
- apparent altitude, if body appears above is observable above ideal horizon
- true altitude (the input value), otherwise
 "ideal horizon" is the horizon as seen above an ideal sphere (as seen from a plane over the ocean with
 a clear sky)
case 2, conversion from apparent altitude to true altitude:
- the true altitude resulting from the input apparent altitude, if this value is a plausible apparent altitude,
 i.e. if it is a position above the ideal horizon
- the input altitude otherwise

in addition the array dret[] returns the following values
- dret[0] true altitude, if possible; otherwise input value
- dret[1] apparent altitude, if possible; otherwise input value
- dret[2] refraction
- dret[3] dip of the horizon

The body is above the horizon if the dret[0] != dret[1]

6.15. Heliacal risings etc.: swe_heliacal_ut()

The function swe_heliacal_ut() the Julian day of the next heliacal phenomenon after a given start date. It works
between geographic latitudes 60s – 60n.

int32 swe_heliacal_ut(
double tjdstart, /* Julian day number of start date for the search of the heliacal event */
double *dgeo /* geographic position (details below) */
double *datm, /* atmospheric conditions (details below) */
double *dobs, /* observer description (details below) */
char *objectname, /* name string of fixed star or planet */
int32 event_type, /* event type (details below) */

int32 helflag, /* calculation flag, bitmap (details below) */
double *dret, /* result: array of at least 50 doubles, of which 3 are used at the moment */
char * serr /* error string */
);

Function returns OK or ERR

Details for dgeo[] (array of doubles):
 dgeo[0]: geographic longitude
 dgeo[1]: geographic latitude
 dgeo[2]: geographic altitude (eye height) in meters

Details for datm[] (array of doubles):
 datm[0]: atmospheric pressure in mbar (hPa)
 datm[1]: atmospheric temperature in degrees Celsius

 datm[2]: relative humidity in %

Swiss Ephemeris 35
 datm[3]: if datm[3]>=1, then it is Meteorological Range [km]

 if 1>datm[3]>0, then it is the total atmsopheric coeffcient (ktot)
 datm[3]=0, then the other atmospheric parameters determine the total

 atmsopheric coeffcient (ktot)
 Default values:
 If this is too much for you, set all these values to 0. The software will then set the following defaults:
 Pressure 1013.25, temperature 15, relative humidity 40. The values will be modified depending
 on the altitude of the observer above sea level.
 If the extinction coefficient (meteorological range) datm[3] is 0, the software will calculate its value
 from datm[0..2].

Details for dobs[] (array of six doubles):
 dobs[0]: age of observer in years (default = 36)
 dobs[1]: Snellen ratio of observers eyes (default = 1 = normal)
The following parameters are only relevant if the flag SE_HELFLAG_OPTICAL_PARAMS is set:
 dobs[2]: 0 = monocular, 1 = binocular (actually a boolean)
 dobs[3]: telescope magnification: 0 = default to naked eye (binocular), 1 = naked eye
 dobs[4]: optical aperture (telescope diameter) in mm
 dobs[5]: optical transmission

Details for event_type:
 event_type = SE_HELIACAL_RISING (1): morning first (exists for all visible planets and stars)
 event_type = SE_HELIACAL_SETTING (2): evening last (exists for all visible planets and stars)
 event_type = SE_EVENING_FIRST (3): evening first (exists for Mercury, Venus, and the Moon)
 event_type = SE_MORNING_LAST (4): morning last (exists for Mercury, Venus, and the Moon)

Details for helflag:
 helflag contains ephemeris flag, like iflag in swe_calc() etc. In addition it can contain the following bits:
 SE_HELFLAG_OPTICAL_PARAMS (512): Use this with calculations for optical instruments.
 Unless this bit is set, the values of dobs[2-5] are ignored.
 SE_HELFLAG_NO_DETAILS (1024): provide the date, but not details like visibility start,
 optimum, and end. This bit makes the program a bit faster.
 SE_HELFLAG_VISLIM_DARK (4096): function behaves as if the Sun were at nadir.
 SE_HELFLAG_VISLIM_NOMOON (8192): function behaves as if the Moon were at nadir, i. e. the
 Moon as a factor disturbing the observation is excluded. This flag is useful if one is not really

 interested in the heliacal date of that particular year but in the heliacal date of that epoch.

Some other SE_HELFLAG_ bits found in swephexp.h were made fore mere test purposes and may change in
future releases. Please do not use them and do not request any support or information related to them.

Details for return array dret[] (array of doubles):
 dret[0]: start visibility (Julian day number)
 dret[1]: optimum visibility (Julian day number), zero if helflag >= SE_HELFLAG_AV
 dret[2]: end of visibility (Julian day number), zero if helflag >= SE_HELFLAG_AV

Strange phenomena:

- Venus’ heliacal rising can occur before her heliacal setting. In such cases the planet may be seen both as a
morning star and an evening star for a couple of days. Example:
swetest -hev1 -p3 -b1.1.2008 -geopos8,47,900 -at1000,10,20,0.15 -obs21,1 -n1 -lmt
Venus heliacal rising : 2009/03/23 05:30:12.4 LMT (2454913.729310), visible for: 4.9 min
swetest -hev2 -p3 -b1.1.2008 -geopos8,47,900 -at1000,10,20,0.15 -obs21,1 -n1 -lmt
Venus heliacal setting: 2009/03/25 18:37:41.6 LMT (2454916.276175), visible for: 15.1 min

- With good visibility and good eye sight (high Snellen ratio), the “evening first” of the Moon may actually begin in
the morning, because the Moon becomes visible before sunset. Note the LMT and duration of visibility in the
following example:
swetest -hev3 -p1 -b1.4.2008 -geopos8,47,900 -at1000,10,40,0.15 -obs21,1.5 -n1 -lmt
Moon evening first : 2008/04/06 10:33:44.3 LMT (2454562.940096), visible for: 530.6 min

- Stars that are circumpolar, but come close to the horizon, may have an evening last and a morning first, but
swe_heliacal_ut() will not find it. It only works if a star crosses the horizon.

- In high geographic latitudes > 55 (?), unusual things may happen. E.g. Mars can have a morning last
appearance. In case the period of visibility lasts for less than 5 days, the function swe_heliacal_ut() may miss the
morning first.

Swiss Ephemeris 36

- With high geographic latitudes heliacal appearances of Mercury and Venus become rarer.

The user must be aware that strange phenomena occur especially for high geographic latitudes and circumpolar
objects and that the function swe_heliacal_ut() may not always be able to handle them correctly. Special cases
can best be researched using the function swe_vi_limit_mag().

6.16. Magnitude limit for visibility: swe_vis_limit_mag()

The function swe_vis_lim_mag() determines the limiting visual magnitude in dark skies. If the visual magnitude
mag of an object is known for a given date (e. g. from a call of function swe_pheno_ut(), and if mag is smaller
than the value returned by swe_vis_limt_mag(), then it is visible.

double swe_vis_limit_mag(
double tjdut, /* Julian day number */
double *dgeo /* geographic position (details under swe_heliacal_ut() */
double *datm, /* atmospheric conditions (details under swe_heliacal_ut()) */
double *dobs, /* observer description (details under swe_heliacal_ut()) */

char *objectname, /* name string of fixed star or planet */
int32 helflag, /* calculation flag, bitmap (details under swe_heliacal_ut()) */
double *dret, /* result: magnitude required of the object to be visible */
char * serr /* error string */
);

Function returns
 -1 on error
 -2 object is below horizon
 0 OK, photopic vision
 &1 OK, scotopic vision
 &2 OK, near limit photopic/scotopic vision

Details for arrays dgeo[], datm[], dobs[] and the other parameters are given under “6.15. Heliacal risings etc.:
swe_heliacal_ut()”.

Details for return array dret[] (array of doubles):
 dret[0]: limiting visual magnitude (if dret[0] > magnitude of object, then the object is visbible)
 dret[1]: altitude of object
 dret[2]: azimuth of object
 dret[3]: altitude of sun
 dret[4]: azimuth of sun
 dret[5]: altitude of moon
 dret[6]: azimuth of moon
 dret[7]: magnitude of object

6.17. Heliacal Details: swe_heliacal_pheno_ut()

The function swe_heliacal_pheno_ut() provides data that are relevant for the calculation of heliacal risings and
settings. This function does not provide data of heliacal risings and settings, just some additional data mostly used
for test purposes. To calculate heliacal risings and settings, please use the function swe_heliacal_ut()
documented further above.

double swe_heliacal_pheno_ut(
 double tjd_ut, /* Julian day number */
 double *dgeo /* geographic position (details under swe_heliacal_ut() */
 double *datm, /* atmospheric conditions (details under swe_heliacal_ut()) */
 double *dobs, /* observer description (details under swe_heliacal_ut()) */
 char *objectname,/* name string of fixed star or planet */
 int32 event_type, /* event type (details under function swe_heliacal_ut()) */
 int32 helflag, /* calculation flag, bitmap (details under swe_heliacal_ut()) */
 double *darr, /* return array, declare array of 50 doubles */
 char * serr /* error string */
);

The return array has the following data:

Swiss Ephemeris 37

'0=AltO [deg] topocentric altitude of object (unrefracted)
'1=AppAltO [deg] apparent altitude of object (refracted)

'2=GeoAltO [deg] geocentric altitude of object
'3=AziO [deg] azimuth of object
'4=AltS [deg] topocentric altitude of Sun
'5=AziS [deg] azimuth of Sun
'6=TAVact [deg] actual topocentric arcus visionis
'7=ARCVact [deg] actual (geocentric) arcus visionis
'8=DAZact [deg] actual difference between object's and sun's azimuth
'9=ARCLact [deg] actual longitude difference between object and sun
'10=kact [-] extinction coefficient
'11=minTAV [deg] smallest topocentric arcus visionis
'12=TfistVR [JDN] first time object is visible, according to VR
'13=TbVR [JDN] optimum time the object is visible, according to VR
'14=TlastVR [JDN] last time object is visible, according to VR
'15=TbYallop[JDN] best time the object is visible, according to Yallop
'16=WMoon [deg] cresent width of moon
'17=qYal [-] q-test value of Yallop

'18=qCrit [-] q-test criterion of Yallop
'19=ParO [deg] parallax of object
'20 Magn [-] magnitude of object
'21=RiseO [JDN] rise/set time of object
'22=RiseS [JDN] rise/set time of sun
'23=Lag [JDN] rise/set time of object minus rise/set time of sun
'24=TvisVR [JDN] visibility duration
'25=LMoon [deg] cresent length of moon
'26=CVAact [deg]
'27=Illum [%] 'new
'28=CVAact [deg] 'new
'29=MSk [-]

7. Date and time conversion functions

7.1 Calendar Date and Julian Day: swe_julday(), swe_date_conversion(),

/swe_revjul()
These functions are needed to convert calendar dates to the astronomical time scale which measures time in
Julian days.

double swe_julday(int year, int month, int day, double hour, int gregflag);

int swe_date_conversion (
 int y , int m , int d , /* year, month, day */
 double hour, /* hours (decimal, with fraction) */
 char c, /* calendar ‘g’[regorian]|’j’[ulian] */
 double *tjd); /* return value for Julian day */

void swe_revjul (
 double tjd, /* Julian day number */

 int gregflag, /* Gregorian calendar: 1, Julian calendar: 0 */
 int *year, /* target addresses for year, etc. */
 int *month, int *day, double *hour);

swe_julday() and swe_date_conversion() compute a Julian day number from year, month, day, and hour.

swe_date_conversion() checks in addition whether the date is legal. It returns OK or ERR.

swe_revjul() is the reverse function of swe_julday(). It computes year, month, day and hour from a Julian day
number.

The variable gregflag tells the function whether the input date is Julian calendar (gregflag = SE_JUL_CAL) or

Gregorian calendar (gregflag = SE_GREG_CAL).

Usually, you will set gregflag = SE_GREG_CAL.
The Julian day number has nothing to do with Julius Cesar, who introduced the Julian calendar, but was invented
by the monk Julianus. The Julian day number tells for a given date the number of days that have passed since the

Swiss Ephemeris 38
creation of the world which was then considered to have happened on 1 Jan –4712 at noon. E.g. the 1.1.1900
corresponds to the Julian day number 2415020.5.
Midnight has always a JD with fraction 0.5, because traditionally the astronomical day started at noon. This was
practical because then there was no change of date during a night at the telescope. From this comes also the fact
that noon ephemerides were printed before midnight ephemerides were introduced early in the 20th century.

7.2. UTC and Julian day: swe_utc_time_zone(), swe_utc_to_jd(),

swe_jdet_to_utc(), swe_jdut1_to_utc()
The following functions, which were introduced with Swiss Ephemeris version 1.76, do a similar job as the
functions described under 7.1. The difference is that input and output times are Coordinated Universal Time
(UTC). For transformations between wall clock (or arm wrist) time and Julian Day numbers, these functions are
more correct. The difference is below 1 second, though.

Use these functions to convert

- local time to UTC and UTC to local time,
- UTC to a Julian day number, and
- a Julian day number to UTC.

Past leap seconds are hard coded in the Swiss Ephemeris. Future leap seconds can be specified in the file
seleapsec.txt, see ch. 7.3.

Note, in case of leap seconds, the input or output time may be 60.9999 seconds. Input or output forms have to
allow for this.

/* transform local time to UTC or UTC to local time
 *
 * input:
 * iyear ... dsec date and time
 * d_timezone timezone offset
 * output:
 * iyear_out ... dsec_out
 *

 * For time zones east of Greenwich, d_timezone is positive.
 * For time zones west of Greenwich, d_timezone is negative.
 *
 * For conversion from local time to utc, use +d_timezone.
 * For conversion from utc to local time, use -d_timezone.
 */
void swe_ utc_time_zone(
 int32 iyear, int32 imonth, int32 iday,
 int32 ihour, int32 imin, double dsec,
 double d_timezone,
 int32 *iyear_out, int32 *imonth_out, int32 *iday_out,
 int32 *ihour_out, int32 *imin_out, double *dsec_out
)

/* input: date and time (wall clock time), calendar flag.
 * output: an array of doubles with Julian Day number in ET (TT) and UT (UT1)

 * an error message (on error)
 * The function returns OK or ERR.
 */
int32 swe_utc_to_jd (
 int32 iyear, int32 imonth, int32 iday,
 int32 ihour, int32 imin, double dsec, /* note : second is a decimal */
 gregflag, /* Gregorian calendar: 1, Julian calendar: 0 */
 dret /* return array, two doubles:
 * dret[0] = Julian day in ET (TT)
 * dret[1] = Julian day in UT (UT1) */
 serr /* error string */
)

/* input: Julian day number in ET (TT), calendar flag
 * output: year, month, day, hour, min, sec in UTC */
void swe_jdet_to_utc (

Swiss Ephemeris 39
 double tjd_et, /* Julian day number in ET (TT) */
 gregflag, /* Gregorian calendar: 1, Julian calendar: 0 */
 int32 *iyear, int32 *imonth, int32 *iday,

 int32 *ihour, int32 *imin, double *dsec, /* note : second is a decimal */
)

/* input: Julian day number in UT (UT1), calendar flag
 * output: year, month, day, hour, min, sec in UTC */
void swe_jdut1_to_utc (
 double tjd_ut, /* Julian day number in ET (TT) */
 gregflag, /* Gregorian calendar: 1, Julian calendar: 0 */
 int32 *iyear, int32 *imonth, int32 *iday,
 int32 *ihour, int32 *imin, double *dsec, /* note : second is a decimal */
)

How do I get correct planetary positions, sidereal time, and house cusps, starting from a wall clock date and time?

int32 iday, imonth, iyear, ihour, imin, retval;
int32 gregflag = SE_GREG_CAL;

double d_timezone = 5.5 ; /* time zone = Indian Standard Time; note: east is positive */
double dsec, tjd_et, tjd_ut;
double dret[2];
char serr[256];
…
/* if date and time is in time zone different from UTC, the time zone offset must be subtracted
 * first in order to get UTC: */
swe_utc_time_zone(iyear, imonth, iday, ihour, imin, dsec, d_timezone,
 &iyear_utc, &imonth_utc, &iday_utc, &ihour_utc, &imin_utc, &dsec_utc)
/* calculate Julian day number in UT (UT1) and ET (TT) from UTC */
retval = swe_utc_to_jd (iyear_utc, imonth_utc, iday_utc, ihour_utc, imin_utc, dsec_utc, gregflag, dret,

serr);
if (retval == ERR) {
 fprintf(stderr, serr); /* error handling */
}
tjd_et = dret[0]; /* this is ET (TT) */

tjd_ut = dret[1]; /* this is UT (UT1) */
/* calculate planet with tjd_et */
swe_calc(tjd_et, …);
/* calculate houses with tjd_ut */
swe_houses(tjd_ut, …)

And how do you get the date and wall clock time from a Julian day number? Depending on whether you have
tjd_et (Julian day as ET (TT)) or tjd_ut (Julian day as UT (UT1)), use one of the two functions swe_jdet_to_utc() or
swe_jdut1_to_utc().

…
/* first, we calculate UTC from TT (ET) */
swe_jdet_to_utc(tjd_et, gregflag, &iyear_utc, &imonth_utc, &iday_utc, &ihour_utc, &imin_utc,

&dsec_utc);
 /* now, UTC to local time (note the negative sign before d_timezone): */

swe_utc_time_zone(iyear_utc, imonth_utc, iday_utc, ihour_utc, imin_utc, dsec_utc,
-d_timezone, &iyear, &imonth, &iday, &ihour, &imin, &dsec)

7.3. Handling of leap seconds and the file seleapsec.txt
The insertion of leap seconds is not known in advance. We will update the Swiss Ephemeris whenever the IERS
announces that a leap second will be inserted. However, if the user does not want to wait for our update or does
not want to download a new version of the Swiss Ephemeris, he can create a file seleapsec.txt in the ephemeris
directory. The file looks as follows (lines with # are only comments):

 # This file contains the dates of leap seconds to be taken into account
by the Swiss Ephemeris.
For each new leap second add the date of its insertion in the format

 # yyyymmdd, e.g. "20081231" for 31 december 2008.
 # The leap second is inserted at the end of the day.

20081231

Before 1972, swe_utc_to_jd() treats its input time as UT1.

Swiss Ephemeris 40
Note: UTC was introduced in 1961. From 1961 - 1971, the length of the UTC second was regularly changed, so
that UTC remained very close to UT1.

From 1972 on, input time is treated as UTC.

If delta_t - nleap - 32.184 > 1, the input time is treated as UT1.
Note: Like this we avoid errors greater than 1 second in case that the leap seconds table (or the Swiss Ephemeris
version) is not updated for a long time.

7.4. Mean solar time versus True solar time: swe_time_equ(), swe_lmt_to_lat(),

swe_lat_to_lmt()

Universal Time (UT or UTC) is based on Mean Solar Time, AKA Local Mean Time, which is a uniform
measure of time. A day has always the same length, independent of the time of the year.
In the centuries before mechanical clocks where used, when the reckoning of time was mostly based on sun dials,

the True Solar Time was used, also called Local Apparent Time.

The difference between Local Mean Time and Local Apparent Time is called the equation of time. This
difference can become as large as 20 minutes.

If a historical date was noted in Local Apparent Time, it must first be converted to Local Mean Time by
applying the equation of time, before it can be used to compute Universal Time (for the houses) and finally

Ephemeris Time (for the planets).
This conversion can be done using the function swe_lat_to_lmt(). The reverse function is swe_lmt_to_lat(). If
required, the equation of time itself, i. e. the value e = LAT – LMT, can be calculated using the function
swe_time_equ()

/* Equation of Time
 *
 * The function returns the difference between local apparent and local mean time in days.
 * E = LAT - LMT
 * Input variable tjd is UT.
 */
int swe_time_equ(double tjd, double* e, char* serr);

For converions between Local Apparent Time and Local Mean Time, it is recommended to use the following
functions:

/* converts Local Mean Time (LMT) to Local Apparent Time (LAT) */
/* tjd_lmt and tjd_lat are a Julian day number
 * geolon is geographic longitude, where eastern longitudes are positive,
 * western ones negative */
int32 swe_lmt_to_lat(double tjd_lmt, double geolon, double *tjd_lat, char *serr);

/* converts Local Apparent Time (LAT) to Local Mean Time (LMT) */

 int32 swe_lat_to_lmt(double tjd_lat, double geolon, double *tjd_lmt, char *serr);

8. Delta T-related functions
/* delta t from Julian day number */

double swe_deltat_ex(double tjd, int32 ephe_flag, char *serr);
/* delta t from Julian day number */
double swe_deltat(double tjd);
/* get tidal acceleration used in swe_deltat() */
double swe_get_tid_acc(void);
/* set tidal acceleration to be used in swe_deltat() */
void swe_set_tid_acc(double t_acc);
/* set fixed Delta T value to be returned by swe_deltat() */
void swe_set_delta_t_userdef (double t_acc);

The Julian day number, you compute from a birth date, will be Universal Time (UT, former GMT) and can be
used to compute the star time and the houses. However, for the planets and the other factors, you have to convert

UT to Ephemeris time (ET):

Swiss Ephemeris 41

8.1 swe_deltat_ex()
tjde = tjd + swe_deltat_ex(tjd, ephe_flag, serr);
 where tjd = Julian day in UT, tjde = in ET

ephe_flag = ephemeris flag (one of SEFLG_SWIEPH, SEFLG_JPLEPH, SEFLG_MOSEPH)
serr = string pointer for warning messages.

If the function is called with SEFLG_SWIEPH before calling swe_set_ephe_path(), or with or SEFLG_JPLEPH

before calling swe_set_jpl_file(), then the function returns a warning.

The calculation of ephemerides in UT depends on Delta T, which depends on the ephemeris-inherent value of the

tidal acceleration of the Moon. The function swe_deltat_ex() can provide ephemeris-dependend values of Delta

T and is therefore better than the old function swe_deltat(), which has to make an uncertain guess of what
ephemeris is being used. One warning must be made, though:

It is not recommended to use a mix of old and new ephemeris files sepl*.se1, semo*.se1, seas*.se1, because the
old files were based on JPL Ephemeris DE406, whereas the new ones are based on DE431, and both
ephemerides have adifferent inherent tidal acceleration of the Moon. A mixture of old and new ephemeris files
may lead to inconsistent ephemeris output. Using old asteroid files se99999.se1 together with new ones, can be
tolerated, though.

8.2 swe_deltat()
tjde = tjd + swe_deltat(tjd); where tjd = Julian day in UT, tjde = in ET

This function is safe only
- if your software consistently uses the same ephemeris flag
- if your software consistently uses the same ephemeris files (with SEFLG_SWIEPH and SEFLG_MOSEPH)

- if you first call swe_set_ephe_path() (with SEFLG_SWIEPH) and swe_set_jpl_file() (with
SEFLG_JPLEPH)

(Also, it is safe if you first call swe_set_tid_acc() with the tidal acceleration you want. However, please do not
use this function unless you really know what you are doing.)

For best control of the values returned, use function swe_deltat_ex() instead (see 8.1 above).

The calculation of ephemerides in UT depends on Delta T, which depends on the ephemeris-inherent value of the

tidal acceleration of the Moon. In default mode, the function swe_deltat() automatically tries to find the required
values. Two warnings must be made, though:

1. It is not recommended to use a mix of old and new ephemeris files sepl*.se1, semo*.se1, seas*.se1, because
the old files were based on JPL Ephemeris DE406, whereas the new ones are based on DE431, and both
ephemerides have adifferent inherent tidal acceleration of the Moon. A mixture of old and new ephemeris files
may lead to inconsistent ephemeris output. Using old asteroid files se99999.se1 together with new ones, can be
tolerated, though.

2. The function swe_deltat() uses a default value of tidal acceleration (that of DE431). However, after calling

some older ephemeris, like Moshier ephemeris, DE200, or DE406, swe_deltat() might provide slightly different
values.

In case of troubles related to these two points, it is recommended to

- either use the function swe_deltat_ex(),

- or control the value of the tidal acceleration using the functions swe_set_tid_acc() and swe_get_tid_acc().

8.3 swe_set_tid_acc(), swe_get_tid_acc()
With Swiss Ephemeris versions until 1.80, this function had always to be used, if a non standard ephemeris like
DE200 or DE421 was used.

Since Swiss Ephemeris version 2.00, this function is usually not needed, because the value is automatically set
according to the ephemeris files selected or available. However, under certain circumstances that are described
in the secion “8.1 swe_deltat()”, the user may want to control the tidal acceleration himself.

To find out the value of the tidal acceleration currently used, call the function

Swiss Ephemeris 42
acceleration = swe_get_tidacc();

In order to set a different value, use the function

swe_set_tid_acc(acceleration);

The values that acceleration can have are listed in swephexp.h. (e.g. SE_TIDAL_200, etc.)

Once the function swe_set_tid_acc() has been used, the automatical setting of tidal acceleration is blocked. In
order to unblock it again, call

swe_set_tid_acc(SE_TIDAL_AUTOMATIC);

8.4. swe_set_delta_t_userdef()
This function allows the user to set a fixed Delta T value that will be returned by swe_deltat() or swe_deltat_ex().

The same Delta T value will then be used by swe_calc_ut(), eclipse functions, heliacal functions, and all functions
that require UT as input time.

In order to return to automatic Delta T, call this function with the following value:

swe_set_delta_t_userdef(SE_DELTAT_AUTOMATIC);

8.4. Future updates of Delta T and the file swe_deltat.txt
Delta T values for future years can only be estimated. Strictly speaking, the Swiss Ephemeris has to be updated
every year after the new Delta T value for the past year has been published by the IERS. We will do our best and
hope to update the Swiss Ephemeris every year. However, if the user does not want to wait for our update or does
not download a new version of the Swiss Ephemeris he can add new Delta T values in the file swe_deltat.txt,
which has to be located in the Swiss Ephemeris ephemeris path.

This file allows make new Delta T known to the Swiss Ephemeris.
Note, these values override the values given in the internal Delta T
table of the Swiss Ephemeris.
Format: year and seconds (decimal)

2003 64.47
2004 65.80
2005 66.00
2006 67.00
2007 68.00
2008 68.00
2009 69.00

9. The function swe_set_topo() for topocentric planet positions
void swe_set_topo(double geolon, double geolat, double altitude);
 /* 3 doubles for geogr. longitude, latitude, height above sea.
 * eastern longitude is positive,
 * western longitude is negative,

 * northern latitude is positive,
 * southern latitude is negative */

This function must be called before topocentric planet positions for a certain birth place can be computed. It tells

Swiss Ephemeris, what geographic position is to be used. Geographic longitude geolon and latitude geolat must

be in degrees, the altitude above sea must be in meters. Neglecting the altitude can result in an error of about

2 arc seconds with the moon and at an altitude 3000 m. After calling swe_set_topo(), add SEFLG_TOPOCTR

to iflag and call swe_calc() as with an ordinary computation. E.g.:

swe_set_topo(geo_lon, geo_lat, altitude_above_sea);
iflag | = SEFLG_TOPOCTR;

for (i = 0; i < NPLANETS; i++) {
 iflgret = swe_calc(tjd, ipl, iflag, xp, serr);
 printf(”%f\n”, xp[0]);

}

Swiss Ephemeris 43

The parameters set by swe_set_topo() survive swe_close().

10. Sidereal mode functions

10.1. swe_set_sid_mode()
void swe_set_sid_mode (int32 sid_mode, double t0, double ayan_t0);

This function can be used to specify the mode for sidereal computations.

swe_calc() or swe_fixstar() has then to be called with the bit SEFLG_SIDEREAL.

If swe_set_sid_mode() is not called, the default ayanamsha (Fagan/Bradley) is used.

If a predefined mode is wanted, the variable sid_mode has to be set, while t0 and ayan_t0 are not considered,
i.e. can be 0. The predefined sidereal modes are:

#define SE_SIDM_FAGAN_BRADLEY 0
#define SE_SIDM_LAHIRI 1

#define SE_SIDM_DELUCE 2
#define SE_SIDM_RAMAN 3
#define SE_SIDM_USHASHASHI 4
#define SE_SIDM_KRISHNAMURTI 5
#define SE_SIDM_DJWHAL_KHUL 6
#define SE_SIDM_YUKTESHWAR 7
#define SE_SIDM_JN_BHASIN 8
#define SE_SIDM_BABYL_KUGLER1 9
#define SE_SIDM_BABYL_KUGLER2 10
#define SE_SIDM_BABYL_KUGLER3 11
#define SE_SIDM_BABYL_HUBER 12
#define SE_SIDM_BABYL_ETPSC 13
#define SE_SIDM_ALDEBARAN_15TAU 14
#define SE_SIDM_HIPPARCHOS 15
#define SE_SIDM_SASSANIAN 16
#define SE_SIDM_GALCENT_0SAG 17

#define SE_SIDM_J2000 18
#define SE_SIDM_J1900 19
#define SE_SIDM_B1950 20
#define SE_SIDM_SURYASIDDHANTA 21
#define SE_SIDM_SURYASIDDHANTA_MSUN 22
#define SE_SIDM_ARYABHATA 23
#define SE_SIDM_ARYABHATA_MSUN 24
#define SE_SIDM_SS_REVATI 25
#define SE_SIDM_SS_CITRA 26
#define SE_SIDM_TRUE_CITRA 27
#define SE_SIDM_TRUE_REVATI 28
#define SE_SIDM_TRUE_PUSHYA 29
#define SE_SIDM_GALCENT_RGBRAND 30
#define SE_SIDM_GALEQU_IAU1958 31
#define SE_SIDM_GALEQU_TRUE 32

#define SE_SIDM_GALEQU_MULA 33
#define SE_SIDM_GALALIGN_MARDYKS 34
#define SE_SIDM_TRUE_MULA 35
#define SE_SIDM_GALCENT_MULA_WILHELM 36
#define SE_SIDM_ARYABHATA_522 37
#define SE_SIDM_BABYL_BRITTON 38
#define SE_SIDM_USER 255

The function swe_get_ayanamsa_name() returns the name of the ayanamsah.
const char *swe_get_ayanamsa_name(int32 isidmode)

namely:

 "Fagan/Bradley", /* 0 SE_SIDM_FAGAN_BRADLEY */
 "Lahiri", /* 1 SE_SIDM_LAHIRI */
 "De Luce", /* 2 SE_SIDM_DELUCE */
 "Raman", /* 3 SE_SIDM_RAMAN */

 "Usha/Shashi", /* 4 SE_SIDM_USHASHASHI */

Swiss Ephemeris 44
 "Krishnamurti", /* 5 SE_SIDM_KRISHNAMURTI */
 "Djwhal Khul", /* 6 SE_SIDM_DJWHAL_KHUL */
 "Yukteshwar", /* 7 SE_SIDM_YUKTESHWAR */

 "J.N. Bhasin", /* 8 SE_SIDM_JN_BHASIN */
 "Babylonian/Kugler 1", /* 9 SE_SIDM_BABYL_KUGLER1 */
 "Babylonian/Kugler 2", /* 10 SE_SIDM_BABYL_KUGLER2 */
 "Babylonian/Kugler 3", /* 11 SE_SIDM_BABYL_KUGLER3 */
 "Babylonian/Huber", /* 12 SE_SIDM_BABYL_HUBER */
 "Babylonian/Eta Piscium", /* 13 SE_SIDM_BABYL_ETPSC */
 "Babylonian/Aldebaran = 15 Tau", /* 14 SE_SIDM_ALDEBARAN_15TAU */
 "Hipparchos", /* 15 SE_SIDM_HIPPARCHOS */
 "Sassanian", /* 16 SE_SIDM_SASSANIAN */
 "Galact. Center = 0 Sag", /* 17 SE_SIDM_GALCENT_0SAG */
 "J2000", /* 18 SE_SIDM_J2000 */
 "J1900", /* 19 SE_SIDM_J1900 */
 "B1950", /* 20 SE_SIDM_B1950 */
 "Suryasiddhanta", /* 21 SE_SIDM_SURYASIDDHANTA */
 "Suryasiddhanta, mean Sun", /* 22 SE_SIDM_SURYASIDDHANTA_MSUN */
 "Aryabhata", /* 23 SE_SIDM_ARYABHATA */

 "Aryabhata, mean Sun", /* 24 SE_SIDM_ARYABHATA_MSUN */
 "SS Revati", /* 25 SE_SIDM_SS_REVATI */
 "SS Citra", /* 26 SE_SIDM_SS_CITRA */
 "True Citra", /* 27 SE_SIDM_TRUE_CITRA */
 "True Revati", /* 28 SE_SIDM_TRUE_REVATI */
 "True Pushya (PVRN Rao)", /* 29 SE_SIDM_TRUE_PUSHYA */
 "Galactic Center (Gil Brand)", /* 30 SE_SIDM_GALCENT_RGBRAND */
 "Galactic Equator (IAU1958)", /* 31 SE_SIDM_GALEQU_IAU1958 */
 "Galactic Equator", /* 32 SE_SIDM_GALEQU_TRUE */
 "Galactic Equator mid-Mula", /* 33 SE_SIDM_GALEQU_MULA */
 "Skydram (Mardyks)", /* 34 SE_SIDM_GALALIGN_MARDYKS */
 "True Mula (Chandra Hari)", /* 35 SE_SIDM_TRUE_MULA */
 "Dhruva/Gal.Center/Mula (Wilhelm)", /* 36 SE_SIDM_GALCENT_MULA_WILHELM */
 "Aryabhata 522", /* 37 SE_SIDM_ARYABHATA_522 */
 "Babylonian/Britton", /* 38 SE_SIDM_BABYL_BRITTON */

For information about the sidereal modes, please read the chapter on sidereal calculations in swisseph.doc.

To define your own sidereal mode, use SE_SIDM_USER (= 255) and set the reference date (t0) and the initial

value of the ayanamsha (ayan_t0).
ayan_t0 = tropical_position_t0 – sidereal_position_t0.

Without additional specifications, the traditional method is used. The ayanamsha measured on the ecliptic of t0
is subtracted from tropical positions referred to the ecliptic of date.

Note, this method will NOT provide accurate results if you want coordinates referred to the ecliptic of one of the
following equinoxes:

#define SE_SIDM_J2000 18
#define SE_SIDM_J1900 19
#define SE_SIDM_B1950 20

Instead, you have to use a correct coordinate transformation as described in the following:

Special uses of the sidereal functions:

a) user-defined ayanamsha with t0 in UT

If a user-defined ayanamsha is set using SE_SIDM_USER, then the t0 is usually considered to be TT (ET).
However, t0 can be provided as UT if SE_SIDM_USER is combined with SE_SIDBIT_USER_UT.

/* with user-defined ayanamsha, t0 is UT */
#define SE_SIDBIT_USER_UT 1024

E.g. :
swe_set_sid_mode(SE_SIDM_USER + SE_SIDBIT_USER_UT, 1720935.589444445, 0);
iflag |= SEFLG_SIDEREAL;
for (i = 0; i < NPLANETS; i++) {
 iflgret = swe_calc(tjd, ipl, iflag, xp, serr);
 printf(”%f\n”, xp[0]);
}

Swiss Ephemeris 45
b) correct transformation of ecliptic coordinates to the ecliptic of a particular date

If a correct transformation to the ecliptic of t0 is required the following bit can be added (‘ored’) to the value of the

variable sid_mode:

/* for projection onto ecliptic of t0 */
#define SE_SIDBIT_ECL_T0 256

E.g.:
swe_set_sid_mode(SE_SIDM_J2000 + SE_SIDBIT_ECL_T0, 0, 0);
iflag |= SEFLG_SIDEREAL;
for (i = 0; i < NPLANETS; i++) {
 iflgret = swe_calc(tjd, ipl, iflag, xp, serr);
 printf(”%f\n”, xp[0]);
}

This procedure is required for the following sidereal modes, i.e. for transformation to the ecliptic of one of the
standard equinoxes:

#define SE_SIDM_J2000 18
#define SE_SIDM_J1900 19

#define SE_SIDM_B1950 20

b) calculating precession-corrected transits

The function swe_set_sidmode() can also be used for calculating ”precession-corrected transits”. There are two
methods, of which you have to choose the one that is more appropriate for you:

1. If you already have tropical positions of a natal chart, you can proceed as follows:

iflgret = swe_calc(tjd_et_natal, SE_ECL_NUT, 0, x, serr);
nut_long_nata = x[2];
swe_set_sid_mode(SE_SIDBIT_USER + SE_SIDBIT_ECL_T0, tjd_et, nut_long_natal);

where tjd_et_natal is the Julian day of the natal chart (Ephemeris time).
After this calculate the transits, using the function swe_calc() with the sidereal bit:

iflag |= SEFLG_SIDEREAL;
iflgret = swe_calc(tjd_et_transit, ipl_transit, iflag, xpt, serr);

2. If you do not have tropical natal positions yet, if you do not need them and are just interested in transit times,
you can have it simpler:

swe_set_sid_mode(SE_SIDBIT_USER + SE_SIDBIT_ECL_T0, tjd_et, 0);
iflag |= SEFLG_SIDEREAL;
iflgret = swe_calc(tjd_et_natal, ipl_natal, iflag, xp, serr);
iflgret = swe_calc(tjd_et_transit, ipl_transit, iflag, xpt, serr);

In this case, the natal positions will be tropical but without nutation. Note that you should not use them for other
purposes.

c) solar system rotation plane

For sidereal positions referred to the solar system rotation plane, use the flag

/* for projection onto solar system rotation plane */
#define SE_SIDBIT_SSY_PLANE 512

Note: the parameters set by swe_set_sid_mode() survive calls of the function swe_close().

10.2. swe_get_ayanamsa_ex_ut(), swe_get_ayanamsa_ex(), swe_get_ayanamsa()

and swe_get_ayanamsa_ut()

These functions compute the ayanamsha, i.e. the distance of the tropical vernal point from the sidereal zero

point of the zodiac. The ayanamsha is used to compute sidereal planetary positions from tropical ones:

pos_sid = pos_trop – ayanamsha

Important information concerning the values returned:

Swiss Ephemeris 46
- The functions swe_get_ayanamsa() and swe_get_ayanamsa_ut() provide the ayanamsha without nutation.
- The functions swe_get_ayanamsa_ex() and swe_get_ayanamsa_ex_ut() provide the ayanamsha with or without
nutation depending on the parameter iflag. If iflag contains (SEFLG_NONUT) the ayanamsha value is calculated
without nutation, otherwise it is calculated including nutation.

It is not recommended to use the ayanamsha functions for calculating sidereal planetary positions from tropical
positions, since this could lead to complicated confusions. For sidereal planets, please use swe_calc_ut() and
swe_calc() with the flag SEFLG_SIDEREAL.

Use the ayanamsha function only for “academical” purposes, e.g. if you want to indicate the value of the
ayanamsha on a horoscope chart. In this case, it is recommended to indicate the ayanamsha including nutation.
Ayanamsha without nutation may be useful in historical research, where the focus usually is on the mere
precessional component of the ayanamsha.

Special case of “true” ayanamshas such as “True Chitrapaksha” etc.: The flags SEFLG_TRUEPOS,
SEFLG_NOABERR and SEFLG_NOGDEFL can be used here, but users should not do that unless they really
understand what they are doing. It means that the same flags are internally used for the calculation of the
reference star (e.g. Citra/Spica). Slightly different ayanamsha values will result depending on these flags.

Before calling one of these functions, you have to set the sidereal mode with swe_set_sid_mode(), unless you

want the default sidereal mode, which is the Fagan/Bradley ayanamsha.

/* input variables:
 * tjd_ut = Julian day number in UT
 * (tjd_et = Julian day number in ET/TT)
 * iflag = ephemeris flag (one of SEFLG_SWIEPH, SEFLG_JPLEPH, SEFLG_MOSEPH)
 * plus some other optional SEFLG_...
 * output values
 * daya = ayanamsha value (pointer to double)
 * serr = error message or warning (pointer to string)
 * The function returns either the ephemeris flag used or ERR (-1)
 */
int32 swe_get_ayanamsa_ex_ut(double tjd_ut, int32 iflag, double *daya, char *serr);
int32 swe_get_ayanamsa_ex(double tjd_et, int32 iflag, double *daya, char *serr);

double swe_get_ayanamsa_ut(double tjd_ut); /* input: Julian day number in UT */
double swe_get_ayanamsa(double tjd_et); /* input: Julian day number in ET/TT */

The functions swe_get_ayanamsa_ex_ut() and swe_get_ayanamsa_ex() were introduced with Swiss
Ephemeris version 2.02, the former expecting input time as UT, the latter as ET/TT.

This functions are better than the older functions swe_get_ayanamsa_ut() and swe_get_ayanamsa().

The function swe_get_ayanamsa_ex_ut() uses a Delta T consistent with the ephe_flag specified.

The function swe_get_ayanamsa_ex() does not depend on Delta T; however with fixed-star-based
ayanamshas like True Chitrapaksha or True Revati, the fixed star position also depends on the solar ephemeris
(annual aberration of the star), which can be calculated with any of the three ephemeris flags.

The differences between the values provided by the new and old functions are very small and possibly only
relevant for precision fanatics.

The function swe_get_ayanamsa_ut() was introduced with Swisseph Version 1.60 and expects Universal Time

instead of Ephemeris Time. (cf. swe_calc_ut() and swe_calc())

11. The Ephemeris file related functions (moved to 1.)
Information concerning the functions swe_set_ephe_path(), swe_close(), swe_set_jpl_file(), and swe_version()
has been moved to chapter 1.

12. The sign of geographical longitudes in Swisseph functions
There is a disagreement between American and European programmers whether eastern or western
geographical longitudes ought to be considered positive. Americans prefer to have West longitudes positive,
Europeans prefer the older tradition that considers East longitudes as positive and West longitudes as negative.

The Astronomical Almanac still follows the European pattern. It gives the geographical coordinates of

observatories in "East longitude".

Swiss Ephemeris 47

The Swiss Ephemeris also follows the European style. All Swiss Ephemeris functions that use geographical
coordinates consider positive geographical longitudes as East and negative ones as West.
E.g. 87w39 = -87.65° (Chicago IL/USA) and 8e33 = +8.55° (Zurich, Switzerland).
There is no such controversy about northern and southern geographical latitudes. North is always positive and
south is negative.

12.1. Geographic versus geocentric latitude
There is some confusion among astrologers whether they should use geographic latitude (also called geodetic
latitude, which is a synonym) or geocentric latitude for house calculations, topocentric positions of planets,
eclipses, etc.

Where latitude is an input parameter (or output parameter) in Swiss Ephemeris functions, it is always geographic
latitude. This is the latitude found in Atlases and Google Earth.

If internally in a function a conversion to geocentric latitude is required (because the 3-d point on the oblate Earth
is needed), this is done automatically.

For such conversions, however, the Swiss Ephemeris only uses an ellipsoid for the form of the Earth. It does not
use the irregular geoid. This can result in an altitude error of up to 500 meters, or error of the topocentric Moon of
up to 0.3 arc seconds.

Astrologers who claim that for computing the ascendant or houses one needs geocentric latitude are wrong. The
flattening of the earth does not play a part in house calculations. Geographic latitude should always be used with
house calculations.

Swiss Ephemeris 48

13. House cusp calculation

13.1 swe_house_name()

/* returns the name of the house method, maximum 40 chars
 */
char * swe_house_name(
 int hsys, /* house method, ascii code of one of the letters PKORCAEVXHTBG */
);

13.2 swe_houses()
/* house cusps, ascendant and MC */
int swe_houses(

double tjd_ut, /* Julian day number, UT */
double geolat, /* geographic latitude, in degrees */
double geolon, /* geographic longitude, in degrees
 * eastern longitude is positive,
 * western longitude is negative,
 * northern latitude is positive,
 * southern latitude is negative */
int hsys, /* house method, ascii code of one of the letters documented below*/
double *cusps, /* array for 13 (or 37 for system G) doubles */
double *ascmc); /* array for 10 doubles */

13.3 swe_houses_armc()
int swe_houses_armc(
double armc, /* ARMC */
double geolat, /* geographic latitude, in degrees */

double eps, /* ecliptic obliquity, in degrees */
int hsys, /* house method, ascii code of one of the letters documdented below */
double *cusps, /* array for 13 (or 37 for system G) doubles */
double *ascmc); /* array for 10 doubles */

13.4 swe_houses_ex()

/* extended function; to compute tropical or sidereal positions */
int swe_houses_ex(
 double tjd_ut, /* Julian day number, UT */
 int32 iflag, /* 0 or SEFLG_SIDEREAL or SEFLG_RADIANS or SEFLG_NONUT */
 double geolat, /* geographic latitude, in degrees */
 double geolon, /* geographic longitude, in degrees
 * eastern longitude is positive,
 * western longitude is negative,

 * northern latitude is positive,
 * southern latitude is negative */
 int hsys, /* house method, one-letter case sensitive code (list, see further below) */
 double *cusps, /* array for 13 (or 37 for system G) doubles */
double *ascmc); /* afrray for 10 doubles */

Note that all these functions tjd_ut must be Universal Time.

Also note that the array cusps must provide space for 13 doubles (declare as cusp[13]), otherwise you risk a

program crash. With house system ‘G’ (Gauquelin sector cusps), declare it as cusp[37].

With house system ‘G’, the cusp numbering is in clockwise direction.

The extended house function swe_houses_ex() does exactly the same calculations as swe_houses(). The

difference is that swe_houses_ex() has a parameter iflag, which can be set to SEFLG_SIDEREAL, if sidereal
house positions are wanted. The house function returns data based on the true equator and equinox of date. If

Swiss Ephemeris 49
the flag SEFLG_NONUT is set, then the house cusps will be based on the mean equator and equinox of date.
However, we recommend to use the true equator and equinox.

Before calling swe_houses_ex() for sidereal house positions, the sidereal mode can be set by calling the

function swe_set_sid_mode(). If this is not done, the default sidereal mode, i.e. the Fagan/Bradley

ayanamsha, will be used.

The function swe_houses() and swe_houses_ex() are most comfortable, as long as houses are to be
calculated for a given date and geographic position. Sometimes, however, one will need to compute houses from
a given ARMC, e.g. with the composite horoscope, which has no date, only a composite ARMC which is computed

from two natal ARMCs. In this case, the function swe_houses_armc() can be used. Since the function requires

the ecliptic obliquity eps, one will probably want to calculate a composite value for this parameter also. To do this,

one has to call sweph_calc() with ipl = SE_ECL_NUT for both birth dates and then calculate the average of

both eps.

“Sunshine” or Makransky houses require a special handling with the function swe_houses_armc(). The house
system requires as a parameter the declination of the Sun. The user has to calculate the declination of the Sun
and save it in the variable ascmc[9]. For house cusps of a composite chart, one has to calculate the composite
declination of the Sun (= average of the the declinations of the natal Suns).

There is no extended function for swe_houses_armc(). Therefore, if one want to compute such exotic things as
the house cusps of a sidereal composite chart, the procedure will be more complicated:

/* sidereal composite house computation; with true epsilon, but without nutation in longitude */
swe_calc_ut(tjd_ut1, SE_ECL_NUT, 0, x1, serr);
swe_calc_ut(tjd_ut2, SE_ECL_NUT, 0, x2, serr);
armc1 = swe_sidtime(tjd_ut1) * 15;
armc2 = swe_sidtime(tjd_ut2) * 15;
armc_comp = composite(armc1, armc2); /* this is a function created by the user */
eps_comp = (x1[0] + x2[0]) / 2;
// ayanamsha for the middle of the two birth days.
// alternatively, one could take the mean ayanamsha of the two birth dates.
// the difference will be microscopic.

tjd_comp = (tjd_ut1 + tjd_ut2) / 2;
retval = swe_get_ayanamsa_ex_ut(tjd_comp, iflag, &aya, serr);
swe_houses_armc(armc_comp, geolat, eps_comp, hsys, cusps, ascmc);
for (i = 1; i <= 12; i++)
 cusp[i] = swe_degnorm(cusp[i] – aya);
for (i = 0; i < 10; i++)
 ascmc[i] = swe_degnorm(asc_mc[i] – aya);

Or if you want to calculate sidereal progressions, do as follows:
 - calculate the tropical radix_armc
 - radix_armc + directionarc = directed_armc
 - use swe_houses_armc(directed_armc, ...) for the house cusps
 - subtract ayanamsha (swe_get_ayanamsa_ex_ut()) from the values

Output and input parameters of the house function.
The first array element cusps[0] is always 0, the twelve houses follow in cusps[1] .. [12], the reason being that
arrays in C begin with the index 0. The indices are therefore:

cusps[0] = 0
cusps[1] = house 1
cusps[2] = house 2

etc.

In the array ascmc, the function returns the following values:

ascmc[0] = Ascendant
ascmc[1] = MC
ascmc[2] = ARMC
ascmc[3] = Vertex
ascmc[4] = "equatorial ascendant"
ascmc[5] = "co-ascendant" (Walter Koch)
ascmc[6] = "co-ascendant" (Michael Munkasey)
ascmc[7] = "polar ascendant" (M. Munkasey)

Swiss Ephemeris 50
The following defines can be used to find these values:

#define SE_ASC 0
#define SE_MC 1

#define SE_ARMC 2
#define SE_VERTEX 3
#define SE_EQUASC 4 /* "equatorial ascendant" */
#define SE_COASC1 5 /* "co-ascendant" (W. Koch) */
#define SE_COASC2 6 /* "co-ascendant" (M. Munkasey) */
#define SE_POLASC 7 /* "polar ascendant" (M. Munkasey) */
#define SE_NASCMC 8

ascmc must be an array of 10 doubles. ascmc[8... 9] are 0 and may be used for additional points in future
releases.

The codes hsys of the most important house methods are:
hsys = ‘P’ Placidus

 ‘K’ Koch
 ‘O’ Porphyrius
 ‘R’ Regiomontanus

 ‘C’ Campanus
 ‘A’ or ‘E’ Equal (cusp 1 is Ascendant)
 ‘W’ Whole sign

The complete list of house methods in alphabetical order is:
hsys =

 ‘B’ Alcabitus
 ‘Y’ APC houses
 ‘X’ Axial rotation system / Meridian system / Zariel
 ‘H’ Azimuthal or horizontal system
 ‘C’ Campanus
 ‘F’ Carter "Poli-Equatorial"
 ‘A’ or ‘E’ Equal (cusp 1 is Ascendant)
 ‘D’ Equal MC (cusp 10 is MC)
 ‘N’ Equal/1=Aries
 ‘G’ Gauquelin sector
 Goelzer -> Krusinski

 Horizontal system -> Azimthal system
 ‘I’ Sunshine (Makransky, solution Treindl)
 ‘i’ Sunshine (Makransky, solution Makransky)
 ‘K’ Koch
 ‘U’ Krusinski-Pisa-Goelzer
 Meridian system -> axial rotation
 ‘M’ Morinus
 Neo-Porphyry -> Pullen SD
 Pisa -> Krusinski

 ‘P’ Placidus
 Poli-Equatorial -> Carter

 ‘T’ Polich/Page (“topocentric” system)
 ‘O’ Porphyrius
 ‘L’ Pullen SD (sinusoidal delta) – ex Neo-Porphyry
 ‘Q’ Pullen SR (sinusoidal ratio)

 ‘R’ Regiomontanus
 ‘S’ Sripati
 “Topocentric” system -> Polich/Page
 ‘V’ Vehlow equal (Asc. in middle of house 1)
 ‘W’ Whole sign
 Zariel -> Axial rotation system

Placidus and Koch house cusps cannot be computed beyond the polar circle. In such cases, swe_houses()
switches to Porphyry houses (each quadrant is divided into three equal parts) and returns the error code ERR.

The house method codes are actually case sensitive. At the moment, there still are no lowercase house method
codes, and if a lowercase code is given to the function, it will be converted to uppercase. However, in future
releases, lower case codes may be used for new house methods. In such cases, lower and uppercase won’t be
equivalent anymore.

Swiss Ephemeris 51

The Vertex is the point on the ecliptic that is located in precise western direction. The opposition of the Vertex is
the Antivertex, the ecliptic east point.

14. House position of a planet: swe_house_pos()
To compute the house position of a given body for a given ARMC, you may use the

double swe_house_pos(
 double armc, /* ARMC */
 double geolat, /* geographic latitude, in degrees */
 double eps, /* ecliptic obliquity, in degrees */
 int hsys, /* house method, one of the letters PKRCAV */
 double *xpin, /* array of 2 doubles: ecl. longitude and latitude of the planet */
char *serr); /* return area for error or warning message */

The variables armc, geolat, eps, and xpin[0] and xpin[1] (ecliptic longitude and latitude of the planet) must be

in degrees. serr must, as usually, point to a character array of 256 byte.
The function returns a value between 1.0 and 12.999999, indicating in which house a planet is and how far from
its cusp it is.
With house system ‘G’ (Gauquelin sectors), a value between 1.0 and 36.9999999 is returned. Note that, while all
other house systems number house cusps in counterclockwise direction, Gauquelin sectors are numbered in
clockwise direction.

With Koch houses, the function sometimes returns 0, if the computation was not possible. This happens most

often in polar regions, but it can happen at latitudes below 66°33’ as well, e.g. if a body has a high declination
and falls within the circumpolar sky. With circumpolar fixed stars (or asteroids) a Koch house position may be
impossible at any geographic location except on the equator.
The user must decide how to deal with this situation.
You can use the house positions returned by this function for house horoscopes (or ”mundane” positions). For
this, you have to transform it into a value between 0 and 360 degrees. Subtract 1 from the house number and
multiply it with 30, or mund_pos = (hpos – 1) * 30;

You will realize that house positions computed like this, e.g. for the Koch houses, will not agree exactly with the
ones that you get applying the Huber ”hand calculation” method. If you want a better agreement, set the ecliptic

latitude xpin[1]= 0;. Remaining differences result from the fact that Huber’s hand calculation is a simplification,
whereas our computation is geometrically accurate.

Currently, geometrically correct house positions are provided for the following house methods:
 P Placidus, K Koch, C Campanus, R Regiomontanus, U Krusinski,
 A/E Equal, V Vehlow, W Whole Signs, D Equal/MC, N Equal/Zodiac,
 O Porphyry, B Alcabitius, X Meridian, F Carter, M Morinus,
 T Polich/Page, H Horizon, G Gauquelin.

A simplified house position (distance_from_cusp / house_size) is currently provided for the following house
methods:
 Y APC houses, L Pullen SD, Q Pullen SR, I Sunshine, S Sripati.

This function requires TROPICAL positions in xpin. SIDEREAL house positions are identical to tropical ones in
the following cases:

• If the traditional method is used to compute sidereal planets (sid_pos = trop_pos – ayanamsha). Here the

function swe_house_pos() works for all house systems.

• If a non-traditional method (projection to the ecliptic of t0 or to the solar system rotation plane) is used and the

definition of the house system does not depend on the ecliptic. This is the case with Campanus,

Regiomontanus, Placidus, Azimuth houses, axial rotation houses. This is NOT the case with equal

houses, Porphyry and Koch houses. You have to compute equal and Porphyry house positions on your
own. We recommend to avoid Koch houses here. Sidereal Koch houses make no sense with these sidereal
algorithms.

14.1. Calculating the Gauquelin sector position of a planet with

swe_house_pos() or swe_gauquelin_sector()
For general information on Gauquelin sectors, read chapter 6.5 in documentation file swisseph.doc.

Swiss Ephemeris 52
There are two functions that can be used to calculate Gauquelin sectors:

• swe_house_pos. Full details about this function are presented in the previous section. To calculate Gauquelin
sectors the parameter hsys must be set to 'G' (Gauquelin sectors). This function will then return the sector
position as a value between 1.0 and 36.9999999. Note that Gauquelin sectors are numbered in clockwise
direction, unlike all other house systems.

• swe_gauquelin_sector - detailed below.

Function swe_gauquelin_sector() is declared as follows:

int32 swe_gauquelin_sector(
double tjd_ut, /* input time (UT) */
int32 ipl, /* planet number, if planet, or moon
 * ipl is ignored if the following parameter (starname) is set*/
char *starname, /* star name, if star */
int32 iflag, /* flag for ephemeris and SEFLG_TOPOCTR */
int32 imeth, /* method: 0 = with lat., 1 = without lat.,
 /* 2 = from rise/set, 3 = from rise/set with refraction */
double *geopos, /* array of three doubles containing
 * geograph. long., lat., height of observer */

double atpress, /* atmospheric pressure, only useful with imeth=3;
 * if 0, default = 1013.25 mbar is used*/
double attemp, /* atmospheric temperature in degrees Celsius, only useful with imeth=3 */
double *dgsect, /* return address for gauquelin sector position */
char *serr); /* return address for error message */

This function returns OK or ERR (-1). It returns an error in a number of cases, for example circumpolar bodies
with imeth=2. As with other SE functions, if there is an error, an error message is written to serr. dgsect is used to
obtain the Gauquelin sector sector position as a value between 1.0 and 36.9999999. Gauquelin sectors are
numbered in clockwise direction.

There are six methods of computing the Gauquelin sector position of a planet:
1. Sector positions from ecliptical longitude AND latitude:
 There are two ways of doing this:

• Call swe_house_pos() with hsys = 'G', xpin[0] = ecliptical longitude of planet, and xpin[1] = ecliptical
latitude. This function returns the sector position as a value between 1.0 and 36.9999999.

• Call swe_gauquelin_sector() with imeth=0. This is less efficient than swe_house_pos because it
 recalculates the whole planet whereas swe_house_pos() has an input array for ecliptical positions
 calculated before.

2. Sector positions computed from ecliptical longitudes without ecliptical latitudes:
 There are two ways of doing this:

• Call swe_house_pos() with hsys = 'G', xpin[0] = ecl. longitude of planet, and xpin[1] = 0. This function
returns the sector position as a value between 1.0 and 36.9999999.

• Call swe_gauquelin_sector() with imeth=1. Again this is less efficient than swe_house_pos.

3. Sector positions of a planet from rising and setting times of planets.
 The rising and setting of the disk center is used:

• Call swe_gauquelin_sector() with imeth=2.

4. Sector positions of a planet from rising and setting times of planets, taking into account atmospheric refraction.
 The rising and setting of the disk center is used:

• Call swe_gauquelin_sector() with imeth = 3.

5. Sector positions of a planet from rising and setting times of planets.
 The rising and setting of the disk edge is used:

• Call swe_gauquelin_sector() with imeth=4.

6. Sector positions of a planet from rising and setting times of planets, taking into account atmospheric refraction.
 The rising and setting of the disk edge is used:

• Call swe_gauquelin_sector() with imeth = 5.

Swiss Ephemeris 53

15. Sidereal time with swe_sidtime() and swe_sidtime0()
The sidereal time is computed inside the houses() function and returned via the variable armc which

measures sidereal time in degrees. To get sidereal time in hours, divide armc by 15.
If the sidereal time is required separately from house calculation, two functions are available. The second version
requires obliquity and nutation to be given in the function call, the first function computes them internally. Both

return sidereal time at the Greenwich Meridian, measured in hours.

double swe_sidtime(double tjd_ut); /* Julian day number, UT */
double swe_sidtime0(
 double tjd_ut, /* Julian day number, UT */
 double eps, /* obliquity of ecliptic, in degrees */
 double nut); /* nutation in longitude, in degrees */

Swiss Ephemeris 54

16. Summary of SWISSEPH functions

16.1. Calculation of planets and stars

Planets, moon, asteroids, lunar nodes, apogees, fictitious bodies

long swe_calc_ut(
 double tjd_ut, /* Julian day number, Universal Time */
 int ipl, /* planet number */
 long iflag, /* flag bits */
 double *xx, /* target address for 6 position values: longitude, latitude, distance,
 long. speed, lat. speed, dist. speed */
 char *serr); /* 256 bytes for error string */

long swe_calc(

 double tjd_et, /* Julian day number, Ephemeris Time */
 int ipl, /* planet number */
 long iflag, /* flag bits */
 double *xx, /* target address for 6 position values: longitude, latitude, distance,
 long. speed, lat. speed, dist. speed */
 char *serr); /* 256 bytes for error string */

Fixed stars

long swe_fixstar_ut(
 char *star, /* star name, returned star name 40 bytes */
 double tjd_ut, /* Julian day number, Universal Time */
 long iflag, /* flag bits */
 double *xx, /* target address for 6 position values: longitude, latitude, distance,
 long. speed, lat. speed, dist. speed */
 char *serr); /* 256 bytes for error string */

long swe_fixstar(
 char *star, /* star name, returned star name 40 bytes */
 double tjd_et, /* Julian day number, Ephemeris Time */
 long iflag, /* flag bits */
 double *xx, /* target address for 6 position values: longitude, latitude, distance,
 long. speed, lat. speed, dist. speed */
 char *serr); /* 256 bytes for error string */

Set the geographic location for topocentric planet computation

void swe_set_topo (
 double geolon, /* geographic longitude */
 double geolat, /* geographic latitude
 eastern longitude is positive,
 western longitude is negative,
 northern latitude is positive,

 southern latitude is negative */
 double altitude); /* altitude above sea */

Set the sidereal mode for sidereal planet positions

void swe_set_sid_mode (
 int32 sid_mode,
 double t0, /* reference epoch */
 double ayan_t0); /* initial ayanamsha at t0 */

/* The function calculates ayanamsha for a given date in UT.
 * The return value is either the ephemeris flag used or ERR (-1) */
int32 swe_get_ayanamsa_ex_ut(
 double tjd_ut, /* Julian day number in UT */
 int32 ephe_flag, /* ephemeris flag, one of SEFLG_SWIEPH, SEFLG_JPLEPH, SEFLG_MOSEPH */
 double *daya, /* output: ayanamsha value (pointer to double */

Swiss Ephemeris 55
 char *serr); /* output: error message or warning (pointer to string) */

/* The function calculates ayanamsha for a given date in ET/TT.

 * The return value is either the ephemeris flag used or ERR (-1) */
int32 swe_get_ayanamsa_ex(
 double tjd_ut, /* Julian day number in ET/TT */
 int32 ephe_flag, /* ephemeris flag, one of SEFLG_SWIEPH, SEFLG_JPLEPH, SEFLG_MOSEPH */
 double *daya, /* output: ayanamsha value (pointer to double */
 char *serr); /* output: error message or warning (pointer to string) */

/* to get the ayanamsha for a date in UT */
double swe_get_ayanamsa_ut(double tjd_ut);

/* to get the ayanamsha for a date in ET/TT */
double swe_get_ayanamsa(double tjd_et);

16.2 Eclipses and planetary phenomena

Find the next eclipse for a given geographic position

int32 swe_sol_eclipse_when_loc(
double tjd_start, /* start date for search, Jul. day UT */
int32 ifl, /* ephemeris flag */
double *geopos, /* 3 doubles for geo. lon, lat, height */
 * eastern longitude is positive,
 * western longitude is negative,
 * northern latitude is positive,
 * southern latitude is negative */
double *tret, /* return array, 10 doubles, see below */
double *attr, /* return array, 20 doubles, see below */
AS_BOOL backward, /* TRUE, if backward search */
char *serr); /* return error string */

Find the next eclipse globally

int32 swe_sol_eclipse_when_glob(
double tjd_start, /* start date for search, Jul. day UT */
int32 ifl, /* ephemeris flag */
int32 ifltype, /* eclipse type wanted: SE_ECL_TOTAL etc. */
double *tret, /* return array, 10 doubles, see below */
AS_BOOL backward, /* TRUE, if backward search */
char *serr); /* return error string */

Compute the attributes of a solar eclipse for a given tjd, geographic long., latit. and height

int32 swe_sol_eclipse_how(
double tjd_ut, /* time, Jul. day UT */
int32 ifl, /* ephemeris flag */
double *geopos, /* geogr. longitude, latitude, height */
 * eastern longitude is positive,

 * western longitude is negative,
 * northern latitude is positive,
 * southern latitude is negative */
double *attr, /* return array, 20 doubles, see below */
char *serr); /* return error string */

Find out the geographic position where a central eclipse is central or a non-central one

maximal

int32 swe_sol_eclipse_where (
double tjd_ut, /* time, Jul. day UT */
int32 ifl, /* ephemeris flag */
double *geopos, /* return array, 2 doubles, geo. long. and lat. */
 * eastern longitude is positive,
 * western longitude is negative,
 * northern latitude is positive,

 * southern latitude is negative */

Swiss Ephemeris 56
double *attr, /* return array, 20 doubles, see below */
char *serr); /* return error string */

or

int32 swe_lun_occult_where (
double tjd_ut, /* time, Jul. day UT */
int32 ipl, /* planet number */
char* starname, /* star name, must be NULL or ”” if not a star */
int32 ifl, /* ephemeris flag */
double *geopos, /* return array, 2 doubles, geo. long. and lat.
 * eastern longitude is positive,
 * western longitude is negative,
 * northern latitude is positive,
 * southern latitude is negative */
double *attr, /* return array, 20 doubles, see below */
char *serr); /* return error string */

Find the next occultation of a body by the moon for a given geographic position

(can also be used for solar eclipses)

int32 swe_lun_occult_when_loc(
double tjd_start, /* start date for search, Jul. day UT */
int32 ipl, /* planet number */
char* starname, /* star name, must be NULL or ”” if not a star */
int32 ifl, /* ephemeris flag */
double *geopos, /* 3 doubles for geo. lon, lat, height eastern longitude is positive,
 western longitude is negative, northern latitude is positive,
 southern latitude is negative */
double *tret, /* return array, 10 doubles, see below */
double *attr, /* return array, 20 doubles, see below */
AS_BOOL backward, /* TRUE, if backward search */
char *serr); /* return error string */

Find the next occultation globally

(can also be used for solar eclipses)

int32 swe_lun_occult_when_glob(
double tjd_start, /* start date for search, Jul. day UT */
int32 ipl, /* planet number */
char* starname, /* star name, must be NULL or ”” if not a star */
int32 ifl, /* ephemeris flag */
int32 ifltype, /* eclipse type wanted */
double *tret, /* return array, 10 doubles, see below */
AS_BOOL backward, /* TRUE, if backward search */
char *serr); /* return error string */

Find the next lunar eclipse observable from a geographic location

int32 swe_lun_eclipse_when_loc(

double tjd_start, /* start date for search, Jul. day UT */
int32 ifl, /* ephemeris flag */
double *geopos, /* 3 doubles for geo. lon, lat, height eastern longitude is positive,
 western longitude is negative, northern latitude is positive,
 southern latitude is negative */
double *tret, /* return array, 10 doubles, see below */
double *attr, /* return array, 20 doubles, see below */
AS_BOOL backward, /* TRUE, if backward search */
char *serr); /* return error string */

Find the next lunar eclipse, global function

int32 swe_lun_eclipse_when(
double tjd_start, /* start date for search, Jul. day UT */
int32 ifl, /* ephemeris flag */

int32 ifltype, /* eclipse type wanted: SE_ECL_TOTAL etc. */

Swiss Ephemeris 57
double *tret, /* return array, 10 doubles, see below */
AS_BOOL backward, /* TRUE, if backward search */
char *serr); /* return error string */

Compute the attributes of a lunar eclipse at a given time

int32 swe_lun_eclipse_how(
double tjd_ut, /* time, Jul. day UT */
int32 ifl, /* ephemeris flag */
double *geopos, /* input array, geopos, geolon, geoheight */
 eastern longitude is positive,
 western longitude is negative,
 northern latitude is positive,
 southern latitude is negative */
double *attr, /* return array, 20 doubles, see below */
char *serr); /* return error string */

Compute risings, settings and meridian transits of a body

int32 swe_rise_trans(
double tjd_ut, /* search after this time (UT) */
int32 ipl, /* planet number, if planet or moon */
char *starname, /* star name, if star */
int32 epheflag, /* ephemeris flag */
int32 rsmi, /* integer specifying that rise, set, or one of the two meridian transits is
 wanted. see definition below */
double *geopos, /* array of three doubles containing geograph. long., lat., height of observer */
double atpress, /* atmospheric pressure in mbar/hPa */
double attemp, /* atmospheric temperature in deg. C */
double *tret, /* return address (double) for rise time etc. */
char *serr); /* return address for error message */

int32 swe_rise_trans_true_hor(
double tjd_ut, /* search after this time (UT) */
int32 ipl, /* planet number, if planet or moon */

char *starname, /* star name, if star */
int32 epheflag, /* ephemeris flag */
int32 rsmi, /* integer specifying that rise, set, orone of the two meridian transits is
 wanted. see definition below */
double *geopos, /* array of three doubles containing
 * geograph. long., lat., height of observer */
double atpress, /* atmospheric pressure in mbar/hPa */
double attemp, /* atmospheric temperature in deg. C */
double horhgt, /* height of local horizon in deg at the point where the body rises or sets*/
double *tret, /* return address (double) for rise time etc. */
char *serr); /* return address for error message */

Compute planetary phenomena

int32 swe_pheno_ut(
double tjd_ut, /* time Jul. Day UT */
int32 ipl, /* planet number */
int32 iflag, /* ephemeris flag */
double *attr, /* return array, 20 doubles, see below */
char *serr); /* return error string */
int32 swe_pheno(
double tjd_et, /* time Jul. Day ET */
int32 ipl, /* planet number */
int32 iflag, /* ephemeris flag */
double *attr, /* return array, 20 doubles, see below */
char *serr); /* return error string */

void swe_azalt(
 double tjd_ut, /* UT */
 int32 calc_flag, /* SE_ECL2HOR or SE_EQU2HOR */

Swiss Ephemeris 58
 double *geopos, /* array of 3 doubles: geogr. long., lat., height */
 double atpress, /* atmospheric pressure in mbar (hPa) */
 double attemp, /* atmospheric temperature in degrees Celsius */

 double *xin, /* array of 3 doubles: position of body in either ecliptical or equatorial
coordinates, depending on calc_flag */

 double *xaz); /* return array of 3 doubles, containing azimuth, true altitude, apparent
altitude */

void swe_azalt_rev(
 double tjd_ut,
 int32 calc_flag, /* either SE_HOR2ECL or SE_HOR2EQU */
 double *geopos, /* array of 3 doubles for geograph. pos. of observer */
 double *xin, /* array of 2 doubles for azimuth and true altitude of planet */
 double *xout); /* return array of 2 doubles for either ecliptic or equatorial coordinates,

depending on calc_flag */
double swe_refrac(
double inalt,
double atpress, /* atmospheric pressure in mbar (hPa) */
double attemp, /* atmospheric temperature in degrees Celsius */

int32 calc_flag); /* either SE_TRUE_TO_APP or SE_APP_TO_TRUE */

16.3. Date and time conversion

Delta T from Julian day number

/* Ephemeris time (ET) = Universal time (UT) + swe_deltat_ex(UT)*/
double swe_deltat_ex(
 double tjd, /* Julian day number in ET/TT */
 int32 ephe_flag, /* ephemeris flag (one of SEFLG_SWIEPH, SEFLG_JPLEPH, SEFLG_MOSEPH) */
 char *serr); /* error message or warning */

/* older function: */
/* Ephemeris time (ET) = Universal time (UT) + swe_deltat(UT)*/
double swe_deltat(double tjd);

Julian day number from year, month, day, hour, with check whether date is legal

/*Return value: OK or ERR */
int swe_date_conversion (
 int y , int m , int d , /* year, month, day */
 double hour, /* hours (decimal, with fraction) */
 char c, /* calendar ‘g’[regorian]|’j’[ulian] */
double *tjd); /* target address for Julian day */

Julian day number from year, month, day, hour

double swe_julday(
int year, int month, int day, double hour,
int gregflag); /* Gregorian calendar: 1, Julian calendar: 0 */

Year, month, day, hour from Julian day number

void swe_revjul (
 double tjd, /* Julian day number */
 int gregflag, /* Gregorian calendar: 1, Julian calendar: 0 */
 int *year, /* target addresses for year, etc. */
 int *month, int *day, double *hour);

Local time to UTC and UTC to local time

/* transform local time to UTC or UTC to local time
 *
 * input:
 * iyear ... dsec date and time
 * d_timezone timezone offset
 * output:

Swiss Ephemeris 59
 * iyear_out ... dsec_out
 *
 * For time zones east of Greenwich, d_timezone is positive.

 * For time zones west of Greenwich, d_timezone is negative.
 *
 * For conversion from local time to utc, use +d_timezone.
 * For conversion from utc to local time, use -d_timezone.
 */
void swe_utc_timezone(
 int32 iyear, int32 imonth, int32 iday,
 int32 ihour, int32 imin, double dsec,
 double d_timezone,
 int32 *iyear_out, int32 *imonth_out, int32 *iday_out,
 int32 *ihour_out, int32 *imin_out, double *dsec_out
)

UTC to jd (TT and UT1)

/* input: date and time (wall clock time), calendar flag.
 * output: an array of doubles with Julian Day number in ET (TT) and UT (UT1)

 * an error message (on error)
 * The function returns OK or ERR.
 */
void swe_utc_to_jd (
 int32 iyear, int32 imonth, int32 iday,
 int32 ihour, int32 imin, double dsec, /* note : second is a decimal */
 gregflag, /* Gregorian calendar: 1, Julian calendar: 0 */
 dret /* return array, two doubles:
 * dret[0] = Julian day in ET (TT)
 * dret[1] = Julian day in UT (UT1) */
 serr /* error string */
)

TT (ET1) to UTC

/* input: Julian day number in ET (TT), calendar flag

 * output: year, month, day, hour, min, sec in UTC */
void swe_jdet_to_utc (
 double tjd_et, /* Julian day number in ET (TT) */
 gregflag, /* Gregorian calendar: 1, Julian calendar: 0 */
 int32 *iyear, int32 *imonth, int32 *iday,
 int32 *ihour, int32 *imin, double *dsec, /* note : second is a decimal */
)

UTC to TT (ET1)

/* input: Julian day number in UT (UT1), calendar flag
 * output: year, month, day, hour, min, sec in UTC */
void swe_jdut1_to_utc (
 double tjd_ut, /* Julian day number in ET (TT) */
 gregflag, /* Gregorian calendar: 1, Julian calendar: 0 */
 int32 *iyear, int32 *imonth, int32 *iday,

 int32 *ihour, int32 *imin, double *dsec, /* note : second is a decimal */
)

Get tidal acceleration used in swe_deltat()

double swe_get_tid_acc(void);

Set tidal acceleration to be used in swe_deltat()

void swe_set_tid_acc(double t_acc);

Equation of time

/ * function returns the difference between local apparent and local mean time.
e = LAT – LMT. tjd_et is ephemeris time */

Swiss Ephemeris 60
int swe_time_equ(double tjd_et, double *e, char *serr);

/* converts Local Mean Time (LMT) to Local Apparent Time (LAT) */

/* tjd_lmt and tjd_lat are a Julian day number
 * geolon is geographic longitude, where eastern longitudes are positive,
 * western ones negative */
int32 swe_lmt_to_lat(double tjd_lmt, double geolon, double *tjd_lat, char *serr);

/* converts Local Apparent Time (LAT) to Local Mean Time (LMT) */

 int32 swe_lat_to_lmt(double tjd_lat, double geolon, double *tjd_lmt, char *serr);

16.4. Initialization, setup, and closing functions

Set directory path of ephemeris files

void swe_set_ephe_path(char *path);

/* set name of JPL ephemeris file */
void swe_set_jpl_file(char *fname);

/* close Swiss Ephemeris */
void swe_close(void);

/* find out version number of your Swiss Ephemeris version */
char *swe_version(char *svers);
/* svers is a string variable with sufficient space to contain the version number (255 char) */

/* find out the library path of the DLL or executable */
char *swe_get_library_path(char *spath);
/* spath is a string variable with sufficient space to contain the library path (255 char) */

Swiss Ephemeris 61

16.5. House calculation

Sidereal time

double swe_sidtime(double tjd_ut); /* Julian day number, UT */

double swe_sidtime0(
 double tjd_ut, /* Julian day number, UT */
 double eps, /* obliquity of ecliptic, in degrees */
 double nut); /* nutation, in degrees */

Name of a house method

char * swe_house_name(
 int hsys, /* house method, ascii code of one of the letters PKORCAEVXHTBG */
);

House cusps, ascendant and MC

int swe_houses(
 double tjd_ut, /* Julian day number, UT */
 double geolat, /* geographic latitude, in degrees */
 double geolon, /* geographic longitude, in degrees
 eastern longitude is positive,
 western longitude is negative,
 northern latitude is positive,
 southern latitude is negative */
 int hsys, /* house method, one of the letters PKRCAV */
 double* cusps, /* array for 13 doubles */
 double* ascmc); /* array for 10 doubles */

Extended house function; to compute tropical or sidereal positions

int swe_houses_ex(
 double tjd_ut, /* Julian day number, UT */
 int32 iflag, /* 0 or SEFLG_SIDEREAL or SEFLG_RADIANS */
 double geolat, /* geographic latitude, in degrees */
 double geolon, /* geographic longitude, in degrees
 eastern longitude is positive,
 western longitude is negative,
 northern latitude is positive,
 southern latitude is negative */
 int hsys, /* house method, one of the letters PKRCAV */
 double* cusps, /* array for 13 doubles */
 double* ascmc); /* array for 10 doubles */

int swe_houses_armc(
 double armc, /* ARMC */

 double geolat, /* geographic latitude, in degrees */
 double eps, /* ecliptic obliquity, in degrees */
 int hsys, /* house method, one of the letters PKRCAV */
 double *cusps, /* array for 13 doubles */
 double *ascmc); /* array for 10 doubles */

Get the house position of a celestial point

double swe_house_pos (
 double armc, /* ARMC */
 double geolat, /* geographic latitude, in degrees
 eastern longitude is positive,
 western longitude is negative,
 northern latitude is positive,
 southern latitude is negative */

Swiss Ephemeris 62
 double eps, /* ecliptic obliquity, in degrees */
 int hsys, /* house method, one of the letters PKRCAV */
 double *xpin, /* array of 2 doubles: ecl. longitude and latitude of the planet */

 char *serr); /* return area for error or warning message */

Get the Gauquelin sector position for a body

double swe_gauquelin_sector(
double tjd_ut, /* search after this time (UT) */
int32 ipl, /* planet number, if planet, or moon */
char *starname, /* star name, if star */
int32 iflag, /* flag for ephemeris and SEFLG_TOPOCTR */
int32 imeth, /* method: 0 = with lat., 1 = without lat.,
 /* 2 = from rise/set, 3 = from rise/set with refraction */
double *geopos, /* array of three doubles containing

 * geograph. long., lat., height of observer */
double atpress, /* atmospheric pressure, only useful with imeth=3;
 * if 0, default = 1013.25 mbar is used*/
double attemp, /* atmospheric temperature in degrees Celsius, only useful with imeth=3 */
double *dgsect, /* return address for gauquelin sector position */
char *serr); /* return address for error message */

Swiss Ephemeris 63

16.6. Auxiliary functions

swe_cotrans(): Coordinate transformation, from ecliptic to equator or vice-versa

equator -> ecliptic : eps must be positive
ecliptic -> equator : eps must be negative eps, longitude and latitude are in degrees! */

void swe_cotrans(
double *xpo, /* 3 doubles: long., lat., dist. to be converted; distance remains unchanged,

can be set to 1.00 */
 double *xpn, /* 3 doubles: long., lat., dist. Result of the conversion */
 double eps); /* obliquity of ecliptic, in degrees. */

swe_cotrans_sp(): Coordinate transformation of position and speed, from ecliptic to equator

or vice-versa

/ * equator -> ecliptic : eps must be positive

 ecliptic -> equator : eps must be negative
 eps, long., lat., and speeds in long. and lat. are in degrees! */
void swe_cotrans_sp(
 double *xpo, /* 6 doubles, input: long., lat., dist. and speeds in long., lat and dist. */
 double *xpn, /* 6 doubles, position and speed in new coordinate system */
 double eps); /* obliquity of ecliptic, in degrees. */

swe_get_planet_name(): Get the name of a planet

char* swe_get_planet_name(
int ipl, /* planet number */
char* plan_name); /* address for planet name, at least 20 char */

swe_degnorm(): Normalise degrees to the range 0 ... 360

double swe_degnorm(double x);

swe_radnorm(): Normalise radians to the range 0 ... 2 PI

double swe_radnorm(double x);

swe_split_deg(): split degrees to sign/nakshatra, degrees, minutes, seconds of arc

This function takes a decimal degree number as input and provides sign or nakshatra, degree, minutes,
seconds and fraction of second. It can also round to seconds, minutes, degrees. For more details see
the specifications below.

double swe_split_deg(double ddeg, int32 roundflag, int32 *ideg, int32 *imin, int32 *isec, double

*dsecfr, int32 *isgn);

/* splitting decimal degrees into (zod.sign,) deg, min, sec. *
 * input:
 * ddeg decimal degrees, ecliptic longitude
 * roundflag by default there is no rounding. if rounding is
 * required, the following bits can be set:
define SE_SPLIT_DEG_ROUND_SEC 1
define SE_SPLIT_DEG_ROUND_MIN 2
define SE_SPLIT_DEG_ROUND_DEG 4
define SE_SPLIT_DEG_ZODIACAL 8 * split into zodiac signs
define SE_SPLIT_DEG_NAKSHATRA 1024 * split into nakshatras *
define SE_SPLIT_DEG_KEEP_SIGN 16 * don't round to next zodiac sign/nakshatra,
 * e.g. 29.9999998 will be rounded
 * to 29°59'59" (or 29°59' or 29°) *
 * or next nakshatra:
 * e.g. 13.3333332 will be rounded
 * to 13°19'59" (or 13°19' or 13°) *

Swiss Ephemeris 64
define SE_SPLIT_DEG_KEEP_DEG 32 * don't round to next degree
 * e.g. 10.9999999 will be rounded
 * to 10d59'59" (or 10d59' or 10d) *

 * output:
 * ideg degrees,
 * imin minutes,
 * isec seconds,
 * dsecfr fraction of seconds
 * isgn zodiac sign number;
 * or +/- sign

16.7. Other functions that may be useful

PLACALC, the predecessor of SWISSEPH, had included several functions that we do not need for
SWISSEPH anymore. Nevertheless we include them again in our DLL, because some users of our software may
have taken them over and use them in their applications. However, we gave them new names that were more
consistent with SWISSEPH.

PLACALC used angular measurements in centiseconds a lot; a centisecond is 1/100 of an arc second.

The C type CSEC or centisec is a 32-bit integer. CSEC was used because calculation with integer variables was
considerably faster than floating point calculation on most CPUs in 1988, when PLACALC was written.
In the Swiss Ephemeris we have dropped the use of centiseconds and use double (64-bit floating point) for all
angular measurements.

Normalize argument into interval [0..DEG360]

/ * former function name: csnorm() */
centisec swe_csnorm(centisec p);

Distance in centisecs p1 - p2 normalized to [0..360]

/ * former function name: difcsn() */
centisec swe_difcsn(centisec p1, centisec p2);

Distance in degrees

/* former function name: difdegn() */
double swe_difdegn (double p1, double p2);

Distance in centisecs p1 - p2 normalized to [-180..180]

/* former function name: difcs2n() */
centisec swe_difcs2n(centisec p1, centisec p2);

Swiss Ephemeris 65

Distance in degrees

/* former function name: difdeg2n() */
double swe_difdeg2n(double p1, double p2);

Round second, but at 29.5959 always down

 /* former function name: roundsec() */
centisec swe_csroundsec(centisec x);

Double to long with rounding, no overflow check

/* former function name: d2l() */
long swe_d2l(double x);

Day of week

/*Monday = 0, ... Sunday = 6 former function name: day_of_week() */
int swe_day_of_week(double jd);

Centiseconds -> time string

/* former function name: TimeString() */
char * swe_cs2timestr(CSEC t, int sep, AS_BOOL suppressZero, char *a);

Centiseconds -> longitude or latitude string

/* former function name: LonLatString() */
char * swe_cs2lonlatstr(CSEC t, char pchar, char mchar, char *s);

Centiseconds -> degrees string

/* former function name: DegreeString() */
char * swe_cs2degstr(CSEC t, char *a);

17. The SWISSEPH DLLs
There is a 32 bit DLL: swedll32.dll

You can use our programs swetest.c and swewin.c as examples.To compile swetest or swewin with a DLL:

1. The compiler needs the following files:

swetest.c or swewin.c

swedll32.dll
swedll32.lib (if you choose implicit linking)

swephexp.h
swedll.h
sweodef.h

2. Define the following macros (-d):

USE_DLL

3. Build swetest.exe from swetest.c and swedll32.lib or swedll64.lib (depending on the 32-bit or 64-bit
architecture of your system).

 Build swewin.exe from swewin.c, swewin.rc, and swedll32.lib or swedll64.lib.

We provide some project files which we have used to build our test samples. You will need to adjust the project
files to your environment.

We have worked with Microsoft Visual C++ 5.0 (32-bit). The DLLs where built with the Microsoft compilers.

17.1 DLL Interface for brain damaged compilers

If you work with GFA-Basic or some other brain damaged language, the problem will occur that the DLL interface
does not support 8-bit, 32-bit, double by value and VOID data or function types. Therefore, we have written a set
of modified functions that use double pointers instead of doubles, character pointers instead of characters, and
integers instead of void. The names of these modified functions are the same as the names of their prototypes,

Swiss Ephemeris 66

except that they end with ”_d”, e.g. swe_calc_d() instead of swe_calc().The export definitions of these

functions can be found in file swedll.h. We do not repeat them here to avoid confusion with the ordinary
functions described in the preceding chapters. The additional functions are only wrapper functions, i.e. they call
internally the real DLL functions and return the same results.

Swiss Ephemeris release 1.61 is the last release for which 16-bit compilers have been supported and for
which a 16-bit DLL has been created.

18. Using the DLL with Visual Basic 5.0

The 32-bit DLL contains the exported function under 'decorated names'. Each function has an underscore before
its name, and a suffix of the form @xx where xx is the number of stack bytes used by the call.

The Visual Basic declarations for the DLL functions and for some important flag parameters are in the file

\sweph\vb\swedecl.txt and can be inserted directly into a VB program.

A sample VB program vbsweph is included on the distribution, in directory \sweph\vb. To run this sample, the

DLL file swedll32.dll must be copied into the vb directory or installed in the Windows system directory.

DLL functions returning a string:
Some DLL functions return a string, e.g.

char* swe_get_planet_name(int ipl, char *plname)

This function copies its result into the string pointer plname; the calling program must provide sufficient space so
that the result string fits into it. As usual in C programming, the function copies the return string into the provided
area and returns the pointer to this area as the function value. This allows to use this function directly in a C print
statement.

In VB there are three problems with this type of function:

1. The string parameter plname must be initialized to a string of sufficient length before the call; the content

does not matter because it is overwritten by the called function. The parameter type must be

ByVal plname as String.

2. The returned string is terminated by a NULL character. This must be searched in VB and the VB string
length must be set accordingly. Our sample program demonstrates how this can be done:

Private Function set_strlen(c$) As String
 i = InStr(c$, Chr$(0))
 c$ = Left(c$, i - 1)
 set_strlen = c$
End Function
plname = String(20,0) ‘ initialize string to length 20
swe_get_planet_name(SE_SUN, plname)
plname = set_strlen(plname)

3. The function value itself is a pointer to character. This function value cannot be used in VB because VB does

not have a pointer data type. In VB, such a Function can be either declared as type ”As long” and the return

value ignored, or it can be declared as a Sub. We have chosen to declare all such functions as ‚Sub‘, which
automatically ignores the return value.

Declare Sub swe_get_planet_name (ByVal ipl as Long, ByVal plname as String)

19. Using the DLL with Borland Delphi and C++ Builder

19.1 Delphi 2.0 and higher (32-bit)

The information in this section was contributed by Markus Fabian, Bern, Switzerland.

In Delphi 2.0 the declaration of the function swe_calc() looks like this:

xx : Array[0..5] of double;

Swiss Ephemeris 67
function swe_calc (tjd : double; // Julian day number
 ipl : Integer; // planet number
 iflag : Longint; // flag bits

 var xx[0] : double;
 sErr : PChar // Error-String;
) : Longint; stdcall; far; external 'swedll32.dll' Name '_swe_calc@24';

A nearly complete set of declarations is in file \sweph\delphi2\swe_d32.pas.
A small sample project for Delphi 2.0 is also included in the same directory (starting with release 1.25 from June
1998). This sample requires the DLL to exist in the same directory as the sample.

19.2 Borland C++ Builder

Borland C++ Builder (BCB) does not understand the Microsoft format in the library file SWEDLL32.LIB; it
reports an OMF error when this file is used in a BCB project. The user must create his/her own LIB file for BCB
with the utility IMPLIB which is part of BCB.

With the following command command you create a special lib file in the current directory:

IMPLIB –f –c swe32bor.lib \sweph\bin\swedll32.dll

In the C++ Builder project the following settings must be made:

• Menu Options->Projects->Directories/Conditionals: add the conditional define USE_DLL

• Menu Project->Add_to_project: add the library file swe32bor.lib to your project.

• In the project source, add the include file "swephexp.h"

In the header file swedll.h the declaration for Dllimport must be
#define DllImport extern "C" __declspec(dllimport)

This is provided automatically by the __cplusplus switch for release 1.24 and higher. For earlier releases the
change must be made manually.

20. Using the Swiss Ephemeris with Perl
The Swiss Ephemeris can be run from Perl using the Perl module SwissEph.pm. The module SwissEph.pm uses
XSUB (“eXternal SUBroutine”), which calls the Swiss Ephemeris functions either from a C library or a DLL.

In order to run the Swiss Ephemeris from Perl, you have to

1. Install the Swiss Ephemeris. Either you download the Swiss Ephemeris DLL from
http://www.astro.com/swisseph or you download the Swiss Ephemeris C source code and compile a static
or dynamic shared library. We built the package on a Linux system and use a shared library of the Swiss
Ephemeris functions.

2. Install the XS library:

- Unpack the file PerlSwissEph-1.76.00.tar.gz (or whatever newest version there is)
 - Open the file Makefile.PL, and edit it according to your requirements. Then run it.
 - make install

If you work on a Windows machine and prefer to use the Swiss Ephemeris DLL, you may want to study Rüdiger
Plantiko's Perl module for the Swiss Ephemeris at http://www.astrotexte.ch/sources/SwissEph.zip. There is also a
documentation in German language by Rüdiger Plantiko at http://www.astrotexte.ch/sources/swe_perl.html).

21. The C sample program

The distribution contains executables and C source code of sample programs which demonstrate the use of the
Swiss Ephemeris DLL and its functions.

Until version 2.04, all sample programs were compiled with the Microsoft Visual C++ 5.0 compiler (32-bit). Project
and Workspace files for these environments are included with the source files.

Since version 2.05, all sample programs and DLLs were compiled on Linux with MinGW. 64-bit programs contain
a ‘64’ string in their names.

http://www.astro.com/swisseph
http://www.astrotexte.ch/sources/SwissEph.zip
http://www.astrotexte.ch/sources/swe_perl.html

Swiss Ephemeris 68

Directory structure:

Sweph\bin DLL, LIB and EXE file

Sweph\src source files, resource files
sweph\src\swewin32 32-bit windows sample program, uses swedll32.dll
sweph\src\swetest 32-bit character mode sample program
sweph\src\swetest64 64-bit character mode sample program
sweph\src\swete32 32-bit character mode sample program, uses swedll32.dll
sweph\src\swete64 64-bit character mode sample program, uses swedll64.dll
sweph\src\swedll32.dll 32-bit DLL
sweph\src\swedll64.dll 64-bit DLL
sweph\src\swedll32.lib
sweph\src\swedll64.lib

You can run the samples in the following environments:
Swetest.exe in Windows command line
Swetest64.exe in Windows command line
Swete32.exe in Windows command line
Swete64.exe in Windows command line
Swewin32.exe in Windows

Character mode executable that needs a DLL
Swete32.exe

The project files for Microsoft Visual C++ are in \sweph\src\swete32

swetest.c
swedll32.lib
swephexp.h
swedll.h
sweodef.h
define macros: USE_DLL DOS32 DOS_DEGREE

swewin32.exe

The project files are in \sweph\src\swewin32

swewin.c
swedll32.lib
swewin.rc
swewin.h
swephexp.h
swedll.h
sweodef.h
resource.h
define macro USE_DLL

How the sample programs search for the ephemeris files:

1. check environment variable SE_EPHE_PATH; if it exists it is used, and if it has invalid content, the program

fails.
2. Try to find the ephemeris files in the current working directory
3. Try to find the ephemeris files in the directory where the executable resides

4. Try to find a directory named \SWEPH\EPHE in one of the following three drives:

• where the executable resides

• current drive

• drive C:

As soon as it succeeds in finding the first ephemeris file it looks for, it expects all required ephemeris files to
reside there. This is a feature of the sample programs only, as you can see in our C code.

The DLL itself has a different and simpler mechanism to search for ephemeris files, which is described with the

function swe_set_ephe_path() above.

Swiss Ephemeris 69

21. The source code distribution
Starting with release 1.26, the full source code for the Swiss Ephemeris DLL is made available. Users can choose

to link the Swiss Ephemeris code directly into their applications. The source code is written in Ansi C and consists
of these files:

Bytes Date File name Comment

1639 Nov 28 17:09 Makefile unix makefile for library

API interface files

15050 Nov 27 10:56 swephexp.h SwissEph API include file

Internal files

8518 Nov 27 10:06 swedate.c

2673 Nov 27 10:03 swedate.h

8808 Nov 28 19:24 swedll.h

24634 Nov 27 10:07 swehouse.c

2659 Nov 27 10:05 swehouse.h

31279 Nov 27 10:07 swejpl.c

3444 Nov 27 10:05 swejpl.h

38238 Nov 27 10:07 swemmoon.c

2772 Nov 27 10:05 swemosh.h

18687 Nov 27 10:07 swemplan.c

311564 Nov 27 10:07 swemptab.c

7291 Nov 27 10:06 sweodef.h

173758 Nov 27 10:07 sweph.c

12136 Nov 27 10:06 sweph.h

55063 Nov 27 10:07 swephlib.c

4886 Nov 27 10:06 swephlib.h

43421 Nov 28 19:33 swetest.c

In most cases the user will compile a linkable or shared library from the source code, using his favorite C
compiler, and then link this library with his application.
If the user programs in C, he will only need to include the header file swephexp.h with his application; this in turn
will include sweodef.h. All other source files can ignored from the perspective of application development.

22. The PLACALC compatibility API
(Chapter has been removed.)

23. Documentation files

The following files are in the directory \sweph\doc

sweph.cdr
sweph.gif
swephin.cdr
swephin.gif
swephprg.doc Documentation for programming, a MS Word-97 file
swephprg.rtf
swisseph.doc General information on Swiss Ephemeris
swisseph.rtf

The files with suffix .CDR are Corel Draw 7.0 documents with the Swiss Ephemeris icons.

Swiss Ephemeris 70

24. Swisseph with different hardware and compilers
Depending on what hardware and compiler you use, there will be slight differences in your planetary calculations.
For positions in longitude, they will be never larger than 0.0001" in longitude. Speeds show no difference larger
than 0.0002 arcsec/day.

The following factors show larger differences between HPUX and Linux on a Pentium II processor:

Mean Node, Mean Apogee:
HPUX PA-Risc non-optimized versus optimized code:
 differences are smaller than 0.001 arcsec/day

HPUX PA-Risc versus Intel Pentium gcc non-optimzed
 differences are smaller than 0.001 arcsec/day

Intel Pentium gss non-optimzed versus -O9 optimized:

Mean Node, True node, Mean Apogee: difference smaller than 0.001 arcsec/day

Osculating Apogee: differences smaller than 0.03 arcsec

The differences originate from the fact that the floating point arithmetic in the Pentium is executed with 80 bit
precision, whereas stored program variables have only 64 bit precision. When code is optimized, more
intermediate results are kept inside the processor registers, i.e. they are not shortened from 80bit to 64 bit. When
these results are used for the next calculation, the outcome is then slightly different.
In the computation of speed for the nodes and apogee, differences between positions at close intervals are
involved; the subtraction of nearly equal values results shows differences in internal precision more easily than
other types of calculations. As these differences have no effect on any imaginable application software and are
mostly within the design limit of Swiss Ephemeris, they can be savely ignored.

25. Debugging and Tracing Swisseph

25.1. If you are using the DLL
Besides the ordinary Swisseph function, there are two additional DLLs that allow you tracing your Swisseph
function calls:

Swedlltrs32.dll and swedlltrs64.dll are for single task debugging, i.e. if only one application at a time calls
Swisseph functions.
Two output files are written:

a) swetrace.txt: reports all Swisseph functions that are being called.

b) swetrace.c: contains C code equivalent to the Swisseph calls that your application did.
The last bracket of the function main() at the end of the file is missing.
If you want to compile the code, you have to add it manually. Note that these files may grow very fast,
depending on what you are doing in your application. The output is limited to 10000 function calls per run.

Swedlltrm32.dll and swedlltrm64.dll are for multitasking, i.e. if more than one application at a time are calling
Swisseph functions. If you used the single task DLL here, all applications would try to write their trace output

into the same file. Swedlltrm32.dll and swedlltrm64.dll generate output file names that contain the

process identification number of the application by which the DLL is called, e.g. swetrace_192.c and

swetrace_192.txt.
Keep in mind that every process creates its own output files and with time might fill your disk.

In order to use a trace DLL, you have to replace your Swisseph DLL by it:
a) save your Swisseph DLL

b) rename the trace DLL as your Swisseph DLL (e.g. as swedll32.dll or swedll64.dll)

IMPORTANT: The Swisseph DLL will possibly not work properly if called from more than one thread. (NOTE:
This may not be true any longer for DLLs compiled with MVS version 14.0… (2015); it should be tested
again.)

Output samples swetrace.txt:

swe_deltat: 2451337.870000 0.000757
swe_set_ephe_path: path_in = path_set = \sweph\ephe\
swe_calc: 2451337.870757 -1 258 23.437404 23.439365 -0.003530 -0.001961 0.000000 0.000000
swe_deltat: 2451337.870000 0.000757
swe_sidtime0: 2451337.870000 sidt = 1.966683 eps = 23.437404 nut = -0.003530
swe_sidtime: 2451337.870000 1.966683
swe_calc: 2451337.870757 0 258 77.142261 -0.000071 1.014989 0.956743 -0.000022 0.000132
swe_get_planet_name: 0 Sun

Swiss Ephemeris 71

swetrace.c:

#include "sweodef.h"
#include "swephexp.h"

void main()
{
 double tjd, t, nut, eps; int i, ipl, retc; long iflag;
 double armc, geolat, cusp[12], ascmc[10]; int hsys;
 double xx[6]; long iflgret;
 char s[AS_MAXCH], star[AS_MAXCH], serr[AS_MAXCH];

/*SWE_DELTAT*/
 tjd = 2451337.870000000; t = swe_deltat(tjd);
 printf("swe_deltat: %f\t%f\t\n", tjd, t);

/*SWE_CALC*/
 tjd = 2451337.870757482; ipl = 0; iflag = 258;

 iflgret = swe_calc(tjd, ipl, iflag, xx, serr); /* xx = 1239992 */

/*SWE_CLOSE*/
 swe_close();

25.2 If you are using the source code
Similar tracing is also possible if you compile the Swisseph source code into your application. Use the
preprocessor definitions TRACE=1 for single task debugging, and TRACE=2 for multitasking. In most compilers
this flag can be set with –DTRACE=1 or /DTRACE=1.

For further explanations, see 21.1.

Appendix

Update and release history
Updated By

30-sep-97 Alois added chapter 10 (sample programs)
7-oct-97 Dieter inserted chapter 7 (house calculation)
8-oct-97 Dieter Appendix ”Changes from version 1.00 to 1.01”

12-oct-1997 Alois Added new chapter 10 Using the DLL with Visual Basic
26-oct-1997 Alois improved implementation and documentation of swe_fixstar()
28-oct-1997 Dieter Changes from Version 1.02 to 1.03
29-oct-1997 Alois added VB sample extension, fixed VB declaration errors
9-Nov-1997 Alois added Delphi declaration sample

8-Dec-97 Dieter remarks concerning computation of asteroids, changes to version 1.04
8-Jan-98 Dieter changes from version 1.04 to 1.10.

12-Jan-98 Dieter changes from version 1.10 to 1.11.
21-Jan-98 Dieter calculation of topocentric planets and house positions (1.20)
28-Jan-98 Dieter Delphi 1.0 sample and declarations for 16- and 32-bit Delphi (1.21)
11-Feb-98 Dieter version 1.23

7-Mar-1998 Alois version 1.24 support for Borland C++ Builder added
4-June-1998 Alois version 1.25 sample for Borland Delphi-2 added
29-Nov-1998 Alois version 1.26 source code information added §16, Placalc API added
1-Dec-1998 Dieter chapter 19 and some additions in beginning of Appendix.
2-Dec-1998 Alois Equation of Time explained (in §4), changes version 1.27 explained
3-Dec-1998 Dieter Note on ephemerides of 1992 QB1 and 1996 TL66

17-Dec-1998 Alois Note on extended time range of 10'800 years
22 Dec 1998 Alois Appendix A
12-Jan-1999 Dieter Eclipse functions added, version 1.31

19-Apr-99 Dieter version 1.4
8-Jun-99 Dieter Chapter 21 on tracing an debugging Swisseph
27-Jul-99 Dieter Info about sidereal calculations

Swiss Ephemeris 72

16-Aug-99 Dieter version 1.51, minor bug fixes

15-Feb-00 Dieter many things for version 1.60
19-Mar-00 Vic Ogi SWEPHPRG.DOC re-edited
17-apr-02 Dieter Documentation for version 1.64
26-Jun-02 Dieter Version 1.64.01

31-dec-2002 Alois edited doc to remove references to 16-bit version
12-jun-2003 Alois/Dieter Documentation for version 1.65
10-Jul-2003 Dieter Documentation for version 1.66

25-May-2004 Dieter Documentation of eclipse functions updated
31-Mar-2005 Dieter Documentation for version 1.67
3-May-2005 Dieter Documentation for version 1.67.01

22-Feb-2006 Dieter Documentation for version 1.70.00
2-May-2006 Dieter Documentation for version 1.70.01
5-Feb-2006 Dieter Documentation for version 1.70.02

30-Jun-2006 Dieter Documentation for version 1.70.03
28-Sep-2006 Dieter Documentation for version 1.71
29-May-2008 Dieter Documentation for version 1.73
18-Jun-2008 Dieter Documentation for version 1.74
27-Aug-2008 Dieter Documentation for version 1.75
7-April-2009 Dieter Documentation of version 1.76
3-Sep-2013 Dieter Documentation of version 1.80

10-Sep-2013 Dieter Documentation of version 1.80 corrected
11-Feb-2014 Dieter Documentation of version 2.00
4-Mar-2014 Dieter Documentation of swe_rise_trans() corrected

18-Mar-2015 Dieter Documentation of version 2.01
11-Aug-2015 Dieter Documentation of version 2.02
14-Aug-2015 Dieter Documentation of version 2.02.01
16-Oct-2015 Dieter Documentation of version 2.03
21-Oct-2015 Dieter Documentation of version 2.04

27-May-2015 Dieter Documentation of version 2.05
27-May-2015 Dieter Documentation of version 2.05.01
10-Jan-2016 Dieter Documentation of version 2.06
5-Jan-2018 Dieter Documentation of version 2.07

 1-Feb-2018 Dieter Documentation of version 2.07.01
 22-Feb-2018 Dieter Docu of swe_fixstar2() improved

Release Date
1.00 30-sep-1997
1.01 9-oct-1997 houses(), sidtime() made more convenient for developer, Vertex added.

1.02 16-oct-1997
houses() changed again, Visual Basic support, new numbers for fictitious planets
This release was pushed to all existing licensees at this date.

1.03 28-Oct-1997
minor bug fixes, improved swe_fixstar() functionality. This release was not pushed,
as the changes and bug fixes are minor; no changes of function definitions
occurred.

1.04 8-Dec-1997 minor bug fixes; more asteroids.
1.10 9-Jan-1998 bug fix, s. Appendix. This release was pushed to all existing licensees at this date.
1.11 12-Jan-98 small improvements
1.20 20-Jan-98 New: topocentric planets and house positions; a minor bug fix
1.21 28-Jan-98 Delphi declarations and sample for Delphi 1.0
1.22 2-Feb-98 Asteroids moved to subdirectory. Swe_calc() finds them there.
1.23 11-Feb-98 two minor bug fixes.
1.24 7-Mar-1998 Documentation for Borland C++ Builder added, see section 14.3
1.25 4-June-1998 Sample for Borland Delphi-2 added
1.26 29-Nov-1998 full source code made available, Placalc API documented
1.27 2-dec-1998 Changes to SE_EPHE_PATH and swe_set_ephe_path()
1.30 17-Dec-1998 Time range extended to 10'800 years
1.31 12-Jan-1999 New: Eclipse functions added
1.40 19-Apr-99 New: planetary phenomena added; bug fix in swe_sol_ecl_when_glob();
1.50 27-Jul-99 New: SIDEREAL planetary positions and houses; new fixstars.cat
1.51 16-Aug-99 Minor bug fixes
1.60 15-Feb-2000 Major release with many new features and some minor bug fixes
1.61 11-Sep-2000 Minor release, additions to se_rise_trans(), swe_houses(), ficitious planets
1.61.01 18-Sep-2000 Minor release, added Alcabitus house system
1.61.02 10-Jul-2001 Minor release, fixed bug which prevented asteroid files > 22767 to be accepted

Swiss Ephemeris 73

1.61.03 20-Jul-2001
Minor release, fixed bug which was introduced in 1.61.02: Ecliptic was computed in
Radians instead of degrees

1.62.00 23-Jul-2001
Minor release, several bug fixes, code for fictitious satellites of the earth, asteroid
files > 55535 are accepted

1.62.01 16-Oct-2001 Bug fix, string overflow in sweph.c::read_const(),
1.63.00 5-Jan-2002 Added house calculation to sweetest.c and swetest.exe

1.64.00 6-Mar-2002

House system ‘G’ for house functions and function swe_gauquelin_sector() for
Gauquelin sector calculations
Occultations of planets and fixed stars by the moon
New Delta T algorithms

1.64.01 26-Jun-2002 Bug fix in swe_fixstar(). Stars with decl. between –1° and 0° were wrong
1.65.00 12-Jun-2003 Long variables replaced by INT32 for 64-bit compilers
1.66.00 10-Jul-2003 House system ‘M’ for Morinus houses
1.67.00 31-Mar-2005 Update Delta T
1.67.01 3-May-2005 Docu for sidereal calculations (Chap. 10) updated (precession-corrected transits)
1.70.00 22-Feb-2006 all relevant IAU resolutions up to 2005 have been implemented
1.70.01 2-May-2006 minor bug fix
1.70.02 5-May-2006 minor bug fix
1.70.03 30-June-2006 bug fix
1.71 28-Sep-2006 Swiss Ephemeris functions able to calculate minor planet no 134340 Pluto
1.72 28-Sep-2007 New function swe_refract_extended(), Delta T update, minor bug fixes
1.73 29-May-2008 New function swe_fixstars_mag(), Whole Sign houses
1.74 18-Jun-2008 Bug fixes
1.75 27-Aug-2008 Swiss Ephemeris can read newer JPL ephemeris files; bug fixes
1.76 7-April-2009 Heliacal risings, UTC and minor improvements/bug fixes
1.77 26-Jan-2010 swe_deltat(), swe_fixstar() improved, swe_utc_time_zone_added
1.78 3-Aug-2012 New precession, improvement of some eclipse functions, some minor bug fixes
1.79 18-Apr-2013 New precession, improvement of some eclipse functions, some minor bug fixes
1.80 3-Sep-2013 Security update, APC houses, bug fixes
2.00 11-Feb-2014 Swiss Ephemeris is now based on JPL Ephemeris DE431

2.01 18-MAR-2015
Udates for tidal acceleration of the Moon with DE431, Delta T, and leap seconds.
A number of bug fixes

2.02 11-Aug-2015
New functions swe_deltat_ex() and swe_ayanamsa_ex()/swe_ayanamsa_ex_ut()
A number of bug fixes

2.02.01 14-Aug-2015 Small corrections to new code, for better backward compatibility
2.03 16-Oct-2015 Swiss Ephemeris thread-safe (except DLL)
2.04 21-Oct-2015 Swiss Ephemeris DLL based on calling convention __stdcall again, as used to be
2.05 27-May-2015 Bug fixes, new ayanamshas, new house methods, osculating elements
2.05.01 27-May-2015 Bug fix in new function swe_orbit_max_min_true_distance()
2.06 10-Jan-2017 New Delta T calculation
2.07 10-Jan-2018 Better performance of swe_fixstar() and swe_rise_trans()

2.07.01 1-Feb-2018
Compatibility with Microsoft Visual Studio, minor bugfixes (fixed star functions, leap
seconds).

2.08 13-June-2019 New Delta T and a number of minor bugfixes.

Changes from version 2.07.01 to 2.08
This release provides a number minor bug fixes and cleanups, an update for current Delta T, a few little
improvements of swetest and three new ayanamshas.

Fixed star functions:
- Wrong distance values in the remote past or future were corrected.
 Position values were not affected by this bug.

- Inaccurate speed values of fixed star functions were corrected.
 The nutation component was missing.

- When sepl*/semo* are not installed, swe_fixstar2() now defaults to the Moshier ephemeris. With version 2.07*, it
has returned error.

- Repeated call of swe_fixstar_mag() did not work correctly with SE 2.07*. Now it does.

- The AU constant has been updated to the current IAU standard. This change does not have any noticeable
effect on planetary or star positions.

Swiss Ephemeris 74
Ayanamshas:
- New ayanamsas were added:
 SE_SIDM_GALCENT_COCHRANE (David Cochrane)
 SE_SIDM_GALEQU_FIORENZA (Nick Anthony Fiorenza)
 SE_SIDM_VALENS_MOON (Vettius Valens, 2nd century CE)
 For information on these, please look them up in the general documentation of
 the Swiss Ephemeris.

- Kugler ayanamshas were corrected:
 E = -3;22 in source corresponds ayanamsha ay = 5;40
 E = -4;46 in source corresponds ayanamsha ay = 4;16
 E = -5;37 in source corresponds ayanamsha ay = 3;25
 (Nobody has noticed this error for 20 years.)

Other stuff:
- swe_houses_ex() now also understands iflag & SEFLG_NONUT. This could be relevant for the calculation of
sidereal house cusps.

- swe_pheno() and swe_pheno_ut(): the functions now return the correct ephemeris flag.

- swe_split_deg() has had a problem if called with
 SE_SPLIT_DEG_ROUND_SEC or SE_SPLIT_DEG_ZODIACAL:
 Sometimes, it provided sign number 12 when a position was rounded to 360°. This was wrong because sign
numbers are defined as 0 - 11. This is a very old bug. From now on, only sign numbers 0 - 11 can occur.

 A similar error occured with SE_SPLIT_DEG_ROUND_SEC and SE_SPLIT_DEG_NAKSHATRA, where only
nakshatra numbers 0 - 26 should be returned, no 27.

- Macros EXP16, USE_DLL16 und MAKE_DLL16 for very old compilers were removed.

Improvements of swetest:
- With calculations depending on geographic positions such as risings and local eclipses, an output line indicating
the geographic position has been added. Those who use swetest system calls in their software (which we actually
do not recommend) should test if this does not create.

- The output header of swetest now shows both true and mean epsilon.

- swetest option -sidudef[jd,ay0,...] allows user-defined ayanamsha. For detailed
 info about this option call swetest -h.

Changes from version 2.07 to 2.07.01
- Changes for compatibility with Microsoft Visual C. Affected functions are: swe_fixstar2(), swe_fixstar2_ut(),
swe_fixstar2_mag().
- Minor bugfixes in the functions swe_fixstar_ut(), swe_fixstar2_ut() and swe_fixstar2(). In particular, calls of the
_ut functions with sequential star numbers did not work properly. This was an older bug, introduced with version
2.02.01 (where it appeared in function swe_fixstar_ut()).
- Wrong leapsecond (20171231) removed from swedate.c. Affeced functions were: swe_utc_to_jd(),
swe_jdet_to_utc(), swe_jdut1_to_utc().

Changes from version 2.06 to 2.07
- Greatly enhanced performance of swe_rise_trans() with calculations of risings and settings of planets except for
high geographic latitudes.

- New functions swe_fixstar2(), swe_fixstar2_ut(), and swe_fixstar2_mag() with greatly increased performance.
Important additional remarks are given further below.

- Fixed stars data file sefstars.txt was updated with new data from SIMBAD database.

- swe_fixstar(): Distances (in AU) and daily motions of the stars have been added to the return array. The daily
motions contain components of precession, nutation, aberration, parallax and the proper motions of the stars.
The usage of correct fixed star distances leads to small changes in fixed star positions and calculations of
occultations of stars by the Moon (in particular swe_lun_occult_when_glob()).

Swiss Ephemeris 75
To transform the distances from AU into lightyears or parsec, please use the following defines, which are in
swephexp.h:
#define AUNIT_TO_LIGHTYEAR (1.0/63241.077088071)
#define AUNIT_TO_PARSEC (1.0/206264.8062471)

- There was a bug with daily motions of planets in sidereal mode: They contained precession! (Nobody ever
noticed or complained for almost 20 years!)

- In JPL Horizons mode, the Swiss Ephemeris now reproduces apparent position as provided by JPL Horizons
with an accuracy of a few milliseconds of arc for its whole time range. Until SE 2.06 this has been possible only
after 1800. Please note, this applies to JPL Horizons mode only (SEFLG_JPLHOR and
SEFLG_JPLHOR_APPROX together with an original JPL ephemeris file; or swetest -jplhor, swetest -jplhora). Our
default astronomical methods are those of IERS Conventions 2010 and Astronomical Almanac, not those of JPL
Horizons.

- After consulting with sidereal astrologers, we have changed the behaviour of the function
swe_get_ayanamsa_ex(). See programmer's documentation swephprg.htm, chap. 10.2. Note this change has no
impact on the calculation of planetary positions, as long as you calculate them using the sidereal flag
SEFLG_SIDEREAL.

- New ayanamsha added:
 "Vedic" ayanamsha according to Sunil Sheoran (SE_SIDM_TRUE_SHEORAN)
 It must be noted that in Sheoran's opinion 0 Aries = 3°20' Ashvini. The user has to carry the responsibility to
correctly handle this problem. For calculating a planet's nakshatra position correctly, we recommend the use
 of the function swe_split_deg() with parameter roundflag |= SE_SPLIT_DEG_NAKSHATRA or roundflag |= 1024.
This will handle Sheoran’s ayanamsha correctly.
 For more information about this and other ayanamshas, I refer to the general documentation chap. 2.7 or my
article on ayanamshas here: https://www.astro.com/astrology/in_ayanamsha_e.htm

- Function swe_rise_trans() has two new flags:
 SE_BIT_GEOCTR_NO_ECL_LAT 128 /* use geocentric (rather than topocentric) position of
 object and ignore its ecliptic latitude */
 SE_BIT_HINDU_RISING /* calculate risings according to Hindu astrology */

- Of course, as usual, leap seconds and Delta T have been updated.

- Calculation of heliacal risings using swe_heliacal_ut() now also works with Bayer designations, with an initial
comma, e.g. “,alTau”.

- Problem left undone:
Janez Križaj noticed that in the remote past the ephemeris of the Sun has some unusual ecliptic latitude, which
amounts to +-51 arcsec for the year -12998. This phenomenon is due to an intrinsic inaccuracy of the precession
theory Vondrak 2011 and therefore we do not try to fix it. While the problem could be avoided by using some
older precession theory such as Laskar 1986 or Owen 1990, we give preference to Vondrak 2011 because it is in
very good agreement with precession IAU2006 for recent centuries. Also, the “problem” (a very small one)
appears only in the very remote past, not in historical epochs.

Important additional information on the new function swe_fixstar2() and its derivatives with increased
performance:
Some users had criticised that swe_fixstar() was very inefficient because it reopened and scanned the file
sefstars.txt for each fixed star to be calculated. With version 2.07, the new function swe_fixstar2() reads the whole
file the first time it is called and saves all stars in a sorted array of structs. Stars are searched in this list using the
binary search function bsearch(). After a call of swe_close() the data will be lost. A new call of swe_fixstar2() will
reload all stars from sefstars.txt.

The declaration of swe_fixstar2() is identical to old swe_fixstar(), but its behaviour is slightly different:
Fixed stars can be searched by
 - full traditional name
 - Bayer/Flamsteed designation
 - traditional name with wildcard character '%'
 (With previous versions, search string "aldeb" provided the star Aldebaran. This does not work anymore. For
abbreviated search strings, a ‘%’ wildcard must, be added, e.g. "aldeb%".)

With the old swe_fixstar(), it was possible to use numbers as search keys. The function then returned the n-th star
it found in the list. This functionality is still available in the new version of the function, but the star numbering does

https://www.astro.com/astrology/in_ayanamsha_e.htm

Swiss Ephemeris 76
no longer follow the order of the stars in the file, but the order of the sorted Bayer designations. Nevertheless this
feature is very practical if one wants to create a list of all stars.
 for i=1; i<10000; i++) { // choose any number greater than number of lines (stars) in file
 sprintf(star, "%d", i);
 returncode = swe_fixstar2(star, tjd, ...);
 … whatever you want to do with the star positons …
 if (returncode == ERR)
 break;
 }

Changes from version 2.05.01 to 2.06
New calculation of Delta T, according to:
Stephenson, F.R., Morrison, L.V., and Hohenkerk, C.Y., "Measurement of the Earth's Rotation: 720 BC to AD
2015", published by Royal Society Proceedings A and available from their website at
 http://rspa.royalsocietypublishing.org/content/472/2196/20160404
 http://astro.ukho.gov.uk/nao/lvm/
 http://astro.ukho.gov.uk/nao/lvm/Table-S15.txt
This publication provides algorithms for Delta T from 721 BCE to 2016 CE based on historical observations of
eclipses and occulations, as well as a parabolic function for epochs beyond this time range.
The new Swiss Ephemeris uses these algorithms before 1 Dec. 1955 and then switches over to values provided
by Astronomical Almanac 1986(etc.) pp. K8-K9 and values from IERS.

Delta T values from 1973 to today have been updated by values from IERS, with four-digit accuracy. Two small
bugs that interpolates these tabulated data have been fixed. Changes in Delta T within this time range are smaller
than 5 millisec. The accuracy possible with 1-year step width is about 0.05 sec. For better accuracy, we would
have to implement a table of monthly or daily delta t values.

Time conversions from or to UTC take into account the leap second of 31 Dec 2016.

Minor bug fixes in heliacal functions. E.g., heliacal functions now work with ObjectName in uppercase or
lowercase.

Function swe_house_pos() now provides geometrically correct planetary house positions also for the house
methods I, Y, S (Sunshine, APC, Scripati).

House method N (1 = 0° Widder) did not work properly with some sidereal zodiac options.

swe_houses_ex() with sidereal flag and rarely used flags SE_SIDBIT_ECL_T0 or SE_SIDBIT_SSY_PLANE
returned a wrong ARMC.

Better behaviour of swetest -rise in polar regions.

swetest understands a new parameter -utcHH:MM:SS, where input time is understood as UTC (whereas -
utHH:MM:SS understands it as UT1). Note: Output of dates is always in UT1.

About 110 fixed stars were added to file sefstars.txt.

Changes from version 2.05 to 2.05.01
Bug in new function swe_orbit_max_min_true_distance() has been fixed.

Changes from version 2.04 to 2.05
Starting with release 2.05, the special unit test system setest designed and developed by Rüdiger Plantiko is
used by the developers. This improves the reliability of the code considerably and has led to the discovery of
multiple bugs and inconsistencies.
Note: setest is not to be confused with swetest, the test command-line utility program.

Bug fixes and new features:

1) The Fixed stars file sefstars.txt was updated with new data from the Simbad Database. Some errors in the
file were fixed.

Swiss Ephemeris 77
2) Topocentric positons of planets: The value of speed was not very good. This problem was found by Igor
"TomCat" Germanenko in March 2015. A more accurate calculation of speed from three positions has now been
implemented.

In addition, topocentric positions had an error < 1 arcsec if the function swe_calc() was called without
SEFLG_SPEED. This problem was found by Bernd Müller and has now been fixed.

3) Initial calls of the Swiss Ephemeris: Some problems were fixed which appeared when users did calculations
without opening the Swiss, i.e. without calling the function swe_set_ephe_path().

Note: It is still strongly recommended to call this function in the beginning of an application in order to make sure
that the results are always consistent.

4) New function swe_get_orbital_elements() calculates osculating Kepler elements and some other data for
planets, Earth-Moon barycentre, Moon, and asteroids. The program swetest has a new option -orbel that displays
these data.

New function swe_orbit_max_min_true_distance() provides maximum, minimum, and true distance of a planet,
on the basis of its osculating ellipse.The program swetest, when called with the option -fq, displays a relative
distance of a planet (0 is maximum distance, 1000 is minimum distance).

5) New house methods were added:
 F - Carter poli-equatorial house system
 D - Equal houses, where cusp 10 = MC
 I - Sunshine
 N - Equal houses, where cusp 1 = 0 Aries
 L - Pullen SD (sinusoidal delta) = ex Neo-Porphyry
 Q - Pullen SR (sinusoidal ratio)
 S - Sripati
Note:
- Sunshine houses require some special handling with the functions swe_houses_armc() and
swe_house_pos(). Detailed instructions are given in the Programmer's Manual.
- Until version 2.04, the function swe_house_pos() has provided Placidus positions for the APC method. From
version 2.05 on, it provides APC positions, but using a simplified method, namely the position relative to the house
cusp and the house size. This is not really in agreement with the geometry of the house system.
- The same simplified algorithm has been implemented for the following house methods:
 Y APC, I Sunshine, L Pullen SD, Q Pullen SR, S Sripati
 We hope to implement correct geometrical algorithms with time.

- Minor bugfixes with houses:
 - APC houses had nan (not a number) values at geographic latitude 0.
 - APC houses had inaccurate MC/IC at geographic latitude 90.
 - Krusinski houses had wrong (opposite) house posititions with
 function swe_house_pos() at geographic latitude 0.0.

6) Sidereal zodiac defined relative to UT or TT:
A problem found by Parashara Kumar with the ayanamsha functions: The function swe_get_ayanamsha()
requires TT (ET), but some of the ayanamshas were internally defined relative to UT. Resulting error in
ayanamsha were about 0.01 arcsec in 500 CE. The error for current dates is about 0.0001 arcsec.

The internal definitions of the ayanamshas has been changed and can be based either on UT or on TT.

Nothing changes for the user, except with user-defined ayanamshas. The t0 used in swe_set_sidmode() is
considered to be TT, except if the new bit flag SE_SIDBIT_USER_UT (1024) is or'ed to the parameter sid_mode.

7) Ayanamshas: Some ayanamshas were corrected:
 - The "True Revati Ayanamsha" (No. 28) (had the star at 0 Aries instead of 29°50' Pisces.
 - The Huber Babylonian ayanamsha (No. 12) has been wrong for many years by 6 arc min. This error was
caused by wrong information in a publication by R. Mercier. The correction was made according to Huber's
original publiation. More information is given in the General Documentation of the Swiss Ephemeris.
 - Ayanamsha having Galactic Centre at 0 Sagittarius (No. 17) has been changed to a "true" ayanamsha that has
the GC always at 0 Sag.

In addition, the following ayanamshas have been added:
 - Galactic ayanamsha (Gil Brand) SE_SIDM_GALCENT_RGBRAND
 - Galactic alignment (Skydram/Mardyks) SE_SIDM_GALALIGN_MARDYKS

Swiss Ephemeris 78
 - Galactic equator (IAU 1958) SE_SIDM_GALEQU_IAU1958
 - Galactic equator true/modern SE_SIDM_GALEQU_TRUE
 - Galactic equator in middle of Mula SE_SIDM_GALEQU_MULA
 - True Mula ayanamsha (Chandra Hari) SE_SIDM_TRUE_MULA
 - Galactic centre middle Mula (Wilhelm) SE_SIDM_GALCENT_MULA_WILHELM
 - Aryabhata 522 SE_SIDM_ARYABHATA_522
 - Babylonian Britton SE_SIDM_BABYL_BRITTON
 More information about these ayanamshas is given in the General Documentation of the Swiss Ephemeris.

8) _TRUE_ ayanamshas algorithm (True Chitra, True Revati, True Pushya, True Mula, Galactic/Gil Brand,
Galactic/Wilhelm) always keep the intended longitude, with or without the following iflags: SEFLG_TRUEPOS,
SEFLG_NOABERR, SEFLG_NOGDEFL.

So far, the True Chitra ayanamsha had Spica/Chitra at 180° exactly if the apparent position of the star was
calculated, however not if the true position (without aberration/light deflection) was calculated. However, some
people may find it more natural if the star’s true true position is exactly at 180°.

9) Occultation function swe_lun_occult_when_loc():
- Function did not correctly detect daytime occurrence with partial occultations (a rare phenomenon).
- Some rare occultation events were missed by the function.
 As a result of the changes three are very small changes in the timings of the events.

- Occultation of fixed stars have provided four contacts instead of two. Now there are only two contacts.

10) Magnitudes for Venus and Mercury have been improved according to Hilten 2005.
The Swiss Ephemeris now provides the same magnitudes as JPL's Horizons System.

11) Heliacal functions: A few bugs discovered by Victor Reijs have been fixed, which however did not become
appearant very often.

12) User-defined Delta T: For archaeoastronomy (as suggested by Victor Reijs) a new function
swe_set_delta_t_userdef() was created that allows the user to set a particular value for delta t.

13) Function swe_nod_aps(): a bug was fixed that occurred with calculations for the EMB.

14) New function swe_get_library_path(): The function returns the path in which the executable resides. If it is
running with a DLL, then returns the path of the DLL.

Changes from version 2.03 to 2.04
The DLL of version 2.03 is not compatible with existing software. In all past versions, the function names in
the DLL were “decorated” (i.e. they had an initial ‘_’ and a final ‘@99’). However, version 2.03 had the function
names “undecorated”. This was a result of the removal of the PASCAL keyword from the function declarations.
Because of this, the DLL was created with the __cdecl calling convention whereas with the PASCAL keyword it
had been created with the __stdcall calling convention.

Since VBA requires __stdcall, we return to __stdcall and to decorated function names.
The macro PASCAL_CONV, which had been misleading, was renamed as CALL_CONV.

Changes from version 2.02.01 to 2.03
This is a minor release, mainly for those who wish a thread-safe Swiss Ephemeris. It was implemented according
to the suggestions made by Rüdiger Plantico and Skylendar. Any errors might be Dieter Koch’s fault. On our Linux
system, at least, it seems to work.

However, it seems that that we cannot build a thread-safe DLL inhouse at the moment. If a group member could
provide a thread-safe DLL, that could be added to the Swiss Ephemeris download area.

Other changes:

FAR, PASCAL, and EXP16 macros in function declarations were removed.

Minor bug fixes:

Swiss Ephemeris 79
 - swe_calc_ut(): With some nonsensical SEFLG_ combinations, such as a combination of several ephemeris
flags, slightly inconsistent results were returned.
 - swe_calc(planet) with SEFLG_JPLEPH: If the function was called with a JD beyond the ephemeris range, then
a subsequent call of swe_calc(SE_SUN) for a valid JD would have provided wrong result. This was a very old
bug, found by Anner van Hardenbroek.

Note, other issues that have been discussed recently or even longer ago had to be postponed.

Changes from version 2.02 to 2.02.01
- For better backward-compatibilty with 2.0x, the behaviour of the old Delta T function swe_deltat() has been
modified as follows:
 swe_deltat() assumes
 SEFLG_JPLEPH, if a JPL file is open;
 SEFLG_SWIEPH, otherwise.
 Usually, this modification does not result in values different from those provided by former versions SE 2.00
 and 2.01.
Note, SEFLG_MOSEPH is never assumed by swe_deltat(). For consistent handling of ephemeris-dependent
Delta T, please use the new Delta T function swe_deltat_ex(). Or if you understand the lunar tidal acceleration
problem, you can use swe_set_tid_acc() to define the value you want.

- With version 2.02, software that does not use swe_set_ephe_path() or swe_set_jpl_file() to initialise the Swiss
Ephemeris may fail to calculate topocentric planets with swe_calc() or swe_calc_ut() (return value ERR). Version
2.02.01 is more tolerant again.

- Ayanamshas TRUE_REVATI, TRUE_PUSHYA now also work if not fixed stars file is found in the ephemeris
path. With TRUE_CHITRA, this has been the case for longer.

- Bug fixed: since version 2.00, the sidereal modes TRUE_CHITRA, TRUE_REVATI, TRUE_PUSHYA provided
wrong latitude and speed for the Sun.

Thanks to Thomas Mack for some contributions to this release.

Changes from version 2.01 to 2.02
Many thanks to all who have contributed bug reports, in particular Thomas Mack, Bernd Müller, and Anner van
Hardenbroek.

Swiss Ephemeris 2.02 contains the following updates:

- A bug was fixed in sidereal time functions before 1850 and after 2050. The bug was a side effect of some
 other bug fix in Version 2.01. The error was smaller than 5 arc min for the whole time range of the ephemeris.
 The bug also resulted in errors of similar size in azimuth calculations before 1850 and after 2050.
 Moreover, the bug resulted in errors of a few milliarcseconds in topocentric planetary positions before 1850 and
 after 2050.
 In addition, the timings of risings, settings, and local eclipses may be slightly affected, again only before
 1850 and after 2050

- A bug was fixed that sometimes resulted in a program crash when function calls with different ephemeris flags
 (SEFLG_JPLEPH, SEFLG_SWIEPH, and SEFLG_MOSEPH) were made in sequence.

- Delta T functions:
 - New function swe_deltat_ex(tjd_ut, ephe_flag, serr), where ephe_flag is one of the following:
 SEFLG_SWIEPH, SEFLG_JPLEPH, SEFLG_MOSEPH, and serr the usual string for error messages.
 It is wise to use this new function instead of the old swe_deltat(), especially if one uses more than one
 ephemeris or wants to compare different ephemerides in UT.
 Detailed explanations about this point are given further below in the general remark concerning Swiss
 Ephemeris 2.02 and above in chap. 8 (on Delta T functions).
 - The old function swe_deltat() was slightly modified. It now assumes
 SEFLG_JPLEPH, if a JPL file is open;
 SEFLG_SWIEPH, if a Swiss Ephemeris sepl* or semo* file is found;
 SEFLG_MOSEPH otherwise.
 Usually, this modification does not result in values different from those provided by former versions SE 2.00
 and 2.01.

Swiss Ephemeris 80
- Ayanamsha functions:
 - New functions swe_get_ayanamsa_ex(), swe_get_ayanamsa_ex_ut() had to be introduced for similar reasons
 as swe_deltat_ex(). However, differences are very small, especially for recent dates.
 For detailed explanations about this point, see general remarks further below.
 - The old function swe_get_ayanamsa() was modified in a similar way as swe_deltat().
 Usually, this modification does not result in different results.

- Eclipse and occultation functions:
 - Searches for non-existing events looped through the whole ephemeris.
 With version 2.02, an error is returned instead.
 - Simplified (less confusing) handling of search flag in functions
 swe_sol_eclipse_when_glob() and swe_lun_occult_when_glob()
 (of course backward compatible)
 - fixed bug: swe_lun_occult_when_loc() has overlooked some eclipses in polar regions (bug introduced in Swiss
 Ephemeris 2.01)

- SEFLG_JPLHOR also works in combination with SEFLG_TOPOCTR

- swetest:
 - The parameter -at(pressure),(temperature) can also be used with calculation of risings and altitudes of
 planets.
 - Some rounding errors in output were corrected.

- swemptab.c was renamed swemptab.h.

- Small correction with SEFLG_MOSEPH: frame bias was not correctly handled so far. Planetary positions
 change by less than 0.01 arcsec, which is far less than the inaccuracy of the Moshier ephemeris.

A general remark concerning Swiss Ephemeris 2.02:

Since Swiss Ephemeris 2.0, which can handle a wide variety of JPL ephemerides, old design deficiencies of some
functions, in particular swe_deltat(), have become incommoding under certain circumstances. Problems may
(although need not) have occurred when the user called swe_calc_ut() or swe_fixstar_ut() for the remote past or
future or compared planetary positions calculated with different ephemeris flags (SEFLG_SWIEPH,
SEFLG_JPLEPH, SEFLG_MOSEPH).

The problem is that the Delta T function actually needs to know what ephemeris is being used but does not have
an input parameter ephemeris_flag. Since Swiss Ephemeris 2.00, the function swe_deltat() has therefore made a
reasonable guess what kind of ephemeris was being used, depending on the last call of the function
swe_set_ephe_path(). However, such guesses are not necessarily always correct, and the functions may have
returned slightly inconsistent return values, depending on previous calculations made by the user. Although the
resulting error will be always smaller than the inherent inaccuracy in historical observations, the design of the
function swe_deltat() is obviously inappropriate.

A similar problem exists for the function swe_get_ayanamsa() although the possible inconsistencies are very
small.

To remedy these problems, Swiss Ephemeris 2.02 introduces new functions for the calculation of Delta T and
ayanamsha:
swe_deltat_ex(),
swe_get_ayanamsa_ex_ut(), and
swe_get_ayanamsa_ex()
(The latter is independent of Delta T, however some ayanamshas like True Chitrapaksha depend on a precise
fixed star calculation, which requires a solare ephemeris for annual aberration. Therefore, an ephemeris flag is
required.)

Of course, the old functions swe_deltat(), swe_get_ayanamsa(), and swe_get_ayanamsa_ut() are still supported
and work without any problems as long as the user uses only one ephemeris flag and calls the function
swe_set_ephe_path() (as well swe_set_jpl_file() if using SEFLG_JPLEPH) before calculating Delta T and
planetary positions. Nevertheless, it is recommended to use the new functions swe_deltat_ex(),
swe_get_ayanamsa_ex(), and swe_get_ayanamsa_ex_ut() in future projects.

Also, please note that if you calculate planets using swe_calc_ut(), and stars using swe_fixststar_ut(), you usually
need not worry about Delta T and can avoid any such complications.

Swiss Ephemeris 81

Changes from version 2.00 to 2.01
Many thanks to those who reported bugs or made valuable suggestions. And I apologise if I forgot to mention
some name.

Note: Still unsolved is the problem with the lunar node with SEFLG_SWIEPH, discovered recently by Mihai (I don't
know his full name).
https://groups.yahoo.com/neo/groups/swisseph/conversations/topics/4829?reverse=1
This problem, which has existed "forever", is tricky and will take more time to solve.

Improvements and updates:

- Lunar tidal acceleration for DE431 was updated to -25.8 arcsec/cty^2.
 IPN Progress Report 42-196, February 15, 2014, p. 15: W.M. Folkner & alii, “The Planetary and Lunar
Ephemerides DE430 and DE431”.

- leap seconds of 2012 and 2015 added. (Note, users can add future leap seconds themselves in file
seleapsec.txt.

- New values for Delta T until 2015, updated estimations for coming years.

- #define NO_JPL was removed

- True Pushya paksha ayanamsha added, according to PVR Narasimha Rao.

Fixes for bugs introduced with major release 2.0:

- Topocentric speed of planets was buggy after 2050 and before 1850, which was particularly obvious with slow
planets like Neptune or Pluto. (Thanks to Igor "TomCat" Germanenko for pointing out this bug.)
 This was caused by the new (since 2.0) long-term algorithm for Sidereal Time, which interfered with the function
swe_calc().

- Topocentric positions of the *Moon* after 2050 and before 1850 had an error of a few arc seconds, due to the
same problem. With the Sun and the planets, the error was < 0.01 arcsec.

- Another small bug with topocentric positions was fixed that had existed since the first release of topocentric
calculations, resulting in very small changes in position for the whole time range of the ephemeris.
 Errors due to this bug were < 0.3 arcsec for the Moon and < 0.001" for other objects.

- A small bug in the new long-term algorithm for Sidereal Time, which is used before 1850 and after 2050, was
fixed. The error due to this bug was < 0.1 degree for the whole ephemeris time range.

- Since Version 2.0, swe_set_tid_acc() did not work properly anymore, as a result of the new mechanism that
chooses tidal acceleration depending on ephemeris. However, this function is not really needed anymore.

- Sidereal modes SE_SIDBIT_ECL_T0, SE_SIDBIT_SSY_PLANE did not work correctly anymore with
ayanamshas other than Fagan/Bradley.

- Ephemeris time range was corrected for a few objects:
 Chiron ephemeris range defined as 675 AD to 4650 AD.
 Pholus ephemeris range defined as -2958 (2959 BC) to 7309 AD.
 Time range of interpolated lunar apside defined as -3000 (3001 BC) to 3000 AD.

- Suggestion by Thomas Mack, concerning 32-bit systems:
 "... #define _FILE_OFFSET_BITS 64
 has to appear before(!) including the standard libraries. ... You then can compile even on 32 bit systems without
any need for work arounds."

Fixes for other bugs (all very old):

- Function swe_lun_eclipse_when_loc(): From now on, an eclipse is considered locally visible if the whole lunar
disk is above the local geometric horizon. In former versions, the function has returned incorrect data if the eclipse
ended after the rising of the upper and the rising of the lower limb of the moon or if it began between the setting of
the lower and the setting of the upper limb of the moon.

- The same applies for the function swe_sol_eclipse_when_loc(), which had a similar problem.

Swiss Ephemeris 82

- Some solar and lunar eclipses were missing after the year 3000 CE.
 The following functions were affected:
 swe_lun_eclipse_when(), swe_sol_eclipse_when_glob(), swe_sol_eclipse_when_loc()
 There was no such problem with the remote past, only with the remote future.

- Functions swe_lunar_occult_when_glob() and swe_lunar_occult_when_loc() were improved. A better handling
of rare or impossible events was implemented, so that infinite loops are avoided. For usage of the function, see
example in swetest.c and programmers docu. The flag SE_ECL_ONE_TRY must be used, and the return value
checked, unless you are really sure that events do occur.

- swe_nod_aps() now understands iflag & SEFLG_RADIANS

- In swetest, are rounding bug in degrees, minutes, seconds fixed.
 180.0000000000000 could have been printed as "179°59'59.1000".

Changes from version 1.80 to 2.00
This is a major release which makes the Swiss Ephemeris fully compatible with JPL Ephemeris DE430/DE431.
A considerable number of functions were updated. That should not be a problem for existing applications.
However, the following notes must be made:

1. New ephemeris files sepl*.se1 and semo*.se1 were created from DE431, covering the time range from 11 Aug.
-12999 jul. (= 4 May -12999 greg.) to 7 Jan. 16800. For consistent ephemerides, users are advised to use
either old sepl* and semo* files (based on DE406) or new files (based on DE431) but not mix old and new
ones together. The internal handling of old and new files is not 100% identical (because of 3. below).

2. Because the time range of DE431 is a lot greater than that of DE406, better algorithms had to be implemented
for objects not contained in JPL ephemerides (mean lunar node and apogee). Also, sidereal time and the
equation of time had to be updated in order to give sensible results for the whole time range. The results may
slightly deviate from former versions of the Swiss Ephemeris, even for epochs inside the time range of the old
ephemeris.

3. Until version 1.80, the Swiss Ephemeris ignored the fact that the different JPL ephemerides have a different
inherent value of the tidal acceleration of the Moon. Calculations of Delta T must be adjusted to this value in order
to get best results for the remote past, especially for ancient observations of the Moon and eclipses. Version 2.0
might result in slightly different values for Deltat T when compared with older versions of the Swiss Ephemeris.
The correct tidal acceleration is automatically set in the functions swe_set_ephe_path() and swe_set_jpl_file(),
depending on the available lunar ephemeris. It can also be set using the function swe_set_tid_acc(). Users who
work with different ephemerides at the same time, must be aware of this issue. The default value is that of
DE430.

New functionality and improvements:

- Former versions of the Swiss Ephemeris were able to exactly reproduce ephemerides of the Astronomical
Almanac. The new version also supports apparent position as given by the JPL Horizons web interface
(http://ssd.jpl.nasa.gov/horizons.cgi). Please read the chapter 2.4.5.i in this file above.

- swe_sidtime() was improved so that it give sensible results for the whole time range of DE431.

- swe_time_equ() was improved so that it give sensible results for the whole time range of DE431.
- New functions swe_lmt_to_lat() and swe_lat_to_lmt() were added. They convert local mean time into local
apparent time and reverse.

- New function swe_lun_eclipse_when_loc() provides lunar eclipses that are observable at a given geographic
position.

- New ayanamsha SE_SID_TRUE_CITRA (= 27, “true chitrapaksha ayanamsha”). The star Spica is always
exactly at 180°.
- New ayanamsha SE_SIDM_TRUE_REVATI (= 28), with the star Revati (zeta Piscium) always exactly at 0°.

Bug fixes:

http://ssd.jpl.nasa.gov/horizons.cgi

Swiss Ephemeris 83
- swetest.c, line 556: geopos[10], array size was too small in former versions
- swetest.c, option -t[time] was buggy

- a minor bugfix in swe_heliacal_ut(): in some cases, the morning last of the Moon was not found if visibility was
bad and the geographic latitude was beyond 50N/S.

- unused function swi_str_concat() was removed.

Changes from version 1.79 to 1.80
- Security update: improved some places in code where buffer overflow could occur (thanks to Paul Elliott)
- APC house system
- New function swe_house_name(), returns name of house method
- Two new ayanamshas: Suryasiddhantic Revati (359’50 polar longitude) and Citra (180° polar longitude)
- Bug fix in swehel.c, handling of age of observer (thanks to Victor Reijs).
- Bug fix in swe_lun_occult_when_loc(): correct handling of starting date (thanks to Olivier Beltrami)

Changes from version 1.78 to 1.79
- Improved precision in eclipse calculations: 2nd and 3rd contact with solar eclipses, penumbral and partial phases
with lunar eclipses.
- Bug fix in function swe_sol_eclipse_when_loc().If the local maximum eclipse occurs at sunset or sunrise, tret[0]
now gives the moment when the lower limb of the Sun touches the horizon. This was not correctly implemented in
former versions
- Several changes to C code that had caused compiler warnings (as proposed by Torsten Förtsch).
- Bug fix in Perl functions swe_house() etc. These functions had crashed with a segmention violation if called with
the house parameter ‘G’.
- Bug fix in Perl function swe_utc_to_jd(), where gregflag had been read from the 4th instead of the 6th parameter.
- Bug fix in Perl functions to do with date conversion. The default mechanism for gregflag was buggy.
- For Hindu astrologers, some more ayanamshas were added that are related to Suryasiddhanta and Aryabhata
and are of historical interest.

Changes from version 1.77 to 1.78
- precession is now calculated according to Vondrák, Capitaine, and Wallace 2011.
- Delta t for current years updated.
- new function: swe_rise_trans_true_hor() for risings and settings at a local horizon with known height.
- functions swe_sol_eclipse_when_loc(), swe_lun_occult_when_loc(): return values tret[5] and tret[6] (sunrise and
sunset times) added, which had been 0 so far.
- function swe_lun_eclipse_how(): return values attr[4-6] added (azimuth and apparent and true altitude of moon).
- Attention with swe_sol_eclipse_how(): return value attr[4] is azimuth, now measured from south, in agreement
with the function swe_azalt() and swe_azalt_rev().
- minor bug fix in swe_rise_trans(): twilight calculation returned invalid times at high geographic latitudes.
- minor bug fix: when calling swe_calc() 1. with SEFLG_MOSEPH, 2. with SEFLG_SWIEPH, 3. again with
SEFLG_MOSEPH, the result of 1. and 3. were slightly different. Now they agree.
- minor bug fix in swe_houses(): With house methods H (Horizon), X (Meridian), M (Morinus), and geographic
latitudes beyond the polar circle, the ascendant was wrong at times. The ascendant always has to be on the
eastern part of the horizon.

Changes from version 1.76 to 1.77
- Delta T:
 - Current values were updated.
 - File sedeltat.txt understands doubles.
 - For the period before 1633, the new formulae by Espenak and Meeus (2006) are used. These formulae were
derived from Morrison & Stephenson (2004), as used by the Swiss Ephemeris until version 1.76.02.
 - The tidal acceleration of the moon contained in LE405/6 was corrected according to Chapront/Chapront-
Touzé/Francou A&A 387 (2002), p. 705.

- Fixed stars:
 - There was an error in the handling of the proper motion in RA. The values given in fixstars.cat, which are taken
from the Simbad database (Hipparcos), are referred to a great circle and include a factor of cos(d0).

Swiss Ephemeris 84
 - There is a new fixed stars file sefstars.txt. The parameters are now identical to those in the Simbad database,
which makes it much easier to add new star data to the file. If the program function swe_fixstars() does not find
sefstars.txt, it will try the the old fixed stars file fixstars.cat and will handle it correctly.
 - Fixed stars data were updated, some errors corrected.
 - Search string for a star ignores white spaces.

- Other changes:
 - New function swe_utc_time_zone(), converts local time to UTC and UTC to local time. Note, the function has
no knowledge about time zones. The Swiss Ephemeris still does not provide the time zone for a given place and
time.
 - swecl.c:swe_rise_trans() has two new minor features: SE_BIT_FIXED_DISC_SIZE and
SE_BIT_DISC_BOTTOM (thanks to Olivier Beltrami)
 - minor bug fix in swemmoon.c, Moshier's lunar ephemeris (thanks to Bhanu Pinnamaneni)
 - solar and lunar eclipse functions provide additional data:
 attr[8] magnitude, attr[9] saros series number, attr[10] saros series member number

Changes from version 1.75 to 1.76
New features:
- Functions for the calculation of heliacal risings and related phenomena, s. chap. 6.15-6.17.
- Functions for conversion between UTC and JD (TT/UT1), s. chap. 7.2 and 7.3.
- File sedeltat.txt allows the user to update Delta T himself regularly, s. chap. 8.3
- Function swe_rise_trans(): twilight calculations (civil, nautical, and astronomical) added
- Function swe_version() returns version number of Swiss Ephemeris.
- Swiss Ephemeris for Perl programmers using XSUB

Other updates:
- Delta T updated (-2009).

Minor bug fixes:
- swe_house_pos(): minor bug with Alcabitius houses fixed
- swe_sol_eclipse_when_glob(): totality times for eclipses jd2456776 and jd2879654 fixed (tret[4], tret[5])

Changes from version 1.74 to version 1.75
- The Swiss Ephemeris is now able to read ephemeris files of JPL ephemerides DE200 - DE421. If JPL will not
change the file structure in future releases, the Swiss Ephemeris will be able to read them, as well.

- Function swe_fixstar() (and swe_fixstar_ut()) was made slightly more efficient.

- Function swe_gauquelin_sector() was extended.

- Minor bug fixes.

Changes from version 1.73 to version 1.74
The Swiss Ephemeris is made available under a dual licensing system:
 a) GNU public license version 2 or later
 b) Swiss Ephemeris Professional License
For more details, see at the beginning of this file and at the beginning of every source code file.

Minor bug fixes:
- Bug in swe_fixstars_mag() fixed.
- Bug in swe_nod_aps() fixed. With retrograde asteroids (20461 Dioretsa, 65407 2002RP120), the calculation of
perihelion and aphelion was not correct.
- The ephemeris of asteroid 65407 2002RP120 was updated. It had been wrong before 17 June 2008.

Changes from version 1.72 to version 1.73
New features:
- Whole Sign houses implemented (W)
- swe_house_pos() now also handles Alcabitius house method
- function swe_fixstars_mag() provides fixed stars magnitudes

Swiss Ephemeris 85

Changes from version 1.71 to version 1.72
- Delta T values for recent years were updated
- Delta T calculation before 1600 was updated to Morrison/Stephenson 2004..
- New function swe_refract_extended(), in cooperation with archaeoastronomer Victor Reijs.
 This function allows correct calculation of refraction for altitudes above sea > 0, where the ideal horizon and
 Planets that are visible may have a negative height.
- Minor bugs in swe_lun_occult_when_glob() and swe_lun_eclipse_how() were fixed.

Changes from version 1.70.03 to version 1.71
In September 2006, Pluto was introduced to the minor planet catalogue and given the catalogue number 134340.
The numerical integrator we use to generate minor planet ephemerides would crash with 134340 Pluto, because
Pluto is one of those planets whose gravitational perturbations are used for the numerical integration. Instead of
fixing the numerical integrator for this special case, we chang the Swiss Ephemeris functions in such a way that
they treat minor planet 134340 Pluto (ipl=SE_AST_OFFSET+134340) as our main body Pluto
(ipl=SE_PLUTO=9). This also results in a slightly better precision for 134340 Pluto.

Swiss Ephemeris versions prior to 1.71 are not able to do any calculations for minor planet number 134340.

Changes from version 1.70.02 to version 1.70.03
Bug fixed (in swecl.c: swi_bias()): This bug sometimes resulted in a crash, if the DLL was used and the
SEFLG_SPEED was not set. It seems that the error happened only with the DLL and did not appear, when the
Swiss Ephemeris C code was directly linked to the application.

Code to do with (#define NO_MOSHIER) war removed.

Changes from version 1.70.01 to version 1.70.02
Bug fixed in speed calculation for interpolated lunar apsides. With ephemeris positions close to 0 Aries, speed
calculations were completely wrong. E.g. swetest -pc -bj3670817.276275689 (speed = 1448042° !)
Thanks, once more, to Thomas Mack, for testing the software so well.

Changes from version 1.70.00 to version 1.70.01
Bug fixed in speed calculation for interpolated lunar apsides. Bug could result in program crashes if the speed flag
was set.

Changes from version 1.67 to version 1.70
Update of algorithms to IAU standard recommendations:
All relevant IAU resolutions up to 2005 have been implemented. These include:
- the "frame bias" rotation from the JPL reference system ICRS to J2000. The correction of position ~= 0.0068 arc
sec in right ascension.
- the precession model P03 (Capitaine/Wallace/Chapront 2003). The correction in longitude is smaller than 1 arc
second from 1000 B.C. on.
- the nutation model IAU2000B (can be switched to IAU2000A)
- corrections to epsilon
- corrections to sidereal time
- fixed stars input data can be "J2000" or "ICRS"
- fixed stars conversion FK5 -> J2000, where required
- fixed stars data file was updated with newer data
- constants in sweph.h updated
For more info, see the documentation swisseph.doc, chapters 2.1.2.1-3.

New features:
- Ephemerides of "interpolated lunar apogee and perigee", as published by Dieter Koch in 2000 (swetest -pcg).
 For more info, see the documentation swisseph.doc, chapter 2.2.4.
- House system according to Bogdan Krusinski (character ‘U’).
 For more info, see the documentation swisseph.doc, chapter 6.1.13.

Bug fixes:
- Calculation of magnitude was wrong with asteroid numbers < 10000 (10-nov-05)

Swiss Ephemeris 86

Changes from version 1.66 to version 1.67

Delta-T updated with new measured values for the years 2003 and 2004, and better estimates for 2005 and 2006.
Bug fixed #define SE_NFICT_ELEM 15

Changes from version 1.65 to version 1.66

New features:
House system according to Morinus (system ‘M’).

Changes from version 1.64.01 to version 1.65.00

‘long’ variables were changed to ‘INT32’ for 64-bit compilers.

Changes from version 1.64 to version 1.64.01

- Bug fixed in swe_fixstar(). Declinations between –1° and 0° were wrongly taken as positive.
Thanks to John Smith, Serbia, who found this bug.
- Several minor bug fixes and cosmetic code improvements suggested by Thomas Mack, Germany.
 swetest.c: options –po and –pn work now.
 Sweph.c: speed of mean node and mean lunar apogee were wrong in rare cases, near 0 Aries.

Changes from version 1.63 to version 1.64

New features:
1) Gauquelin sectors:
- swe_houses() etc. can be called with house system character ‘G’ to calculate Gauquelin sector boundaries.
- swe_house_pos() can be called with house system ‘G’ to calculate sector positions of planets.
- swe_gauquelin_sector() is new and calculates Gauquelin sector positions with three methods: without ecl.
latitude, with ecl. latitude, from rising and setting.

2) Waldemath Black Moon elements have been added in seorbel.txt (with thanks to Graham Dawson).

3) Occultations of the planets and fixed stars by the moon
- swe_lun_occult_when_loc() calculates occultations for a given geographic location
- swe_lun_occult_when_glob() calculates occultations globally

4) Minor bug fixes in swe_fixstar() (Cartesian coordinates), solar eclipse functions, swe_rise_trans()

5) sweclips.c integrated into swetest.c. Swetest now also calculates eclipses, occultations, risings and settings.

6) new Delta T algorithms

Changes from version 1.62 to version 1.63

New features:
The option –house was added to swetest.c so that swetest.exe can now be used to compute complete
horoscopes in textual mode.
Bux fix: a minor bug in function swe_co_trans was fixed. It never had an effect.

Changes from version 1.61.03 to version 1.62

New features:
1) Elements for hypothetical bodies that move around the earth (e.g. Selena/White Moon) can be added to the file
seorbel.txt.
2) The software will be able to read asteroid files > 55535.

Bug fixes:
1) error in geocentric planetary descending nodes fixed

Swiss Ephemeris 87
2) swe_calc() now allows hypothetical planets beyond SE_FICT_OFFSET + 15
3) position of hypothetical planets slightly corrected (< 0.01 arc second)

Changes from version 1.61 to 1.61.01

New features:
1. swe_houses and swe_houses_armc now supports the Alcabitus house system. The function swe_house_pos()
does not yet, because we wanted to release quickly on user request.

Changes from version 1.60 to 1.61

New features:
1. Function swe_rise_trans(): Risings and settings also for disc center and without refraction
2. “topocentric” house system added to swe_houses() and other house-related functions
3. Hypothetical planets (seorbel.txt), orbital elements with t terms are possible now (e.g. for Vulcan according to
L.H. Weston)

Changes from version 1.51 to 1.60

New features:

1. Universal time functions swe_calc_ut(), swe_fixstar_ut(), etc.

2. Planetary nodes, perihelia, aphelia, focal points

3. Risings, settings, and meridian transits of the Moon, planets, asteroids, and stars.

4. Horizontal coordinates (azimuth and altitude)
5. Refraction
6. User-definable orbital elements
7. Asteroid names can be updated by user
8. Hitherto missing "Personal Sensitive Points" according to M. Munkasey.

Minor bug fixes:

• Astrometric lunar positions (not relevant for astrology; swe_calc(tjd, SE_MOON, SEFLG_NOABERR))
had a maximum error of about 20 arc sec).

• Topocentric lunar positions (not relevant for common astrology): the ellipsoid shape of the earth was not
correctly implemented. This resulted in an error of 2 - 3 arc seconds. The new precision is 0.2 - 0.3 arc
seconds, corresponding to about 500 m in geographic location. This is also the precision that Nasa's Horizon
system provides for the topocentric moon. The planets are much better, of course.

• Solar eclipse functions: The correction of the topocentric moon and another small bug fix lead to slightly
different results of the solar eclipse functions. The improvement is within a few time seconds.

Changes from version 1.50 to 1.51
Minor bug fixes:

• J2000 coordinates for the lunar node and osculating apogee corrected. This bug did not affect ordinary
computations like ecliptical or equatorial positions.

• minor bugs in swetest.c corrected

• sweclips.exe recompiled

• trace DLLs recompiled

• some VB5 declarations corrected

Changes from version 1.40 to 1.50

New: SIDEREAL planetary and house position.

• The fixed star file fixstars.cat has been improved and enlarged by Valentin Abramov, Tartu, Estonia.

• Stars have been ordered by constellation. Many names and alternative spellings have been added.

• Minor bug fix in solar eclipse functions, sometimes relevant in border-line cases annular/total, partial/total.

• J2000 coordinates for the lunar nodes were redefined: In versions before 1.50, the J2000 lunar nodes were
the intersection points of the lunar orbit with the ecliptic of 2000. From 1.50 on, they are defined as the
intersection points with the ecliptic of date, referred to the coordinate system of the ecliptic of J2000.

Swiss Ephemeris 88

Changes from version 1.31 to 1.40
New: Function for several planetary phenomena added

Bug fix in swe_sol_ecl_when_glob(). The time for maximum eclipse at local apparent noon (tret[1]) was
sometimes wrong. When called from VB5, the program crashed.

Changes from version 1.30 to 1.31
New: Eclipse functions added.

Minor bug fix: with previous versions, the function swe_get_planet_name() got the name wrong, if it was an
asteroid name and consisted of two or more words (e.g. Van Gogh)

Changes from version 1.27 to 1.30
The time range of the Swiss Ephemeris has been extended by numerical integration. The Swiss Ephemeris now
covers the period 2 Jan 5401 BC to 31 Dec 5399 AD. To use the extended time range, the appropriate
ephemeris files must be downloaded.
In the JPL mode and the Moshier mode the time range remains unchanged at 3000 BC to 3000 AD.
 IMPORTANT

Chiron’s ephemeris is now restricted to the time range 650 AD – 4650 AD; for explanations, see swisseph.doc.
Outside this time range, Swiss Ephemeris returns an error code and a position value 0. You must handle this
situation in your application. There is a similar restriction with Pholus (as with some other asteroids).

Changes from version 1.26 to 1.27

The environment variable SE_EPHE_PATH is now always overriding the call to swe_set_ephe_path() if it is
set and contains a value.
Both the environment variable and the function argument can now contain a list of directory names where the
ephemeris files are looked for. Before this release, they could contain only a single directory name.

Changes from version 1.25 to 1.26

• The asteroid subdirectory ephe/asteroid has been split into directories ast0, ast1,... with 1000 asteroid files
per directory.

• source code is included with the distribution under the new licensing model

• the Placalc compatibility API (swepcalc.h) is now documented

• There is a new function to compute the equation of time swe_time_equ().

• Improvements of ephemerides:

• ATTENTION: Ephemeris of 16 Psyche has been wrong so far ! By a mysterious mistake it has been identical
to 3 Juno.

• Ephemerides of Ceres, Pallas, Vesta, Juno, Chiron and Pholus have been reintegrated, with more recent
orbital elements and parameters (e.g. asteroid masses) that are more appropriate to Bowells database of
minor planets elements. The differences are small, though.

• Note that the CHIRON ephemeris is should not be used before 700 A.D.

• Minor bug fix in computation of topocentric planet positions. Nutation has not been correcly considered in
observer’s position. This has lead to an error of 1 milliarcsec with the planets and 0.1” with the moon.

• We have inactivated the coordinate transformation from IERS to FK5, because there is still no generally
accepted algorithm. This results in a difference of a few milliarcsec from former releases.

Changes from version 1.22 to 1.23

• The topocentric flag now also works with the fixed stars. (The effect of diurnal aberration is a few 0.1 arc
second.)

• Bug fix: The return position of swe_cotrans_sp() has been 0, when the input distance was 0.

• About 140 asteroids are on the CD.

Changes from version 1.21 to 1.22

• Asteroid ephemerides have been moved to the ephe\asteroid.

• The DLL has been modified in such a way that it can find them there.

• All asteroids with catalogue number below 90 are on the CD and a few additional ones.

Changes from version 1.20 to 1.21

Sample program and function declarations for Delphi 1.0 added.

Swiss Ephemeris 89

Changes from version 1.11 to 1.20
New:

• A flag bit SEFLG_TOPOCTR allows to compute topocentric planet positions. Before calling swe_calc(), call

swe_set_topo.

• swe_house_pos for computation of the house position of a given planet. See description in

SWISSEPH.DOC, Chapter 3.1 ”Geocentric and topocentric positions”. A bug has been fixed that has
sometimes turned up, when the JPL ephemeris was closed. (An error in memory allocation and freeing.)

• Bug fix: swe_cotrans() did not work in former versions.

Changes from version 1.10 to 1.11
No bug fix, but two minor improvements:

• A change of the ephemeris bits in parameter iflag of function swe_calc() usually forces an implicit

swe_close() operation. Inside a loop, e.g. for drawing a graphical epehemeris, this can slow down a
program. Before this release, two calls with iflag = 0 and iflag = SEFLG_SWIEPH where considered different,

though in fact the same ephemeris is used. Now these two calls are considered identical, and swe_close() is
not performed implicitly.
For calls with the pseudo-planet-number ipl = SE_ECL_NUT, whose result does not depend on the chosen

ephemeris, the ephemeris bits are ignored completely and swe_close() is never performed implicitly.

• In former versions, calls of the Moshier ephemeris with speed and without speed flag have returned a very

small difference in position (0.01 arc second). The reason was that, for precise speed, swe_calc() had to do
an additional iteration in the light-time calculation. The two calls now return identical position data.

Changes from version 1.04 to 1.10

• A bug has been fixed that sometimes occurred in swe_calc() when the user changed iflag between calls,
e.g. the speed flag. The first call for a planet which had been previously computed for the same time, but a
different iflag, could return incorrect results, if Sun, Moon or Earth had been computed for a different time in
between these two calls.

• More asteroids have been added in this release.

Changes from Version 1.03 to 1.04

• A bug has been fixed that has sometimes lead to a floating point exception when the speed flag was not
specified and an unusual sequence of planets was called.

• Additional asteroid files have been included.

 Attention: Use these files only with the new DLL. Previous versions cannot deal with more than one additional
asteroid besides the main asteroids. This error did not appear so far, because only 433 Eros was on our CD-
ROM.

Changes from Version 1.02 to 1.03

• swe_fixstar() has a better implementation for the search of a specific star. If a number is given, the non-

comment lines in the file fixstars.cat are now counted from 1; they where counted from zero in earlier
releases.

• swe_fixstar() now also computes heliocentric and barycentric fixed stars positions. Former versions Swiss
Ephemeris always returned geocentric positions, even if the heliocentric or the barycentric flag bit was set.

• The Galactic Center has been included in fixstars.cat.

• Two small bugs were fixed in the implementation of the barycentric Sun and planets. Under unusual
conditions, e.g. if the caller switched from JPL to Swiss Ephemeris or vice-versa, an error of an arc second
appeared with the barycentric sun and 0.001 arc sec with the barycentric planets. However, this did not touch
normal geocentric computations.

• Some VB declarations in swedecl.txt contained errors and have been fixed. The VB sample has been
extended to show fixed star and house calculation. This fix is only in 1.03 releases from 29-oct-97 or later, not
in the two 1.03 CDROMs we burned on 28-oct-97.

Changes from Version 1.01 to 1.02

• The function swe_houses() has been changed.

• A new function swe_houses_armc() has been added which can be used when a sidereal time (armc) is
given but no actual date is known, e.g. for Composite charts.

Swiss Ephemeris 90

• The body numbers of the hypothetical bodies have been changed.

• The development environment for the DLL and the sample programs have been changed from Watcom 10.5
to Microsoft Visual C++ (5.0 and 1.5). This was necessary because the Watcom compiler created LIB files
which were not compatible with Microsoft C. The LIB files created by Visual C however are compatible with
Watcom.

Changes from Version 1.00 to 1.01

1. Sidereal time

The computation of the sidereal time is now much easier. The obliquity and nutation are now computed inside the

function. The structure of the function swe_sidtime() has been changed as follows:
/* sidereal time */
double swe_sidtime(double tjd_ut); /* Julian day number, UT */

The old functions swe_sidtime0() has been kept for backward compatibility.

2. Houses

The calculation of houses has been simplified as well. Moreover, the Vertex has been added.

The version 1.01 structure of swe_houses() is:
int swe_houses(
 double tjd_ut, /* julian day number, UT */
 double geolat, /* geographic latitude, in degrees */
 double geolon, /* geographic longitude, in degrees */
 char hsys, /* house method, one of the letters PKRCAV */
 double *asc, /* address for ascendant */
 double *mc, /* address for mc */
 double *armc, /* address for armc */
 double *vertex, /* address for vertex */
double *cusps); /* address for 13 doubles: 1 empty + 12 houses */

Note also, that the indices of the cusps have changed:

cusp[0] = 0 (before: cusp[0] = house 1)
cusp[1] = house 1 (before: cusp[1] = house 2)
cusp[2] = house 2 (etc.)

etc.

3. Ecliptic obliquity and nutation

The new pseudo-body SE_ECL_NUT replaces the two separate pseudo-bodies SE_ECLIPTIC and

SE_NUTATION in the function swe_calc().

Appendix A

What is missing ?

There are some important limits in regard to what you can expect from an ephemeris module. We do not tell you:
how to draw a chart

• which glyphs to use

• when a planet is stat ionary (it depends on you how slow you want it to be)

• how to compute universal time from local time, i.e. what timezone a place is located in

• how to compute progressions, solar returns, composit charts, transit times and a lot else

• what the dif ferent calendars (Julian, Gregorian, ..) mean and when they applied.

Swiss Ephemeris 91

Index

Flag Body, Point
Default ephemeris flag Additional asteroids

Ephemeris flags Fictitious planets

Flag bits Find a name

Speed flag How to compute
 Special body SE_ECL_NUT
 Uranian planets

Position What is.. How to…
Astrometric Ayanamsha Change the tidal acceleration

Barycentric Dynamical Time compute sidereal composite house cusps

Equatorial Ephemeris Time compute the composite ecliptic obliquity

Heliocentric Equation of time Draw the eclipse path

J2000 Julian day Get obliquity and nutation

Position and Speed Universal Time Get the umbra/penumbra limits

Radians/degrees Vertex/Anivertex Search for a star
Sidereal Switch the coordinate systems

Topocentric Switch true/mean equinox of date

True geometrical position

True/apparent

x, y, z

Errors Variable
Asteroids Armc

Avoiding Koch houses Ascmc[..]

Ephemeris path length Atpress

Errors and return values Attemp

Fatal error Ayan_t0

House cusps beyond the polar circle Cusps[..]

Koch houses limitations Eps

Overriding environment variables Gregflag

Speeds of the fixed stars Hsys
 Iflag
 Ipl
 Method
 Rsmi
 Sid_mode
 Star

Function Description
Swe_azalt Computes the horizontal coordinates (azimuth and altitude)

Swe_azalt_rev computes either ecliptical or equatorial coordinates from azimuth and
true altitude

swe_calc computes the positions of planets, asteroids, lunar nodes and apogees

swe_calc_ut Modified version of swe_calc

swe_close releases most resources used by the Swiss Ephemeris

swe_cotrans Coordinate transformation, from ecliptic to equator or vice-versa

swe_cotrans_sp Coordinate transformation of position and speed, from ecliptic to

equator or vice-versa

swe_date_conversion computes a Julian day from year, month, day, time and checks
whether a date is legal

swe_degnorm normalization of any degree number to the range 0 ... 360

swe_deltat Computes the difference between Universal Time (UT, GMT) and

Ephemeris time

Swiss Ephemeris 92

swe_fixstar computes fixed stars

swe_fixstar_ut Modified version of swe_fixstar

swe_get_ayanamsa Computes the ayanamsha

swe_get_ayanamsa_ut Modified version of swe_get_ayanamsa

swe_get_planet_name Finds a planetary or asteroid name by given number

swe_get_tid_acc Gets the tidal acceleration

swe_heliacal_ut compute heliacal risings etc. of a planet or star

swe_house_pos compute the house position of a given body for a given ARMC

swe_houses Calculates houses for a given date and geographic position

swe_houses_armc computes houses from ARMC (e.g. with the composite horoscope
which has no date)

swe_houses_ex the same as swe_houses(). Has a parameter, which can be used, if

sidereal house positions are wanted

swe_jdet_to_utc Converts JD (ET/TT) to UTC

swe_jdut1_to_utc Converts JD (UT1) to UTC

swe_julday Conversion from day, month, year, time to Julian date

swe_lat_to_lmt Converts Local Apparent Time (LAT) to Local Mean Time (LMT)

swe_lmt_to_lat Converts Local Mean Time (LMT) to Local Apparent Time (LAT)

swe_lun_eclipse_how Computes the attributes of a lunar eclipse at a given time

swe_lun_eclipse_when Finds the next lunar eclipse

swe_lun_eclipse_when_loc Finds the next lunar eclipse observable from a geographic location

swe_nod_aps Computes planetary nodes and apsides: perihelia, aphelia, second

focal points of the orbital ellipses
swe_nod_aps_ut Modified version of swe_nod_aps

swe_pheno Function computes phase, phase angle, elongation, apparent

diameter, apparent magnitude
swe_pheno_ut Modified version of swe_pheno

swe_refrac The true/apparent altitude convertion

swe_refrac_extended The true/apparent altitude convertion

swe_revjul Conversion from Julian date to day, month, year, time

swe_rise_trans Computes the times of rising, setting and meridian transits

swe_rise_trans_true_hor Computes the times of rising, setting and meridian transits
relative to true horizon

swe_set_ephe_path Set application’s own ephemeris path

swe_set_jpl_file Sets JPL ephemeris directory path

swe_set_sid_mode Specifies the sidereal modes

swe_set_tid_acc Sets tidal acceleration used in swe_deltat()

swe_set_topo Sets what geographic position is to be used before topocentric planet
positions for a certain birth place can be computed

swe_sidtime returns sidereal time on Julian day

swe_sidtime0 returns sidereal time on Julian day, obliquity and nutation

swe_sol_eclipse_how Calculates the solar eclipse attributes for a given geographic

position and time
swe_sol_eclipse_when_glob finds the next solar eclipse globally

swe_sol_eclipse_when_loc finds the next solar eclipse for a given geographic position

swe_sol_eclipse_where finds out the geographic position where an eclipse is
central or maximal

swe_time_equ returns the difference between local apparent and local mean time

swe_utc_time_zone Converts UTC int time zone time

swe_version Returns the version of the Swiss Ephemeris

swe_vis_limit_mag Calculates the magnitude for an object to be visible

PlaCalc function Description
swe_csnorm Normalize argument into interval [0..DEG360]

swe_cs2degstr Centiseconds -> degrees string

swe_cs2lonlatstr Centiseconds -> longitude or latitude string

swe_cs2timestr Centiseconds -> time string

swe_csroundsec Round second, but at 29.5959 always down

swe_d2l Double to long with rounding, no overflow check

swe_day_of_week Day of week Monday = 0, ... Sunday = 6

Swiss Ephemeris 93

swe_difcs2n Distance in centisecs p1 – p2 normalized to [-180..180]

swe_difcsn Distance in centisecs p1 – p2 normalized to [0..360]

swe_difdeg2n Distance in degrees

swe_difdegn Distance in degrees

End of SWEPHPRG.DOC

