[image: image4.jpg]
[image: image2.wmf]R

McKinley Power Pod Design Guidelines, Rev. 0.0
[image: image3.wmf]R

<Shortened Document Title, Rev#>5

ACPI Component Architecture

Design and Software Internals
OS-Independent Kernel Subsystem, Debugger, and Utilities

PRELIMINARY DRAFT/OUTLINE

Revision 0.2
May 31, 2017
Information in this document is provided in connection with Intel® products. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Intel’s Terms and Conditions of Sale for such products, Intel assumes no liability whatsoever, and Intel disclaims any express or implied warranty, relating to sale and/or use of Intel products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right. Intel products are not intended for use in medical, life saving, or life sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked “reserved” or “undefined.” Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

The ACPI Component Architecture may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request.

Copyright © 2015 - 2017 Intel Corporation

*Other brands and names are the property of their respective owners.

Contents
81
Introduction

1.1
Document Structure
8
1.2
Document History
8
2
Internal Structural Overview
9
3
Kernel-resident ACPICA
10
3.1
Table Manager
10
3.2
Namespace Manager
10
3.2.1
Main Namespace Data Structure
10
3.3
AML Interpreter Overview
11
3.4
AML Parser
11
3.4.1
AML Opcode Info Structure
11
3.4.2
Walk State Data Structure
11
3.5
AML Dispatcher
11
3.6
AML Executer
11
3.6.1
AML Opcode Dispatch
11
3.7
Event Manager
12
3.8
Hardware Manager
12
3.9
Resource Manager
12
3.10
AML Debugger
13
3.11
AML Disassembler
13
3.12
OS Services Layer (OSL)
13
4
iASL Compiler/Disassembler
14
4.1
Preprocessor
14
4.2
Core ASL Compiler
14
4.2.1
ASL+ Language Support
14
4.2.2
Optimizations
15
4.2.3
Constant Folding
16
4.2.4
External declarations
16
4.3
Data Table Compiler
16
4.4
AML Disassembler
16
4.4.1
ASL+ Language Support
16
4.4.2
Disassembly of External objects
17
4.4.2.1
Disassembly of External Op
17
4.4.2.2
Guessing External objects
17
4.4.3
Disassembly of Control Method Invocations
17
4.4.3.1
ACPI 6.0 Solution – External() AML Opcode
18
4.5
ASL to ASL+ Code Converter
18
4.5.1
Compile Phase
19
4.5.2
Disassemble Phase
19
4.5.3
Comment Types
19
4.5.4
Multiple Input Files (via Include Directives)
21
4.6
Output Options
22
5
AcpiExec Utility
23
5.1
ACPI Tables
23
5.2
Operation Regions and Handlers
23
6
AcpiDump and AcpiXtract Utilities
24
7
ACPICA Source Code
25
7.1
Source Code Structure
25
7.2
Coding Standards and Conventions
26
7.2.1
C Bitfields
26
7.3
Generating ACPICA from Source Code
26
7.3.1
Generic Unix Makefiles
26
7.3.2
Visual Studio Project Files
28
7.3.3
iASL Compiler
29
8
Instructions and Tutorials
32
8.1
Adding new ACPI Tables
32
8.1.1
ACPICA Header Support
32
8.1.1.1
ACPI Table Naming Conventions
33
8.1.2
iASL Disassembler Support
33
8.1.3
iASL Table Compiler Support
34
8.1.4
iASL Template Support (-T option)
35
8.2
Adding new ACPI Predefined Names
36
8.2.1
Return Value Package Types
37
8.2.1.1
PTYPE1 Return Package Objects
37
8.2.1.2
PTYPE2 Return Package Objects
37
8.3
Adding new AML Operators/Opcodes
39
8.3.1
ACPICA Core and Interpreter
39
8.3.2
iASL Compiler
40
8.4
Adding new iASL Preprocessor Directives
41
8.5
Building an ACPICA Release
42
8.5.1
Required Tools
42
8.5.1.1
Documentation Tools
42
8.5.1.2
Windows Tools
42
8.5.1.3
Cygwin for Windows
43
8.5.1.4
Other Issues
43
8.5.2
Generating the ACPICA Release
44
8.5.2.1
Finish the Software and Documentation
44
8.5.2.2
Write the Release Notes
44
8.5.2.3
Build the Software
44
8.5.3
Updating the ACPICA Website
45
8.5.3.1
ACPICA Version Number
45
8.5.3.2
File Pathnames
45
8.5.3.3
ACPICA Documents
45
8.5.3.4
Release Notes
46

Figures
9Figure 1. Internal Modules of the ACPICA Subsystem

1 Introduction

This document is intended to present and describe the low-level internal designs of the ACPICA software. For a high-level overview and architecture of the ACPICA design, see the “ACPI Component Architecture User Guide and Programmer Reference”.
1.1 Document Structure

1.2 Document History

April 2015 – Initial version. Contains mostly instructions, data structures and other internals to be added later.
May 2017 – Added description of the ASL-to-ASL+ converter.
2 Internal Structural Overview

Figure 1. Internal Modules of the ACPICA Subsystem
 SHAPE * MERGEFORMAT

3 Kernel-resident ACPICA
The ACPICA subsystem has been optimized to minimize code and data size at the expense of performance. The relatively static internal namespace data structure has been optimized to minimize non-paged kernel memory use, and control method execution parse trees are created at the beginning of method execution and freed immediately upon method termination.
OS-independence is achieved via the OS Services Layer which must be implemented anew to interface to each host OS. It abstracts common OS functions such as memory management and synchronization to common external interfaces. These common interfaces are in turn called by the ACPICA subsystem, and they are implemented within the OSL with primitives that are specific to the host.
3.1 Table Manager

The ACPI Table Manager controls the ACPI tables that are presented to the host OS by the BIOS. The ACPI subsystem owns and directly consumes the FADT, FACS, DSDT, and any SSDTs. All other ACPI tables are owned by the host power management code (OSPM) and the various ACPI-related device drivers. External interfaces are provided for the host to obtain these secondary ACPI tables.
3.2 Namespace Manager

The ACPI namespace is one of the fundamental data structures within the subsystem. It is constructed from the ACPI names that appear in the DSDT and any SSDTs. It is heirarchically organized, matching the object heirarchy that appears in the ACPI tables.
3.2.1 Main Namespace Data Structure

typedef struct acpi_namespace_node

{

 ACPI_OPERAND_OBJECT *Object; /* Interpreter object */

 UINT8 DescriptorType; /* Differentiate object descriptor types */

 UINT8 Type; /* ACPI Type associated with this name */

 UINT8 Flags; /* Miscellaneous flags */

 ACPI_OWNER_ID OwnerId; /* Node creator */

 ACPI_NAME_UNION Name; /* ACPI Name, always 4 chars per ACPI spec */

 ACPI_NAMESPACE_NODE *Parent; /* Parent node */

 ACPI_NAMESPACE_NODE *Child; /* First child */

 ACPI_NAMESPACE_NODE *Peer; /* First peer */

} ACPI_NAMESPACE_NODE;

3.3 AML Interpreter Overview
The AML Interpreter component actually consists of three separate subcomponents:

1. The AML Parser reads the raw AML code and builds parse trees. Before execution of each control method, the method is parsed and a parse tree is constructed.

2. The Dispatcher builds an an execution stack that is appropriate for the interpreter, along with the AML opcode and the associated operands. It is essentially the interface layer between the AML Parser and the AML Executer.
3. The AML Executer provides the actual execution of the individual AML opcodes.

3.4 AML Parser

The AML Parser performs the extraction of the raw AML code from the ACPI tables, organizing the operators and their arguments into parse trees. There are no external interfaces to the AML Parser.
3.4.1 AML Opcode Info Structure

AcpiGbl_OpTypeDispatch – opcode class
3.4.2 Walk State Data Structure

ACPI_WALK_STATE

3.5 AML Dispatcher

The AML Dispatcher is the interface between the parser and the interpreter. There are no external interfaces to the Dispatcher.
3.6 AML Executer
The AML Interpreter provides the actual implementation of the various ASL operators (via their associated AML opcodes).

3.6.1 AML Opcode Dispatch

Dispatch by opcode class

Naming convention for AML interpreter execution routines.

The routines that begin execution of AML opcodes are named with a common convention based upon the number of arguments, the number of target operands, and whether or not a value is returned:

 AcpiExOpcode_xA_yT_zR

Where:

xA - ARGUMENTS: The number of arguments (input operands) that are

 required for this opcode type (0 through 6 args).

yT - TARGETS: The number of targets (output operands) that are required

 for this opcode type (0, 1, or 2 targets).

zR - RETURN VALUE: Indicates whether this opcode type returns a value

 as the function return (0 or 1).

The AcpiExOpcode* functions are called via the Dispatcher component with fully resolved operands.

3.7 Event Manager

The Event Manager provides support and interfaces for the General Purpose Events (GPEs) and the Fixed Events such as the power button. It uses the Hardware Manager to communicate with the various ACPI registers.
3.8 Hardware Manager

The Hardware Manager owns the various ACPI hardware and the associated registers. This includes:

SCI handler (System Control Interrupt)

General Purpose Events

Fixed Events

ACPI PM Timer

3.9 Resource Manager

The resource manager simplifies the use of the various resource control methods and the data that they either return or accept as input.
3.10 AML Debugger

The Debugger is an optional component that is intended to be integrated with an existing kernel debugger.
3.11 AML Disassembler

In the context of a kernel environment, the disassembler works in conjunction with the AML debugger to enhance single-step support by disassembling the current AML operator to the corresponding ASL source code.
3.12 OS Services Layer (OSL)

An OS services layer provides the actual interface to the host operating system. It allows the rest of ACPICA to be OS-independent by implemented the “standard” OSL interfaces via host operating system primitives.
4 iASL Compiler/Disassembler

Three main components:

· ASL+ compiler

· Data Table compiler

· AML disassembler

4.1 Preprocessor

The ASL Preprocessor is used by both the iASL compiler and the iASL Data Table compiler.
4.2 Core ASL Compiler

Flex

Bison

Code Generation
4.2.1 ASL+ Language Support

Support for symbolic ASL operators (ACPI 6.0) is implemented almost entirely in the ASL parser (Bison generated). This is where the symbolic operators are converted to the identical parse tree as would be generated by the legacy operators.

Legacy ASL Code (Pre-ACPI 6.0):

 If (LOr (LOr (LEqual (And (R510, 0x03FB), 0x02E0), LEqual

 (And (R520, 0x03FB), 0x02E0)), LOr (LEqual (

 And (R530, 0x03FB), 0x02E0), LEqual (And (R540, 0x03FB),

 0x02E0))))

 {

 And (MEMB, 0xFFFFFFF0, SRMB)

 Store (MEMB, Local2)

 Store (PDBM, Local1)

 And (PDBM, 0xFFFFFFFFFFFFFFF9, PDBM)

 Store (SRMB, MEMB)

 Or (PDBM, 0x02, PDBM)

 }

ASL+ Symbolic Code (ACPI 6.0 and later):

 If (((R510 & 0x03FB) == 0x02E0) ||

 ((R520 & 0x03FB) == 0x02E0) ||

 ((R530 & 0x03FB) == 0x02E0) ||

 ((R540 & 0x03FB) == 0x02E0))

 {

 SRMB = (MEMB & 0xFFFFFFF0)

 Local2 = MEMB

 Local1 = PDBM

 PDBM &= 0xFFFFFFFFFFFFFFF9

 MEMB = SRMB

 PDBM |= 0x02

 }

Legacy ASL:

 Store (0x1234, Local1)

 Multiply (Add (Add (Local1, TEST), 0x20), Local2, Local3)

 Multiply (Local2, Add (Add (Local1, TEST), 0x20), Local3)

 Add (Local1, Add (TEST, Multiply (0x20, Local2)), Local3)

 Store (Index (PKG1, 0x03), Local6)

 Store (Add (Local3, Local2), Debug)

 Add (Local1, 0x0F, Local2)

 Add (Local1, Multiply (Local2, Local3), Local2)

 Multiply (Add (Add (Local1, TEST), 0x20),

 ToBCD (Local1), Local3)

ASL+ version:

 Local1 = 0x1234

 Local3 = (((Local1 + TEST) + 0x20) * Local2)

 Local3 = (Local2 * ((Local1 + TEST) + 0x20))

 Local3 = (Local1 + (TEST + (0x20 * Local2)))

 Local6 = Index (PKG1, 0x03)

 Debug = (Local3 + Local2)

 Local2 = (Local1 + 0x0F)

 Local2 = (Local1 + (Local2 * Local3))

 Local3 = (((Local1 + TEST) + 0x20) * ToBCD (Local1))

The implementation of each of the symbolic operators is relatively simple. There is a rule for each in:

 source/compiler/aslrules.c

Each rule simply maps the symbolic operator and its operands to the equivalent legacy ASL operator:

 | TermArg PARSEOP_EXP_ADD {$<n>$ = TrCreateLeafNode (PARSEOP_ADD);}
 TermArg {$$ = TrLinkChildren ($<n>3,3,$1,$4,TrCreateNullTarget ());}
This rule maps “TermArg + TermArg” to “Add (TermArg, TermArg)
4.2.2 Optimizations

iASL provides several AML optimizations. These are optional and can be disabled.
Integer optimizations

Namestring optimizations

Constant Folding

Add (3, 4, X) (
Store (7, X)

X = 3 + 4 (

Store (7, X)

4.2.3 Constant Folding
4.2.4 External declarations

From the ACPI spec – “The External directive informs the ASL compiler that the object is declared external to this table so that no errors will be generated for an undeclaraed object.” The iASL compiler generates a 0x15 opcode to represent external declarations. Since not all AML interpreters support this opcode, all 0x15 opcodes are surrounded by an if(0) statement to prevent this opcode from being evaluated.
Past compilers have emitted conflicting declarations for named objects by emitting both External declarations and local declarations. Since the External declarations mean that the named object lies outside of the table and local declarations mean that the named object lies inside of the table, the declaration of the named object has a conflicting declaration if both cases are present within the same table. The current compiler results in a compilation error when it detects conflicting declarations. This can be solved by removing the unnecessary external declaration.

In order to detect conflicting external declarations, each table is assigned an owner ID. Each namespace node is assigned an owner ID and the compiler uses this infromation to detect conflicting external declarations during namespace loading.
4.3 Data Table Compiler

Tables and SubTables

DT_FIELD
4.4 AML Disassembler

The Disassembler is primarily used within the iASL compiler to disassemble ACPI AML tables (DSDT/SSDT) and Data Tables (FADT, MADT, etc.) It is also integrated with the ACPICA Debugger to provide source-level single-step support and disassembly of individual control methods. The AML Debugger is used within the AcpiExec utility and can also be integrated into a kernel-level debugger.

4.4.1 ASL+ Language Support

The ACPICA Disassembler is capable of disassembling code to both ASL formats – both symbolic ASL+ code and legacy ASL code. In fact, use of the disassembler is a handy way to convert existing ASL/AML code to the symbolic ASL format.

The default disassembler behavior is to disassemble to the ASL+ symbolic operator format.

4.4.2 Disassembly of External objects

External objects come in two forms: objects encoded with the External Op bytecode (0x15) and NamePaths that do not have declarations within its definition block. In the latter case, the NamePath is “guessed” as an external object.
4.4.2.1 Disassembly of External Op

The AML parser processes External opcodes similar to a named object. During namespace resolution, the semantics are relaxed to emit any potential conflicting external declarations. The disassembler does not fail in an error when emitting the conflicting declaration because the role of the disassembler is to emit ASL based on the input AML. The disassembler is not intended to fix the AML.
4.4.2.2 Guessing External objects
When the disassembler encounters a name string that is not defined, it guesses that namestring as an external object. This guessing is done during the namespace cross-reference after the AML parser has finished parsing.
4.4.3 Disassembly of Control Method Invocations

Summary of the external control method problem:

When the -e option is used with disassembly, the various SSDTs are simply loaded into a global namespace for the disassembler to use in order to resolve control method references (invocations).

The disassembler tracks any such references, and will emit an External() statement for these types of methods, with the proper number of arguments .

Without the SSDTs, the AML does not contain enough information to properly disassemble the control method invocation -- because the disassembler does not know how many arguments to parse.

An example: Assume we have two control methods. ABCD has one argument, and EFGH has zero arguments. Further, we have two additional control methods that invoke ABCD and EFGH, named T1 and T2:

 Method (ABCD, 1)

 {

 }

 Method (EFGH, 0)

 {

 }

 Method (T1)

 {

 ABCD (Add (2, 7, Local0))

 }

 Method (T2)

 {

 EFGH ()

 Add (2, 7, Local0)

 }

Here is the AML code that is generated for T1 and T2:

 185: Method (T1)

0000034C: 14 10 54 31 5F 5F 00 ... "..T1__."

 186: {

 187: ABCD (Add (2, 7, Local0))

00000353: 41 42 43 44 "ABCD"

00000357: 72 0A 02 0A 07 60 "r....`"

 188: }

 190: Method (T2)

0000035D: 14 10 54 32 5F 5F 00 ... "..T2__."

 191: {

 192: EFGH ()

00000364: 45 46 47 48 "EFGH"

 193: Add (2, 7, Local0)

00000368: 72 0A 02 0A 07 60 "r....`"

 194: }

Note that the AML code for T1 and T2 is essentially identical. When disassembling this code, the methods ABCD and EFGH must be known to the disassembler, otherwise it does not know how to handle the method invocations.

In other words, if ABCD and EFGH are actually external control methods appearing in an SSDT, the disassembler does not know what to do unless the owning SSDT has been loaded via the -e option.
4.4.3.1 ACPI 6.0 Solution – External() AML Opcode

In ACPI 6.0, a new AML opcode was defined to help with this problem. The opcode is not intended for execution by AML interpreters; its only purpose is to assist the disassembler with the control method argument count problem.

c
4.5 ASL to ASL+ Code Converter

This section provides a high-level explanation of how the converter works.

The converter can be described in 2 stages, a compile stage followed by a disassemble phase.
4.5.1 Compile Phase

The main goal in the compilation phase is to generate AML bytecode with a special comment op bytecode. The comments are extracted from ASL source in AslDoComment() and AslDoCommentType2() within aslsupport.l. Once a comment is captured, it is categorized using CvProcessCommentState() and placed within an acpi_parse_object using CvPlaceComment() within aslsupport.l. Once the ASL has been parsed and the comments have been associated with their respective parse node, the package lengths are computed. Since we need to output the comments in AML bytecode, the lengths of the comments will be accounted for within the parent parse node. After package length computation, the AML bytecode generation begins. Each comment associated with a parse node will be printed before the actual bytecode. The comment bytecode has the following format:

[AML_COMMENT_OP] [Category number] [comment contents] [null terminator]
As an example, a regular comment such as "/* Comment 1 */" will be encoded as
0xA9 0x01 /* Comment 1 */ 0x00
For more information on comment categories, refer to the Comment types section.

Once the codegen walk has completed, the AML is ready to be disassembled.

4.5.2 Disassemble Phase

The disassembler takes AML containing the comment bytecode and outputs a dsl file with comments contained within the AML. As the AML is scanned, comments are detected within the parse loop through CvCaptureCommentsOnly() and CvCaptureComments() within cvparser.c. These functions store comments within global pointer variables and place them into the parse node associated with the bytecode that comes after the comment bytecode. For example, the following line is bytecode that encodes a comment that is preceded by a 0x08 opcode (also known as AML_NAME_OP).

0xA9 0x01 /* Comment 1 */ 0x00 0x08 ...
When scanning the AML, CvCaptureCommentsOnly() will place the comment in a global list. After a new parse object is created for the 0x08 bytecode, the comments within this global list will be transferred to the newly created parse object of the 0x08 bytecode.

After the parse tree has been built, the disassembler will walk the parse tree and generate ASL code of the parse tree. As the disassembler walks the parse tree comments are printed in the approperiate places using functions within cvdisasm.c.

4.5.3 Comment Types

There are several different places that a comment could show up within ASL code. The following is a list of comment types that are used in this converter:

STANDARD_COMMENT - These are comments between blocks of code.
Example:

/* This is a STANDARD_COMMENT */
Name (a, 0)
INLINE_COMMENT - These are comments that come after code on the same line but come before the closing paren.

Example: Name (a, 0 /* this is an INLINE_COMMENT of 0*/)
ENDNODE_COMMENT - These are inline comments that come after the closing paren.

Example: Name (a, 0) /* this is an ENDNODE_COMMENT of name */
CLOSEBRACE_COMMENT - These are comments that come after a closing brace.

Example: if(0){++i} /* this is a CLOSEBRACE_COMMENT of if */
ENDBLK_COMMENT - These are comments between a piece of code and close brace.

Example: if(0){++i /* this is an ENDBLK_COMMENT of if */ }
INCLUDE_COMMENT - These are comments above ASL include statements.

Example:

/* this is an include comment of Include */
Include ("file.asl")
STANDARD_DEFBLK_COMMENT - These comments are comments that come before a definitionblock.

Example:

/* this is an STANDARD_DEFBLK_COMMENT */
DefinitionBlock(){}
END_DEFBLK_COMMENT - These comments are comments that come after the closing brace of a definition block
Example:
/* this is a STANDARD_DEFBLK_COMMENT */
DefinitionBlock()
{
 return 0
 /* this is an ENDBLK_COMMENT */
} /* This is a CLOSEBRACE_COMMENT */
/* This one is an END_DEFBLK_COMMENT */
Since some comment types could span multiple lines, each line of STD_DEFBLK_COMMENT, END_DEFBLK_COMMENT, COMMENT_STANDARD, INCLUDECOMMENT, and ENDBLKCOMMENT are stored as separate nodes within a linked list. This facilitates indentation of each line of multiline comments. All other comments are stored within a single char* variable in ACPI_PARSE_COMMON.

4.5.4 Multiple Input Files (via Include Directives)

Multiple files - Because ASL files can contain include statements, the converter needs to be able to output the converted versions of the included files. In order to do this, the compiler generates FILENAME_COMMENT and PARENTFILENAME_COMMENT bytecodes in the AML. These bytecodes can appear as just a FILENAME_COMMENT or a FILENAME_COMMENT immediately followed by PARENTFILENAME_COMMENT. These comments serve as markers within the bytecode as to which parts of the bytecode belong to specific files. For example, lets say that we have the following ASL file structure:

ex1.asl:
DefinitionBlock("ex1.aml", "DSDT", 0x02, "Intel", "Many", 0x00000001)
{
 [ASL code for ex1.asl]
 Include("ex2.asl")
 [More ASL code for ex1.asl]

}
ex2.asl: (Note, this file only contains a single ASL include statement)
Include("ex3.asl")
ex3.asl:
[ASL code for ex3.asl]

After compilation, the bytecode would look something like this:

1 [AML table header]
2 /* This is a marker to denote that ex1.dsl starts here */
3 0xA9 0x08 "ex1.dsl" 0x00
4 [AML code for ex1.asl]

5 /* This is a marker that ex2.dsl starts here and that ex2.dsl is included in ex1.dsl */
6 0xA9 0x08 "ex2.dsl" 0x00 0xA9 0x09 "ex1.dsl" 0x00
7 /* This is a marker that ex3.dsl starts here and that ex3.dsl is included in ex2.dsl */
8 0xA9 0x08 "ex3.dsl" 0x00 0xA9 0x09 "ex2.dsl" 0x00
9 [AML code for ex3.asl]

10 /* This is a marker to denote that ex1.dsl starts again here */
11 0xA9 0x08 "ex1.dsl" 0x00
12 [More AML code for ex1.asl]

Given this bytecode, the AML parser builds a filetree based on examining the FILENAME_COMMENT and PARENTFILENAME_COMMENT. For the above bytecode, we will get a filetree that looks something like this:

ex3.dsl -> ex2.dsl -> ex1.dsl
note: the "->" denotes a parent relationship.
Each node within this tree will contain a range of addresses for that file with the parent file spanning the entire length of all of their child files.

After the file tree has been initialized, the AML parser begins parsing the AML bytecode. As the parser creates new parse objects, the AML address of that bytecode is searched in the filetree. If an AML address falls within a particular filenode's range, the parse node's filename field is assigned to the filenode's filename field. After the AML parsetree is built, each node is annotated with which file it belongs to.

During the disassembly walk, each parsenode is output to their respective files. When a file change is detected, an include statement and comments associated with the include statement is printed and ASL output is switched to the included file.

4.6 Output Options

5 AcpiExec Utility

Contains the entire ACPICA kernel subsystem, executing in user space.
Does not attempt to access actual hardware.

Human interface is based upon the ACPICA AML Debugger commands.

Primary use is to load and debug “foreign” ACPI tables (not local to the machine where AcpiExec is running). Executes control methods and allows examination of all ACPI objects.

5.1 ACPI Tables

5.2 Operation Regions and Handlers

6 AcpiDump and AcpiXtract Utilities

Tools to obtain all ACPI tables, transport them via ASCII hex tables, and restore them to binary ACPI tables.
AcpiDump
Will extract all available ACPI tables on the platform

AcpiXtract

Restore ACPI tables to binary format from the AcpiDump Ascii hex dump format

7 ACPICA Source Code

7.1 Source Code Structure

The ACPICA source code as released is organized as below. At the top level, there are separate directories for the ACPICA documentation, generation tools, and the actual C source code. The source code itself is organized into a separate directory for each major ACPICA component, tool, or test.

acpica/

documents

// Acpica/iASL documentation

generate

// Source generation tools:

lint

// PC-lint files

linux
// Linux makefiles

msvc

// Microsoft VC++ 6.0 makefiles(obsolete)

msvc9
// Microsoft VC++ 9.0 makefiles

release
// Release utilities

unix

// Generic Unix/gcc makefiles

source

// Entire ACPICA source code tree:

common
// Common files

compiler
// iASL compiler

components
// Main ACPICA components:

debugger
// AML Debugger

disassembler
// AML Disassembler

dispatcher
// AML Interpreter dispatcher

events
// ACPI Event Manager (GPEs etc.)

executer
// Main AML Interpreter

hardware
// ACPI Hardware Manager

namespace
// ACPI Namespace Manager

parser
// AML Interpreter parser

resources
// ACPI Resource Manager

tables
// ACPI Table Manager

utilities
// Miscellaneous utilities

include
// Most ACPICA includes

platform
// Platform-specific files

os_specific
// OS-specific files

service_layers
// Various OSLs

tools
// ACPICA tools/utilities:

acpibin
// Binary file utility

acpiexec
// ACPI user space executer

acpihelp
// ACPI help utility

acpinames
// Example namespace dump utility

acpisrc
// Source translation utility

acpixtract
// Table extraction utility

examples
// ACPICA example code

tests

// ACPICA test suites:

aapits
// ACPICA interface tests

aslts
// ASL test suite

misc

// Miscellaneous ASL tests

templates
// iASL table template generation tests

7.2 Coding Standards and Conventions

ACPICA and related utilities are written entirely in ANSI C. The goal is to make the source code entirely portable across as many C compilers as possible.

Complex expressions have been kept to a minimum wherever possible, in order to avoid possible C compiler bugs in the various compilers that are used to compile ACPICA.
Bool

7.2.1 C Bitfields

C bitfields are not used in ACPICA (especially for the ACPI tables) for portability reasons:
"Bitfields are great and easy to read, but unfortunately the C language does not specify the layout of bitfields in memory, which means they are essentially useless for dealing with packed data in on-disk formats or binary wire protocols." (Or ACPI tables and buffers.) "If you ask me, this decision was a design error in C. Ritchie could have picked an order and stuck with it." Norman Ramsey.
See http://stackoverflow.com/a/1053662/41661
In other words, the ordering of bits within a bitfield is up to the compiler. Therefore, within highly portable code such as ACPICA, bitfields cannot be used to decode bit values within the ACPI-defined ACPI tables as well as AML buffers.
7.3 Generating ACPICA from Source Code

ACPICA supplies “generic” Unix makefiles and MS Visual Studio project files to generate the source code. For specific or unusual environments, the makefiles can be easily modified to tailor them as necessary.
7.3.1 Generic Unix Makefiles

These makefiles are intended to generate the ACPICA utilities in a Unix-like environment, with the original ACPICA code (not linuxized), and in the original (git tree) ACPICA directory structure.

Windows binary versions of these tools are available at:

http://www.acpica.org/downloads/binary_tools.php

Documentation is available at acpica.org:

http://www.acpica.org/documentation/

The top level makefile will generate the following utilities: Note: These utilities are tested and supported as 32-bit versions only.

acpibin

acpiexec

acpihelp

acpinames

acpisrc

acpixtract

iasl

To generate all utilities:

cd acpica/generate/unix

make

make install /* install all binaries to /usr/bin/

Requirements

make

gcc compiler (4+)

bison or yacc

flex or lex

Configuration

The Makefile.config file contains the configuration information:

HOST = _CYGWIN

/* Host system, must appear in acenv.h/

CC = gcc

/* C compiler/

ACPICA_SRC = ../../../source
/* Location of acpica source tree/
Intermediate Files

The intermediate files for each utility (.o, etc.) are placed in the subdirectory corresponding to each utility, not in the source code tree itself. This prevents collisions when different utilities compile the same source modules with different options.

Output

The executable utilities are copied to the local bin directory.

"make install" will install the binaries to /usr/bin

1) acpibin: a binary AML file tool

acpibin compares AML files, dumps AML binary files to text files, extracts binary AML from text files, and other AML file manipulation.

2) acpiexec: a user-space AML interpreter

acpiexec allows the loading of ACPI tables and execution of control methods from user space. Useful for debugging AML code and testing the AML interpreter. Hardware access is simulated.

3) acpihelp: syntax help for ASL operators and reserved names

acpihelp displays the syntax for all of the ASL operators, as well as information about the ASL/ACPI reserved names (4-char names that start with underscore.)

4) acpinames: load and dump acpi namespace

acpinames loads an ACPI namespace from a binary ACPI table file. This is a smaller version of acpiexec that loads an acpi table and dumps the resulting namespace. It is primarily intended to demonstrate the configurability of ACPICA.

5) acpisrc: a source code conversion tool

acpisrc converts the standard form of the acpica source release (included here) into a version that meets Linux coding guidelines. This consists mainly of performing a series of string replacements and transformations to the code. It can also be used to clean the acpica source and generate statistics.

6) acpixtract: extract binary ACPI tables from an acpidump

acpixtract is used to extract binary ACPI tables from the ASCII text output of an acpidump utility (available on several different hosts.)

7) iasl: an optimizing ASL compiler/disassembler

iasl compiles ASL (ACPI Source Language) into AML (ACPI Machine Language). This AML is suitable for inclusion as a DSDT in system firmware. It also can disassemble AML, for debugging purposes.

7.3.2 Visual Studio Project Files
Generation of ACPICA with MS Visual Studio 2008

The Visual Studio project file (for Visual Studio 2008) appears in this directory:

generate/msvc9/AcpiComponents.sln

ACPICA generates with all MS C language extensions disabled, since the code is ANSI conformant and is meant to be highly portable.

There are a couple of include files in MS Visual Studio 2008 that unfortunately contain non-ANSI "//" style comments. These will be flagged as warnings since language extensions are disabled.

The VC include files are under one of these directories:

\Program Files\Microsoft Visual Studio 9.0\VC\include

\Program Files (x86)\Microsoft Visual Studio 9.0\VC\include

To eliminate these warnings, modify each of these include files:

 sal.h

 stdlib.h

For each file, add this statement to the start of the file:

#pragma warning(disable : 4001) /* no warning about "//" comments/

and add this statement to the end of the file:

#pragma warning(default : 4001)

For stdlib.h, you may also need to disable warning 4001 again before this line, near line 774:

 #pragma warning (disable:6540) // the functions below have declspecs in their declarations in the windows headers, causing PREfast to fire 6540 here

Note: you may have to change the permissions on these files in order to write to them.
7.3.3 iASL Compiler

Miscellaneous instructions for building and using the iASL compiler.

1) Generating iASL from source

Generation of the ASL compiler from source code requires these items:

· The ACPICA source code tree.

· An ANSI C compiler.

· The Flex (or Lex) lexical analyzer generator.

· The Bison (or Yacc) parser generator.

There are three major ACPICA source code components that are required to generate the compiler (Basically, the entire ACPICA source tree should be installed):

· The ASL compiler source.

· The ACPICA Core Subsystem source. In particular, the Namespace Manager component is used to create an internal ACPI namespace and symbol table, and the AML Interpreter is used to evaluate constant expressions (Constant Folding).

· The "common" source directory that is used for all ACPI components.

1a) Notes for Linux/Unix generation

iASL has been generated with these versions of Flex/Bison:

 flex: Version 2.5.32

 bison: Version 2.6.2

Other required packages:

 make

 gcc C compiler

 m4 (macro processor required by bison)

On Linux/Unix systems, the following commands will build the compiler:

cd acpica (or cd acpica/generate/unix)

make clean

make iasl
1b) Notes for Windows generation

On Windows, the Visual Studio 2008 project file appears in this directory:

generate/msvc9/AcpiComponents.sln
The Windows versions of GNU Flex/Bison must be installed, and they must be installed in a directory that contains no embedded spaces in the pathname. They cannot be installed in the default "c:\Program Files" directory. This is a bug in Bison. The default Windows project file for iASL assumes that these tools are installed at this location:

c:\GnuWin32

Once the tools are installed, ensure that this path is added to the default system $Path environment variable:

c:\GnuWin32\bin

Go to:
ControlPanel/System/AdvancedSystemSettings/EnvironmentVariables
Important: Now Windows must be rebooted to make the system aware of the updated $Path. Otherwise, Bison will not be able to find the M4 interpreter library and will fail.

iASL has been generated with these versions of Flex/Bison for Windows:

 Flex for Windows: V2.5.4a

 Bison for Windows: V2.4.1

Flex is available at: http://gnuwin32.sourceforge.net/packages/flex.htm

Bison is available at: http://gnuwin32.sourceforge.net/packages/bison.htm

2) Integration as a custom tool for Visual Studio

This procedure adds the iASL compiler as a custom tool that can be used to compile ASL source files. The output is sent to the VC output window.

a) Select Tools->Customize.

b) Select the "Tools" tab.

c) Scroll down to the bottom of the "Menu Contents" window. There you will see an empty rectangle. Click in the rectangle to enter a name for this tool.

d) Type "iASL Compiler" in the box and hit enter. You can now edit the other fields for this new custom tool.

e) Enter the following into the fields:

Command:

C:\Acpi\iasl.exe
Arguments:

-vi "$(FilePath)"
Initial Directory

"$(FileDir)"
Use Output Window
<Check this option>

"Command" must be the path to wherever you copied the compiler. "-vi" instructs the compiler to produce messages appropriate for VC. Quotes around FilePath and FileDir enable spaces in filenames.

f) Select "Close".

These steps will add the compiler to the tools menu as a custom tool. By enabling "Use Output Window", you can click on error messages in the output window and the source file and source line will be automatically displayed by VC. Also, you can use F4 to step through the messages and the corresponding source line(s).

3) Integrating iASL into a Visual Studio ASL project build

This procedure creates a project that compiles ASL files to AML.

a) Create a new, empty project and add your .ASL files to the project

b) For all ASL files in the project, specify a custom build (under Project/Settings/CustomBuild with the following settings (or similar):

Commands:

c:\acpi\libraries\iasl.exe -vs -vi "$(InputPath)"

Output:

$(InputDir)\$(InputPath).aml

8 Instructions and Tutorials

8.1 Adding new ACPI Tables

This section describes how to add a new ACPI table to ACPICA and the iASL compiler.

There are four main tasks that are needed to provide support for a new ACPI table:

 1) Create a full definition of the table and any subtables in the ACPICA headers
 2) Add disassembler support for the new table

 3) Add iASL table compiler support for the new table

 4) Create a default template for the new table for iASL –T option
Important Note: if any new typedefed struct definitions are added to the code, they must also be added to the AcpiSrc utility. This is so that the ACPICA source code can be properly converted to Linux format. Modify this file:

 source/tools/acpisrc/astable.c

Notes for each of these tasks are provided in the sections below.

When the new table integration is completed, the list of modified source files should look something like this:

 modified: source/common/dmtable.c

 modified: source/common/dmtbdump.c

 modified: source/common/dmtbinfo.c

 modified: source/compiler/dtcompiler.h

 modified: source/compiler/dttable.c

 modified: source/compiler/dttemplate.h

 modified: source/include/acdisasm.h

 modified: source/include/actbl3.h

 modified: source/tools/acpisrc/astable.c

8.1.1 ACPICA Header Support

New ACPI tables should be added to the appropriate ACPICA header:

· source/include/actbl.h
Fundamental ACPI tables that are directly consumed by ACPICA.

· source/include/actbl1.h
Other tables that are defined within the ACPI specification.

· source/include/actbl2.h
Other known tables that are defined in documents other than the ACPI specification.

· source/include/actbl3.h
Other known tables that are defined in documents other than the ACPI specification.
Add a signature string of the form ACPI_SIG_XXXX for the new table at the start of the header.

8.1.1.1 ACPI Table Naming Conventions

This section describes the naming conventions for tables, within the ACPICA headers. An attempt is made to use these rules on all ACPI tables defined within ACPICA, for consistency and readability.
1. Try to name the fields within the table struct to match the ACPI spec. However, we have a practical limit of about 30 characters in order to make the disassembler line things up nicely. Also, nobody likes to deal with very long identifiers.

2. If the ACPI spec name is very long, tossing out words that don’t really add information is a good way to shorten the name.

3. Don’t use abbreviations unless absolutely necessary. Full words are best as they are much more easily understood at a glance.
4. Don’t keep using the parent table name within field names. This is akin to the “don’t include the directory name in the filename” rule.

5. Use “XXX count” instead of “Number of XXX” or Num XXX
6. Use one or two words. Three words is a bit wordy, but anything more is not good.

7. Usually something like “Address” does not need to be embellished with additional words, unless there is more than one address within a table or subtable. Likewise with a length field after an address.

8. The standard ACPI_TABLE_HEADER should be used for all tables.

9. A subtable Type and Length should be just that, no more or less. This subtable header should be declared in its own struct to eliminate duplication across individual subtables.

Other conventions:

Subtables should be defined separately from the main table.
Don't add placeholder fields for subtables and any other multiple data items. (Don't use xxxxx[1] for a field that can have multiple items.) Both the disassembler and data table compiler depend on this.

For tables not defined in the ACPI spec, add a comment to indicate the document (and date) where the table came from.

Use other existing table definitions for additional guidance. Find a similar table.
Add any new struct types to the AcpiSrc utility so that the source code can be properly converted to Linux format. This is typically at least the ACPI_TABLE_XXXX name that describes the main table. Modify this file:
 source/tools/acpisrc/astable.c

8.1.2 iASL Disassembler Support

Add a definition of the table (and subtables) in
 source/common/dmtbinfo.c.
The common ACPI table header is assumed and does not need to be defined again in this definition of the table. The name of the structure should be of the form AcpiDmTableInfoXXXXn, where “n” is typically the subtable type code (0, 1, 2, etc.)
Add the ACPI_DMT_TERMINATOR at the end of every table/subtable definition.
Add table access macro(s) of the form ACPI_xxxx_OFFSET. These are at the start of the dmtbinfo.c file. There will be one main macro, then additional macros, one per subtable. The additional subtable macros are of the form ACPI_XXXXn, where ‘n’ is the id/opcode of the subtable.
Add externals for all new table/subtable definitions in:
 source/include/acdisasm.h

Add an entry for the new table in the AcpiDmTableData in
 source/common/dmtable.c
· If the new table is simple and there are no subtables and no variable-length data, the common dump routine can be used:
Add the AcpiDmTableInfoXXXX name to the AcpiDmTableData structure as the first element of the data for the new table and the table will automatically be disassembled. The second element must be set to NULL.
· If there are subtables or variable-length data, a custom dump routine must be written:
Add an AcpiDmDumpXXXX function to dmtbdump.c – Note: code for another similar table can often be ported for the new table.

Add an external for this function to acdisasm.h
Add this function to the AcpiDmTableData entry for the new ACPI table, as the second element (first element must be set to NULL).
Debug/Test:
Either find an existing binary example of the new ACPI table, or create one using the "generic ACPI table support" included in the iASL data table compiler. Use the -G option to force a generic compile. Note: Any length fields within the table must be valid, or at least use labels to calculate length.

Once the test file is compiled, the disassembler can be tested on the output binary file. It is often best to create the table from scratch, since this clearly exposes the dependencies (lengths, offsets, etc.) that the Table Compiler support will need to generate.

8.1.3 iASL Table Compiler Support

Simple flat tables do not require a compile routine. The definition of the table in common/dmtbinfo.c (created in the previous step for the disassembler) will suffice.

Add flags as appropriate to the definition of the table in:

 source/common/dmtbinfo.c:
· DT_LENGTH – This indicates to the compiler that this field is a length field that must be calculated and filled in by the compiler. NOTE: this value is the total length of the current subtable. If this is insufficient, it may be possible to restructure the subtables or it may be necessary to have a compile routine insert the length properly.
· DT_FLAGS – This indicates to the compiler that this field is the beginning of the definition of a group of flags that must be encoded into a single value.
· DT_OPTIONAL – This field is optional.

· DT_NON_ZERO – This field must contain a non-zero value.

Complex tables with subtables or variable data will require a compile routine with a name of the form DtCompileXXXX. Add the DtCompileXXXX function to this module:

 source/compiler/dttable.c
Add an external for this function in the data table compiler header:
 source/include/dtcompiler.h
Add this function to the AcpiDmTableData entry for the new ACPI table in this module:
 source/common/dmtable.c
8.1.4 iASL Template Support (-T option)

Now that the Table Compiler support is working for the new table, create an example of the new table in a file such as XXXX.asl. This example should contain an example of every supported subtable, and multiple instances of any variable length data.

Compile the example file with the -sc option. This will create a hex C array that contains the table contents. The output file will be XXXX.hex.
Add this array to this header:

 source/compiler/dttemplate.h
The default name of the array/table is AmlCode. Rename the array TemplateXXXX, and insert it into dttemplate.h in alphabetical order. Ensure that the structure is declared as “const unsigned char”.
Add an external for this array (TemplateXXXX) to the header named
 source/compiler/dtcompiler.h.

Add this array name to the AcpiDmTableData entry for the new ACPI table in
 source/common/dmtable.c
Debug/Test:
Create the template file. Compile the file. Disassemble the file. Compile the disassembly file. Inspect all files:
iasl –T XXXX

iasl XXXX.asl

iasl –d XXXX.aml

8.2 Adding new ACPI Predefined Names

There are four areas where ACPICA performs validation on predefined names (reserved names that start with an undrescore.):
1) Input arguments: During compilation, the correct number of input arguments is checked. If defined to have zero arguments, the name can be implemented as either a control method or a static named object. If there are any required arguments, the name must be implemented as a control method.

2) If the name is implemented as a static object, the object is checked for the proper number of data elements and the proper type of these elements.

3) Runtime arguments: At runtime, the input arguments are checked for the proper number and type of the arguments.

4) Runtime return value: At runtime, the return value is checked for the proper number of data elements and the proper type of these elements.

There are only two places that require modification in order to add new predefined names, at least the simple ones that fit into existing types (return package types).
1) Add the new names to the alphabetical table of predefined names and associated descriptions within the AcpiHelp utility (table is also used by the disassembler). See:

source/tools/AcpiHelp/ahpredef.c

2) Within the main ACPICA code, there is a single file that defines the names and their associated properties in alphabetical order: Required argument count, required argument data type(s), and the return value data type if applicable. This file is used by both the iASL compiler and the AML interpreter. See:

source/include/acpredef.h

Important Note: if any new typedefed struct definitions are added to the code, they must also be added to the AcpiSrc utility. This is so that the ACPICA source code can be properly converted to Linux format. Modify this file:

source/tools/acpisrc/astable.c

When a new predefined name (or names) has been completed, the modified file list should look something like this:

 modified: source/common/ahpredef.c

 modified: source/compiler/aslprepkg.c

 modified: source/components/namespace/nsprepkg.c

 modified: source/components/namespace/nsrepair.c

 modified: source/include/aclocal.h

 modified: source/include/acpredef.h

 modified: source/tools/acpihelp/ahdecode.c

8.2.1 Return Value Package Types

If the new predefined name returns a package, the type (and other information) of the package must be assigned to the name via the AcpiGbl_PredefinedMethods table in

 source/include/acpredef.h

Example:

The example below shows a name (_BCL) that is defined by the ACPI specification:

1. There are no arguments, therefore the name can be implemented in ASL by either a control method or a simple static Name().

2. The name returns a variable-length package consisting of all integers.

 {{"_BCL",

 METHOD_0ARGS,

 METHOD_RETURNS (ACPI_RTYPE_PACKAGE)}}, /* Variable-length (Ints) */

 PACKAGE_INFO (ACPI_PTYPE1_VAR, ACPI_RTYPE_INTEGER, 0,0,0,0),

The various package types (ACPI_PTYPE*) are described below. If the new name returns a package and does not fit into one of the existing types, a new one may need to be defined.

8.2.1.1 PTYPE1 Return Package Objects

These return packages do not contain subpackages.

ACPI_PTYPE1_FIXED: Fixed-length length, 1 or 2 object types:

 object type

 count

 object type

 count

ACPI_PTYPE1_VAR: Variable-length length. Zero-length package is allowed:

 object type (Int/Buf/Ref)

ACPI_PTYPE1_OPTION: Package has some required and some optional elements (Used for _PRW)

8.2.1.2 PTYPE2 Return Package Objects

These return packages contain a Variable-length number of subpackages. Each of the different types describe the contents of each of the subpackages.
ACPI_PTYPE2: Each subpackage contains 1 or 2 object types. Zero-length parent package is allowed:

 object type

 count

 object type

 count

 (Used for _ALR,_MLS,_PSS,_TRT,_TSS)

ACPI_PTYPE2_COUNT: Each subpackage has a count as first element. A zero-length parent package is allowed:

 object type

 (Used for _CSD,_PSD,_TSD)

ACPI_PTYPE2_PKG_COUNT: Count of subpackages at start, 1 or 2 object types:

 object type

 count

 object type

 count

 (Used for _CST)

ACPI_PTYPE2_FIXED: Each subpackage is of Fixed-length. Zero-length parent package is allowed.

 (Used for _PRT)

ACPI_PTYPE2_MIN: Each subpackage has a Variable-length but minimum length. Zero-length parent package is allowed:

 (Used for _HPX)

ACPI_PTYPE2_REV_FIXED: Revision at start, each subpackage is Fixed-length (Used for _ART, _FPS)

ACPI_PTYPE2_FIX_VAR: Each subpackage consists of some fixed-length elements followed by an optional element. Zero-length parent package is allowed.

 object type

 count

 object type

 count = 0 (optional)

 (Used for _DLM)

ACPI_PTYPE2_VAR_VAR: Variable number of subpackages, each of either a constant or variable length. The subpackages are preceded by a constant number of objects. (Used for _LPI, _RDI)

ACPI_PTYPE2_UUID_PAIR: Each subpackage is preceded by a UUID Buffer. The UUID defines the format of the package. Zero-length parent package is allowed.

 (Used for _DSD)

8.3 Adding new AML Operators/Opcodes

This section describes how to add a new AML operator to both the core/kernel ACPICA and the iASL compiler. Most new opcodes are defined by the ACPI specification itself, but there are a few internal opcodes that are used by ACPICA only. The integration process is basically the same for both.
8.3.1 ACPICA Core and Interpreter

Add a new #define for the opcode in the file
 source/include/amlcode.h
The AML opcodes are at the start of the file. The name of the opcode should be of the form: AML_<name>_OP, where <name> is the appropriate name of the opcode.

Add a new entry for the opcode in the AcpiGbl_AmlOpInfo structure found in:

 source/components/parser/psopcode.c

This new entry must be added at the end of the structure. Each entry in this structure contains the following data:

1. A string containing the name of the opcode

2. A macro that decribes the AML arguments for this opcode

3. A macro that desribes the runtime data types for the opcode

4. An entry that gives some object type information for the opcode.
5. An entry that gives class information for the opcode. This is used to broadly group various opcodes to make differentiation easier.

6. An entry that gives some type information for the opcode.

7. Additional flags that simplifies execution of the opcode.

Create a parser information macro that describes the opcode arguments in the file include/acopcode.h. This macro is essentially derived directly from the ASL grammar as described in the ACPI specification. The name of this macro should be ARGP_<name>.

Create a interpreter information macro that describes the resolved runtime arguments, also in the acopcode.h file. This macro is also derived from the ASL grammar, implementing the “resolved data type” for each argument of the new opcode.

Example:

Consider the following grammer for the ADD opcode. This is the actual definition of ADD in the ASL grammar described in the ACPI specification:
AddTerm :=

Add (

Addend1,

// TermArg => Integer

Addend2,

// TermArg => Integer

Result

// Target

) => Integer

The following macros define the the ARGP input (parser) and the ARGI resolved (interpreter) arguments for the AML_ADD_OP:
#define ARGP_ADD_OP \

 ARGP_LIST3 (ARGP_TERMARG, ARGP_TERMARG, ARGP_TARGET)

#define ARGI_ADD_OP \

 ARGI_LIST3 (ARGI_INTEGER, ARGI_INTEGER, ARGI_TARGETREF)

Note that since the return value is stored into the target, the targe is described as a reference to to the interpreter.
OPCODE DISPATCH
Add opcode information to the appropriate opcode dispatch table in the file

components/parser/psopinfo.c
AcpiGbl_ShortOpIndex

AcpiGbl_LongOpIndex

INTERPRETER DISPATCH

source/interpreter/exoparg1:

source/interpreter/exoparg2:
source/interpreter/exoparg3:
source/interpreter/exoparg6:
8.3.2 iASL Compiler

When the basic infrastructure for the new opcode has been completed as per the previous section, support for the iASL compiler can be added.
Add an entry for the new opcode in the AslKeywordMapping structure within the file compiler/aslmap.c. Entries in this structure should be in alphabetical order. Each entry in the structure contains the following data:
· The actual AML opcode that will be emitted for this keyword. This may be either the actual AML opcode (for ASL operators) or any appropriate AML opcode (for other keywords).

· Flags

· Package Flag

· Btype

If the opcode requires special processing such as additional parse tree transforms, a case for the AML opcode should be added to the file compiler/aslwalks.c

8.4 Adding new iASL Preprocessor Directives

Most new directives can be added to this file:

 source/compiler/prscan.c
Near the beginning of the file, add an entry to the Gbl_DirectiveInfo struct that contains the actual name of the directive and the number of arguments required (if any).

Add a new value to the Gbl_DirectiveIndexes enum that will be used during the directive decoding and dispatch. The value should be of the form: PR_DIRECTIVE_*.

In the function PrDoDirective, add a new case (or cases) for the new directive, using the PR_DIRECTIVE_* from above.

Usually, the case statement is used to dispatch the directive to the appropriate handler.

Finally, write the handler that actually implements the directive.

8.5 Building an ACPICA Release

Instructions to create a full release of the ACPICA software and utilities.

The build uses MS Visual Studio and Cygwin to accomplish the goal of releasing both Windows and Unix versions of the ACPICA code and utilities. For Windows, binary versions of the ACPICA utilities (including the iASL compiler) are created.

Required Accounts

1) An account on github.com with full access rights to the acpica repository.

2) An account on the acpica bugzilla with write/change access.

3) An account on the acpica.org website with write/change access.

8.5.1 Required Tools

8.5.1.1 Documentation Tools

The main ACPICA documents (ACPICA reference, iASL user guide) are written in MS word, then converted to PDF format. Both versions of each are released on the ACPICA website.

 MS Word

 Word to PDF conversion tool (such as PDF Create 8)

8.5.1.2 Windows Tools

The Windows binaries are built via Visual Studio. We must release the Windows binaries since Windows does not provide a compiler.

See the following file acpica/generate/msvc9/readme.txt for Windows setup and ACPICA generation instructions.

See acpica/source/compiler/readme.txt for flex/bison installation and iASL generation instructions.

· Microsoft Visual Studio 2008

· Flex for Windows (http://gnuwin32.sourceforge.net/packages/flex.htm)

· Bison for Windows (http://gnuwin32.sourceforge.net/packages/bison.htm)

· PkWare pkzip25 (Available free from multiple sources). Here is a list of mirrors: http://www.filewatcher.com/m/PKZIP25.EXE.339456-0.html
· Otherwise, Google "pkzip25.exe" to find the free executable.

· Install pkzip25 to /cygdrive/c/windows/pkzip25.exe
8.5.1.3 Cygwin for Windows

Cygwin is used to checkout the source code from the git tree, generate ACPICA from source, and to build the ACPICA release packages.

 Cygwin is available at (http://www.cygwin.com)

These Cygwin packages are required for ACPICA generation:

 git (found in Devel)

 make (found in Devel)

 gcc C compiler (found in Devel)

 flex (found in Devel)

 bison (found in Devel)

 m4 (macro processor required by bison, found in Interpreters)

 dos2unix and unix2dos converters (found in Text)

Additionally, to write to the git tree, these are needed:

 openSSH (found in Net)

 corkscrew (found in Net)

8.5.1.4 Other Issues

1) Windows/Unix line termination issues:

a) Install Cygwin with the default setting of CR/LF line terminators

b) Ensure that these lines are present in the git configuration file, .gitconfig in your home directory:

[core]

autocrlf = true

git and ssh stuff

To write to the git tree, you'll need to setup an ssh connection to github. The ssh clone path is:

 git clone ssh://git@ssh.github.com/acpica/acpica.git

8.5.2 Generating the ACPICA Release
8.5.2.1 Finish the Software and Documentation

Cleanup any extraneous files in the local git tree

Complete any updates to the ACPICA documentation (ACPICA ref, iASL ref)

Create the .PDF versions of the MS Word .DOC files

Checkin any changed documents

Update the version number (hex in the format: 0xYYYYMMDD) in the file source/include/acpixf.h

Build Windows debug versions of all software and utilities

Build Windows nodebug versions of all software and utilities (generate/msvc9)

Build Unix versions of all software and utilities:
 generate/unix/make clean

 generate/unix/make

8.5.2.2 Write the Release Notes

Generate sizes for the acpica library from generate/release/size.bat. Note: This step uses MS dumpbin(link) which is a part of the VC package. It might not work unless the environment variables are set correctly. Execute VC/vcvarsall.bat from the command line if necessary.

Sizes appear in the files size_rel.txt and size_dbg.txt

Integrate code/data and debug/nodebug sizes into the release notes.

Add the release notes to the documents/changes.txt document via Word. Note: From Word, use "Save As", then check the "MS-DOS" and "Insert line breaks" boxes before saving.

Checkin documents/changes.txt

Checkin the new version number, source/include/acpixf.h

Git push everything

Tag the version file with a name of the form Rmm_dd_yy

 git tag -m"version yyyymmdd" Rmm_dd_yy <commit #>

 git push --tags

8.5.2.3 Build the Software

Build the various tar/zip release files:

 Convert the generate/release/.sh files to unix format: dos2unix.sh

 On cygwin, execute generate/release/release.sh (sh release.sh)

8.5.3 Updating the ACPICA Website

Login to acpica.org (with update permission)

8.5.3.1 ACPICA Version Number

Create a new download node for the new ACPICA version:

 Goto: ContentManagement->CreateContent->Downloads

 Title: Use the new version number in the correct format (e.g., "Version 20140114")

 Body: Insert the release notes for this version

 Date: Must be the current date (should match ACPICA version)

 File Attachments: Attach all of the release zip/gz files (currently 6 files)

 (From the acpica/generate/release/current directory)

 Click "Save" at the bottom of the page

Update the version number token.

This will update the version number header on all pages where the token is used:

 Goto https://acpica.org/node/88, click edit, update version at body top

 Click "Save" at the bottom of the page

8.5.3.2 File Pathnames

Update file pathnames:

 Goto "Downloads", click edit

 Update paths to new file versions, update file sizes (3 files)

 Click "Save" at the bottom of the page

 Goto "Downloads/Windows Source Code", click edit

 Update paths to new file versions, update file sizes (2 files)

 Click "Save" at the bottom of the page

 Goto "Downloads/Windows Binary Tools", click edit

 Update paths to new file version, update file size (1 file)

 Click "Save" at the bottom of the page

8.5.3.3 ACPICA Documents

 The documentation/changes.txt file must always be updated.

 Additional ACPICA documentation may require update (in doc/pdf pairs):

 acpica-reference.doc

 acpica-reference.pdf

 aslcompiler.doc

 aslcompiler.pdf

 Goto the "Documentation" page, click edit.

 Attach/upload all new versions of the document(s)

 Uncheck the "List" box for each new document

 Update pathnames (and file sizes) in body for each new filename

 (appears at bottom of each attach)

 Update "Last update" dates as needed

 Click save at bottom

 <Note: this may be fixed so that the filename can stay the same>

Update "news" if there are any major changes or major new features:

 Update front page news:

 Goto ContentManagement->CreateContent->News
 Add news item in the "Title" section and click save at bottom

8.5.3.4 Release Notes

Email separate copies of the notes (in plain text) to the following:

 AcpiCa (acpica.intel.com)

 devel@acpica.org

 acpi@linux.intel.com

 CaClients (undisclosed recipients/BCC: list)

Update ACPICA bugzilla

Close any problem reports that have been resolved.

This page intentionally left blank.

ACPI Table

Management

Event

Management

ACPI Hardware

Management

Resource

Management

Namespace

Management

AML Interpreter

[image: image2.wmf]

247
Intel Secret
Ref No SC-3111

Ref No SC-3111
Intel Secret
3

[image: image3.wmf][image: image4.jpg][image: image5.wmf]R

[image: image6.jpg]