SISL
The SINTEF Spline Library

Reference Manual
(version 4.7)

SINTEF Digital, Mathematics and Cybernetics
Mars 16, 2021

Contents

Preface

1.1 The structure of this document
1.2 The structure of the software package
1.3 Licensing information

2 General Introduction
2.1 C Syntax Used in Manual
2.2 Dynamic Allocation in SISL
2.3 Creating the library L 0oL
2.4 An Example Program
2.5 B-spline Curves
2.5.1 B-splines e
2.5.2 The Control Polygon
2.5.3 The Knot Vector
254 NURBSCurves
2.6 B-spline Surfaces o oL
2.6.1 The Basis Functions
2.6.2 NURBS Surfaces
3 Curve Definition

3.1 Imterpolation
3.1.1 Compute a curve interpolating a straight line between two
points.

3.1.2 Compute a curve interpolating a set of points, automatic
parameterization.o L.

3.1.3 Compute a curve interpolating a set of points, parameter-
ization as input.o Lo

3.1.4 Compute a curve by Hermite interpolation, automatic
parameterization. Lo Lo

3.1.5 Compute a curve by Hermite interpolation, parameter-
ization as input.o

3.1.6 Compute a fillet curve based on parameter value.
3.1.7 Compute a fillet curve based on points.
3.1.8 Compute a fillet curve based on radius.
3.1.9 Compute a circular fillet between a 2D curve and a circle.

3.1.10 Compute a circular fillet between two 2D curves.

3.1.11 Compute a circular fillet between a 2D curve and a 2D line.

3.1.12 Compute a blending curve between two curves.

18

20

22

25

27
29
31
33
36
38
40
42

CONTENTS

3.2 Approximation

3.3
3.4

4.1

4.2
4.3
4.4

3.2.1
3.2.2
3.2.3

3.24
3.2.5

Approximate a circular arc with a curve..
Approximate a conic arc with a curve.
Compute a curve using the input points as controlling
vertices, automatic parameterization.
Approximate the offset of a curve with a curve.
Approximate a curve with a sequence of straight lines. . .

Mirror a Curve e e e e e e e
Conversion

3.4.1

3.4.2
3.4.3
3.44
3.4.5
3.4.6
3.4.7

Convert a curve of order up to four, to a sequence of cubic

polynomials.
Convert a curve to a sequence of Bezier curves.
Pick out the next Bezier curve from a curve.
Express a curve using a higher order basis.
Express the “i”-th derivative of an open curve as a curve.
Express a 2D or 3D ellipse as a curve.

Express a conic arc as a Curve. o o o o . .

3.4.8 Express a truncated helix asacurve.
4 Curve Interrogation
Intersections L Lo
4.1.1 Intersection between a curve and a point.
4.1.2 Intersection between a spline curve and a straight line or
aplane. Lo
4.1.3 Convert a curve/line intersection into a two-dimensional
curve/origo intersection L.
4.1.4 Intersection between a spline curve and a 2D circle or a
sphere. L
4.1.5 Intersection between a curve and a quadric curve.
4.1.6 Intersection between two curves.
Compute the Length of a Curve
Check if a Curveis Closed
Check if a Curve is Degenerated.
Pick the Parameter Range of a Curve

4.5
4.6

4.7
4.8

4.9

Closest Points

4.6.1
4.6.2

4.6.3
4.6.4
4.6.5

Find the closest point between a curve and a point.

Find the closest point between a curve and a point. Simple
VETSION. .« v v v v v e e e e e e e e e e e e
Local iteration to closest point between point and curve. .
Find the closest points between two curves.
Find a point on a 2D curve along a given direction.

Find the Absolute Extremals of a Curve.
Area between Curve and Point

4.8.1
4.8.2

Calculate the area between a 2D curve and a 2D point.
Calculate the weight point and rotational momentum of
an area between a 2D curve and a 2D point.

Bounding Box

4.9.1

4.9.2 Create and initialize a curve/surface bounding box instance.

4.9.3

Bounding box object. L.

Find the bounding box of a curve.

ii

44
44
46

48
50
92
53
54

o4
99
56
58
99
60
62
64

66
66
66

68

70

71
73
(0]
(s
8
79
80
81
81

83

87
89
90
92
92

CONTENTS iii

4.10 Normal Cone i 98
4.10.1 Normal cone object. 98

4.10.2 Create and initialize a curve/surface direction instance. . 99

4.10.3 Find the direction cone of a curve. 100

5 Curve Analysis 101
5.1 Curvature Evaluation 101

5.1.1 Evaluate the curvature of a curve at given parameter values.101
5.1.2 Evaluate the torsion of a curve at given parameter values. 103
5.1.3 Evaluate the Variation of Curvature (VoC) of a curve at

given parameter values. 104
5.1.4 Evaluate the Frenet Frame (t,n,b) of a curve at given pa-
rameter values. 105

5.1.5 Evaluate geometric properties at given parameter values. 106

6 Curve Utilities 108
6.1 Curve Object 108
6.1.1 Create new curve object. 110
6.1.2 Make a copy ofacurve. L. 112
6.1.3 Delete a curve object. L. 113
6.2 Evaluation. 114
6.2.1 Compute the position and the left-hand derivatives of a
curve at a given parameter value. 114
6.2.2 Compute the position and the right-hand derivatives of a
curve at a given parameter value. 116

6.2.3 Evaluate position, first derivative, curvature and radius of
curvature of a curve at a given parameter value, from the
left hand side. L 118
6.2.4 Evaluate position, first derivative, curvature and radius of
curvature of a curve at a given parameter value, from the

right hand side. Lo L. 120

6.2.5 Evaluate the curve over a grid of m points. Only positions
areevaluated. Lo 122
6.3 Subdivision 122
6.3.1 Subdivide a curve at a given parameter value. 122
6.3.2 Insert a given knot into the description of a curve. 125
6.3.3 Insert a given set of knots into the description of a curve. 126
6.3.4 Split a curve into two new curves. 127
6.3.5 Pickapartofacurve. 128
6.3.6 Pick a part of aclosed curve. L. 129
6.4 Joining. 130
6.4.1 Join two curves at specified ends. 130
6.4.2 Join two curves at closest ends. 132
6.5 Reverse the Orientation of a Curve.. 133
6.6 Extend a B-spline Curve. 134
7 Surface Definition 136
7.1 Imterpolation 136

7.1.1 Compute a surface interpolating a set of points, automatic
parameterization.o 136

CONTENTS iv

7.1.2 Compute a surface interpolating a set of points, parame-
terization as input. o000 139

7.1.3 Compute a surface interpolating a set of points, deriva-
tivesasinput. Lo 142

7.1.4 Compute a surface interpolating a set of points, deriva-
tives and parameterization as input. 145

7.1.5 Compute a surface by Hermite interpolation, automatic
parameterization. Lo Lo 148

7.1.6 Compute a surface by Hermite interpolation, parameter-
ization as input. Lo L 150
7.1.7 Create a lofted surface from a set of B-spline input curves. 152

7.1.8 Create a lofted surface from a set of B-spline input curves
and parametrization.o 154

7.1.9 Create a rational lofted surface from a set of rational
input-curves L Lo 156

7.1.10 Compute a rectangular blending surface from a set of
B-spline input curves. oL 157

7.1.11 Compute a first derivative continuous blending surface

set, over a 3-, 4-, 5- or 6-sided region in space, from a
set of B-spline input curves. 159

7.1.12 Compute a surface, representing a Gordon patch, from a
set of B-spline input curves. 161
7.2 Approximation Lo o 163

7.2.1 Compute a surface using the input points as control ver-
tices, automatic parameterization. 163
7.2.2 Compute a linear swept surface. 165
7.2.3 Compute a rotational swept surface. 166
7.2.4 Compute a surface approximating the offset of a surface. . 168
7.3 Mirror a Surface 170
7.4 Conversion e 171

7.4.1 Convert a surface of order up to four to a mesh of Coons
patches. oL 171
7.4.2 Convert a surface to a mesh of Bezier surfaces. 173
7.4.3 Pick the next Bezier surface from a surface. 174
7.4.4 Express a surface using a higher order basis. 176

7.4.5 Express the “i,j”-th derivative of an open surface as a
surface.o 177
7.4.6 Express the octants of a sphere as a surface. 178
7.4.7 Express a truncated cylinder as a surface. 180
7.4.8 Express the octants of a torus as a surface. 181
7.4.9 Express a truncated cone as a surface. 183
8 Surface Interrogation 185
8.1 Intersection Curves i e 185
8.1.1 Imtersection curve object. 185
8.1.2 Create a new intersection curve object. 187
8.1.3 Delete an intersection curve object. 189
8.1.4 Free a list of intersection curves. 190

8.2 Find the Intersections 191

CONTENTS

8.3

8.4

8.5

8.2.1

8.2.2

8.2.3
8.2.4
8.2.5
8.2.6
8.2.7
8.2.8
8.2.9

8.2.10

8.2.11
8.2.12

Intersection between a spline curve and a straight line or
aplane.
Intersection between a spline curve and a 2D circle or a

Intersection between a spline curve and a cylinder.
Intersection between a spline curve and a cone.
Intersection between a spline curve and an elliptic cone. .
Intersection between a curve and a torus.
Intersection between a surface and a point.
Intersection between a spline surface and a straight line. .
Newton iteration on the intersection between a 3D NURBS
surface and a line.
Convert a surface/line intersection into a two-dimensional

surface/origo intersection
Intersection between a spline surface and a circle.
Intersection between a surface and a curve.

Find the Topology of the Intersection

8.3.1

8.3.2

8.3.3

8.3.4

8.3.5

8.3.6

8.3.7

Find the topology for the intersections between a spline
surface and a plane.,
Find the topology for the intersection between a spline
surface and a sphere.
Find the topology for the intersections between a spline
surface and a cylinder.
Find the topology for the intersections between a spline
surface and acone. L.
Find the topology for the intersections between a spline
surface and an ellipticcone.
Find the topology for the intersections between a spline
surface and a torus. L.
Find the topology for the intersection between two spline
surfaces. Lo

Find the Topology of a Silhouette

8.4.1 Find the topology of the silhouette curves of a spline sur-
face, using parallel projection.
8.4.2 Find the topology of the silhouette curves of a spline sur-
face, using perspective projection.
8.4.3 Find the topology of the circular silhouette curves of a
spline surface.
Marching
8.5.1 March an intersection curve between a spline surface and
aplane.
8.5.2 March an intersection curve between a spline surface and
asphere. e
8.5.3 March an intersection curve between a spline surface and
acylinder. oo oo
8.5.4 March an intersection curve between a spline surface and
ACOME. « « o v v e e it e e e e
8.5.5 March an intersection curve between a surface and an

ellipticcone.

CONTENTS vi

8.5.6 March an intersection curve between a spline surface and

ATOTUS. . . . v v e e 245
8.5.7 March an intersection curve between two spline surfaces. . 248
8.6 Marching of Silhouettes 250

8.6.1 March a silhouette curve of a surface, using parallel projection.250
8.6.2 March a silhouette curve of a surface, using perspective

projection.o 253
8.6.3 March a circular silhouette curve of a surface. 255
8.7 Check if a Surface is Closed or has Degenerate Edges. 257
8.8 Pick the Parameter Ranges of a Surface 259
8.9 Closest Points 260
8.9.1 Find the closest point between a surface and a point. . . . 260
8.9.2 Find the closest point between a surface and a point. Sim-
ple version. 262
8.9.3 Local iteration to closest point bewteen point and surface. 264
8.10 Find the Absolute Extremals of a Surface. 266
8.11 Bounding Boxo 268
8.11.1 Find the bounding box of a surface. 268
8.12 Normal Cone 269
8.12.1 Find the direction cone of a surface. 269
9 Surface Analysis 272
9.1 Curvature Evaluation 272
9.1.1 Gaussian curvature of a spline surface. 272
9.1.2 Mean curvature of a spline surface. 275
9.1.3 Absolute curvature of a spline surface. 277
9.1.4 Total curvature of a spline surface. 279
9.1.5 Second order Mehlum curvature of a spline surface. 281
9.1.6 Third order Mehlum curvature of a spline surface. 283
9.1.7 Gaussian curvature of a B-spline or NURBS surface as a
NURBS surface. 285
9.1.8 Mehlum curvature of a B-spline or NURBS surface as a
NURBS surface. 287
9.1.9 Curvature on a uniform grid of a NURBS surface. 289
9.1.10 Principal curvatures of a spline surface. 291
9.1.11 Normal curvature of a spline surface. 293
9.1.12 Focal values on a uniform grid of a NURBS surface. . . . 295
10 Surface Utilities 297
10.1 Surface Object 297
10.1.1 Create a new surface object. 299
10.1.2 Make a copy of a surface object. 302
10.1.3 Delete a surface object. 303
10.2 Evaluation 304
10.2.1 Compute the position, the derivatives and the normal of
a surface at a given parameter value pair. 304
10.2.2 Compute the position and derivatives of a surface at a
given parameter value pair. 306

10.2.3 Compute the position and the left- or right-hand deriva-
tives of a surface at a given parameter value pair. 308

CONTENTS vii

10.2.4 Compute the position and the derivatives of a surface at

a given parameter value pair. 311
10.2.5 Evaluate the surface pointed at by psl over an m1 * m2

grid of points (x[i],y[j]). Compute ider derivatives and

normals if suitable. Lo, 315

10.3 Subdivision 317

10.3.1 Subdivide a surface along a given parameter line. 317
10.3.2 Imsert a given set of knots, in each parameter direction,

into the description of a surface. 318

10.4 Picking Curves from a Surface. 320

10.4.1 Pick a curve along a constant parameter line in a surface. 320
10.4.2 Pick the curve lying in a surface, described by a curve in

the parameter plane of the surface. 321

10.5 Pick a Part of a Surface. 323
10.6 Turn the Direction of the Surface Normal Vector. 324
11 Data Reduction 325
11.1 Curves o o o e e e 325
11.1.1 Data reduction: B-spline curve as input. 325
11.1.2 Data reduction: Point data as input. 328
11.1.3 Data reduction: Points and tangents as input.. 331
11.1.4 Degree reduction: B-spline curve as input. 333

11.2 Surfaces e 335
11.2.1 Data reduction: B-spline surface as input. 335
11.2.2 Data reduction: Point data as input. 338
11.2.3 Data reduction: Points and tangents as input.. 341
11.2.4 Degree reduction: B-spline surface as input. 344

12 Tutorial programs 346
12.1 Compiling the programs 346
12.2 Description and commentaries on the sample programs 346
12.2.1 example01.C 347
12.2.2 example02.C 347
12.2.3 example03.C 347
12.2.4 example04.C 348
12.2.5 example05.C 348
12.2.6 example06.C 349
12.2.7 example07.C 349
12.2.8 example08.C L 350
12.2.9 example09.C 350
12.2.10examplel0.C 351
12.2.11examplell.C 351
12.2.12examplel2.C 351
12.2.13examplel3.Co 352
12.2.14exampleld.C 352

12.2.15examplel5.C 353

CONTENTS viii

13 The object viewer program 355
13.1 General 355
13.2 Compiling the viewer oL 355
13.3 Command line arguments 356
13.4 User controls 356

13.4.1 Mouse commands oo 356
13.4.2 Keyboard commands 357
14 Appendix: Error Codes 358

A GNU AFFERO GENERAL PUBLIC LICENSE 363

Chapter 1

Preface

Welcome to the SISL 4.7 user’s manual. SISL stands for Sintef Spline Library,
and has been gradually developed and enhanced for more than three decades
by the geometry group at SINTEF in Oslo. Although it is very comprehen-
sive, its organisation is simple. There are but a few structures, and its nearly
four hundred main functions can usually be employed directly and individually.
This manual organises and explains the main routines. However, much of this
information can also be found directly in the code in the form of commentaries.

The complete software package you have in your hands should contain the
following:

e The SISL 4.7 distribution and reference guide (the document you are read-
ing now)

e Supplementary routines for writing SISL objects to streams (including file
streams) in a simple ASCII format called Go.

e A selection of sample programs, designed to demonstrate functionalities
and use of SISL.

e Source code for a simple viewer that can be used to view geometric objects
stored in the Go-format. This allows visual inspection of SISL-generated
curves and surfaces, as well as points.

1.1 The structure of this document

Chapter 2 is a general introduction to SISL and its programming style. A
simple example program including instructions in how to compile and link the
program and the expected output is provided. Since it is strongly recommended
that the user has some general knowledge of splines, this chapter also contains
a couple of sections introducing the subject of spline curves and surfaces.

Chapter 3 to 11 presents the main SISL routines.
Chapter 12 goes through the provided sample programs and explain what

these do, and what the user can expect to learn from them. There are a total
of 15 sample programs, ranging from very basic to intermediate complexity.

CHAPTER 1. PREFACE 2

The goal of Chapter 13 is to explain the use of the viewer program, which
is a small but handy tool for visually inspecting results from SISL routines.

Chapter 14 is an appendix presenting an explanation of the error codes used
in SISL.

Finally there is an annex, citing the text of the General Public License.

1.2 The structure of the software package

There are seven directories:
e include/ - the inlude files related to the 4.7 release of SISL.
e src/ - the source code of the 4.7 release of SISL.
e doc/ - the basis for this document.

e streaming/ - source code for the routines that can read and write SISL
objects to a stream.

e examples/ - sample programs making use of the SISL 4.7 source code.

e viewer/ - source code for a viewer that can be used to view SISL objects
saved in the Go-format.

e app/ - the expected directory for test programs and applications. A couple
of applications are provided including the example program described in
Chapter 2.

Furthermore is the file CMakeLists.txt provided to facilitate building the library.

1.3 Licensing information

SISL is distributed under the GNU Affero General Public License (aGPL).
The license text is given in its entirety as an annex to this document. Com-
mercial licenses are also available from SINTEF. You can contact Tor Dokken
(tor.dokken@sintef.no) for more information.

Chapter 2

General Introduction

SISL is a geometric toolkit to model with curves and surfaces. It is a library
of C functions to perform operations such as the definition, intersection and
evaluation of NURBS (Non-Uniform Rational B-spline) geometries. Since many
applications use implicit geometric representation such as planes, cylinders, tori
etc., SISL can also handle the interaction between such geometries and NURBS.

Throughout this manual, a distinction is made between NURBS (the default)
and B-splines. The term B-splines is used for non-uniform non-rational (or
polynomial) B-splines. B-splines are used only where it does not make sense to
employ NURBS (such as the approximation of a circle by a B-spline) or in cases
where the research community has yet to develop stable technology for treating
NURBS. A NURBS require more memory space than a B-spline, even when the
extra degrees of freedom in a NURBS are not used. Therefore the routines are
specified to give B-spline output whenever the extra degrees of freedom are not
required.

Transferring a B-spline into NURBS format is done by constructing a new
coeflicient vector using the original B-spline coefficients and setting all the ratio-
nal weights equal to one (1). This new coefficient vector is then given as input
to the routine for creating a new curve/surface object while specifying that the
object to be created should be of the NURBS (rational B-spline) type.

To approximate a NURBS by a B-spline, use the offset calculation routines
with an offset of zero.

The routines in SISL are designed to function on curves and surfaces which
are at least continuously differentiable. However many routines will also handle
continuous curves and surfaces, including piecewise linear ones.

All arrays in SISL are 1-dimensional. In an array with points or vertices
are the points stored consecutively. In a raster are points or vertices stored
consecutively while points in the first parameter direction have the shortest
stride (stored right after each other). There is a special rule for vertices given
as input to a rational curve or surface, see the Sections 6.1.1 and 10.1.1.

The three important data structures used by SISL are SISLCurve, SISLSurf,
and SISLIntcurve. These are defined in the Curve Utilities, Surface Utilities, and
Surface Interrogation modules respectively. Other structures are SISLBox and
SISLCone, which represents a bounding box and a normal cone, respectively.
It is important to remember to always free these structures and also to free

CHAPTER 2. GENERAL INTRODUCTION 4

internally allocated structures and arrays used to pass results to the application,
otherwise strange errors might result.

In the construction of NURBS curves and surfaces is information on the
order of the curve or surface frequently required. The order is equal to the
polynomial degree plus one.

The various functions are equipped with a status variable, typically placed
as the last entity in the parameter list. It returns information about whether
or not the function succeeded in its purpose. A negative value means failure,
the result zero means success while a positive number is a warning. Section 14
provides a list over possible error messages where most occurances are explained.

SISL is divided into seven modules, partly in order to provide a logical
structure, but also to enable users with a specific application to use subsets of
SISL. There are three modules dealing with curves, three with surfaces, and
one module to perform data reduction on curves and surfaces. The modules for
curves and surfaces focus on functions for creation and definition, intersection
and interrogation, and general utilities.

The chapters 3 to 11 in this manual contain information concerning the
top level functions of each module. Lower level functions not usually required
by an application are not included. Each top level function is documented by
describing the purpose, the input and output arguments and an example of use.
Input parameters specified in the examples are suggestions, the actual values
must be set dependent on context. The geometric tolerance tells when two points
are regarded as equal. This implies that a large tolerance leads to higher data
size in approximaation type functionality such as s1360, offset curve. In surface-
surface intersections, on the other hand, will a large tolerance imply that there
is a large area around an intersection curve where the two surfaces are closer
than the tolerance, which may lead to unstability in tangential situations. In the
examples is the suggested tolerance stricter for intersection functionality than
in other cases. However, the intersection tolerance must reflect the accuracy in
which the associated geometry entities are constructed. To get you started, this
chapter contains an Example Program.

2.1 C Syntax Used in Manual

This manual uses the K&R style C syntax for historic reasons, but both the
ISO/ANSI and the K&R C standards are supported by the library and the
include files.

2.2 Dynamic Allocation in SISL

In the description of all the functions in this manual, a convention exists on when
to declare or allocate arrays/objects outside a function and when an array is
allocated internally. NB! When memory for output arrays/objects are allocated
inside a function you must remember to free the allocated memory when it is
not in use any more.

The convention is the following:

e If [] is used in the synopsis and in the example it means that the array
has to be declared or allocated outside the function.

CHAPTER 2. GENERAL INTRODUCTION 5

e If % is used it means that the function requires a pointer and that the
allocation will be done outside the function if necessary.

e When either an array or an array of pointers or an object is to be allocated
in a function, two or three stars are used in the synopsis. To use the
function you declare the parameter with one star less and use & in the
argument list.

e For all output variables except arrays or objects that are declared or allo-
cated outside the function you have to use & in the argument list.

CHAPTER 2. GENERAL INTRODUCTION 6

2.3 Creating the library

In order to access SISL from your program you need one library inclusion,
namely the header file sisl.h. The statement

#include "sisl.h"

must be written at the top of your main program. In this header file all types are
defined. It also contains all the SISL top level function declarations. Memory
management and input/output require two more includes to avoid compiler
warnings, see Section 2.4.

SISL is prepared for makefile generation with CMake and equipped with a
CMakeLists.txt file. For information on using CMake, see www.cmake.org. The
building procedure depends on whether your platform is Linux or Windows.

LINUX
Start by creating a build directory:

$ cd <path_to_source_code>
$ mkdir build
$ cd build

Run the cmake program to setup the build process, selecting Debug or Re-
lease as build type, optionally selecting a local install folder:

$ cmake .. -DCMAKE_BUILD_TYPE=Release (-DCMAKE_INSTALL_PREFIX=$HOME/install)

For a gui-like cmake interface use ccmake (from cmake-ncurses-gui) or cmake-
gui (from cmake.org).
Build the library:

$ make

This will install the library in the build folder. Compilation and build of one
particular example program is done by a specific make statement:

$ make exampleO1l

This option requires compilation of examples to be set in the Makefile.
Install the library to a local folder (requires the use of -DCMAKE_INSTALL_PREFIX
with a local folder in the previous step):

$ make install

If the -DCMAKE_INSTALL_PREFIX in the cmake step was omitted or was
set to a system folder (like /usr/local) the user needs elevated privileges to
install the library:

$ sudo make install

Windows

Add a new build folder somewhere. Start the CMake executable and fill
in the paths to the source and build folders. When you run CMake, a Visual
Studio project solution file will be generated in the build folder.

CHAPTER 2. GENERAL INTRODUCTION 7

2.4 An Example Program

To clarify the previous section here is an example program designed to test
the SISL algorithm for intersecting a cone with a B-spline curve. The program
calls the SISL routines newCurve() documented in Section 6.1.1, freeCurve()
documented in 6.1.3, s1373() found in Section 8.2.4 and freelntcrvlist() in 8.1.4.

#include "sisl.h"

#include <stdlib.h>
#include <stdio.h>

int main()

{

SISLCurve *pc=0; /* Pointer to spline curve */

double aepsco,aepsge; /* Tolerances */

double top[3],axispt[3],conept[3]; /* Representating the cone */

double st[100],scoef[100]; /* Knot vector and coefficients of spline curve */

double *spar; /* Parameter values of intersection points */

int kstat; /* Return status from function calls */

int cone_exists=0;

int kk,kn,kdim; /* Order (polynomial degree+1), number of
coefficients and spatial dimension */

int ki; /* Counter x*/

int kpt,kcrv; /* Number of intersection points and curves */

SISLIntcurve **qrcrv; /* Array of pointer to intersection curves */

char ksvar[100];

kdim=3;

aepsge=0.001; /* Geometric tolerance */
aepsco=0.000001; /* Computational tolerance. This parameter is included from
historical reasons and no longer used */

ksvar[0] = ’0’; /* Arbitrary character */
while (ksvar[0] !'= ’q’)
{

printf("\n cu - define a new B-spline curve");

printf("\n co - define a new cone");

printf("\n i - intersect the B-spline curve with the cone");
printf("\n q - quit");

printf("\n> ");

scanf ("%s" ,ksvar) ;

if (ksvar[0] == ’c’ && ksvar[1] == ’u’)
{

/* Define spline curve */

printf("\n Give number of vertices, order of curve: ");

scanf ("%d %d", &kn, &kk);

printf ("Give knots values in ascending order: \n");

for (ki=0; ki<kn+kk; ki++)

{

scanf ("%1f",&st [ki]);

CHAPTER 2. GENERAL INTRODUCTION 8

}
printf("Give vertices \n");
for (ki=0; ki<kn*kdim; ki++)
{
scanf ("%1f",&scoef [ki]);
}
if(pc) freeCurve(pc);

/* Create curve */
pc = newCurve(kn,kk,st,scoef,1,kdim,1);
}
else if (ksvar[0] == ’c’ && ksvar[1] == ’0’)
{
printf("\n Give top point: ");
scanf ("%1f %1f %1f",&top[0],&top[1],&top[2]);
printf("\n Give a point on the axis: ");
scanf ("%1f %1f %1f",&axispt[0],&axispt([1],&axispt[2]);
printf("\n Give a point on the cone surface: ");
scanf ("}1f %1f %1f",&conept[0],&conept[1],&conept[2]);
cone_exists=1;
}
else if (ksvar[0] == ’i’ && cone_exists && pc)
{
/* Intersect spline curve with cone */
s1373(pc,top,axispt, conept,kdim,aepsco,aepsge,
&kpt ,&spar,&kcrv,&qrerv,&kstat) ;
printf ("\n kstat %d",kstat);
printf ("\n kpt %d",kpt);
printf("\n kcrv %d",kcrv);
for (ki=0;ki<kpt;ki++)

{
printf ("\nIntersection point %1lf",sparl[ki]);
}
if (spar)
{
/* The array containing parameter values of the intersection points between
the curve and the cone is allocated inside s1373 and must be freed */
free (spar);
spar=0;
b
if (qrecrv)
{

/* The array containing pointers to intersection points curves between
the curve and the cone is allocated inside s1373 and must be freed.
This is done in a special function taking care of the intersection
curves themselves */

freeIntcrvlist(qrecrv,kcrv);

qrcrv=0;

}
}

CHAPTER 2. GENERAL INTRODUCTION 9

}
return O;

}

Note that sisl.h is included. stdlib.h is included to declare free, which releases
memory allocated in the function s1373. stdio.h declares printf and scanf.

The program was compiled and built using the command:
$ make progl

Note that the program must be placed in the app folder and sisl COMPILE_APPS
must be set to true.
A sample run of progl went as follows:

$ progl

cu - define a new B-spline curve
co - define a new cone
i - intersect the B-spline curve with the cone
q - quit
> cu

Give number of vertices, order of curve: 2 2
Give knots values in ascending order:

0011

Give vertices

100.5

-1 00.5

cu - define a new B-spline curve
co - define a new cone
i - intersect the B-spline curve with the cone
- quit
> co

Give top point: 0 0 1

Give a point on the axis: 0 0 O

Give a point on the cone surface: 1 0 0
cu - define a new B-spline curve
co - define a new cone

i - intersect the B-spline curve with the cone
- quit

kstat O
kpt 2

CHAPTER 2. GENERAL INTRODUCTION 10

kcrv 0O
Intersection point 0.250000
Intersection point 0.750000
cu - define a new B-spline curve
co - define a new cone
i - intersect the B-spline curve with the cone
q - quit
> q
$

SISL found two intersection points given by the parameters 0.25 and 0.75. These
parameters correspond to the 3D points (—0.5,0,0.5) and (0.5,0,0.5) (which
could be found by calling the evaluation routine s1221()). They lie on both the
B-spline curve and the cone — as expected!

2.5 B-spline Curves

This section is optional reading for those who want to become acquainted with
some of the mathematics of B-splines curves. For a description of the data
structure for B-spline curves in SISL, see section 6.1.

A B-spline curve is defined by the formula

c(t) = Z PiBikt(t)-
i=1

The dimension of the curve c is equal to that of its control points p;. For
example, if the dimension of the control points is one, the curve is a function,
if the dimension is two, the curve is planar, and if the dimension is three, the
curve is spatial. SISL also allows higher dimensions.

Thus, a B-spline curve is a linear combination of a sequence of B-splines
Bi k.t (called a B-basis) uniquely determined by a knot vector t and the order
k. Order is equivalent to polynomial degree plus one. For example, if the order
is two, the degree is one and the B-splines and the curve c they generate are
(piecewise) linear. If the order is three, the degree is two and the B-splines and
the curve are quadratic. Cubic B-splines and curves have order 4 and degree 3,
etc.

The parameter range of a B-spline curve c is the interval

[tk;tn+1]a

and so mathematically, the curve is a mapping ¢ : [tg, tn11] — IRd, where d is
the Euclidean space dimension of its control points.
The complete representation of a B-spline curve consists of

dim : The dimension of the underlying Euclidean space, 1,2,3,....
n : The number of vertices (also the number of B-splines)
k : The order (degree plus one) of the B-splines.

t : The knot vector of the B-splines. t = (¢1,t2,...,tntk)-

CHAPTER 2. GENERAL INTRODUCTION 11

1.0t

Figure 2.1: A linear B-spline (order 2) defined by three knots.

p : The control points of the B-spline curve. pg; , d = 1,...,dim , i =
1,...,n. e.g. whendim = 3, we have p = (z1,y1, 21, T2, Y2, 22, - - - y T, Yn, Zn)-

We note that arrays in ¢ start at index 0 which means, for example, that if
the array ¢ holds the knot vector, then ¢[0] = ¢1,...,t[n +k — 1] = t,4 and
the parameter interval goes from t[k — 1] to ¢[n]. Similar considerations apply
to the other arrays.

The data in the representation must satisfy certain conditions:

e The knot vector must be non-decreasing: ¢; < t;;1. Moreover, two knots
t; and t;x must be distinct: ¢; < ;4.

e The number of vertices should be greater than or equal to the order of the
curve: n > k.

e There should be k£ equal knots at the beginning and at the end of the knot
vector; that is the knot vector t must satisfy the conditions t; = t5 =
...:tk andtn+1 :tn+2 =... :tn+k~

To understand the representation better, we will look at three parts of the
representation: the B-splines (the basis functions), the knot vector and the
control polygon.

2.5.1 B-splines

A set of B-splines is determined by the order k and the knots. For example, to
define a single B-spline of degree one, we need three knots. In figure 2.1 the three
knots are marked as dots. Knots can also be equal as shown in figure 2.2. By
taking a linear combination of the three types of B-splines shown in figures 2.1
and 2.2 we can generate a linear spline function as shown in figure 2.3.

A quadratic B-spline is a linear combination of two linear B-splines. Shown
in figure 2.4 is a quadratic B-spline defined by four knots. A quadratic B-spline
is the sum of two products, the first product between the linear B-spline on the
left and a corresponding line from 0 to 1, the second product between the linear
B-spline on the right and a corresponding line from 1 to 0; see figure 2.4. For
higher degree B-splines there is a similar definition. A B-spline of order k is the
sum of two B-splines of order k — 1, each weighted with weights in the interval
[0,1]. In fact we define B-splines of order 1 explicitly as box functions,

Bii(t) =

)

1 ifti§t<ti+1;
0 otherwise,

CHAPTER 2. GENERAL INTRODUCTION 12

1.0t 1.0t

0.0t 0.0+

Figure 2.3: A B-spline curve of dimension 1 as a linear combination of a sequence
of B-splines. Each B-spline (dashed) is scaled by a coefficient.

and then the complete definition of a k-th order B-spline is
t—t;

Livk — 1
tivk—1—t;

Biyk(t) = Bi7k—1(t) + Bifl,kfl(t).

Ltk — it
B-splines satisfy some important properties for curve and surface design.
Each B-spline is non-negative and it can be shown that they sum to one,

> Bire(t) =1.
i=1

These properties combined mean that B-spline curves satisfy the convexr hull
property: the curve lies in the convex hull of its control points. Furthermore,
the support of the B-spline B; j ¢ is the interval [t;,¢;15] which means that B-
spline curves has local control: moving one control point only alters the curve
locally.

1.07

0.01

Figure 2.4: A quadratic B-spline, the two linear B-splines and the corresponding
lines (dashed) in the quadratic B-spline definition.

CHAPTER 2. GENERAL INTRODUCTION 13

Figure 2.5: Linear, quadratic, and cubic B-spline curves sharing the same control
polygon. The control polygon is equal to the linear B-spline curve. The curves
are planar, i.e. the space dimension is two.

Figure 2.6: The cubic B-spline curve with a redefined knot vector.

Due to the demand of k& multiple knots at the ends of the knot vector, B-
spline curves in SISL also have the endpoint property: the start point of the
B-spline curve equals the first control point and the end point equals the last
control point, in other words

c(ty) = p1 and c(tp+1) = Pn-

2.5.2 The Control Polygon

The control points p; define the vertices The control polygon of a B-spline curve
is the polygonal arc formed by its control points, pg, P1,--.,Pn- This means
that the control polygon, regarded as a parametric curve, is itself piecewise
linear B-spline curve (order two). If we increase the order, the distance between
the control polygon and the curve increases (see figure 2.5). A higher order
B-spline curve tends to smooth the control polygon and at the same time mimic
its shape. For example, if the control polygon is convex, so is the B-spline curve.

Another property of the control polygon is that it will get closer to the curve
if it is redefined by inserting knots into the curve and thereby increasing the
number of vertices; see figure 2.6. If the refinement is infinite then the control
polygon converges to the curve.

2.5.3 The Knot Vector

The knots of a B-spline curve describe the following properties of the curve:

e The parameterization of the B-spline curve

CHAPTER 2. GENERAL INTRODUCTION 14

Figure 2.7: Two quadratic B-spline curves with the same control polygon but
different knot vectors. The curves and the control polygons are two-dimensional.

e The continuity at the joins between the adjacent polynomial segments of
the B-spline curve.

In figure 2.7 we have two curves with the same control polygon and order but
with different parameterization.

This example is not meant as an encouragement to use parameterization
for modelling, rather to make users aware of the effect of parameterization.
Something close to curve length parameterization is in most cases preferable.
For interpolation, chord-length parameterization is used in most cases.

The number of equal knots determines the degree of continuity. If k con-
secutive internal knots are equal, the curve is discontinuous. Similarly if k£ — 1
consecutive internal knots are equal, the curve is continuous but not in general
differentiable. A continuously differentiable curve with a discontinuity in the
second derivative can be modelled using k — 2 equal knots etc. (see figure 2.8).
Normally, B-spline curves in SISL are expected to be continuous. For intersec-
tion algorithms, curves are usually expected to be continuously differentiable

().

2.5.4 NURBS Curves

A NURBS (Non-Uniform Rational B-Spline) curve is a generalization of a B-
spline curve,
> i1 wiPiBika(t)

C(t): Z?:l wiBi,k,t(t) '

CHAPTER 2. GENERAL INTRODUCTION 15

Figure 2.8: A quadratic B-spline curve with two equal internal knots.

In addition to the data of a B-spline curve, the NURBS curve c has a sequence
of weights wy,...,w,. One of the advantages of NURBS curves over B-spline
curves is that they can be used to represent conic sections exactly (taking the
order k to be three). A disadvantage is that NURBS curves depend nonlinearly
on their weights, making some calculations, like the evaluation of derivatives,
more complicated and less efficient than with B-spline curves.

The representation of a NURBS curve is the same as for a B-spline except
that it also includes

w : A sequence of weights w = (wy,wa, ..., wy,).
In SISL we make the assumption that
e The weights are (strictly) positive: w; > 0.

Under this condition, a NURBS curve, like its B-spline cousin, enjoys the
convex hull property. Due to k-fold knots at the ends of the knot vector, NURBS
curves in SISL alos have the endpoint

2.6 B-spline Surfaces

This section is optional reading for those who want to become acquainted with
some of the mathematics of tensor-product B-splines surfaces. For a description
of the data structure for B-spline surfaces in SISL, see section 10.1.

A tensor product B-spline surface is defined as

niy N2

s(u,0) = Y > Pij Biky,u(w)Bj ks v (v)

i=1 j=1

with control points p; ; and two variables (or parameters) u and v. The for-
mula shows that a basis function of a B-spline surface is a product of two basis
functions of B-spline curves (B-splines). This is why a B-spline surface is called
a tensor-product surface. The following is a list of the components of the rep-
resentation:

dim : The dimension of the underlying Euclidean space.
n1 : The number of vertices with respect to the first parameter.

n1 : The number of vertices with respect to the second parameter.

CHAPTER 2. GENERAL INTRODUCTION 16

Figure 2.9: A B-spline surface and its control net. The surface is drawn using
isocurves. The dimension is 3.

k1 : The order of the B-splines in the first parameter.

ko : The order of the B-splines in the second parameter.

u : The knot vector of the B-splines with respect to the first parameter, u =
(u17u27 R)un1+k1)'

v : The knot vector of the B-splines with respect to the second parameter,

V= (V1,02 Ungtky)-

p : The control points of the B-spline surface, cq;;, d = 1,...,dim, i =
1, coeyny,] = 1, ...y Na. When dzm = 3, we havep = (56171,2/171, 2’17171’271,y271, 2271, ..
Tni,1yYni, 1y Zng,ly - o xnl,ngaynl,ng,znl,ng)'

The data of the B-spline surface must fulfill the following requirements:
e Both knot vectors must be non-decreasing.

e The number of vertices must be greater than or equal to the order with
respect to both parameters: ny > k1 and no > k.

e There should be k; equal knots at the beginning and end of knot vector
u and ko equal knots at the beginning and end of knot vector v.

The properties of the representation of a B-spline surface are similar to the
properties of the representation of a B-spline curve. The control points p; ; form
a control net as shown in figure 2.9. The control net has similar properties to
the control polygon of a B-spline curve, described in section 2.5.2. A B-spline
surface has two knot vectors, one for each parameter. In figure 2.9 we can see
isocurves, surface curves defined by fixing the value of one of the parameters.

2.6.1 The Basis Functions

A basis function of a B-spline surface is the product of two basis functions of
two B-spline curves,

Bi gy u(u)Bj ks v (V).

*)

CHAPTER 2. GENERAL INTRODUCTION 17

1.0t

0.0t

Figure 2.10: A basis function of degree one in both variables.

Its support is the rectangle [u;, i1, | X [vj, Vj4x,]. If the basis functions in both
directions are of degree one and all knots have multiplicity one, then the surface
basis functions are pyramid-shaped (see figure 2.10). For higher degrees, the
surface basis functions are bell shaped.

2.6.2 NURBS Surfaces

A NURBS (Non-Uniform Rational B-Spline) surface is a generalization of a
B-spline surface,

(. 0) D ity 2002 Wi jPi i Bi gy u(u) Bk v (V)
Sslu,v) = .
’ D ity 252 Wi i Bi gy () Bk, v (V)

In addition to the data of a B-spline surface, the NURBS surface has a weights
w; ;. NURBS surfaces can be used to exactly represent several common ‘ana-
lytic’ surfaces such as spheres, cylinders, tori, and cones. A disadvantage is that
NURBS surfaces depend nonlinearly on their weights, making some calculations,
like with NURBS curves, less efficient.

The representation of a NURBS surface is the same as for a B-spline except
that it also includes

w : The weights of the NURBS surface, w; ;, ¢ = 1,...,n1, j = 1,...,n2, so
W = (w1,17w2,17 ceesWny 1y ey W12, 7wn1,n2)-

In SISL we make the assumption that

e The weights are (strictly) positive: w; ; > 0.

Chapter 3

Curve Definition

This chapter describes all functions in the Curve Definition module.

3.1 Interpolation

In this section we treat different kinds of interpolation of points or points and
derivatives (Hermite). In addition to the general functions there are functions
to find fillet curves (a curve between two other curves), and blending curves (a
curve between the end points of two other curves).

3.1.1 Compute a curve interpolating a straight line be-
tween two points.

NAME
s1602 - To make a straight line represented as a B-spline curve between two
points.
SYNOPSIS
void s1602(startpt, endpt, order, dim, startpar, endpar, curve, stat)
double startpt] |;
double endpt|[];
int order;
int dim;
double startpar;
double *endpar;
SISLCurve **curve;
int *stat;

18

CHAPTER 3. CURVE DEFINITION 19

ARGUMENTS

Input Arguments:

startpt
endpt
order
dim
startpar

- Start point of the straight line

- End point of the straight line

- The order of the curve to be made.

- The dimension of the geometric space

- Start value of the parameterization of the curve

Output Arguments:

endpar
curve
stat

EXAMPLE OF USE

{

double
double

int

int

double
double
SISLCurve

int

- Parameter value used at the end of the curve
- Pointer to the B-spline curve
- Status messages

> (0 : warning

=0: ok

< 0 : error

startpt[2];

endpt[2];

order=2; /* If a higher order is requested will a degree
one curve be constructed and degree raising
performed to reach the requested order */

dim=2; /* Corresponds to the number of parameters
in startpt and endpt */

startpar=0.0;

endpar;

*curve=NULL;

stat=0;

s1602(startpt, endpt, order, dim, startpar, &endpar, &curve, &stat);

CHAPTER 3. CURVE DEFINITION 20

3.1.2 Compute a curve interpolating a set of points, automatic
parameterization.

NAME
81356 - Compute a curve interpolating a set of points. The points can be as-
signed a tangent (derivative). The parameterization of the curve will be
generated and the curve can be open, closed non-periodic or periodic. If
end-conditions are conflicting, the condition closed curve rules out other
end conditions. The output will be represented as a B-spline curve.

SYNOPSIS
void s1356(epoint, inbpnt, idim, nptyp, icnsta, icnend, iopen, ik, astpar, cendpar,
rc, gpar, jnbpar, jstat)

double epoint] |;
int inbpnt;
int idim;
int nptyp];
int icnsta;
int icnend;
int iopen;
int ik;
double astpar;
double *cendpar;
SISLCurve **rc;
double **gpar;
int *jnbpar;
int *jstat;
ARGUMENTS
Input Arguments:
epoint - Array (of length idim x inbpnt) containing the points/-
derivatives to be interpolated.
inbpnt - No. of points/derivatives in the epoint array.
idim - The dimension of the space in which the points lie.
nptyp - Array (length inbpnt) containing type indicator for

points/derivatives/second-derivatives:
: Ordinary point.

=2 : Knuckle point. (Is treated as an ordinary
point.)
=3 : Derivative to next point.
4 : Derivative to prior point.

5 : Second-derivative to next point.)
6 : Second derivative to prior point.)
13 : Point of tangent to next point.
14 : Point of tangent to prior point.

I

CHAPTER 3. CURVE DEFINITION 21

icnsta - Additional condition at the start of the curve:
=0 : No additional condition.
=1 : Zero curvature at start.
icnend - Additional condition at the end of the curve:
=0 : No additional condition.
=1 : Zero curvature at end.
iopen - Flag telling if the curve should be open or closed:
=1 : Open curve.
=0 : Closed, non-periodic curve.
= —1 : Periodic (and closed) curve.
ik - The order of the spline curve to be produced.
astpar - Parameter value to be used at the start of the curve.

Output Arguments:

cendpar - Parameter value used at the end of the curve.
re - Pointer to output B-spline curve.
gpar - Pointer to the parameter values of the points in the curve.

Represented only once, although derivatives and second-
derivatives will have the same parameter value as the

points.
jnbpar - No. of unique parameter values.
Jjstat - Status message
< 0 : Error.
=0: Ok.
> 0 : Warning.
EXAMPLE OF USE
{
double epoint[30];
int inbpnt = 10;
int idim = 3;
int nptyp[10];
int icnsta = 0;
int icnend = 0;
int iopen = 1;
int ik = 4;
double astpar = 0.0;
double cendpar = 0.0;
SISLCurve *rc = NULL;
double *gpar = NULL;
int jnbpar = 0;
int jstat = 0;

s1356(epoint, inbpnt, idim, nptyp, icnsta, icnend, iopen, ik, astpar, &cend-
par, &rc, &gpar, &jnbpar, &jstat);

CHAPTER 3. CURVE DEFINITION 22

3.1.3 Compute a curve interpolating a set of points, parameter-
ization as input.

NAME
$1357 - Compute a curve interpolating a set of points. The points can be as-
signed a tangent (derivative). The curve can be open, closed or peri-
odic. If end-conditions are conflicting, the condition closed curve rules
out other end conditions. The parameterization is given by the array
epar. The output will be represented as a B-spline curve.

SYNOPSIS
void s1357(epoint, inbpnt, idim, ntype, epar, icnsta, icnend, iopen, ik, astpar,
cendpar, rc, gpar, jnbpar, jstat)

double epoint] |;
int inbpnt;
int idim;
int ntype] |;
double epar|];
int icnsta;
int icnend;
int iopen;
int ik;
double astpar;
double *cendpar;
SISLCurve **rc;
double **gpar;
int *jinbpar;
int *jstat;
ARGUMENTS
Input Arguments:
epoint - Array (length idim x inbpnt) containing the points/-
derivatives to be interpolated.
inbpnt - No. of points/derivatives in the epoint array.
idim - The dimension of the space in which the points lie.
ntype - Array (length inbpnt) containing type indicator for

points/derivatives/second-derivatives:
= : Ordinary point.

=2 : Knuckle point. (Is treated as an ordinary
point.)

=3 : Derivative to next point.

=4 : Derivative to prior point.

5 : Second-derivative to next point.)
6 : Second derivative to prior point.)
3 : Point of tangent to next point.
4 : Point of tangent to prior point.

CHAPTER 3. CURVE DEFINITION 23

epar

icnsta

icnend

iopen

ik
astpar

Output Arguments:

cendpar
re

gpar

jnbpar
Jjstat

Array containing the wanted parameterization. Only pa-
rameter values corresponding to position points are given.
For closed curves, one additional parameter value must
be specified. The last entry contains the parametrization
of the repeated start point. (if the end point is equal to
the start point of the interpolation the length of the array
should be equal to inptl also in the closed case).
Additional condition at the start of the curve:

=0 : No additional condition.

=1 : Zero curvature at start.

Additional condition at the end of the curve:

=0 : No additional condition.

=1 : Zero curvature at end.

Flag telling if the curve should be open or closed:
=1 : The curve should be open.

=0 : The curve should be closed.

= —1 : The curve should be closed and periodic.
The order of the spline curve to be produced.
Parameter value to be used at the start of the curve.

Parameter value used at the end of the curve.

Pointer to the output B-spline curve.

Pointer to the parameter values of the points in the curve.
Represented only once, although derivatives and second-
derivatives will have the same parameter value as the

points.
No, of unique parameter values.

Status message
< 0 : Error.
=0: Ok.
> 0 : Warning.

CHAPTER 3. CURVE DEFINITION

EXAMPLE OF USE

{

double
int

int

int
double
int

int

int

int
double
double
SISLCurve
double
int

int

s1357(epoint, inbpnt, idim, ntype, epar, icnsta, icnend,
&cendpar, &rc, &gpar, &jnbpar, &jstat);

epoint[30];
inbpnt = 10;
idim = 3;
ntype[10];
epar[10];
icnsta = 0;
icnend = 0;
iopen = 0;
ik = 4;
astpar = 0.0;
cendpar;

*rc = NULL;

*gpar = NULL;

jnbpar;
Jjstat = 0;

iopen,

24

ik, astpar,

CHAPTER 3. CURVE DEFINITION 25

3.1.4 Compute a curve by Hermite interpolation, auto-
matic parameterization.

NAME
$1380 - To compute the cubic Hermite interpolant to the data given by the
points point and the derivatives derivate. The output is represented as
a B-spline curve.

SYNOPSIS
void s1380(point, derivate, numpt, dim, typepar, curve, stat)
double point][];
double derivate[];
int numpt;
int dim;
int typepar;
SISLCurve **curve;
int *stat;
ARGUMENTS
Input Arguments:
point - Array (length dim*numpt) containing the points in se-
quence (g, Yo, 1, Y1, - - -) to be interpolated.
derivate - Array (length dim*numpt) containing the derivate in se-
quence (ddito, %, %, %, ...) to be interpolated.
numpt - No. of points/derivatives in the point and derivative ar-
rays.
dim - The dimension of the space in which the points lie.
typepar - Type of parameterization:
= 1 : Parameterization using cord length
between the points.
1 : Uniform parameterization.
Output Arguments:
curve - Pointer to the output B-spline curve
stat - Status messages
> 0 : warning
=0: ok

< 0 : error

CHAPTER 3. CURVE DEFINITION

EXAMPLE OF USE

{

double point[10];

double derivate[10];

int numpt = 5;

int dim = 2;

int typepar = 1;
SISLCurve *curve = NULL;
int stat = 0;

s1380(point, derivate, numpt, dim, typepar, &curve, &stat);

26

CHAPTER 3. CURVE DEFINITION 27

3.1.5 Compute a curve by Hermite interpolation, parameter-
ization as input.

NAME
1379 - To compute the cubic Hermite interpolant to the data given by the points
point and the derivatives derivate and the parameterization par. The
output is represented as a B-spline curve.

SYNOPSIS
void s1379(point, derivate, par, numpt, dim, curve, stat)

double point][];

double derivate[];

double par|];

int numpt;

int dim;

SISLCurve **curve;

int *stat;

ARGUMENTS
Input Arguments:

point - Array (length dim*numpt) containing the points to be in-
terpolated in the sequence is (xo, Yo, T1, Y1, - - -) -

derivate - Array (length dim*numpt) containing the derivatives to
be interpolated in the sequence is

d]}o dy() d.’L‘1 dyl
(dt’ dt’ dt’ dt e

par - Parameterization array, (to,t1,...). The array should be
increasing in value.

numpt - No. of points/derivatives in the point and derivative ar-
rays.

dim - The dimension of the space in which the points lie.

Output Arguments:

curve Pointer to output B-spline curve
stat - Status messages

> (0 : warning

=0: ok

< 0 : error

CHAPTER 3. CURVE DEFINITION

EXAMPLE OF USE

{

double point[10];

double derivate[10];
double par[5];

int numpt = 9;

int dim = 2;
SISLCurve *curve = NULL;
int stat = 0;

s1379(point, derivate, par, numpt, dim, &curve, &stat);

28

CHAPTER 3. CURVE DEFINITION 29

3.1.6 Compute a
NAME

fillet curve based on parameter value.

s1607 - To calculate a fillet curve between two curves. The start and end point
for the fillet is given as one parameter value for each of the curves. The
output is represented as a B-spline curve.

SYNOPSIS

void s1607(curvel,

curve2, epsge, endl, fillparl, end2, fillpar2, filltype, dim, or-

der, newcurve, stat)

SISLCurve
SISLCurve
double
double
double
double
double

int

int

int
SISLCurve
int

ARGUMENTS
Input Arguments:
curvel
curve2

epsge
endl

fillparl

end?2

fillpar2

*curvel,;
*curveZ,
epsge;
endl,;
fillparl;
end?2;
fillpar2;
filltype;
dim;
order;
**newcurve;
*stat;

- The first input curve.

- The second input curve.

- Geometry resolution.

- Parameter value on the first curve. The parameter fillparl
divides the first curve in two pieces. Endl is used to select
which of these pieces the fillet should extend.

- Parameter value of the start point of the fillet on the first
curve.

- Parameter value on the second curve indicating that the
part of the curve lying on this side of fillpar2 shall not be
replaced by the fillet.

- Parameter value of the start point of the fillet on the second
curve.

CHAPTER 3. CURVE DEFINITION 30

filltype

dim
order

- Indicator of the type of fillet.

=1 : Circle approximation, interpolating tangent

on first curve, not on curve 2.
= 2 : Conic approximation if possible,
else : polynomial segment.
- Dimension of space.
- Order of the fillet curve, which is not always used.

Output Arguments:

newcurve
stat

EXAMPLE OF USE
{

SISLCurve
SISLCurve
double
double
double
double
double

int

int

int
SISLCurve

int

s1607(curvel, curve2, epsge, endl, fillparl, end2, fillpar2, filltype, dim, order,

- Pointer to the B-spline fillet curve.
- Status messages

> 0 : warning

=0: ok

< 0 : error

curvel; / Must be defined */
curve2; / Must be defined */
epsge = 0.0001;

endl; /* Must be defined */

fillparl; /* Must be defined */
end2; /* Must be defined */

fillpar2; /* Must be defined */
filltype = 2;

dim = 3;

order = 4;

*newcurve = NULL;

stat = 0;

&newcurve, &stat);

CHAPTER 3. CURVE DEFINITION 31

3.1.7 Compute a fillet curve based on points.

NAME
s$1608 - To calculate a fillet curve between two curves. Points indicate between
which points on the input curve the fillet is to be produced. The output
is represented as a B-spline curve.

SYNOPSIS
void s1608(curvel, curve2, epsge, pointl, startptl, point2, endpt2, filltype, dim,
order, newcurve, parptl, parsptl, parpt2, parept2, stat)
SISLCurve *curvel,;
SISLCurve *curve2,

double epsge;

double point1[];

double startpt1]];

double point2[];

double endpt2[];

int filltype;

int dim;

int order;

SISLCurve **newcurve;

double *parptl;

double *parspt1;

double *parpt2;

double *parept2;

int *stat;

ARGUMENTS
Input Arguments:

curvel - The first input curve.

curve2 - The second input curve.

epsge - Geometry resolution.

pointl - Point close to curve 1 indicating that the part of the curve
lying on this side of startptl is not to be replaced by the
fillet.

startptl - Point close to curve 1, indicating where the fillet is to start.

The tangent at the start of the fillet will have the same
orientation as the curve from pointl to startptl.

point2 - Point close to curve 2 indicating that the part of the curve
lying on this side of endpt2 is not to be replaced by the
fillet.

endpt2 - Point close to curve two, indicating where the fillet is to

end. The tangent at the end of the fillet will have the same
orientation as the curve from endpt2 to point2.

CHAPTER 3. CURVE DEFINITION 32

filltype - Indicator of type of fillet.
=1 : Circle, interpolating tangent on first curve,
not on curve 2.
= 2 : Conic if possible,
else : polynomial segment.
dim - Dimension of space.
order - Order of fillet curve, which is not always used.

Output Arguments:

newcurve - Pointer to the B-spline fillet curve.
parptl - Parameter value of point pointl on curve 1.
parsptl - Parameter value of point startptl on curve 1.
parpt2 - Parameter value of point point2 on curve 2.
parept2 - Parameter value of point endpt2 on curve 2.
stat - Status messages

> (0 : warning

=0: ok

< 0 : error

EXAMPLE OF USE
{
SISLCurve *curvel; /* Must be defined */
SISLCurve *curve2; /* Must be defined */
double epsge = 0.0001;
double point1[3]; /* Must be defined */
3]; /* Must be defined */

double startptl

double point2[3]; /* Must be defined */
double endpt2[3]; /* Must be defined */
int filltype = 3;

int dim = 3;

int order = 4;

SISLCurve *newcurve = NULL;

double parptl;

double parsptl;

double parpt2;

double parept2;

int stat = 0;

s1608(curvel, curve2, epsge, pointl, startptl, point2, endpt2,
filltype, dim, order, &newcurve, &parptl, &parsptl,
&parpt2, &parept2, &stat);

CHAPTER 3. CURVE DEFINITION 33

3.1.8 Compute a fillet curve based on radius.

NAME
$1609 - To calculate a constant radius fillet curve between two curves if possible.
The output is represented as a B-spline curve.

SYNOPSIS
void s1609(curvel, curve2, epsge, pointl, pointf, point2, radius, normal,
filltype, dim, order, newcurve, parendl, parsptl, parend2,
parept2, stat)
SISLCurve *curvel,;
SISLCurve *curve2,

double epsge;
double point1[];
double point{]];
double point2[];
double radius;
double normall];
int filltype;
int dim;
int order;
SISLCurve **newcurve;
double *parendl;
double *parspt1;
double *parend2;
double *parept2;
int *stat;
ARGUMENTS
Input Arguments:
curvel - The first input curve.
curve2 - The second input curve.
epsge - Geometry resolution.
point1 - Point indicating that the fillet should be put on the side
of curvel where pointl is situated.
pointf - Point indicating where the fillet curve should go. pointl

together with pointf indicates the direction of the start
tangent of the curve, while pointf together with point2
indicates the direction of the end tangent of the curve. If
more than one position of the fillet curve is possible, the
closest curve to pointf is chosen.

point2 - Point indicating that the fillet should be put on the side
of curve2 where point2 is situated.
radius - The radius to be used on the fillet if a circular fillet is

possible, otherwise a conic or a quadratic polynomial curve
is used, approximating the circular fillet.

normal - Normal to the plane the fillet curve should lie close to.
This is only used in 3D fillet calculations, and the fillet
centre will be in the direction of the cross product of the
curve tangents and the normal.

CHAPTER 3. CURVE DEFINITION 34

filltype

dim
order

Output Arguments:

newcurve
parendl

parsptl
parend?2
parept2

stat

Indicator of type of fillet.
=1 : Circle, interpolating tangent on first curve,
not on curve 2.
= 2 : Conic if possible,
else : polynomial segment.
Dimension of space.
Order of fillet curve, which is not always used.

Pointer to the B-spline fillet curve.
Parameter value of the end of curve 1 not affected by the
fillet.
Parameter value of the point on curve 1 where the fillet
starts.
Parameter value of the end of curve 2 not affected by the
fillet.
Parameter value of the point on curve 2 where the fillet
ends.
Status messages

> 0 : warning

=0: ok

< 0: error

CHAPTER 3. CURVE DEFINITION 35

EXAMPLE OF USE
{
SISLCurve *curvel; /* Must be defined */
SISLCurve *curve2; /* Must be defined */

double epsge = (0.00001;

double point1[3]; /* Must be defined */
double pointf[3]; /* Must be defined */
double point2[3]; /* Must be defined */
double radius; /* Must be defined */
double normal[3]; /* Must be defined */
int filltype = 2;

int dim = 3;

int order = 4; /* If not given by filltype */
SISLCurve *newcurve = NULL;

double parendl,;

double parsptl;

double parend?2;

double parept2;

int stat = 0;

s1609(curvel, curve2, epsge, pointl, pointf, point2, radius,
normal, filltype, dim, order, &newcurve, &parendl, &parsptl,
&parend2, &parept2, &stat);

CHAPTER 3. CURVE DEFINITION 36

3.1.9 Compute a circular fillet between a 2D curve and a

circle.
NAME

$1014 - Compute the fillet by iterating to the start and end points of a fillet
between a 2D curve and a circle. The centre of the circular fillet is also

calculated.

SYNOPSIS

void s1014(pcl, circ_cen, circ_rad, aepsge, epsl, eps2, aradius, parptl, parpt2,
centre, jstat)
SISLCurve *pcl;

double circ_cen;
double circ_rad,
double aepsge;
double epsl|];
double eps2|];
double aradius;
double *parptl;
double *parpt2;
double centre][|;
int *jstat;
ARGUMENTS
Input Arguments:
pcl - The first input curve.
circ_cen - 2D centre of the circle.
circ_rad - Radius of the circle.
aepsge - Geometry resolution.
epsl - 2D point telling that the fillet should be put on the side of
curve 1 where epsl is situated.
eps2 - 2D point telling that the fillet should be put on the side of
the input circle where eps2 is situated.
aradius - The radius to be used on the fillet.

Input/Output Arguments:

parptl -

parpt2 -

Output Arguments:
centre -

jstat -

Parameter value of the point on curve 1 where the fillet
starts. Input is a guess value for the iteration.

Parameter value of the point on the input circle where the
fillet ends. Input is a guess value for the iteration.

2D centre of the circular fillet. Space must be allocated
outside the function.
Status message

=1 : Converged,

= 2 : Diverged,

< 0 : Error.

CHAPTER 3. CURVE DEFINITION 37

EXAMPLE OF USE

{
SISLCurve *pcl; /* Must be defined */
double circ_cen|2]; /* Must be defined */
double circ_rad; /* Must be defined */
double aepsge = 0.00001;
double epsl[2]; /* Must be defined */
double eps22]; /* Must be defined */
double aradius; /* Must be defined */
double parptl,;
double parpt2;
double centre[2];
int jstat = 0;

$1014(pcl, circ_cen, circ_rad, aepsge, epsl, eps2, aradius, &parptl, &parpt2,
centre, &jstat);

CHAPTER 3. CURVE DEFINITION 38

3.1.10 Compute a circular fillet between two 2D curves.

NAME

$1015 - Compute the fillet by iterating to the start and end points of a fillet
between two 2D curves. The centre of the circular fillet is also calculated.

SYNOPSIS

void s1015(pcl, pc2, aepsge, epsl, eps2, aradius, parptl, parpt2, centre, jstat)
SISLCurve *pcl;
SISLCurve *pc2;

double aepsge;

double epsl|];

double eps2|];

double aradius;

double *parptl;

double *parpt2;

double centre][;

int *jstat;

ARGUMENTS
Input Arguments:

pcl - The first 2D input curve.

pc2 - The second 2D input curve.

aepsge - Geometry resolution.

epsl - 2D point telling that the fillet should be put on the side of
curve 1 where epsl is situated.

eps2 - 2D point telling that the fillet should be put on the side of
curve 2 where epsZ2 is situated.

aradius - The radius to be used on the fillet.

Input/Output Arguments:

parptl -

parpt2 -

Output Arguments:
centre -

jstat -

Parameter value of the point on curve 1 where the fillet
starts. Input is a guess value for the iteration.

Parameter value of the point on curve 2 where the fillet
ends. Input is a guess value for the iteration.

2D centre of the circular fillet. Space must be allocated
outside the function.
Status message

=1: Converged,

= 2 : Diverged,

< 0 : Error.

CHAPTER 3. CURVE DEFINITION 39

EXAMPLE OF USE

{

SISLCurve *pcl; /* Must be defined */
SISLCurve *pc2; /* Must be defined */

double aepsge = 0.00001;

double eps1[2]; /* Must be defined */
double eps22]; /* Must be defined */
double aradius; /* Must be defined */
double parptl; /* Must be defined */
double parpt2; /* Must be defined */
double centre[2];

int Jjstat = 0;

s1015(pcl, pc2, aepsge, epsl, eps2, aradius, &parptl, &parpt2, centre, & js-
tat);

CHAPTER 3. CURVE DEFINITION 40

3.1.11 Compute a circular fillet between a 2D curve and
a 2D line.

NAME
81016 - Compute the fillet by iterating to the start and end points of a fillet
between a 2D curve and a 2D line. The centre of the circular fillet is
also calculated.

SYNOPSIS
void s1016(pcl, point, normal, aepsge, epsl, eps2, aradius, parptl, parpt2, centre,
Jstat)
SISLCurve *pcl;
double point][];
double normall];
double aepsge;
double epsl|];
double eps2|];
double aradius;
double *parptl1;
double *parpt2;
double centre][|;
int *jstat;
ARGUMENTS

Input Arguments:
pcl - The 2D input curve.
point - 2D point on the line.
normal - 2D normal to the line.
aepsge - Geometry resolution.
epsl - 2D point telling that the fillet should be put on the side of

curve 1 where epsl is situated.
eps2 - 2D point telling that the fillet should be put on the side of
curve 2 where eps2 is situated.

aradius - The radius to be used on the fillet.

Input/Output Arguments:
parptl - Parameter value of the point on curve 1 where the fillet
starts. Input is a guess value for the iteration.
parpt2 - Parameter value of the point on the line where the fillet
ends. Input is a guess value for the iteration.

Output Arguments:
centre - 2D centre of the (circular) fillet. Space must be allocated
outside the function.

CHAPTER 3. CURVE DEFINITION 41

Jjstat - Status message
=1 : Converged,
= 2 : Diverged,
< 0 : Error.

EXAMPLE OF USE

{
SISLCurve *pcl; /* Must be defined */
double point[2]; /* Must be defined */
double normal[2]; /* Must be defined */
double aepsge = 0.00001;
double epsl[2]; /* Must be defined */
double eps2(2]; /* Must be defined */
double aradius; /* Must be defined */
double parptl,
double parpt2;
double centre[2];
int jstat = 0;

s1016(pcl, point, normal, aepsge, epsl, eps2, aradius, &parptl, &parpt2,
centre, &jstat);

CHAPTER 3. CURVE DEFINITION 42

3.1.12 Compute a blending curve between two curves.

NAME

$1606 - To compute a blending curve between two curves. Two points indicate
between which ends the blend is to be produced. The blending curve is
either a circle or an approximated conic section if this is possible, other-
wise it is a quadratic polynomial spline curve. The output is represented
as a B-spline curve.

SYNOPSIS
void s1606(curvel,

curve2, epsge, pointl, point2, blendtype, dim, order,

newcurve, stat)
SISLCurve *curvel,
SISLCurve *curve2;

double epsge;

double point1[];

double point2[];

int blendtype;

int dim;

int order;

SISLCurve **newcurve;

int *stat;
ARGUMENTS

Input Arguments:
curvel - The first input curve.

curve2 -
epsge -
point1 -
point2 -
blendtype -

dim -
order -

Output Arguments:
newcurve -
stat -

The second input curve.
Geometry resolution.
Point near the end of curve 1 where the blend starts.
Point near the end of curve 2 where the blend starts.
Indicator of type of blending.
=1 : Circle, interpolating tangent on first curve,
not on curve 2, if possible.
= 2 : Conic if possible,
else : polynomial segment.
Dimension of the geometry space.
Order of the blending curve.

Pointer to the B-spline blending curve.
Status messages

> (0 : warning

=0: ok

< 0 : error

CHAPTER 3. CURVE DEFINITION 43

EXAMPLE OF USE
{
SISLCurve *curvel; /* Must be defined */
SISLCurve *curve2; /* Must be defined */

double epsge = (0.00001;

double point1[3]; /* Must be defined */

double point2[3]; /* Must be defined */

int blendtype = 1;

int dim = 3; /* Must be consistent with curvel and curve2 /*
int order = 3; /* If not given by blendtype */

SISLCurve *newcurve;

int stat = 0;

s1606(curvel, curve2, epsge, pointl, point2, blendtype, dim, order,
&newcurve, &stat);

CHAPTER 3. CURVE DEFINITION 44

3.2 Approximation

Two kinds of curves are treated in this section. The first is approximations of
special shapes like circles and conic segments. The second is approximation of
a point set, or offsets to curves.

Except for the point set approximation function, all functions require a tol-
erance for the approximation. Note that there is a close relationship between
the size of the tolerance and the amount of data for the curve.

3.2.1 Approximate a circular arc with a curve.

NAME

s1303 - To create a curve approximating a circular arc around the axis defined by
the centre point, an axis vector, a start point and a rotational angle. The
maximal deviation between the true circular arc and the approximation
to the arc is controlled by the geometric tolerance (epsge). The output
will be represented as a B-spline curve.

SYNOPSIS

void s1303(startpt, epsge, angle, centrept, axis, dim, curve, stat)

double
double
double
double
double

int
SISLCurve
int

ARGUMENTS
Input Arguments:
startpt

epsge
angle
centrept
axis

dim

startpt] |;
epsge;
angle;
centrept|;
axis[];
dimy;
**curve;
*stat;

Start point of the circular arc

Maximal deviation allowed between the true circle and the
circle approximation.

The rotational angle. Counterclockwise around axis. If
the rotational angle is outside < —27, +27 > then a closed
curve is produced.

Point on the axis of the circle.

Normal vector to plane in which the circle lies. Used if
dim = 3.

The dimension of the space in which the circular arc lies
(2 or 3).

CHAPTER 3. CURVE DEFINITION

Output Arguments:

curve - Pointer to the B-spline curve.
stat - Status messages

> 0 : warning

=0: ok

< 0: error

EXAMPLE OF USE

{
double startpt[3]; /* Must be defined */
double epsge = 0.001;
double angle; /* Must be defined */
double centrept[3]; /* Must be defined */
double axis[3]; /* Must be defined */
int dim = 3;
SISLCurve *curve = NULL;
int stat = 0;

s1303(startpt, epsge, angle, centrept, axis, dim, &curve, &stat);

45

CHAPTER 3. CURVE DEFINITION 46

3.2.2 Approximate a conic arc with a curve.

NAME

s$1611 - To approximate a conic arc with a curve in two or three dimensional
space. If two points are given, a straight line is produced, if three an
approximation of a circular arc, and if four or five a conic arc. The
output will be represented as a B-spline curve.

SYNOPSIS
void s1611(point,
curve,

double
int
int
double
int
int
double
double
double
SISLCurve
int

ARGUMENTS
Input Arguments:
point

numpt
dim
typept

open

order
startpar

epsge

numpt, dim, typept, open, order, startpar, epsge, endpar,
stat)
point[];
numpt;
dim;
typept|J;
open;
order;
startpar;
epsge;
*endpar;
**curve;
*stat;

- Array of length dim xXnumpt containing the points/ deriva-
tives to be interpolated.
- No. of points/derivatives in the point array.
- The dimension of the space in which the points lie.
- Array (length numpt) containing type indicator for
points/derivatives/ second-derivatives:
1 : Ordinary point.
3 : Derivative to next point.
4 : Derivative to prior point.
- Open or closed curve:
0 : Closed curve, not implemented.
1: Open curve.
- The order of the B-spline curve to be produced.
- Parameter-value to be used at the start of the curve.
- The geometry resolution.

CHAPTER 3. CURVE DEFINITION 47

Output Arguments:

endpar - Parameter-value used at the end of the curve.
curve - Pointer to the output B-spline curve.
stat - Status messages

> 0 : warning

=0: ok

< 0 : error

NOTE
When four points/tangents are given as input, the xy term of the implicit equation
is set to zero. Thus the points might end on two branches of a hyperbola and a
straight line is produced. When four or five points/tangents are given only three
of these should actually be points.

EXAMPLE OF USE
{

double point[30]; /* Must be defined */
int numpt = 10;

int dim = 3;

double typept[10]; /* Must be defined */
int open = 1;

int order = 4;

double startpar = 0.0;

double epsge = 0.0001;

double endpar;

SISLCurve *curve = NULL;

int stat = 0;

s1611(point, numpt, dim, typept, open, order, startpar, epsge,
&endpar, &curve, &stat);

CHAPTER 3. CURVE DEFINITION 48

3.2.3 Compute a curve using the input points as control-
ling vertices, automatic parameterization.

NAME
81630 - To compute a curve using the input points as controlling vertices. The
distances between the points are used as parametrization. The output
will be represented as a B-spline curve.

SYNOPSIS
void s1630(epoint, inbpnt, astpar, iopen, idim, ik, rc, jstat)
double epoint] |;
int inbpnt;
double astpar;
int iopen;
int idim;
int ik;
SISLCurve **rc;
int *jstat;
ARGUMENTS
Input Arguments:
epoint - The array containing the points to be used as controlling
vertices of the B-spline curve.
inbpnt - No. of points in epoint.
astpar - Parameter value to be used at the start of the curve.
iopen - Open/closed/periodic condition.
= —1 : Closed and periodic.
=0 : Closed.
=1 : Open.
idim - The dimension of the space.
ik - The order of the spline curve to be produced.
Output Arguments:
rc - Pointer to the B-spline curve.
Jjstat - Status message
< 0: Error.
=0: Ok.

> 0 : Warning.

CHAPTER 3. CURVE DEFINITION 49

EXAMPLE OF USE

{

double epoint[30]; /* Must be defined */
int inbpnt = 10;

double astpar = 0.0;

int iopen = 1;

int idim = 3;

int ik = 4;

SISLCurve *rc = NULL;

int jstat = 0;

$1630(epoint, inbpnt, astpar, iopen, idim, ik, &rc, &jstat);

CHAPTER 3. CURVE DEFINITION 50

3.2.4 Approximate the offset of a curve with a curve.

NAME

81360 - To create a approximation of the offset to a curve within a tolerance.
The output will be represented as a B-spline curve.
With an offset of zero, this routine can be used to approximate any

NURBS

SYNOPSIS

curve, within a tolerance, with a (non-rational) B-spline curve.

void s1360(oldcurve, offset, epsge, norm, max, dim, newcurve, stat)

SISLCurve
double
double
double
double

int
SISLCurve

nt

ARGUMENTS
Input Arguments:
oldcurve
offset

epsge
norm
max
dim

NOTE

*oldcurve;
offset;

epsge;
norm(|;
max;

dim;
**newcurve;
*stat;

- The input curve.

- The offset distance. If dim=2, a positive sign on this value
put the offset on the side of the positive normal vector,
and a negative sign puts the offset on the negative normal
vector. If dim=3, the offset direction is determined by the
cross product of the tangent vector and the normal vector.
The offset distance is multiplied by this cross product.

- Maximal deviation allowed between the true offset curve
and the approximated offset curve.

- Vector used in 3D calculations.

- Maximal step length. It is neglected if max<epsge. If
max=0.0, then a maximal step equal to the longest box
side of the curve is used.

- The dimension of the space must be 2 or 3.

If the vector norm and the curve tangent are parallel at some point, then the curve
produced will not be an offset at this point, and it will probably move from one
side of the input curve to the other side.

CHAPTER 3. CURVE DEFINITION 51

Output Arguments:

newcurve - Pointer to the B-spline curve approximating the offset
curve.
stat - Status messages.
> 0 : Warning.
=0: Ok.
< 0: Error.

EXAMPLE OF USE

{
SISLCurve *oldcurve; /* Must be defined */

double offset; /* Must be defined */
double epsge; /* Must be defined */
double norm(3]; /* Must be defined */
double max = 0.0;

int dim = 3;

SISLCurve *newcurve = NULL;

int stat = 0;

$1360(oldcurve, offset, epsge, norm, max, dim, &newcurve, &stat);

CHAPTER 3. CURVE DEFINITION 52

3.2.5 Approximate a curve with a sequence of straight
lines.

NAME
81613 - To calculate a set of points on a curve. The straight lines between the
points will not deviate more than epsge from the curve at any point.
The generated points will have the same spatial dimension as the input
curve.

SYNOPSIS
void s1613(curve, epsge, points, numpoints, stat)
SISLCurve *curve;

double epsge;
double **points;
int *numpoints;
int *stat;
ARGUMENTS
Input Arguments:
curve - The input curve.
epsge - Geometry resolution, maximum distance allowed between

the curve and the straight lines that are to be calculated.
Output Arguments:
points - Calculated points,
(a vector of numpoints x curve->idim elements).
numpoints - Number of calculated points.
stat - Status messages
> (0 : warning
=0: ok
< 0 : error
EXAMPLE OF USE

{
SISLCurve *curve; /* Must be defined */

double epsge; /* Must be defined */
double *points = NULL;

int numpoints = 0;

int stat = 0;

s1613(curve, epsge, &points, &numpoints, &stat);

CHAPTER 3. CURVE DEFINITION

3.3 Mirror a Curve

NAME
s$1600 - To mirror a curve around a plane.

SYNOPSIS
void s1600(oldcurve, point, normal, dim, newcurve, stat)
SISLCurve *oldcurve;

double point|;
double normall];
int dim;
SISLCurve **newcurve;
int *stat;
ARGUMENTS
Input Arguments:
oldcurve - Pointer to original curve.
point - A point in the plane.
normal - Normal vector to the plane.
dim - The dimension of the space.

Output Arguments:

newcurve - Pointer to the mirrored curve.
stat - Status messages

> (0 : warning

=0: ok

< 0 : error

EXAMPLE OF USE

{
SISLCurve *oldcurve; /* Must be defined */

double point[3]; /* Must be defined */
double normal[3]; /* Must be defined */
int dim = 3;

SISLCurve *newcurve =NULL;

int stat = 0;

$1600(oldcurve, point, normal, dim, &newcurve, &stat);

CHAPTER 3. CURVE DEFINITION 54

3.4 Conversion

3.4.1 Convert a curve of order up to four, to a sequence
of cubic polynomials.

NAME
s1389 - Convert a curve of order up to 4 to a sequence of non-rational cubic
segments with uniform parameterization.
SYNOPSIS
void s1389(curve, cubic, numcubic, dim, stat)

SISLCurve *curve;

double **cubic;
int *numcubic;
int *dim;
int *stat;
ARGUMENTS
Input Arguments:
curve - Pointer to the curve that is to be converted

Output Arguments:
cubic - Array containing the sequence of cubic segments. Each
segment is represented by the start point, followed by the
start tangent, end point and end tangent. Each segment
needs 4*dim doubles for storage.

numcubic - Number of elements of length (4*dim) in the array cubic
dim - The dimension of the geometric space.
stat - Status messages

> (0 : warning

=0:o0k

< 0 : error

EXAMPLE OF USE

{
SISLCurve *curve; /* Must be defined */

double *cubic = NULL;
int numcubic;

int dim;

int stat = 0;

$1389(curve, &cubic, &numcubic, &dim, &stat);

CHAPTER 3. CURVE DEFINITION 95

3.4.2 Convert a curve to a sequence of Bezier curves.

NAME
s1730 - To convert a curve to a sequence of Bezier curves. The Bezier curves are
stored as one curve with all knots of multiplicity newcurve->ik (order of
the curve). If the input curve is rational, the generated Bezier curves will
be rational too (i.e. there will be rational weights in the representation
of the Bezier curves).

SYNOPSIS
void s1730(curve, newcurve, stat)
SISLCurve *curve;
SISLCurve **newcurve;

int *stat;
ARGUMENTS
Input Arguments:
curve - The curve to convert.

Output Arguments:

newcurve - The new curve containing all the Bezier curves.
stat - Status messages

> (0 : warning

=0: ok

< 0 : error

EXAMPLE OF USE
{
SISLCurve *curve; /* Must be defined */
SISLCurve *newcurve = NULL;
int stat = 0;

s1730(curve, &newcurve, &stat);

CHAPTER 3. CURVE DEFINITION 56

3.4.3 Pick out the next Bezier curve from a curve.

NAME
s1732 -

SYNOPSIS

To pick out the next Bezier curve from a curve. This function requires
a curve represented as the curve that is output from s1730(). If the
input curve is rational, the generated Bezier curves will be rational too
(i.e. there will be rational weights in the representation of the Bezier
curves, note the convention for coefficients in the rational case, see Chap-
ter 6.1.1).

void s1732(curve, number, startpar, endpar, coef, stat)
SISLCurve *curve;

int number;
double *startpar;
double *endpar;
double coef[];
int *stat;
ARGUMENTS
Input Arguments:
curve - curve to pick from.
number - The number of the Bezier curve that is to be picked, where

0 < number < in/ik (i.e. the number of vertices in the
curve divided by the order of the curve).

Output Arguments:

startpar - The start parameter value of the Bezier curve.
endpar - The end parameter value of the Bezier curve.
coef - The vertices of the Bezier curve. Space of size (idim +

stat

1) x ik (i.e. spatial dimension of curve +1 times the order
of the curve) must be allocated outside the function.
- Status messages
> (0 : warning
=0: ok
< 0 : error

CHAPTER 3. CURVE DEFINITION 57

EXAMPLE OF USE

{

SISLCurve *curve; /* Must be defined */

int number; /* Must be defined */

double startpar;

double endpar;

double coef[12]; /* Assumes dimension=3, order=4, non-rational */
int stat = 0;

s1732(curve, number, &startpar, &endpar, coef, &stat);

CHAPTER 3. CURVE DEFINITION o8

3.4.4 Express a curve using a higher order basis.

NAME
$1750 - To describe a curve using a higher order basis.

SYNOPSIS
void s1750(curve, order, newcurve, stat)

SISLCurve *curve;

int order;
SISLCurve **newcurve;
int *stat;
ARGUMENTS
Input Arguments:
curve - The input curve.
order - Order of the new curve.

Output Arguments:

newcurve - The new curve of higher order.
stat - Status messages

> (0 : warning

=0: ok

< 0 : error

EXAMPLE OF USE
{

SISLCurve *curve; /* Must be defined */

double order; /* Must be defined */
SISLCurve *newcurve = NULL;
int stat = 0;

s1750(curve, order, &newcurve, &stat);

CHAPTER 3. CURVE DEFINITION 59

3.4.5 Express the “i”-th derivative of an open curve as a
curve.

NAME
$1720 - To express the “i’-th derivative of an open curve as a curve.

SYNOPSIS
void s1720(curve, derive, newcurve, stat)

SISLCurve *curve;

int derive;
SISLCurve **newcurve;
int *stat;
ARGUMENTS
Input Arguments:
curve - Curve to be differentiated.
derive - The order "i” of the derivative, where 0 < derive.

Output Arguments:

newcurve - The "i”-th derivative of a curve represented as a curve.
stat - Status messages

> (0 : warning

=0: ok

< 0 : error

EXAMPLE OF USE

{
SISLCurve *curve; /* Must be defined */

int derive = 1;
SISLCurve *newcurve = NULL;
int stat = 0;

s1720(curve, derive, &newcurve, &stat);

CHAPTER 3. CURVE DEFINITION 60

3.4.6 Express a 2D or 3D ellipse as a curve.

NAME
1522 - Convert a 2D or 3D analytical ellipse to a curve. The curve will be
geometrically exact.

SYNOPSIS
void s1522(normal, centre, ellipaxis, ratio, dim, ellipse, jstat)
double normall];
double centre] |;
double ellipaxis| |;
double ratio
int dim;
SISLCurve **ellipse;
int *jstat;
ARGUMENTS
Input Arguments:
normal - 3D normal to ellipse plane (not necessarily normalized).
Used if dim = 3.
centre - Centre of ellipse (2D if dim = 2 and 3D if dim = 3).
ellipaxis - This will be used as starting point for the ellipse curve (2D
if dim = 2 and 3D if dim = 3).
ratio - The ratio between the length of the given ellipaxis and

the length of the other axis, i.e. |ellipazis|/|otheraxis| (a
compact representation format).

dim - Dimension of the space in which the elliptic nurbs curve
lies (2 or 3).

Output Arguments:

ellipse - Ellipse curve (2D if dim = 2 and 3D if dim = 3).
stat - Status messages

> (0 : warning

=0: ok

< 0 : error

CHAPTER 3. CURVE DEFINITION

EXAMPLE OF USE

{

double
double
double
double

int
SISLCurve

nt

s1522(normal, centre, ellipaxis, ratio, dim, &ellipse, &jstat);

normal[3]; /* Must be defined */
centre[3]; /* Must be defined */
ellipaxis[3]; /* Must be defined */
ratio; /* Must be defined */

dim = 3;

*ellipse = NULL;

jstat = 0;

61

CHAPTER 3. CURVE DEFINITION 62

3.4.7 Express a conic arc as a curve.

NAME
1011 - Convert an analytic conic arc to a curve. The curve will be geometrically
exact. The arc is given by position at start, shoulder point and end, and
a shape factor.

SYNOPSIS
void s1011(start_pos, top_pos, end_pos, shape, dim, arc_seg, stat)
double start_pos] |;
double top_pos| ;
double end_pos]|;
double shape;
int dim;
SISLCurve **arc_seg;
int *stat;
ARGUMENTS
Input Arguments:
start_pos - Start point of segment.
top_pos - Shoulder point of segment. This is the intersection point
of the tangents in start_pos and end_pos.
end_pos - End point of segment.
shape - Shape factor, must be > 0.
< 0.5, an ellipse,
= 0.5, a parabola,
> 0.5, a hyperbola,
> 1, the start and end points lies on different
branches of the hyperbola. We want a sin-
gle arc segment, therefore if shape > 1, shape
is set to 0.999999.
dim - The spatial dimension of the curve to be produced.

Output Arguments:

Jjstat - Status message
< 0: Error.
=0: Ok.
> 0 : Warning.

arc_seg - Pointer to the curve produced.

CHAPTER 3. CURVE DEFINITION

EXAMPLE OF USE

{

double
double
double
double

int
SISLCurve

nt

s1011(start_pos, top_pos, end_pos, shape, dim, &arc_seg, &stat);

start_pos[3]; /* Must be defined */
top-pos[3]; /* Must be defined */
end_pos[3]; /* Must be defined */

shape = 0.3;

dim = 3;

*arc_seg = NULL;
stat = 0;

63

CHAPTER 3. CURVE DEFINITION 64

3.4.8 Express a truncated helix as a curve.

NAME
$1012 - Convert an analytical truncated helix to a curve. The curve will be
geometrically exact.

SYNOPSIS
void s1012(start_pos, axis_pos, axis_dir, frequency, numb_quad, counter_clock, he-
lix, stat)
double start_pos|[;
double axis_pos|;
double axis_dir[];
double frequency;
int numb_quad,
int counter_clock;
SISLCurve **helix;
int *stat;
ARGUMENTS
Input Arguments:
start_pos - Start position on the helix.
axis_pos - Point on the helix axis.
axis_dir - Direction of the helix axis.
frequency - The length along the helix axis for one period of revolution.
numb_quad - Number of quadrants in the helix.

counter_clock- Flag for direction of revolution:
=0 : clockwise,
=1 : counter_clockwise.

Output Arguments:

jstat - Status message
< 0 : Error.
=0: Ok.
> 0 : Warning.

helix - Pointer to the helix curve produced.

CHAPTER 3. CURVE DEFINITION 65

EXAMPLE OF USE

{
double start_pos[3]; /* Must be defined */
double axis_pos[3]; /* Must be defined */
double axis_dir[3]; /* Must be defined */
double frequency; /* Must be defined */
int numb_quad = b;
int counter_clock = 1;
SISLCurve *helix = NULL;
int stat = 0;

s1012(start_pos, axis_pos, axis_dir, frequency, numb_quad, counter_clock,
&helix, &stat)

Chapter 4

Curve Interrogation

This chapter describes the functions in the Curve Interrogation module.

4.1 Intersections

4.1.1 Intersection between a curve and a point.

NAME
s1871 - Find all the intersections between a curve and a point.

SYNOPSIS
void s1871(pcl, ptl, idim, aepsge, jpt, gparl, jerv, wcurve, jstat)
SISLCurve *pcl;

double *ptl;
int idim;
double aepsge;
int *ipt;
double **gparl,;
int *jerv;
SISLIntcurve ***wcurve;
int *jstat;
ARGUMENTS
Input Arguments:
pcl - Pointer to the curve.
ptl - coordinates of the point.
idim - number of coordinates in ptI.
aepsge - Geometry resolution.

Output Arguments:
jpt - Number of single intersection points.
gparl - Array containing the parameter values of the single in-
tersection points in the parameter interval of the curve.
The points lie continuous. Intersection curves are stored
in wcurve.

66

CHAPTER 4. CURVE INTERROGATION 67

jerv - Number of intersection curves.

weurve - Array containing descriptions of the intersection curves.
The curves are only described by points in the parameter
plane. The curve-pointers points to nothing.
If the curves given as input are degenerate, an intersection
point can be returned as an intersection curve. Use s1327()
to decide if an intersection curve is a point on one of the
curves.

jstat - Status messages
> (0 : Warning.
=0: Ok.
< 0: Error.

EXAMPLE OF USE
{

SISLCurve *pcl; /* Must be defined */

double *ptl; /* Must be defined */

int idim; /* Equal to the curve dimension */
double aepsge = 0.000001 ;

int jpt = 0;

double *gparl = NULL;

int jerv = 0;

SISLIntcurve **wcurve = NULL;

int Jjstat = 0;

s1871(pcl, ptl, idim, aepsge, &jpt, &gparl, &jcrv, &wcurve, &jstat);

CHAPTER 4. CURVE INTERROGATION 68

4.1.2 Intersection between a spline curve and a straight
line or a plane.

NAME

1850 - Find all the intersections between a spline curve and a plane (if curve
dimension and dim = 3) or a curve and a line (if curve dimension and

dim = 2).

SYNOPSIS
void s1850(curve,

point, normal, dim, epsco, epsge, numintpt, intpar,

numintcu, intcurve, stat)
*curve,

SISLCurve
double
double

int

double
double

int

double

int
SISLIntcurve
int

ARGUMENTS

Input Arguments:
curve
point
normal

dim

epsco
epsge

Output Arguments:

numintpt
intpar

numintcu

point|];

normal[];
dim;
epsco;
epsge;
*numintpt;
kg .
intpar;
*numintcu;

kKK

intcurve;

*stat;

Pointer to the curve.

Point in the plane/line.

Normal to the plane or any normal to the direction of the
line.

Dimension of the space in which the curve and the
plane/line lies, dim must be equal to two or three.

Computational resolution (not used).
Geometry resolution.

Number of single intersection points.

Array containing the parameter values of the single inter-
section points in the parameter interval of the curve. The
points lie in sequence. Intersection curves are stored in
intcurve.

Number of intersection curves.

CHAPTER 4. CURVE INTERROGATION 69

intcurve - Array of pointers to SISLIntcurve objects containing de-
scription of the intersection curves. The curves are only
described by start points and end points in the parameter
interval of the curve. The curve pointers point to nothing.

stat - Status messages
> 0 : warning
=0: ok
< 0 : error

EXAMPLE OF USE
{

SISLCurve *curve; /* Must be defined */

double point[3]; /* Must be defined */
double normal[3]; /* Must be defined */
int dim = 3;

double epsco = 1.0e-9; /* Not used */
double epsge = 1.0e-6;

int numintpt = 0;

double *intpar = NULL;

int numintcu = 0;

SISLIntcurve **intcurve = NULL;

int stat = 0;

s1850(curve, point, normal, dim, epsco, epsge, &numintpt, &intpar, &nu-
mintcu, &intcurve, &stat);

CHAPTER 4. CURVE INTERROGATION 70

4.1.3 Convert a curve/line intersection into a two-dimensional
curve/origo intersection

NAME
1327 - Put the equation of the curve pointed at by pcold into two planes given
by the point epoint and the normals enorml and enorm2. The result is
an equation where the new two-dimensional curve rcnew is to be equal
to origo.

SYNOPSIS
void $1327(pcold, epoint, enorml, enorm?2, idim, rcnew, jstat)
SISLCurve *pcold,;

double epoint|[;
double enorml][];
double enorm2][;
int idim;
SISLCurve **rcnew;
int *jstat;
ARGUMENTS
Input Arguments:
pcold - Pointer to input curve.
epoint - SISLPoint in the planes.
enorml - Normal to the first plane.
enorm?2 - Normal to the second plane.
idim - Dimension of the space in which the planes lie.

Output Arguments:

rcnew - 2-dimensional curve.
jstat - status messages
> (0 : warning
=0: ok
< 0 : error

EXAMPLE OF USE

{
SISLCurve *pcold; /* Must be defined */

double epoint[3]; /* Must be defined */

double enorml1[3]; /* Must be defined */
double enorm2(3]; /* Must be defined */

int idim = 3; /* Equal to curve dimension */
SISLCurve **rcnew = NULL;

int *jstat = 0;

s1327(pcold, epoint, enorml, enorm2, idim, rcnew, jstat);

CHAPTER 4. CURVE INTERROGATION 71

4.1.4 Intersection between a spline curve and a 2D circle
or a sphere.

NAME
s1371 - Find all the intersections between a curve and a sphere (if curve di-
mension and dim = 3), or a curve and a circle (if curve dimension and
dim = 2).

SYNOPSIS
void s1371(curve, centre, radius, dim, epsco, epsge, numintpt, intpar,
numintcu, intcurve, stat)
SISLCurve *curve;

double centre]|;
double radius;
int dim;
double epsco;
double epsge;
int *numintpt;
double **intpar;
int *numintcu;
SISLIntcurve ***intcurve;
int *stat;
ARGUMENTS
Input Arguments:
curve - Pointer to the curve.
centre - Centre of the circle/sphere.
radius - Radius of circle or sphere.
dim - Dimension of the space in which the curve and the cir-
cle/sphere lies, dim should be equal to two or three.
epsco - Computational resolution (not used).
epsge - Geometry resolution.
Output Arguments:
numintpt - Number of single intersection points.
intpar - Array containing the parameter values of the single inter-

section points in the parameter interval of the curve. The
points lie in sequence. Intersection curves are stored in

intcurve.
numintcu - Number of intersection curves.
intcurve - Array of pointers to SISLIntcurve objects containing de-

scriptions of the intersection curves. The curves are only
described by start points and end points in the parameter
interval of the curve. The curve pointers point to nothing.

CHAPTER 4. CURVE INTERROGATION 72

stat - Status messages
> (0 : warning
=0: ok
< 0 : error

EXAMPLE OF USE
{

SISLCurve *curve; /* Must be defined */

double centre[3]; /* Must be defined */
double radius; /* Must be defined */
int dim = 3;

double epsco = 1.0e-9; /* Not used */
double epsge = 1.0e-6;

int numintpt = 0;

double *intpar = NULL;

int numintcu = 0;

SISLIntcurve **intcurve = NULL;

int stat = 0;

s1371(curve, centre, radius, dim, epsco, epsge, &numintpt, &intpar, &nu-
mintcu, &intcurve, &stat);

CHAPTER 4. CURVE INTERROGATION 73

4.1.5 Intersection between a curve and a quadric curve.

NAME
$1374 - Find all the intersections between a curve and a quadric curve, (if curve
dimension and dim = 2), or a curve and a quadric surface, (if curve
dimension and dim = 3).

SYNOPSIS
void s1374(curve, conarray, dim, epsco, epsge, numintpt, intpar, numintcu,
intcurve, stat)
SISLCurve *curve;

double conarrayl |;
int dim;
double epsco;
double epsge;
int *numintpt;
double **intpar;
int *numintcu,;
SISLIntcurve ***intcurve;
int *stat;
ARGUMENTS
Input Arguments:
curve - Pointer to the curve.
conarray - Matrix of dimension (dim + 1) x (dim + 1) describing the

conic curve or surface with homogeneous coordinates. For
dim=2 the implicit equation of the curve is that the fol-
lowing is equal to zero:

Cop C1 C2 T
(z y 1) c3 ¢4 Cs Y
Cg C7 Cg 1
dim - Dimension of the space in which the cone and the curve
lie, dim should be equal to two or three.
epsco - Computational resolution (not used).

epsge - Geometry resolution.

CHAPTER 4. CURVE INTERROGATION 74

Output Arguments:

numintpt -
intpar -

numintcu -
intcurve -

stat -

EXAMPLE OF USE

{

Number of single intersection points.

Array containing the parameter values of the single inter-
section points in the parameter interval of the curve. The
points lie in sequence. Intersection curves are stored in
intcurve.

Number of intersection curves.

Array of pointers to SISLIntcurve objects containing de-
scriptions of the intersection curves. The curves are only
described by start points and end points in the parameter
interval of the curve. The curve pointers point to nothing.

Status messages

> 0 : Warning.
=0: Ok.
< 0 : Error.

SISLCurve *curve; /* Must be defined */

double conarray[16]; /* Must be defined */
int dim = 3;

double epsco = 1.0e-9; /* Not used */
double epsge = 1.0e-6;

int numintpt = 0;

double *intpar = NULL;

int numintcu = 0;

SISLIntcurve **intcurve = NULL;

int stat = 0;

s1374(curve, conarray, dim, epsco, epsge, &numintpt, &intpar,
&numintcu, &intcurve, &stat);

CHAPTER 4. CURVE INTERROGATION (0]

4.1.6 Intersection between two curves.

NAME

s1857 - Find all the intersections between two curves.

SYNOPSIS

void s1857(curvel, curve2, epsco, epsge, numintpt, intparl, intpar2,
numintcu, intcurve, stat)

SISLCurve
SISLCurve
double
double

int

double
double

int
SISLIntcurve

nt

ARGUMENTS
Input Arguments:
curvel
curve2
epsco
epsge

Output Arguments:

numintpt
intparl

intpar2

numintcu
intcurve

stat

EXAMPLE OF USE

SISLCurve
SISLCurve

*curvel;
*curve2;
€epsco;
epsge;
*numintpt;
**intparl;
**intpar2;
*numintcu;

kKK

intcurve;

*stat;

Pointer to the first curve.

Pointer to the second curve.
Computational resolution (not used).
Geometry resolution.

Number of single intersection points.
Array containing the parameter values of the single inter-
section points in the parameter interval of the first curve.
Intersection curves are stored in intcurve.
Array containing the parameter values of the single in-
tersection points in the parameter interval of the second
curve. Intersection curves are stored in intcurve.
Number of intersection curves.
Array of pointers to the SISLIntcurve objects containing
descriptions of the intersection curves. The curves are only
described by start points and end points in the parameter
interval of the curve. The curve pointers point to nothing.
If the curves given as input are degenerate, an intersection
point can be returned as an intersection curve.
Status messages

> (0 : warning

=0: ok

< 0 : error

curvel; / Must be defined */
curve2; / Must be defined */

CHAPTER 4. CURVE INTERROGATION 76

double epsco = 1.0e-9; /* Not used */
double epsge = 1.0e-6;

int numintpt = 0;

double *intparl = NULL;

double *intpar2 = NULL;

int numintcu = 0;

SISLIntcurve **intcurve = NULL;

int stat = 0;

s1857(curvel, curve2, epsco, epsge, &numintpt, &intparl, &intpar2, &nu-
mintcu, &intcurve, &stat);

CHAPTER 4. CURVE INTERROGATION 7

4.2 Compute the Length of a Curve

NAME
s$1240 - Compute the length of a curve. The length calculated will not deviate
more than epsge divided by the calculated length, from the real length
of the curve.

SYNOPSIS
void s1240(curve, epsge, length, stat)
SISLCurve *curve;

double epsge;
double *length;
int *stat;
ARGUMENTS
Input Arguments:
curve - The curve.
epsge - Geometry resolution.

Output Arguments:

length - The length of the curve.
stat - Status messages
> 0 : Warning.
=0: Ok.
< 0: Error.

NOTE
The algorithm is based on recursive subdivision and will thus for small values of
epsge require long computation time.

EXAMPLE OF USE

{
SISLCurve *curve; /* Must be defined */
double epsge = 0.001;
double length;
int stat = 0;

$1240(curve, epsge, &length, &stat);

CHAPTER 4. CURVE INTERROGATION 78

4.3 Check if a Curve is Closed

NAME
s1364 - To check if a curve is closed, i.e. test if the distance between the end
points of the curve is less than a given tolerance.

SYNOPSIS
void s1364(curve, epsge, stat)
SISLCurve *curve;

double epsge;
int *stat;
ARGUMENTS
Input Arguments:
curve - The curve.
epsge - Geometric tolerance.

Output Arguments:
stat - Status messages
= 2 : Curve is closed and periodic.
=1: Curve is closed.
=0 : Curve is open.
< 0 : Error.

EXAMPLE OF USE

{
SISLCurve *curve; /* Must be defined */

double epsge = 1.0e-6;
int stat = 0;

s1364(curve, epsge, &stat);

CHAPTER 4. CURVE INTERROGATION 79

4.4 Check if a Curve is Degenerated.

NAME
s1451 - To check if a curve is degenerated.

SYNOPSIS
void s1451(pcl, aepsge, jdgen, jstat)
SISLCurve *pcl;

double aepsge;
int *jdgen;
int *jstat;
ARGUMENTS
Input Arguments:
pcl - Pointer to the curve to be tested.
aepsge - The curve is degenerate if all vertices lie within the dis-

tance aepsge from each other

Output Arguments:
Jjdgen - Degenerate indicator
= 0 : The curve is not degenerate.
=1 : The curve is degenerate.

Jjstat - Status message
< 0: Error.
=0: Ok.
> 0 : Warning.
EXAMPLE OF USE
{
SISLCurve *pcl; /* Must be defined */
double aepsge = 1.0e-5;
int *jdgen = 0;
int *jstat = 0;

s1451(pcl, aepsge, jdgen, jstat);

CHAPTER 4. CURVE INTERROGATION 80

4.5 Pick the Parameter Range of a Curve

NAME
s1363 - To pick the parameter range of a curve.

SYNOPSIS
void s1363(curve, startpar, endpar, stat)

SISLCurve *curve;

double *startpar;
double *endpar;
int *stat;
ARGUMENTS
Input Arguments:
curve - The curve.

Output Arguments:

startpar - Start of the parameter interval of the curve.
endpar - End of the parameter interval of the curve.
stat - Status messages

=1 : warning

=0: ok

< 0 : error

EXAMPLE OF USE

{
SISLCurve *curve; /* Must be defined */
double startpar;
double endpar;
int stat = 0;

s1363(curve, &startpar, &endpar, &stat);

CHAPTER 4. CURVE INTERROGATION 81

4.6 Closest Points

4.6.1 Find the closest point between a curve and a point.

NAME
s1953 - Find the closest points between a curve and a point.

SYNOPSIS
void s1953(curve, point, dim, epsco, epsge, numintpt, intpar,
numintcu, intcurve, jstat)
SISLCurve *curve;

double point|[];
int dim;
double epsco;
double epsge;
int *numintpt;
double **intpar;
int *numintcu,;
SISLIntcurve ***intcurve;
int *jstat;
ARGUMENTS
Input Arguments:
curve - Pointer to the curve in the closest point problem.
point - The point in the closest point problem.
dim - Dimension of the space in which the curve and point lie.
epsco - Computational resolution (not used).
epsge - Geometry resolution.

Output Arguments:

numintpt - Number of single closest points.

intpar - Array containing the parameter values of the single closest
points in the parameter interval of the curve. The points
lie in sequence. Closest curves are stored in intcurve.

numintcu - Number of closest curves.

intcurve - Array of pointers to the SISLIntcurve objects containing
descriptions of the closest curves. The curves are only
described by start points and end points in the parameter
interval of the curve. The curve pointers point to nothing.

Jjstat - Status messages
> (0 : warning
=0: ok

< 0 : error

CHAPTER 4. CURVE INTERROGATION

EXAMPLE OF USE

{

SISLCurve *curve; /* Must be defined */

double point[3]; /* Must be defined */
int dim = 3;

double epsco = 1.9¢e-9; /* Not used */
double epsge = 1.0e-6;

int numintpt = 0;

double *intpar = NULLL;

int numintcu = 0;

SISLIntcurve **intcurve = NULL;

int Jjstat = 0;

s1953(curve, point, dim, epsco, epsge,
&numintcu, &intcurve, &jstat);

&numintpt,

82

&intpar,

CHAPTER 4. CURVE INTERROGATION 83

4.6.2 Find the closest point between a curve and a point.
Simple version.

NAME
1957 - Find the closest point between a curve and a point. The method is fast
and should work well in clear cut cases but does not guarantee finding
the right solution. As long as it doesn’t fail, it will find exactly one
point. In other cases, use s1953().

SYNOPSIS
void s1957(pcurve, epoint, idim, aepsco, aepsge, gpar, dist, jstat)
SISLCurve *pcurve;

double epoint] |;
int idim;
double aepsco;
double aepsge;
double *gpar;
double *dist;
int *jstat;
ARGUMENTS
Input Arguments:
pcurve - Pointer to the curve in the closest point problem.
epoint - The point in the closest point problem.
idim - Dimension of the space in which epoint lies.
aepsco - Computational resolution (not used).
aepsge - Geometry resolution.

Output Arguments:

gpar - The parameter value of the closest point in the parameter
interval of the curve.
dist - The closest distance between curve and point.
jstat - Status message
< 0 : Error.
= 0 : Point found by iteration.
> 0 : Warning.

=1 : Point lies at an end.

CHAPTER 4. CURVE INTERROGATION

EXAMPLE OF USE

{

SISLCurve

double
int

double
double
double
double

int

pcurve; / Must be defined */
epoint[3]; /* Must be defined */
idim = 3;

aepsco = 1.0e-9; /* Not used */

aepsge = 1.0e-6;

gpar = 0;
dist = 0;
jstat = 0;

84

s1957(pcurve, epoint, idim, aepsco, aepsge, &gpar, &dist, &jstat);

CHAPTER 4. CURVE INTERROGATION 85

4.6.3 Local iteration to closest point between point and
curve.

NAME
s1774 - Newton iteration on the distance function between a curve and a point,
to find a closest point or an intersection point. If a bad choice for the
guess parameter is given in, the iteration may end at a local, not global
closest point.

SYNOPSIS
void s1774(crv, point, dim, epsge, start, end, guess, clpar, stat)
SISLCurve *crv;

double point|];
int dim;
double epsge;
double start;
double end,
double guess;
double *clpar;
int *stat;
ARGUMENTS
Input Arguments:
crv - The curve in the closest point problem.
point - The point in the closest point problem.
dim - Dimension of the geometry.
epsge - Geometrical resolution.
start - Curve parameter giving the start of the search interval.
end - Curve parameter giving the end of the search interval.
guess - Curve guess parameter for the closest point iteration.

Output Arguments:
clpar - Resulting curve parameter from the iteration.
stat - Status messages
>0 : A minimum distance found.
=0 : Intersection found.
< 0 : Error.

EXAMPLE OF USE

{
SISLCurve *crv; /* Must be defined */

double point[3]; /* Must be defined */
int dim = 3;

double epsge = 1.0e-6;

double start; /* Must be defined */
double end; /* Must be defined */
double guess; /* Must be defined */
double clpar = 0;

int stat = 0;

CHAPTER 4. CURVE INTERROGATION

s1774(crv, point, dim, epsge, start, end, guess, &clpar, &stat);

86

CHAPTER 4. CURVE INTERROGATION 87

4.6.4 Find the closest points between two curves.

NAME

s$1955 - Find the closest points between two curves.

SYNOPSIS

void s1955(curvel, curve2, epsco, epsge, numintpt, intparl, intpar2,
numintcu, intcurve, stat)
SISLCurve *curvel,
SISLCurve *curve2,

double epsco;
double epsge;
int *numintpt;
double **intparl;
double **intpar2;
int *numintcu;
SISLIntcurve ***intcurve;
int *stat;
ARGUMENTS
Input Arguments:
curvel - Pointer to the first curve in the closest point problem.
curve2 - Pointer to the second curve in the closest point problem.
epsco - Computational resolution (not used).
epsge - Geometry resolution.

Output Arguments:

numintpt -
intparl -

intpar2 -

numintcu -
intcurve -

Number of single closest points.

Array containing the parameter values of the single clos-
est points in the parameter interval of the first curve.
The points lie in sequence. Closest curves are stored in
intcurve.

Array containing the parameter values of the single clos-
est points in the parameter interval of the second curve.
The points lie in sequence. Closest curves are stored in
intcurve.

Number of closest curves.

Array of pointers to the SISLIntcurve objects containing
descriptions of the closest curves. The curves are only
described by start points and end points in the parameter
interval of the curve. The curve pointers point to nothing.
If the curves given as input are degenerate, a closest point
may be returned as a closest curve.

CHAPTER 4. CURVE INTERROGATION 88

stat - Status messages
> (0 : warning
=0: ok
< 0 : error

EXAMPLE OF USE
{
SISLCurve *curvel; /* Must be defined */
SISLCurve *curve2; /* Must be defined */

double epsco = 1.0e-9; /* Not used */
double epsge = 1.0e-6;

int numintpt = 0;

double *intparl = NULL;

double *intpar2 = NULL;

int numintcu = 0;

SISLIntcurve **intcurve = NULL;

int stat = 0;

s1955(curvel, curve2, epsco, epsge, &numintpt, &intparl, &intpar2, &nu-
mintcu, &intcurve, &stat);

CHAPTER 4. CURVE INTERROGATION 89

4.6.5 Find a point on a 2D curve along a given direction.

NAME
$1013 - Find a point on a 2D curve along a given direction.

SYNOPSIS
void s1013(pcurve, ang, ang-_tol, guess_par, iter_par, jstat)
SISLCurve *pcurve;

double ang;
double ang_tol;
double guess_par;
double *iter_par;
int *jstat;
ARGUMENTS
Input Arguments:
pcurve - Pointer to the curve.
ang - The angle (in radians) describing the wanted direction.
ang_tol - The angular tolerance (in radians).
guess_par - Start parameter value on the curve.

Output Arguments:
iter_par - The parameter value found on the curve.
stat - Status messages
=2 : A minimum distance found.
=1 : Intersection found.
< 0 : Error.

EXAMPLE OF USE

{
SISLCurve *pcurve; /* Must be defined */

double ang; /* Must be defined */
double ang_tol = 0.01;

double guess_par; /* Must be defined */
double iter_par;

int Jjstat = 0;

s1013(pcurve, ang, ang_tol, guess_par, &iter_par, &jstat);

CHAPTER 4. CURVE INTERROGATION 90

4.7 Find the Absolute Extremals of a Curve.

NAME
51920 - Find the absolute extremal points/intervals of a curve relative to a given
direction.
SYNOPSIS

void s1920(curve, dir, dim, epsco, epsge, numintpt, intpar,
numintcu, intcurve, stat)
SISLCurve *curve;

double dir[];
int dim;
double epsco;
double epsge;
int *numintpt;
double **intpar;
int *numintcu;
SISLIntcurve ***intcurve;
int *stat;
ARGUMENTS
Input Arguments:
curve - Pointer to the curve.
dir - The direction in which the extremal point(s) and/or inter-

val(s) are to be calculated. If dim = 1, a positive value in-
dicates the maximum of the function and a negative value
the minimum. If the dimension is greater than 1, the array
contains the coordinates of the direction vector.

dim - Dimension of the space in which the curve and dir lie.
epsco - Computational resolution (not used).
epsge - Geometry resolution.

Output Arguments:
numintpt - Number of single extremal points.
intpar - Array containing the parameter values of the single ex-
tremal points in the parameter interval of the curve. The
points lie in sequence. Extremal curves are stored in

intcurve.
numintcu - Number of extremal curves.
intcurve - Array of pointers to the SISLIntcurve objects containing

descriptions of the extremal curves. The curves are only
described by start points and end points in the parameter
interval of the curve. The curve pointers point to nothing.

CHAPTER 4. CURVE INTERROGATION 91

stat - Status messages
> 0 : Warning.
=0: Ok.
< 0 : Error.

EXAMPLE OF USE

{
SISLCurve *curve; /* Must be defined */
double dir[3]; /* Must be defined */
int dim = 3;
double epsco = 1.0e-9; /* Not used */
double epsge = 1.0e-6;
int numintpt = 0;
double *intpar = NULL;
int numintcu = 0;
SISLIntcurve **intcurve = NULL;
int stat = 0;

$1920(curve, dir, dim, epsco, epsge, &numintpt, &intpar, &numintcu,
&intcurve, &stat);

CHAPTER 4. CURVE INTERROGATION

4.8 Area between Curve and Point

92

4.8.1 Calculate the area between a 2D curve and a 2D

NAME

1241 - To calculate the area between a 2D curve and a 2D point. When the
curve is rotating counter-clockwise around the point, the area contribu-
tion is positive. When the curve is rotating clockwise around the point,
the area contribution is negative. If the curve is closed or periodic, the
area calculated is independent of where the point is situated. The area
is calculated exactly for B-spline curves, for NURBS the result is an ap-
proximation. This routine will only perform if the order of the curve is

point.

less than 7 (can easily be extended).

SYNOPSIS
void s1241(pcurve, point, dim, epsge, area, stat)

SISLCurve
double

int

double
double

int

ARGUMENTS

Input Arguments:

pcurve
point
dim
epsge

*peurve;
point[];
dimy;
epsge;
*area;
*stat;

- The 2D curve.
- The reference point.

- Dimension of geometry (must be 2).

- Absolute geometrical tolerance.

Output Arguments:

area
stat

EXAMPLE OF USE

{

SISLCurve
double

int

double
double

int

- Calculated area.
- Status messages

> 0 : Warning.
=0: Ok.
< 0 : Error.

pcurve; / Must be defined */
point[2]; /* Must be defined */
dim = 2; /* Must be equal to 2 */
epsge = 0.001;

area;

stat = 0;

s1241(pcurve, point, dim, epsge, &area, &stat);

CHAPTER 4. CURVE INTERROGATION 93

4.8.2 Calculate the weight point and rotational momen-
tum of an area between a 2D curve and a 2D point.

NAME
$1243 - To calculate the weight point and rotational momentum of an area be-
tween a 2D curve and a 2D point. The area is also calculated. When the
curve is rotating counter-clockwise around the point, the area contribu-
tion is positive. When the curve is rotating clockwise around the point,
the area contribution is negative. OBSERVE: FOR CALCULATION
OF AREA ONLY, USE s1241().

SYNOPSIS
void s1243(pcurve, point, dim, epsge, weight, area, moment, stat)
SISLCurve *pcurve;

double point||;
int dim;
double epsge;
double weight[];
double *area;
double *moment;
int *stat;
ARGUMENTS
Input Arguments:
pcurve - The 2D curve.
point - The reference point.
dim - Dimension of geometry (must be 2).
epsge - Absolute geometrical tolerance.

Output Arguments:

weight - Weight point.
area - Area.
moment - Rotational momentum.
stat - Status messages
> 0 : warning
=0: ok
< 0 : error

EXAMPLE OF USE
{

SISLCurve *pcurve; /* Must be defined */

double point[2]; /* Must be defined */

int dim = 2; /* Dimension 2 is required */
double epsge = 0.01;

double weight[2];

double area = (.0;

double moment = 0.0;

int stat = 0;

$1243(pcurve, point, dim, epsge, weight, &area, &moment, &stat);

CHAPTER 4. CURVE INTERROGATION

94

CHAPTER 4. CURVE INTERROGATION 95

4.9 Bounding Box

Both curves and surfaces have bounding boxes. These are boxes surrounding
an object not only parallel to the main axis, but also rotated 45 degrees around
each main axis. These bounding boxes are used by the intersection functions to
decide if an intersection is possible or not. They might also be used to find the
position of objects under other circumstances.

4.9.1 Bounding box object.

In the library a bounding box is stored in a struct SISLbox containing the
following:

double *emax; Allocated array containing the minimum values of the
bounding box

double *emin; Allocated array containing the maximum values of the
bounding box

int imin; The index of the minimum coefficient ecoef{imin]. Only
used in dimension one. ecoef is the control polygon of the
curve/surface.

int imax; The index of the maximum coefficient ecoef[imax]. Only

used in dimension one. ecoef is the control polygon of the
curve/surface.

CHAPTER 4. CURVE INTERROGATION 96

4.9.2 Create and initialize a curve/surface bounding box
instance.

NAME
newbox - Create and initialize a curve/surface bounding box instance.

SYNOPSIS
SISLbox *newbox(idim)
int idim;

ARGUMENTS
Input Arguments:
idim - Dimension of geometry space.

Output Arguments:
newbox - Pointer to new SISLbox structure. If it is impossible to al-
locate space for the structure, newbox will return a NULL
value.

EXAMPLE OF USE
{

int idim = 3;

SISLbox *box = NULL;

box = newbox(idim);

CHAPTER 4. CURVE INTERROGATION 97

4.9.3 Find the bounding box of a curve.

NAME
1988 - Find the bounding box of a SISLCurve. NB. The geometric bounding
box is returned also in the rational case, that is the box in homogenous
coordinates is NOT computed.

SYNOPSIS
void s1988(pc, emax, emin, jstat)

SISLCurve *pc;

double **emax;
double **emin;
int *jstat;
ARGUMENTS
Input Arguments:
pc - The curve to treat.

Output Arguments:
emin - Array of dimension idim containing the minimum values
of the bounding box, i.e. bottom-left corner of the box.

emax - Array of dimension idim containing the maximum values
of the bounding box, i.e. upper-right corner of the box.
Jjstat - Status message
< 0 : Error.
=0: Ok.
> 0 : Warning.

EXAMPLE OF USE

{
SISLCurve *pc; /* Must be defined */

double *emax = NULL;
double *emin = NULL;
int Jjstat = 0;

s1988(pc, &emax, &emin, &jstat);

CHAPTER 4. CURVE INTERROGATION 98

4.10 Normal Cone

Both curves and surfaces have normal cones. These are the cones that are
convex hull of all normalized tangents of a curve and all normalized normals of
a surface.

These normal cones are used by the intersection functions to decide if only
one intersection is possible. They might also be used to find directions of objects
for other reasons.

4.10.1 Normal cone object.

In the library a direction cone is stored in a struct SISLdir containing the fol-
lowing;:

int igtpi; To mark if the angle of direction cone is greater than .
=0 : The direction of a surface and its boundary
curves or a curve is not greater than m in any
parameter direction.
= 1: The direction of a surface or a curve is greater
than 7 in the first parameter direction.
=2 : The angle of direction cone of a surface is
greater than 7 in the second parameter di-
rection.
= 10 : The angle of direction cone of a boundary
curve in first parameter direction of a surface
is greater than .
= 20 : The angle of direction cone of a boundary
curve in second parameter direction of a sur-
face is greater than .
double *ecoef, Allocated array containing the coordinates of the centre of

the cone.
double aang; The angle from the centre which describes the cone.

CHAPTER 4. CURVE INTERROGATION 99

4.10.2 Create and initialize a curve/surface direction in-
stance.

NAME
newdir - Create and initialize a curve/surface direction instance.

SYNOPSIS
SISLdir *newdir(idim)
int idim;

ARGUMENTS
Input Arguments:
idim - Dimension of the space in which the object lies.

Output Arguments:
newdir - Pointer to new direction structure. If it is impossible to
allocate space for the structure, newdir will return a NULL
value.

EXAMPLE OF USE
{

int idim = 3;
SISLdir *dir = NULL;

dir = newdir(idim);

CHAPTER 4. CURVE INTERROGATION 100

4.10.3 Find the direction cone of a curve.

NAME

Ss1986 - Find the direction cone of a curve.

SYNOPSIS
void s1986(pc, aepsge, jgtpi, gaxis, cang, jstat)

SISLCurve *pg;

double aepsge;
int *jgtpi;
double ** gaxis;
double *cang;
int *jstat;
ARGUMENTS
Input Arguments:
pc - The curve to treat.
aepsge - Geometry tolerance.

Output Arguments:

Jjgtpi - To mark if the angle of the direction cone is greater than

.
= 0 The direction cone of the curve < .

= 1 The direction cone of the curve > .

gaxis - Allocated array containing the coordinates of the centre of
the cone. It is only computed if jgtpi = 0.
cang - The angle from the centre to the boundary of the cone. It
is only computed if jgtpi = 0.
Jjstat - Status messages
> 0 : Warning.
=0: Ok.
< 0 : Error.

EXAMPLE OF USE

{

SISLCurve *pc; /* Must be defined */

double aepsge = 1.0e-10;
int jgtpi = 0;

double *gaxis = NULL;
double cang = 0.0;

int jstat = 0;

s1986(pc, aepsge, &jgtpi, &gaxis, &cang, &jstat);

Chapter 5

Curve Analysis

This chapter describes the Curve Analysis part.

5.1 Curvature Evaluation

5.1.1 Evaluate the curvature of a curve at given parameter

values.
NAME
52550 - Evaluate the curvature of a curve at given parameter values ax[0 |,...,ax|
num_ax - 1 J.
SYNOPSIS

void $2550(curve, ax, num_ ax, curvature, jstat)
SISLCurve *curve;

double ax[|;
int num-ax;
double curvature[|;
int *jstat;
ARGUMENTS
Input Arguments:
curve - Pointer to the curve.
ax - The parameter values
num - No. of parameter values

Output Arguments:

curvature - The "num_ax” curvature values computed
Jjstat - Status messages

> 0 : Warning.

=0: Ok.

< 0 : Error.

EXAMPLE OF USE

101

CHAPTER 5. CURVE ANALYSIS 102

SISLCurve *curve; /* Must be defined */

double ax[10]; /* Must be defined */

int num_ax = 10;

double curvature[10]; /* Size equal to num_ax */
int Jjstat = 0;

$2550(curve, ax, num_ ax, curvature, &jstat);

CHAPTER 5. CURVE ANALYSIS 103

5.1.2 Evaluate the torsion of a curve at given parameter

values.
NAME
$2553 - Evaluate the torsion of a curve at given parameter values ax| 0 |,...,ax|
num_ax - 1 J.
SYNOPSIS

void $2553(curve, ax, num_ ax, torsion, jstat)
SISLCurve *curve;

double ax|];
int num-ax;
double torsion| |;
int *jstat;
ARGUMENTS
Input Arguments:
curve - Pointer to the curve.
ax - The parameter values
num - No. of parameter values

Output Arguments:

torsion - The "num_ax” torsion values computed
Jjstat - Status messages

> 0 : Warning.

=0: Ok.

< 0 : Error.

EXAMPLE OF USE

{
SISLCurve *curve; /* Must be defined */

double ax[10]; /* Must be defined */

int num_ax = 10;

double torsion[10]; /* Size equal to num_ax */
int Jjstat = 0;

$2553(curve, ax, num._ ax, torsion, &jstat);

CHAPTER 5. CURVE ANALYSIS 104

5.1.3 Evaluate the Variation of Curvature (VoC) of a curve
at given parameter values.

NAME
$2556 - Evaluate the Variation of Curvature (VoC) of a curve at given parameter
values ax[0],...,ax[num_ax - 1].
SYNOPSIS

void $2556(curve, ax, num_ ax, VoC, jstat)
SISLCurve *curve;

double ax[];
int num-ax;
double VoCl;
int *jstat;
ARGUMENTS
Input Arguments:
curve - Pointer to the curve.
ax - The parameter values
num - No. of parameter values

Output Arguments:

VoC - The "num_ax” Variation of Curvature (VoC) values com-
puted
Jjstat - Status messages
> 0 : Warning.
=0: Ok.
< 0 : Error.

EXAMPLE OF USE

{
SISLCurve *curve; /* Must be defined */
double ax[10]; /* Must be defined */
int num_ax = 10;
double VoC[10]; /* Size equal to num_ax */
int Jjstat = 0;

$2556(curve, ax, num_ ax, VoC, &jstat);

CHAPTER 5. CURVE ANALYSIS 105

5.1.4 Evaluate the Frenet Frame (t,n,b) of a curve at given
parameter values.

NAME
52559 - Evaluate the Frenet Frame (t,n,b) of a curve at given parameter values
ax[0],...,ax[num_ax - 1].
SYNOPSIS

void $2559(curve, ax, num_ ax, p, t, n, b, jstat)
SISLCurve *curve;

double ax|];
int num-ax;
double pll;
double t];
double n[];
double b[];
int *jstat;
ARGUMENTS
Input Arguments:
curve - Pointer to the curve.
ax - The parameter values
num - No. of parameter values

Output Arguments:

t - The Frenet Frame (in 3D) computed. Each of the arrays
(t,n,b) are of dim. 3*num._ax, and the data are stored
like this: tx(ax[0]), ty(ax[0]), tz(ax[0]), ...,tx(ax[num_ax-
1]), ty(ax[num_ax-1]), tz(ax[num_ax-1]).

p -
Jjstat - Status messages
> 0 : Warning.
=0: Ok.
< 0 : Error.

EXAMPLE OF USE

{
SISLCurve *curve; /* Must be defined */

double ax[10];

int num_ax = 10;

double p[10]; /* Size equal to num_ax */
double t[10]; /* Size equal to num_ax */
double n[10]; /* Size equal to num_ax */
double b[10]; /* Size equal to num_ax */
int jstat = 0;

$2559(curve, ax, num_ ax, p, t, n, b, &jstat);

CHAPTER 5. CURVE ANALYSIS 106

5.1.5 Evaluate geometric properties at given parameter
values.

NAME

$2562 - Evaluate the 3D position, the Frenet Frame (t,n,b) and geometric prop-
erty (curvature, torsion or variation of curvature) of a curve at given
parameter values ax[0],...,ax[num_ax-1]. These data are needed to pro-
duce spike plots (using the Frenet Frame and the geometric property)
and circular tube plots (using circular in the normal plane (t,b), where
the radius is equal to the geometric property times a scaling factor for
visual effects).

SYNOPSIS
void $2562(curve, ax, num_ ax, val_ flag, p, t, n, b, val, jstat)
SISLCurve *curve;

double ax|];

int num-ax;

int val flag;

double pll;

double t[];

double n[];

double b[];

double vall];

int *jstat;

ARGUMENTS
Input Arguments:

curve - Pointer to the curve.

ax - The parameter values

num - No. of parameter values

val - Compute geometric property
= 1: curvature
= 2 : torsion

= 3 : variation of curvature

Output Arguments:

t - The Frenet Frame (in 3D) computed. Each of the arrays
(t,n,b) are of dim. 3*num._ax, and the data are stored
like this: tx(ax[0]), ty(ax[0]), tz(ax[0]), ...,tx(ax[num_ax-
1]), ty(ax[num_ax-1]), tz(ax[num_ax-1]).

p -
val - Geometric property (curvature, torsion or variation
of curvature) of a curve at given parameter values
ax[0],...,ax[num_ax-1].
Jjstat - Status messages
> 0 : Warning.
=0: Ok.

< 0 : Error.

CHAPTER 5. CURVE ANALYSIS 107

EXAMPLE OF USE

{

SISLCurve *curve; /* Must be defined */

double ax[10]; /* Must be defined */

int num_ax = 10;

int val flag = 1;

double p[30]; /* Size equal to dimension times num_ax */
double t[30]; /* Size equal to dimension times num_ax */
double n[30]; /* Size equal to dimension times num_ax */
double b[30]; /* Size equal to dimension times num_ax */
double val[10]; /* Size equal to num_ax */

int Jjstat = 0;

$2562(curve, ax, num._ ax, val_ flag, p, t, n, b, val, &jstat);

Chapter 6

Curve Utilities

This chapter describes the Curve Utilities. These are common to both the Curve
Definition and Curve Interrogation modules.

6.1 Curve Object

In the library both B-spline and NURBS curves are stored in a struct SISLCurve
containing the following:

int
int
double
double

double

int

int
int

SISLdir
SISLbox

int

ik;

in;

*et;
*ecoef,

*reoef;

ikind,;

idimy;
icopy;

*pdir;
*pbox;

cuopen;

Order of curve.
Number of vertices.
Pointer to the knot vector.
Pointer to the array containing non-rational vertices, size
mn X idim.
Pointer to the array of rational vertices and weights, size
in x (idim + 1).
Type of curve
=1 : Polynomial B-spline curve.
= 2 : Rational B-spline (nurbs) curve.
= 3 : Polynomial Bezier curve.
= 4 : Rational Bezier curve.
Dimension of the space in which the curve lies.
Indicates whether the arrays of the curve are allocated and
copied or referenced by creation of the curve.
= 0 : Pointer set to input arrays. The arrays are
not deleted by freeCurve.
=1: Array allocated and copied. The arrays are
deleted by freeCurve.
= 2 : Pointer set to input arrays, but are to be
treated as copied. The arrays are deleted by
freeCurve.
Pointer to a SISLdir object used for storing curve direction.
Pointer to a SISLbox object used for storing the surround-
ing boxes.

Open/closed /periodic flag.

108

CHAPTER 6. CURVE UTILITIES 109

= —1: Closed curve with periodic (cyclic) parame-
terization and overlapping end vertices.

=0 : Closed curve with k-tuple end knots and co-
inciding start/end vertices.

=1 : Open curve (default).

Note that in the rational case are the curve coefficients stored as
wW1P1, W1, WaP2, W, - . . , Wy Pn, Wy Where w; are the weights and p;, 1 =1,...,n
are the curve coefficients.

When using a curve, do not declare a SISLCurve but a pointer to a SISLCurve,
and initialize it to point on NULL. Then you may use the dynamic allocation
functions newCurve and freeCurve described below, to create and delete curves.

There are two ways to pass coefficient and knot arrays to newCurve. By
setting icopy = 1, newCurve allocates new arrays and copies the given ones.
But by setting icopy = 0 or 2, newCurve simply points to the given arrays.
Therefore it is IMPORTANT that the given arrays have been allocated in free
memory beforehand.

CHAPTER 6. CURVE UTILITIES 110

6.1.1 Create new curve object.

NAME

newCurve - Create and initialize a SISLCurve-instance. Note that the vertex input
to a rational curve is unstandard. Given the curve

S wipi By gt ()

t) =
O = S B t)

must the vertices be given as wip1, w1, waPs, W, . .., WyPn, Wy When in-
voking this function. Thus the vertices are multiplied with the associated
weight.
SYNOPSIS
SISLCurve *newCurve(number, order, knots, coef, kind, dim, copy)
int number;
int order;
double knots]];
double coef[];
int kind;
int dim;
int copy;
ARGUMENTS
Input Arguments:
number - Number of vertices in the new curve.
order - Order of curve.
knots - Knot vector of curve.
coef - Vertices of curve. These can either be the dim dimensional
non-rational vertices, or the (dim+1) dimensional rational
vertices.
kind - Type of curve.
= 1 : Polynomial B-spline curve.
= 2 : Rational B-spline (nurbs) curve.
= 3 : Polynomial Bezier curve.
= 4 : Rational Bezier curve.
dim - Dimension of the space in which the curve lies.
copy - Flag

Output Arguments:

newCurve

= 0 : Set pointer to input arrays.
=1 : Copy input arrays.
= 2 : Set pointer and remember to free arrays.

Pointer to the new curve. If it is impossible to allocate
space for the curve, newCurve returns NULL.

CHAPTER 6. CURVE UTILITIES

EXAMPLE OF USE

{

SISLCurve *curve = NULL;

int number = 10;

int order = 4;

double knots[14]; /* Must be defined */
double coef[30]; /* Must be defined */
int kind = 1; /* Non-rational */

int dim = 3;

int copy = 1;

curve = newCurve(number, order, knots, coef, kind, dim, copy);

111

CHAPTER 6. CURVE UTILITIES 112

6.1.2 Make a copy of a curve.

NAME
copyCurve - Make a copy of a curve.

SYNOPSIS
SISLCurve *copyCurve(pcurve)

SISLCurve *pcurve;

ARGUMENTS
Input Arguments:
pcurve - Curve to be copied.

Output Arguments:
copyCurve - The new curve.

EXAMPLE OF USE
{
SISLCurve *curvecopy = NULL;
SISLCurve *curve = NULL;

int number = 10;

int order = 4;

double knots[14]; /* Must be defined */
double coef[30]; /* Must be defined */
int kind = 1; /* Non-rational */

int dim = 3;

int copy = 1;

curve = newCurve(number, order, knots, coef, kind, dim, copy);

curvecopy = copyCurve(curve);

CHAPTER 6. CURVE UTILITIES 113

6.1.3 Delete a curve object.

NAME
freeCurve - Free the space occupied by the curve. Before using freeCurve, make sure
the curve object exists.

SYNOPSIS
void freeCurve(curve)

SISLCurve *curve;

ARGUMENTS
Input Arguments:
curve - Pointer to the curve to delete.
EXAMPLE OF USE

{

SISLCurve *curve = NULL;

int number = 10;
int order = 4;
double knots[14];
double coef[30];

int kind = 1;

int dim = 3;

int copy = 1;

curve = newCurve(number, order, knots, coef, kind, dim, copy);

if (curve) freeCurve(curve);

CHAPTER 6. CURVE UTILITIES 114

6.2 FEvaluation

6.2.1 Compute the position and the left-hand derivatives
of a curve at a given parameter value.

NAME

81227 - To compute the position and the first derivatives of the curve at a given
parameter value Evaluation from the left hand side.

SYNOPSIS

void s1227(curve, der, parvalue, leftknot, derive, stat)

SISLCurve
int

double

int

double

int

ARGUMENTS
Input Arguments:

curve

der

parvalue

*curve;
der;
parvalue;
*leftknot;
derive]]
*stat;

Pointer to the curve for which position and derivatives are
to be computed.
The number of derivatives to compute.

< 0 : Error.

= 0 : Compute position.

=1 : Compute position and derivative.

etc.
The parameter value at which to compute position and
derivatives.

Input/Output Arguments:

leftknot

Pointer to the interval in the knot vector where parvalue
is located. If et[] is the knot vector, the relation:

et[leftknot] < parvalue < et[leftknot + 1]

should hold. (If parvalue < et[ik—1]) then leftknot should
be “ik-17. Here “ik” is the order of the curve.) If leftknot
does not have the right value when entering the routine,
its value will be changed to the value satisfying the above
condition.

CHAPTER 6. CURVE UTILITIES 115

Output Arguments:

derive - Double array of dimension (der + 1) X dim containing the
position and derivative vectors. (dim is the dimension
of the Euclidean space in which the curve lies.) These
vectors are stored in the following order: first the com-
ponents of the position vector, then the dim components
of the tangent vector, then the dim components of the
second derivative vector, and so on. (The C declaration
of derive as a two dimensional array would therefore be
derive[der + 1][dim].)

stat - Status messages
> (0 : warning
=0: ok
< 0 : error

EXAMPLE OF USE
{

SISLCurve *curve; /* Must be defined */

int der = 3;

double parvalue; /* Must be defined */

int leftknot = 0; /* Define initially as zero. For consequtive evaluations
leave leftknot as returned from 1227 */

double derive[12]; /* Curve dimension times (der+1) */

int stat = 0;

s1227(curve, der, parvalue, &leftknot, derive, &stat);

CHAPTER 6. CURVE UTILITIES 116

6.2.2 Compute the position and the right-hand derivatives
of a curve at a given parameter value.

NAME

81221 - To compute the positione and the first derivatives of a curve at a given
parameter value. Evaluation from the right hand side.

SYNOPSIS

void s1221(curve, der, parvalue, leftknot, derive, stat)

SISLCurve
int

double

int

double

int

ARGUMENTS
Input Arguments:
curve

der

parvalue

*curve;
der;
parvalue;
*leftknot;
derive]];
*stat;

Pointer to the curve for which position and derivatives are
to be computed.
The number (order) of derivatives to compute.

< 0 : Error.

= (0 : Compute position.

=1 : Compute position and derivative.

etc.
The parameter value at which to compute position and
derivatives.

Input/Output Arguments:

leftknot

Pointer to the interval in the knot vector where parvalue
is located. If et[] is the knot vector, the relation:

et[leftknot] < parvalue < et[le ftknot + 1]

should hold. (If parvalue > et[in]) then leftknot should be
“in-1”7. Here “in” is the number of coefficients.) If leftknot
does not have the right value when entering the routine,
its value will be changed to the value satisfying the above
condition.

CHAPTER 6. CURVE UTILITIES 117

Output Arguments:
derive - Double array of dimension (der + 1) X dim containing the
position and derivative vectors. (dim is the dimension of
the Euclidean space in which the curve lies.) These vectors
are stored in the following order: first the dim components
of the position vector, then the dim components of the
tangent vector, then the dim components of the second
derivative vector, and so on. (The C declaration of derive
as a two dimensional array would therefore be derive[der+

1][dim].)
stat - Status messages
> (0 : warning
=0: ok
< 0 : error

EXAMPLE OF USE
{

SISLCurve *curve; /* Must be defined */

int der = 3;

double parvalue; /* Must be defined */

int leftknot = 0; /* Define initially as zero. For consequtive evaluations
leave leftknot as returned from s1221 */

double derive[12]; /* Curve dimension times (der+1) */

int stat = 0;

s1221(curve, der, parvalue, &leftknot, derive, &stat);

CHAPTER 6. CURVE UTILITIES 118

6.2.3 Evaluate position, first derivative, curvature and ra-
dius of curvature of a curve at a given parameter
value, from the left hand side.

NAME

s1225 - Evaluate position, derivatives, curvature and radius of curvature of a
curve at a given parameter value, from the left hand side.

SYNOPSIS
void s1225(curve, der, parvalue, leftknot, derive, curvature, radius_of_curvature,
Jstat)
SISLCurve *curve;
int der;
double parvalue;
int *leftknot;
double derivel];
double curvature] |;
double *radius_of_curvature;
int *jstat;
ARGUMENTS
Input Arguments:
curve - Pointer to the curve for which position and derivatives are

der -

parvalue -

to be computed.
The number of derivatives to compute.

< 0 : Error.

= 0 : Compute position.

=1 : Compute position and first derivative.

etc.
The parameter value at which to compute position and
derivatives.

Input/Output Arguments:

leftknot -

Output Arguments:

Pointer to the interval in the knot vector where ax is lo-
cated. If et is the knot vector, the relation

etlileft] < parvalue <= et[ileft + 1]

should hold. (If parvalue = et[ik-1] then ileft should be ik-
1. Here in is the number of B-spline coefficients.) If ileft
does not have the right value upon entry to the routine,
its value will be changed to the value satisfying the above
condition.

CHAPTER 6. CURVE UTILITIES 119

derive

curvature
radius
jstat

EXAMPLE OF USE

{

SISLCurve
int
double

int

double
double
double

int

- Double array of dimension [(ider + 1) * idim] containing
the position and derivative vectors. (idim is the number
of components of each B-spline coefficient, i.e. the dimen-
sion of the Euclidean space in which the curve lies.) These
vectors are stored in the following order: First the idim
components of the position vector, then the idim compo-
nents of the tangent vector, then the idim components of
the second derivative vector, and so on. (The C declara-
tion of eder as a two dimensional array would therefore be
eder[ider+1,idim].)

- Array of dimension idim

- 1, indicates that the radius of curvature is infinit.

- Status messages

> 0 : Warning.
=0: Ok.