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Preface

MSM isalibrary allowing you to easily and quickly define state machines of very high performance.
From this point, two main questions usually quickly arise, so please allow me to try answering them
upfront.

* When do | need a state machine?

More often that you think. Very often, one defined a state machineinformally without even noticing
it. For example, one declaresinside a class some boolean attribute, say to remember that atask has
been completed. L ater the boolean actually needs athird value, so it becomes an int. A few weeks,
asecond attribute is needed. Then athird. Soon, you find yourself writing:

voi d i ncom ng_dat a(dat a)

{

if (data == packet_3 && flagl == work_done && flag2 > step3)...

}

This starts to ook like event processing (contained inside data) if some stage of the object life has
been achieved (but isugly).

This could be a protocol definition and it is a common use case for state machines. Another
common one isa user interface. The stage of the user's interaction definesif some button is active,
afunctionality is available, etc.

But there are many more use casesif you start looking. Actually, awhole model -driven devel opment
method, Executable UML (http://en.wikipedia.org/wiki/Executable UML) specifies its complete
dynamic behavior using state machines. Class diagram, state machine diagrams, and an action
language are al you absolutely need in the Executable UML world.

» Another state machine library? What for?

True, there are many state machine libraries. This should already be an indication that if you're not
using any of them, you might be missing something. Why should you use this one? Unfortunately,
when looking for a good state machine library, you usually pretty fast hit one or severa of the
following snags:

* speed: "state machines are slow" is usually the first criticism you might hear. While it is often
an excuse not to use any and instead resort to dirty, hand-written implementations (I mean, no,
yoursare not dirty of course, I'm talking about other developers). MSM removes this often feeble
excuse becauseiit is blazingly fast. Most hand-written implementations will be beaten by MSM.

» ease of use: good argument. If you used another library, you are probably right. Many state
machine definitions will look similar to:

state s1 = new State; // a state

state s2 new State; // another state
event e = new Event; // event
sl->addTransition(e,s2); // transition sl -> s2

Themoretransitionsyou have, thelessreadableitis. A long time ago, there was not so much Java
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Thanksto our new OO techniques, this ease of use was gone. MSM gives you back the transition
table and reduces the noise to the minimum.

e expressiveness. MSM offers several front-ends and constantly tries to improve state machine
definition techniques. For example, you can define atransition with eUML (one of MSM's front-
ends) as.

statel == state2 + event [condition] / action

This is not simply syntactic sugar. Such a formalized, readable structure allows easy
communication with domain experts of a software to be constructed. Having domain experts
understand your code will greatly reduce the number of bugs.

< model-driven-development: a common difficulty of a model-driven development is the
complexity of making around-trip (generating code from model and then model from code). This
is due to the fact that if a state machine structure is hard for you to read, chances are that your
parsing tool will aso have ahard time. MSM's syntax will hopefully help tool writers.

« features: most devel opersuse only 20% of therichly defined UML standard. Unfortunately, these
are never the same 20% for al. And so, very likely, one will need something from the standard
which is not implemented. MSM offers avery large part of the standard, with more on the way.

Let us not wait any longer, | hope you will enjoy MSM and have fun with it!

vii
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Chapter 1. Founding idea

Let's start with an example taken from the C++ Template Metaprogramming book:

class player : public state nmachi ne<pl ayer >

{
/1 The list of FSM states enumstates { Empty, Open, Stopped, Playing, Paused

/1 transition actions

void start_playback(play const& { std::cout << "player::start_playback\n"; }
voi d open_drawer (open_cl ose const&) { std::cout << "player::open_drawer\n"; }
/1 rmore transition actions

typedef player p; // makes transition table cleaner
struct transition_table : nmpl::vectorll<

/1 Start Event Tar get Acti on
/1 Fommm - Fomm e o Fomm e R +
row< Stopped , play , Playing , &p::start_playback >,
row< Stopped , open_close , Qpen , & :open_drawer >,
/1 Fommm - Fomm e o Fomm e R +
row< Qpen , open_close , Enpty , &p::close_drawer >,
/1 Fommm - Fomm e o Fomm e R +
row< Enpty , open_close , Open , &p::open_drawer >,
row< Enpty , cd _detected, Stopped , &p::store cd_info >,
/1 Fommm - Fomm e o Fomm e R +
row< Playing , stop , Stopped , &p::stop_playback >,
row< Playing , pause , Paused , &p::pause_pl ayback >,
row Playing , open_close , Qpen , &p::stop_and _open >,
/1 Fommm - Fomm e o Fomm e R +
row< Paused , play , Playing , &p::resunme_pl ayback >,
row< Paused , stop , Stopped , &p::stop_playback >,
row< Paused , open_close , Qpen , &p::stop_and _open >
/1 Fommm - Fomm e o Fomm e R +
> {};

/1l Replaces the default no-transition response.
tenpl ate <cl ass Event >
int no_transition(int state, Event consté& e)

{

std::cout << "no transition fromstate << state << on event

return state;

<< typeid

}
}s

Thisexampleisthe foundation for theideadriving M SM: a descriptive and expressive language based
on atransition table with as little syntactic noise as possible, al this while offering as many features
from the UML 2.0 standard as possible. MSM also offers several expressive state machine definition
syntaxes with different trade-offs.




Chapter 2. UML Short Guide

What are state machines?

State machines are the description of athing'slifeline. They describe the different stages of thelifeline,
the events influencing it, and what it does when a particular event is detected at a particular stage.
They offer the compl ete specification of the dynamic behavior of the thing.

Concepts

Thinking in terms of state machines is a bit surprising at first, so let us have a quick glance at the
concepts.

State machine, state, transition, event

A state machine is a concrete model describing the behavior of a system. It is composed of a finite
number of states and transitions.

stm sm -

StateMachine

A simple state has no sub states. It can have data, entry and exit behaviors and deferred events. One can
provide entry and exit behaviors (also called actions) to states (or state machines), which are executed
whenever a state is entered or left, no matter how. A state can also have internal transitions which
cause no entry or exit behavior to be called. A state can mark events as deferred. This meansthe event
cannot be processed if this state is active, but it must be retained. Next time a state not deferring this
event is active, the event will be processed, asif it had just been fired.

stm state
I/F Sfate q\\l

+ entry f some_entry
+ et [ some_exit

A transition isthe switching between active states, triggered by an event. Actionsand guard conditions
can be attached to the transition. The action executes when the transition fires, the guard is a Boolean
operation executed first and which can prevent the transition from firing by returning false.
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event [guard] / action

An initial state marks the first active state of a state machine. It has no real existence and neither has
the transition originating from it.

stm init_state /

Initial

State 1

Submachines, orthogonal regions, pseudostates

A composite state is a state containing a region or decomposed in two or more regions. A composite
state contains its own set of states and regions.

A submachine is a state machine inserted as a state in another state machine. The same submachine
can be inserted more than once.

Orthogonal regions are parts of a composite state or submachine, each having its own set of mutually
exclusive set of states and transitions.

<tm regions

o

n]
Stated
nitial

[region2]

Stated
-
Iniis|
e Initial

[region3]

,\r Stated State2
Initial

's Composite ™
regi
|

==

UML also defines a number of pseudo states, which are considered important concepts to model, but
not enough to make them first-class citizens. The terminate pseudo state terminates the execution of
a state machine (MSM handles this dightly differently. The state machine is not destroyed but no
further event processing occurs.).

»
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stm terminate /

Initial

State 1

X

Teminate

An exit point pseudo state exits a composite state or a submachine and forces termination of execution
in al contained regions.

stm exit

'S Composite

An entry point pseudo state allows akind of controlled entry inside acomposite. Precisely, it connects
atransition outside the composite to a transition inside the composite. An important point is that this

mechanism only allows asingle region to be entered. In the above diagram, in regionl, theinitial state
would become active.
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stm Entry'_puint/

I//_ Composite _\"l

[regioni]

Initia

Sub1 Sub2

Initia

II\“./:I Entry

State 1

There are also two more ways to enter a submachine (apart the obvious and more common case of a
transition terminating on the submachine as shown in the region case). An explicit entry means that
aninside state isthetarget of atransition. Unlike with direct entry, no tentative encapsulation is made,
and only onetransition is executed. An explicit exit isatransition from an inner state to astate outside
the submachine (not supported by MSM). | would not recommend using explicit entry or exit.
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stm explicit
I//_ Composite _\\.I

[region1]
region.2]
Sub1 o i Sub?
Initia - L

State 1

Initia

The last entry possibility is using fork. A fork is an explicit entry into one or more regions. Other
regions are again activated using their initial state.

stm fork 7

/_ Composite \

[region1]

[region2]

State 1
[region3]
Initia

History

UML definestwo kinds of history, shallow history and deep history. Shallow history is apseudo state
representing the most recent substate of a submachine. A submachine can have at most one shallow
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history. A transition with a history pseudo state as target is equivalent to a transition with the most
recent substate as target. And very importantly, only one transition may originate from the history.
Deep history is a shallow history recursively reactivating the substates of the most recent substate. It
is represented like the shallow history with a star (H* inside acircle).

stm history

Initial

/_ Composite \\

State 1 Sub1
G
History
: Sub2 :

. S

History is not a completely satisfying concept. First of all, there can be just one history pseudo state
and only onetransition may originate from it. So they do not mix well with orthogonal regionsas only
one region can be “remembered”. Deep history is even worse and looks like a last-minute addition.
History has to be activated by atransition and only one transition originates from it, so how to model
the transition originating from the deep history pseudo state and pointing to the most recent substate
of the substate? As abonus, it is also inflexible and does not accept new types of histories. Let's face
it, history sounds great and is useful in theory, but the UML version is not quite making the cut. And
therefore, MSM provides a different version of this useful concept.

Completion transitions / anonymous transitions

Completion events (or transitions), also called anonymoustransitions, are defined astransitionshaving
no defined event triggering them. This means that such transitions will immediately fire when a state
being the source of an anonymous transition becomes active, provided that aguard allowsit. They are
useful in modeling algorithms as an activity diagram would normally do. In the real-time world, they
have the advantage of making it easier to estimate how long a periodically executed action will last.
For example, consider the following diagram.

10
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stm completion /

Initia

Step1

fcalculationd

Step2

[condition 1]
fealculation2

0

Step3a

Icalculationd

dz

Stepda

End

[condition2]
fealculation3

Steplb

11
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The designer now knows at any time that he will need a maximum of 4 transitions. Being able to
estimate how long atransition takes, he can estimate how much of atimeframe hewill need to require
(real-time tasks are often executed at regular intervals). If he can also estimate the duration of actions,
he can even use graph algorithms to better estimate his timing requirements.

Internal transitions

Internal transitions are transitions executing in the scope of the active state, being a simple state or a
submachine. One can see them as a self-transition of this state, without an entry or exit action called.

Conflicting transitions

If, for a given event, several transitions are enabled, they are said to be in conflict. There are two
kinds of conflicts:

 For agiven source state, severa transitions are defined, triggered by the same event. Normally, the
guard condition in each transition defines which oneisfired.

» The source state is a submachine or simple state and the conflict is between atransition internal to
this state and a transition triggered by the same event and having as target another state.

The first one is simple; one only needs to define two or more rows in the transition table, with the
same source and trigger, with a different guard condition. Beware, however, that the UML standard
wants these conditions to be not overlapping. If they do, the standard says nothing except that this
isincorrect, so the implementer is free to implement it the way he sees fit. In the case of MSM, the
transition appearing last in the transition table gets selected first, if it returns false (meaning disabled),
the library tries with the previous one, and so on.

stm conflictl
State 1
event [condition] event [conditionZ]
State 2 Stated

In the second case, UML defines that the most inner transition gets selected first, which makes sense,
otherwise no exit point pseudo state would be possible (the inner transition brings us to the exit point,
from where the containing state machine can take over).

12



UML Short Guide

stm conflict2 -

s State 1 ™

: State3 :
Stated State 2
event avent
Elxit

. A

MSM handles both cases itself, so the designer needs only concentrate on its state machine and the
UML subtleties (not overlapping conditions), not on implementing this behavior himself.

State

machine glossary

state machine: the life cycle of a thing. It is made of states, regions, transitions and processes
incoming events.

state: a stage in the life cycle of a state machine. A state (like a submachine) can have an entry
and exit behaviors.

event: an incident provoking (or not) areaction of the state machine

transition: a specification of how a state machine reacts to an event. It specifies a source state,
the event triggering the transition, the target state (which will become the newly active state if the
transition is triggered), guard and actions.

action: an operation executed during the triggering of the transition.

guard: aboolean operation being ableto prevent thetriggering of atransition which would otherwise
fire.

transition table: representation of a state machine. A state machine diagram is a graphical, but
incomplete representation of the same model. A transition table, on the other hand, is a complete
representation.

initial state: The state in which the state machine starts. Having several orthogonal regions means
having as many initial states.

submachine: A submachine is a state machine inserted as a state in another state machine and can
be found several timesin a same state machine.

orthogonal regions: (logical) parallel flow of execution of a state machine. Every region of a state
machine gets a chance to process an incoming event.

terminate pseudo-state: when this state becomes active, it terminates the execution of the whole
state machine. MSM does not destroy the state machine as required by the UML standard, however,
which lets you keep all the state machine's data.

entry/exit pseudo state: defined for submachinesand are defined asaconnection between atransition
outside of the submachine and a transition inside the submachine. It is a way to enter or leave a
submachine through a predefined point.

fork: afork allows explicit entry into several orthogonal regions of a submachine.

history: ahistory isaway to remember the active state of a submachine so that the submachine can
proceed in itslast active state next time it becomes active.

13
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completion events (also called completion/anonymous transitions): when atransition has no named
event triggering it, it automatically fires when the source state is active, unless a guard forbidsit.

transition conflict: a conflict is present if for a given source state and incoming event, several
transitions are possible. UML specifies that guard conditions have to solve the conflict.

internal transitions: transition from astateto itself without having exit and entry actionsbeing called.

14



Chapter 3. Tutorial

Design

MSM is divided between front—ends and back-ends. At the moment, there is just one back-end. On
the front-end side, you will find three of them which are as many state machine description languages,
with many more possible. For potential language writers, this document contains a description of the
interface between front-end and back-end.

The first front-end is an adaptation of the example provided in the MPL book [http://boostpro.com/
mplbook] with actions defined as pointers to state or state machine methods. The second one is based
on functors. Thethird, eUML (embedded UML) isan experimental language based on Boost.Proto and
Boost. Typeof and hiding most of the metaprogramming to increase readability. Both eUML and the
functor front-end also offer a functional library (a bit like Boost.Phoenix) for use as action language
(UML defining none).

Basic front-end

Thisis the historical front-end, inherited from the MPL book. It provides a transition table made of
rows of different names and functionality. Actions and guards are defined as methods and referenced
through a pointer in the transition. This front-end provides a ssimple interface making easy state
machines easy to define, but more complex state machines a bit harder.

A simple example

Let us have alook at a state machine diagram of the founding example:

stm Player

Nas

We are now going to build it with MSM's basic front-end. An implementation [examples/
SimpleTutorial .cpp] is aso provided.

Transition table

As previously stated, MSM is based on the transition table, so let us define one:
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struct transition_table : npl::vector<

/1 Start Event Tar get Acti on Guard
/1 R R R oo R
a_row< Stopped , play , Playing , &player_::start_pl ayback
a_row Stopped , open_close , Open , &player _::open_drawer
_row< Stopped , stop , Stopped
/1 R R R oo R
a_row< Qpen , open_close , Emty , &player _::close_drawer
/1 R R R oo R
a_row Empty , open_close , Open , &pl ayer _::open_drawer
row< Empty , cd_detected, Stopped , &player_::store_cd_info , &player _:
row< Empty , cd_detected, Playing , &player_::store_cd_info , &player _:
/1 R R R oo R
arow Playing , stop , Stopped , &player_::stop_playback
a_row Playing , pause , Paused , &player _::pause_pl ayback
a row Playing , open_close , Open , &player _::stop_and_open
/1 R R R oo R
a_row Paused , end_pause , Playing , &player_::resune_playback
a_row Paused , stop , Stopped , &player_::stop_playback
a_row Paused , open_close , Open , &player _::stop_and_open
/1 R R R oo R
> {};

You will notice that this is almost exactly our founding example. The only change in the transition
table is the different types of transitions (rows). The founding example forces one to define an action
method and offers no guards. Y ou have 4 basic row types:

» rowtakes 5 arguments: start state, event, target state, action and guard.

* a_row(“a for action) allows defining only the action and omit the guard condition.

» g _row(“g" for guard) alows omitting the action behavior and defining only the guard.
» _rowallowsomitting action and guard.

The signature for an action methods is void method_name (event const& ), for example:
voi d stop_pl ayback(stop const &)

Action methods return nothing and take the argument as const reference. Of course nothing forbids
you from using the same action for several events:

tenpl ate <cl ass Event> voi d stop_pl ayback( Event const &)
Guards have as only difference the return value, which is a boolean:
bool good _di sk _fornat(cd _detected consté& evt)

The transition table is actually a MPL vector (or list), which brings the limitation that the default
maximum size of the table is 20. If you need more transitions, overriding this default behavior is
necessary, so you need to add before any header:

#defi ne BOOST_MPL_CFG_NO PREPROCESSED HEADERS
#define BOOST_MPL_LIM T_VECTOR SI ZE 30 //or whatever you need
#define BOOST_MPL_LIM T_MAP_SI ZE 30 //or whatever you need

The other limitation is that the MPL types are defined only up to 50 entries. For the moment, the only
solution to achieve moreisto add headersto the MPL (luckily, thisis not very complicated).
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Defining states with entry/exit actions

What

While states were enums in the MPL book, they now are classes, which allows them to hold data,
provide entry, exit behaviors and be reusable (as they do not know anything about the containing state
machine). To define a state, inherit from the desired state type. Y ou will mainly use simple states:

struct Empty : public msm::front::state<> {};

They can optionally provide entry and exit behaviors:

struct Enpty : public nmem:front::state<>
{
tenpl ate <cl ass Event, class Fsnp
void on_entry(Event const& Fsnm& )
{std::cout <<"entering: Enpty" << std::endl;}
tenpl ate <cl ass Event, class Fsnp
void on_exit(Event consté& Fsn& )
{std::cout <<"leaving: Enpty" << std::endl;}
b

Notice how the entry and exit behaviors are templatized on the event and state machine. Being generic
facilitates reuse. There are more state types (terminate, interrupt, pseudo states, etc.) corresponding to
the UML standard state types. These will be described in detailsin the next sections.

do you actually do inside actions / guards?

State machines define a structure and important parts of the complete behavior, but not all. For
example if you need to send a rocket to Alpha Centauri, you can have a transition to a state
"SendRocketToAlphaCentauri” but no code actually sending the rocket. This is where you need
actions. So asimple action could be;

tenpl ate <class Fire> void send rocket (Fire const &)

{
}

Ok, this was simple. Now, we might want to give a direction. Let us suppose this information is
externally given when needed, it makes sense do use the event for this:

fire_rocket();

/1 Event
struct Fire {Direction direction;};
tenpl ate <class Fire> void send_rocket(Fire consté& evt)

{
}

We might want to calcul ate the direction based not only on external data but also on data accumulated
during previous work. In this case, you might want to have this data in the state machine itself. As
transition actions are members of the front-end, you can directly access the data:

fire_rocket(evt.direction);

/1 Event

struct Fire {Direction direction;};

/[/front-end definition, see down

struct launcher_: public msm:front::state_nmachi ne_def <l auncher >{
Data current _cal cul ati on;
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tenmpl ate <class Fire> void send_rocket(Fire consté& evt)

{

fire_rocket(evt.direction, current_cal cul ation);

)
b

Entry and exit actions represent a behavior common to a state, no matter through which transition it
is entered or left. States being reusable, it might make sense to locate your data there instead of in the
state machine, to maximize reuse and make code more readable. Entry and exit actions have access
to the state data (being state members) but also to the event and state machine, like transition actions.
This happens through the Event and Fsm template parameters:

struct Launching : public msm:front::state<>

{
tenpl ate <cl ass Event, class Fsnp
void on_entry(Event const& evt, Fsn& fsn
{
fire_rocket (evt.direction, fsmcurrent_cal cul ation);
}
1

Exit actions are also ideal for clanup when the state becomes inactive.

Another possible use of the entry action is to pass data to substates / submachines. Launching is a
substate containing adat a attribute:

struct launcher_ : public mem:front::state_nmachi ne_def <l auncher >{
Data current _cal cul ati on;

/1 state machines also have entry/exit actions

tenpl ate <cl ass Event, class Fsnp

void on_entry(Event const& evt, Fsn& fsnj

{
| auncher ::Launching& s = fsm get_state<|l auncher ::Launchi ng&>();
s.data = fsmcurrent_cal cul ation;

}

1

The set_states back-end method allows you to replace a complete state.
The functor front-end and eUML offer more capabilities.

However, this basic front-end also has special capabilities using the row?2 / irow?2 transitions._row?2,
a rowz, row2, g row2, a_irow2, irow2, g_irow?2 let you call an action located in any state of the
current fsm or in the front-end itself, thus letting you place useful data anywhere you seefit.

It is sometimes desirable to generate new events for the state machine inside actions. Since the
process_event method belongs to the back end, you first need to gain areference to it. The back end
derives from the front end, so one way of doing thisisto use a cast:

struct launcher_ : public mem:front::state_nmachi ne_def <l auncher >{
tenpl ate <class Fire> void send rocket(Fire consté& evt)
{

fire_rocket();
nsm : back: : stat e_machi ne<l auncher_> & sm = static_cast<nsm : back: :state_machi |
fsm process_event (rocket | aunched());

}
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b

The same can be implemented inside entry/exit actions. Admittedly, this is a bit awkward. A more
natural mechanism is available using the functor front-end.

Defining a simple state machine

Declaring a state machineis straightforward and is done with ahigh signal / noise ratio. In our player
example, we declare the state machine as:

struct player_ : public msm:front::state_machi ne_def <pl ayer_>{
/* see below */}

This declares a state machine using the basic front-end. We now declare inside the state machine
structure theinitial state:

typedef Enpty initial_state;

And that is about all of what is absolutely needed. In the example, the states are declared inside the
state machine for readability but thisis not a requirements, states can be declared wherever you like.

All what isleft to do is to pick a back-end (which is quite simple as thereis only one at the moment):
typedef msm : back: : state_machi ne<pl ayer _> pl ayer;

You now have a ready-to-use state machine with entry/exit actions, guards, transition actions, a
message queue so that processing an event can generate another event. The state machine al so adapted
itself to your need and removed amost all features we didn't use in this simple example. Note that
thisis not per default the fastest possible state machine. See the section "getting more speed” to know
how to get the maximum speed. In anutshell, MSM cannot know about your usage of some features
so you will have to explicitly tell it.

State objects are built automatically with the state machine. They will exist until state machine
destruction. MSM is using Boost.Fusion behind the hood. This unfortunately meansthat if you define
more than 10 states, you will need to extend the default:

#defi ne FUSI ON_MAX_VECTOR SI ZE 20 // or whatever you need

When an unexpected event isfired, theno_t ransi ti on(event, state machine, state
i d) method of the state machineis called . By default, this method simply asserts when called. It is
possible to overwritetheno_t r ansi t i on method to define a different handling:

tenpl ate <cl ass Fsmcl ass Event >
void no_transition(Event const& e, Fsn& ,int state){...}

Note: you might have noticed that the tutorial callsst ar t () onthe state machine just after creation.
Thestart method will initiate the state machine, meaningit will activatetheinitia state, which meansin
turn that theinitial state's entry behavior will be called. The reason why we need thiswill be explained
in the back-end part. After acall to start, the state machine is ready to process events. The same way,
calling st op() will cause the last exit actions to be called.

Defining a submachine

We now want to extend our last state machine by making the Playing state a state machine itself (a
submachine).
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Again, an example [examples/CompositeTutorial.cpp] is aso provided.

A submachine really is a state machine itself, so we declare Playing as such, choosing a front-end
and a back-end:

struct Playing_ : public msm:front::state_machi ne_def<Playing_>{...}
typedef msm : back: : state_nachi ne<Pl ayi ng_> Pl ayi ng;

Like for any state machine, one also needs a transition table and an initial state:

struct transition_table : npl::vector<

/1 Start Event Tar get Acti on Guard

/1 R e R oo +om - - - +
a_row Songl , NextSong, Song2 , &Playing_::start_next_song >,
a_row Song2 , NextSong, Songl , &Playing_::start_prev_song >,
a_row Song2 , NextSong, Song3 , &Playing_::start_next_song >,
a_row Song3 , NextSong, Song2 , &Playing_::start_prev_song >
!/ R e R oo +om - - - +
> {};

typedef Songl initial_state;

Thisisabout all you need to do. MSM will now automatically recognize Playing as a submachine and
all events handled by Playing (NextSong and PreviousSong) will now be automatically forwarded to
Playing whenever thisstateisactive. All other state machinefeaturesdescribed later area so available.
Y ou can even decide to use a state machi ne sometimes as submachine or sometimes as an independent
state machine.
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Orthogonal regions, terminate state, event deferring

It is a very common problem in many state machines to have to handle errors. It usually involves
defining a transition from all the states to a special error state. Trandation: not fun. It is also not
practical to find from which state the error originated. The following diagram shows an example of
what clearly becomes not very readable:

s
i e ~
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Thisis neither very readable nor beautiful. And we do not even have any action on the transitions yet
to make it even less readable.

Luckily, UML providesahelpful concept, orthogonal regions. See them aslightweight state machines
running at the same time inside a common state machine and having the capability to influence one
another. The effect isthat you have several active states at any time. We can therefore keep our state
machine from the previous example and just define a new region made of two states, AllOk and
ErrorMode. AllOk ismost of thetime active. But the error_found error event makes the second region
move to the new active state ErrorMode. This event does not interest the main region so it will simply
be ignored. "no_t ransi ti on" will be called only if no region at all handles the event. Also, as
UML mandates, every region gets a chance of handling the event, in the order as declared by the
initial_statetype

Adding an orthogonal region is easy, one only needsto declare more statesinthei niti al _state
typedef. So, adding a new region with AllOk asthe region'sinitia stateis:

typedef npl::vector<Empty, All OCk> initial_state;
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stm Player

0]

Furthermore, when you detect an error, you usually do not want events to be further processed. To
achieve this, we use another UML feature, terminate states. When any region moves to a terminate
state, the state machine “terminates’ (the state machine and all its states stay alive) and all events are
ignored. This is of course not mandatory, one can use orthogonal regions without terminate states.
MSM also provides asmall extension to UML, interrupt states. If you declare ErrorMode as interrupt
state instead of terminate state, the state machine will not handle any event other than the one which
endsthe interrupt. So it's like a terminate state, with the difference that you are allowed to resume the
state machine when a condition (like handling of the original error) is met.

Last but not least, this example also shows here the handling of event deferring. Let's say someone
putsadisc and immediately presses play. The event cannot be handled, yet you'd want it to be handled
at alater point and not force the user to press play again. The solution is to define it as deferred in
the Empty and Open states and get it handled in the first state where the event is not to be deferred.
It can then be handled or rejected. In this example, when Stopped becomes active, the event will be
handled because only Empty and Open defer the event.

UML defines event deferring as a state property. To accommodate this, MSM lets you specify thisin
states by providing adef er r ed_event s type:

struct Enpty : public mem:front::state<>

/1 if the play event is fired while in this state, defer it until
/1 handles or rejects it
typedef npl::vector<play> deferred_events;

1
Please have alook at the complete example [examples/Orthogonal -deferred.cpp].

While this is wanted by UML and is simple, it is not aways practical because one could wish to
defer only in certain conditions. One could also want to make this be part of a transition action with
the added bonus of a guard for more sophisticated behaviors. It would also be conform to the MSM
philosophy to get as much as possible in the transition table, where you have the whole state machine
structure. Thisis also possible but not practical with this front-end so we will need to pick a different
row from the functor front-end. For a compl ete description of the Rowtype, please have alook at the
functor front-end.
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First, asthere is no state where MSM can automatically find out the usage of this feature, we need to
require deferred events capability explicitly, by adding atype in the state machine definition:

struct player_ : public mem:front::state_machi ne_def <pl ayer_ >

{

typedef int activate_deferred_events;
b

We can now defer an event in any transition of the transition table by using as action the predefined
nsm : front: : Def er functor, for example:

Row < Enpty , play , none , Defer , none >

Thisisan internal transition row(see internal transitions) but you can ignore this for the moment. It
just means that we are not leaving the Empty state. What mattersis that we use Defer as action. This
is roughly equivalent to the previous syntax but has the advantage of giving you all the information
in the transition table with the added power of transition behavior.

The second difference is that as we now have a transition defined, this transition can play in the
resolution of transition conflicts. For example, we could model an "if (condition2) move to Playing
elseif (conditionl) defer play event":

Row < Empty , play , none , Defer , conditionl >,
g_row < Enpty , play , Playing , &player_::condition2 >

Please have alook at this possible implementation [examples/Orthogonal -deferred2.cpp] .

History

UML defines two types of history, Shallow History and Deep History. In the previous examples, if
the player was playing the second song and the user pressed pause, leaving Playing, at the next press
on the play button, the Playing state would become active and the first song would play again. Soon
would thefirst client complaints follow. They'd of course demand, that if the player was paused, then
it should remember which song was playing. But it the player was stopped, then it should restart from
the first song. How can it be done? Of course, you could add a bit of programming logic and generate
extra events to make the second song start if coming from Pause. Something like:

if (Event == end_pause)

{
}

Not much to like in this example, isn't it? To solve this problem, you define what is called a shallow
or a deep history. A shallow history reactivates the last active substate of a submachine when this
submachine becomes active again. The deep history does the same recursively, so if this last active
substate of the submachine wasitself a submachine, itslast active substate would become active and
this will continue recursively until an active state is a normal state. For example, let us have a look
at the following UML diagram:

for (int i=0;i< song nunber;++i) {player.process_event (NextSong()); }
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stm Player /

play
start_plsyback

i = Playing ™

Notice that the main difference compared to previous diagrams is that the initial state is gone and
replaced by aHistory symbol (the H inside acircle).

Asexplained in the small UML tutorial, History is a good concept with a not completely satisfying
specification. MSM kept the concept but not the specification and goes another way by making this
a policy and you can add your own history types (the reference explains what needs to be done).
Furthermore, History is a backend policy. This allows you to reuse the same state machine definition
with different history policiesin different contexts.

Concretely, your frontend stays unchanged:
struct Playing_ : public msm:front::state_machi ne_def <Pl ayi ng_>
Y ou then add the policy to the backend as second parameter:

typedef msm : back:: state_machi ne<Pl ayi ng_,
nmsm : back: : Shal | owHi st ory<npl : : vect or <end_pause> > > Pl ayi ng;

This states that a shallow history must be activated if the Playing state machine gets activated by the
end_pause event and only this one (or any other event added to the mpl::vector). If the state machine
was in the Stopped state and the event play was generated, the history would not be activated and the
normal initial state would become active. By default, history is disabled. For your convenience the
library providesin addition to ShallowHistory anon-UML standard AlwaysHistory policy (likely to be
your main choice) which always activates history, whatever event triggers the submachine activation.
Deep history is not available as a policy (but could be added). The reason is that it would conflict
with policies which submachines could define. Of course, if for example, Songl were a state machine
itself, it could use the ShallowHistory policy itself thus creating Deep History for itself. An example
[examples/History.cpp] is also provided.
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Completion (anonymous) transitions

The following diagram shows an example making use of this feature:

stm Ancrymous
Initial .

: State 1

State2 . o
"normal transition™
eventi
Move on to Stete3 and|  giate2TaStates
execute an action

no event, guard o
action, just move on fo
State2
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2 mutuslly exclusive
guard, like a ifielse
statement

Anonymous transitions are transitions without a named event. This means that the transition
automatically fireswhen the predecessor stateisentered (to be exact, after the entry action). Otherwise
itisanormal transition with actions and guards. Why would you need something like that? A possible
casewould beif apart of your state machine implements some algorithm, where states are steps of the
algorithm implementation. Then, using several anonymoustransitionswith different guard conditions,
you are actually implementing some if/else statement. Another possible use would be a real-time
system called at regular intervals and always doing the same thing, meaning implementing the same
algorithm. The advantage is that once you know how long atransition takes to execute on the system,
by cal culating thelongest path (the number of transitionsfrom start to end), you can pretty much know
how long your algorithm will take in the worst case, which in turns tells you how much of atime
frame you are to request from a scheduler.

If you are using Executable UML (a good book describing it is "Executable UML, a foundation for
Model-Driven Architecture"), you will notice that it is common for a state machine to generate an
event to itself only to force leaving a state. Anonymous transitions free you from this constraint.

If you do not use this feature in a concrete state machine, MSM will deactivate it and you will not pay
for it. If you useit, there is however asmall performance penalty asMSM will try to fire acompound
event (the other UML namefor anonymoustransitions) after every taken transition. Thiswill therefore
double the event processing cost, which is not as bad as it sounds as MSM'’s execution speed is very
high anyway.

To define such atransition, use “none”’ as event in the transition table, for example:
row < State3 , none , Stated , &p::State3ToStated , &p::always_ true

An implementation [examples/AnonymousTutorial.cpp] of the state machine diagram is aso
provided.

Internal transitions

Internal transitions are transitions executing in the scope of the active state, a smple state or a
submachine. One can see them as a self-transition of this state, without an entry or exit action called.
Thisisuseful when all you want is to execute some code for a given event in agiven state.
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Internal transitions are specified as having a higher priority than normal transitions. While it makes
sense for a submachine with exit points, it is surprising for a smple state. MSM lets you define the
transition priority by setting the transition’s position inside the transition table (see internals). The
difference between "normal" and internal transitions is that internal transitions have no target state,
therefore we need new row types. We had a_row, g_row, _row and row, we now add a_irow, g_irow,
_irow and irow which are like normal transitions but define no target state. For, example an internal
transition with a guard condition could be:

g irow < Empty /*state*/,cd_detected/ *event*/, &p::internal _guard/* guard */>

These new row types can be placed anywherein the transition table so that you can still have your state
machine structure grouped together. The only difference of behavior with the UML standard is the
missing notion of higher priority for internal transitions. Please have alook at the example [examples/
SimpleTutorial I nternal .cpp].

It is aso possible to do it the UML-conform way by declaring a transition table called i nt er nal
transition_t abl e insidethe stateitself and using internal row types. For example:

struct Enpty : public nmem:front::state<>
{
struct internal transition_table : npl::vector<
a_internal < cd detected , Enpty, &Enpty::internal_action >
> {};
b

This declares an internal transition table called internal_transition_table and reacting on the event
cd_detected by calling internal_action on Empty. Let us note afew points:

internal tables are NOT called transition_table but internal_transition_table
« they use different but similar row types: a_internal, g_internal, _internal and internal.

» These types take as first template argument the triggering event and then the action and guard
method. Notethat the only real differenceto classical rowsisthe extraargument before the function
pointer. Thisisthe type on which the function will be called.

» Thisaso alowsyou, if you wish, to use actions and guards from another state of the state machine
or in the state machine itself.

» submachines can have an internal transition table and a classical transition table.

The following example [examples/TestInternal .cpp] makes use of an a_internal. It also uses functor-
based internal transitionswhich will be explained in thefunctor front-end, pleaseignore themfor the
moment. Also note that the state-defined internal transitions, having the highest priority (as mandated
by the UML standard), are tried before those defined inside the state machine transition table.

Which method should you use? It depends on what you need:

* the first version (using irow) is simpler and likely to compile faster. It also lets you choose the
priority of your internal transition.

« the second version is more logical from a UML perspective and lets you make states more useful
and reusable. It also allows you to call actions and guards on any state of the state machine.

Note: There is an added possbility coming from this feature.  The
i nternal transition_tabl e transitions being added directly inside the main state machine's
transition table, itispossible, if itismoreto your state, to distribute your state machine definition a bit
like Boost.Statechart, leaving to the state machine itself the only task of declaring the states it wants
touseusing theexpl i ci t _creat i on typedefinition. While thisis not the author's favorite way,
itisstill possible. A simplified example using only two states will show this possibility:
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more

« state machine definition [examples/distributed_table/DistributedTable.cpp]

e Empty header [examples/distributed table/Empty.hpp] and cpp [examples/distributed table/
Empty.cpp]

e Open header [examples/distributed table/Open.hpp] and cpp [examples/distributed table/
Open.cpp]

 events definition [examples/distributed table/Events.hpp]

There is an added bonus offered for submachines, which can have both the standard transition_table
and an internal_transition_table (which has a higher priority). This makes it easier if you decide to
make a full submachine from a state. It is also dightly faster than the standard aternative, adding
orthogonal regions, because event dispatching will, if accepted by the internal table, not continue to
the subregions. This gives you a O(1) dispatch instead of O(number of regions). While the example
iswith eUML, the same is also possible with any front-end.

row types

It isalso possible to write transitions using actions and guards not just from the state machine but also
from its contained states. In this case, one must specify not just a method pointer but also the object
on which to cal it. Thistransition row is called, not very originaly, r ow2. They come, like normal
transitions in four flavors: a_row2, g_row2, _row2 and row2. For example, atransition
calling an action from the state Empty could be:

a_row2<sSt opped, open_cl ose, Qpen, Enpty
/*action source*/, &npty:: open_drawer/*action*/>

The same capabilities are aso available for interna transitions so that we have:
airow2, g_.irow2, _irow2 and row2. For transitions defined as part of the
internal _transition_tabl e, you can use the a_internal, g_internal, _internal, internal
row types from the previous sections.

These row types allow us to distribute the state machine code among states, making them reusable
and more useful. Using transition tables inside states also contributes to this possibility. An example
[examples/SimpleTutorial 2.cpp] of these new rows is also provided.

Explicit entry / entry and exit pseudo-state / fork

MSM (almost) fully supports these features, described in the small UML tutorial. Almost because
there are currently two limitations:

« itisonly possible to explicitly enter a sub- state of the target but not a sub-sub state.
* itisnot possibleto explicitly exit. Exit points must be used.

Let us see a concrete example:
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stm Fsm

= Substate2 Substate1
venis
Initial

[zone o]

SubState2b

Wefind in this diagram:

A “normal” activation of SubFsm2, triggered by eventl. In each region, theinitial stateisactivated,
i.e. SubStatel and SubStatelb.

An explicit entry into SubFsm2;:SubState2 for region “1” with event2 as trigger, meaning that in
region “2” theinitial state, SubStatelb, activated.

Aforkintoregions“1” and“2” totheexplicit entries SubState? and SubState2b, triggered by event3.
Both states become active so no region is default activated (if we had athird one, it would be).

A connection of two transitions through an entry pseudo state, SubFsm2::PseudoEntry1, triggered
by event4 and triggering also the second transition on the same event (both transitions must be
triggered by the same event). Region “2” is default-activated and SubStatelb becomes active.

An exit from SubFsm2 using an exit pseudo-state, PseudoExit1, triggered by event5 and connecting
two transitions using the same event. Again, the event is forwarded to the second transition and
both regions are exited, as SubFsm2 becomes inactive. Note that if no transition is defined from
PseudoExit1, an error (as defined in the UML standard) will be detected and no_transition called.

The example is also fully implemented [examples/DirectEntryTutorial.cpp] .

This sounds complicated but the syntax is simple.

Explicit

entry

First, to define that a state is an explicit entry, you have to make it a state and mark it as explicit,
giving as template parameters the region id (the region id starts with O and corresponds to the first
initial state of theinitial_state type sequence).

struct SubFsn2_ : public mem:front::state_nmachi ne_def <SubFsn2 >

{

struct SubState2 : public mem:front::state<> ,
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public mem:front::explicit_entry<0>

b

And define the submachine as:

typedef msm : back: : state_nachi ne<SubFsn2_> SubFsn®;

You can then useit astarget in atransition with Statel as source:

_row < Statel, Event2, SubFsn®::direct< SubFsn?_::SubState2> > //SubFsnR_:: SubS
The syntax deserves some explanation. SubFsm2_isafront end. SubState? is anested state, therefore

the SubFsm?2_::SubState? syntax. The containing machine (containing Statel and SubFsm2) refersto

the backend instance (SubFsm2). SubFsm2::direct states that an explicit entry is desired.

Thanks to the mpl_graph library you can aso omit to provide the region index and let MSM find out
for you. The are however two pointsto note:

* MSM can only find out theregion index if the explicit entry state is somehow connected to aniinitial
state through a transition, no matter the direction.

e Thereisacompile-time cost for this feature.

Note (also valid for forks): in order to make compile time more bearabl e for the more standard cases,
and unlike initial states, explicit entry states which are also not found in the transition table of the
entered submachine (arare case) do NOT get automatically created. To explicitly create such states,
you need to add in the state machine containing the explicit states a simple typedef giving a sequence
of statesto be explicitly created like:

typedef npl::vector<SubState2, SubSt ate2b> explicit_creation;

Note (also valid for forks): At the moment, it is not possible to use a submachine as the target of an
explicit entry. Please use entry pseudo states for an amost identical effect.

Fork

Need afork instead of an explicit entry? Asafork is an explicit entry into states of different regions,
we do not change the state definition compared to the explicit entry and specify as target a list of
explicit entry states:
_row < Statel, Event3,
npl : : vect or <SubFsn®: : di rect <SubFsn®_: : SubSt at e2>,
SubFsn®: : di rect <SubFsnP_:: SubSt at e2b>
>

With SubState? defined as before and SubState2b defined as being in the second region (Caution:
MSM does not check that the region is correct):

struct SubState2b : public nmem:front::state<> ,
public nem:front::explicit_entry<i>

Entry pseudo states
To define an entry pseudo state, you need derive from the corresponding class and give the region id:

struct PseudoEntryl : public mem:front::entry_ pseudo_st at e<0>
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And add the corresponding transition in the top-level state machine's transition table:
_row < Statel, Event4, SubFsnR::entry_ pt<SubFsnP_::PseudoEntryl> >

And ancther in the SubFsm2_ submachine definition (remember that UML defines an entry point as
a connection between two transitions), for example this time with an action method:

_row < PseudoEntryl, Event4, SubState3, &ubFsn®_::entry_action >

Exit pseudo states

And finaly, exit pseudo states are to be used almost the same way, but defined differently: it takes as
template argument the event to be forwarded (no region id is necessary):

struct PseudoExitl : public exit_pseudo_stat e<event 6>

And you need, like for entry pseudo states, two transitions, one in the submachine:

_row < SubState3, Event5, PseudoExitl >

And onein the containing state machine:

_row < SubFsn®::exit_pt<SubFsn2_ ::PseudoExitl> Event6, State2 >
Important note 1: UML defines transiting to an entry pseudo state and having either no second

transition or onewith aguard asan error but definesno error handling. MSM will toleratethisbehavior;
the entry pseudo state will simply be the newly active state.

Important note 2: UML defines transiting to an exit pseudo state and having no second transition as
an error, and also defines no error handling. Therefore, it was decided to implement exit pseudo state
as terminate states and the containing composite not properly exited will stay terminated as it was
technically “exited”.

Important note 3: UML states that for the exit point, the same event must be used in both transitions.
MSM relaxes this rule and only wants the event on the inside transition to be convertible to the one of
the outside transition. In our case, event6 is convertible from event5. Notice that the forwarded event
must be named in the exit point definition. For example, we could define event6 as simply as:

struct event

event (){}
tenpl ate <cl ass Event >
event (Event const &) {}

}; /lconvertible fromany event

Note: Thereisacurrent limitation if you need not only convert but al so get some datafrom the original
event. Consider:

struct eventl
{
event1(int val ):val(val_) {}
int val;
}; /1 forwarded fromexit point
struct event2
{
tenpl ate <cl ass Event >
event 2( Event const& e):val (e.val){} // conpiler will conplain about another
int val;
}; /1 what the higher-level fsmwants to get
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The solution is to provide two constructors:

struct event?2

{
tenpl ate <cl ass Event >
event 2( Event const& ):val (0){} // will not be used
event 2(event1l const& e)):val (e.val){} // the conversion constructor
int val;

}; /1 what the higher-level fsmwants to get

Flags

Thistutoria [examples/Flags.cpp] isdevoted to aconcept not defined in UML: flags. It has been added
into MSM after proving itself useful on many occasions. Please, do not be frightened as we are not
talking about ugly shortcuts made of an improbable collusion of Booleans.

If you look into the Boost. Statechart documentation you'll find this code:
if ( ( state_downcast< const NuniockOFf * >() !

( state_downcast< const CapsLockOrf * >() !
( state_downcast< const ScrollLockOFf * >() !

While correct and found in many UML books, this can be error-prone and a potential time-bomb when
your state machine grows and you add new states or orthogonal regions.

Andmost of all, it hidesthereal question, which would be* doesmy state machine's current state define
aspecial property”? In this special case “are my keysin alock state”? So let's apply the Fundamental

Theorem of Software Engineering and move one level of abstraction higher.

In our player example, let's say we need to know if the player hasaloaded CD. We could do the same:

if ( ( state_downcast< const Stopped * >() !'=0) &&
( state_downcast< const Qpen * >() !'=0) &&
( state_downcast< const Paused * >() !'=0) &&
( =

state_downcast< const Playing * >()
Or flag these 4 states as CDL oaded-able. Y ou add aflag_list type into each flagged state:
typedef npl::vectorl<CDLoaded> flag_list;
Y ou can even define alist of flags, for examplein Playing:
t ypedef npl::vector2<Pl ayi ngPaused, CDLoaded> flag |i st;

This means that Playing supports both properties. To check if your player has aloaded CD, check if
your flag is active in the current state:

player p; if (p.is_flag_active<CDLoaded>())

And what if you have orthogonal regions? How to decide if a state machineisin aflagged state? By
default, you keep the same code and the current states will be OR'ed, meaning if one of the active
states has the flag, then is_flag_active returns true. Of course, in some cases, you might want that all
of the active states are flagged for the state to be active. Y ou can also AND the active states:

if (p.is_flag_active<CDLoaded, pl ayer:: Fl ag_AND>())

The following diagram displays the flag situation in the tutorial.
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stm Player

stop
jsiopped_sgain

+ CDLoaded: fisg
+ PlayingFaused: fie

stop plsy
istop_pisybaci Istart_playback

end_pause
resume_playback

Ipause_playbsck

N Playing

B + CDLosded: fisg
5, + PlayingPaused: flag

+ FustSongPlaying: fisg

PraviousSang
Istart_prev_song

Nextsong

Previoussong
Istat_next_song Istart_prev_song

Event Hierarchy

There are cases where one needs transitions based on categories of events. An exampleistext parsing.
Let's say you want to parse a string and use a state machine to manage your parsing state. Y ou want
to parse 4 digits and decide to use a state for every matched digit. Y our state machine could look like:

stm ParsingDigits 7

)

digt

D

But how to detect the digit event? We would like to avoid defining 10 transitionson char_0, char_1...
between two states as it would force us to write 4 x 10 transitions and the compile-time would suffer.
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To solve this problem, MSM supports the triggering of atransition on a subclass event. For example,
if we definedigitsas:

struct digit {};
struct char_0O : public digit {};

And to the samefor other digits, we can now firechar_0, char_1 eventsand thiswill cause atransition
with "digit" astrigger to be taken.

An example [examples/ParsingDigits.cpp] with performance measurement, taken from the

documentation of Boost.Xpressive illustrates this example. Y ou might notice that the performance is
actually very good (in this case even better).

Customizing a state machine / Getting more speed

MSM is offering many UML features at a high-speed, but sometimes, you just need more speed and
are ready to give up some features in exchange. A process _event is handling several tasks:

» checking for terminate/interrupt states

handling the message queue (for entry/exit/transition actions generating themselves events)

handling deferred events

* catching exceptions (or not)

handling the state switching and action calls

Of these tasks, only thelast oneis absolutely necessary to a state machine (its core job), the other ones
are nice-to-haveswhich cost CPU time. In many cases, it isnot soimportant, but in embedded systems,
this can lead to ad-hoc state machine implementations. MSM detects by itself if a concrete state
machine makes use of terminate/interrupt states and deferred events and deactivates them if not used.
For the other two, if you do not need them, you need to help by indicating it in your implementation.
Thisis done with two simple typedefs:

e no_exception_t hr own indicates that behaviors will never throw and MSM does not need to
catch anything

* no_nessage_queue indicatesthat no action will itself generate anew event and MSM can save
us the message queue.

The third configuration possibility, explained here, is to manually activate deferred events,
using acti vat e_def erred_event s. For example, the following state machine sets all three
configuration types:

struct player_ : public msm:front::state_machi ne_def<pl ayer_>
{

/1 no need for exception handling or nmessage queue

typedef int no_exception_thrown;

typedef int no_nessage_queue;

/1 also manual ly enabl e deferred events

typedef int activate deferred_events
...11 rest of inplenentation

};

Important note: As exit pseudo states are using the message queue to forward events out of a
submachine, theno_nessage_queue option cannot be used with state machines containing an exit
pseudo state.
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Choosing the initial event

A state machine is started using the st art method. This causes the initial state's entry behavior
to be executed. Like every entry behavior, it becomes as parameter the event causing the state to
be entered. But when the machine starts, there was no event triggered. In this case, MSM sends
msm : back: : state_machi ne<...>::1nitEvent, which might not be the default you'd
want. For this special case, MSM provides a configuration mechanism in the form of atypedef. If the
state machine's front-end definition provides an initial_event typedef set to another event, this event
will be used. For example:

struct my_initial _event{};
struct player_ : public nmem:front::state_nachi ne_def <pl ayer_>{

typedef nmy_initial _event initial_event;

b
Containing state machine (deprecated)

Thisfeature is still supported in MSM for backward compatibility but made obsolete by the fact that
every guard/action/entry action/exit action get the state machine passed as argument and might be
removed at alater time.

All of the states defined in the state machine are created upon state machine construction. This has
the huge advantage of areduced syntactic noise. The cost isasmall loss of control for the user on the
state creation and access. But sometimes you needed a way for a state to get access to its containing
state machine. Basically, a state needs to change its declaration to:

struct Stopped : public mem:front::state<smptr>
And to provideaset_sm_ptr function: voi d set _sm ptr(pl ayer* pl)

to get a pointer to the containing state machine. The same applies to terminate_state/ interrupt_state
and entry_pseudo_state/ exit_pseudo_state.

Functor front-end

The functor front-end is the preferred front-end at the moment. It is more powerful than the standard
front-end and has a more readable transition table. It also makes it easier to reuse parts of state
machines. LikeeUML, it also comeswith agood deal of predefined actions. Actually, eUML generates
afunctor front-end through Boost. Typeof and Boost.Proto so both offer the same functionality.

Therowswhich MSM offered in the previous front-end come in different flavors. We saw the a_row,
g_row, _row, row, not counting internal rows. Thisisalready much to know, so why define new rows?
These types have some disadvantages:

» They are more typing and information than we would wish. This means syntactic noise and more
tolearn.

 Function pointers are weird in C++.

e Theaction/guard signatureis limited and does not allow for more variations of parameters (source
state, target state, current state machine, etc.)

* Itisnot easy to reuse action code from a state machine to another.

Transition table

We can change the definition of the simple tutoria's transition table to:
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struct transition_table : npl::vector<

/1 Start Event Tar get Acti on Guard

/1 R R R oo R
Row < Stopped , play , Playing , start_pl ayback , hone

Row < Stopped , open_close , Open , open_drawer , hone

Row < Stopped , stop , Stopped , none , hone

/1 R R R oo R
Row < Open , open_close , Emty , close_drawer , hone

/1 R R R oo R
Row < Empty , open_close , Open , open_drawer , hone

Row < Empty , cd_detected, Stopped , store_cd_info , good_di sk
g_row Empty , cd_detected, Playing , &player_::store_cd_info , &player :
/1 R R R oo R
Row < Playing , stop , Stopped , stop_playback , hone

Row < Playing , pause , Paused , pause_pl ayback , hone

Row < Playing , open_close , Open , Stop_and_open , hone

/1 R R R oo R
Row < Paused , end_pause , Playing , resune_playback , hone

Row < Paused , stop , Stopped , stop_playback , hone

Row < Paused , open_close , Open , Stop_and_open , hone

/1 R R R oo R
> {};

Transitions are now of type "Row" with exactly 5 template arguments. source state, event, target
state, action and guard. Wherever there is nothing (for example actions and guards), write "none".
Actions and guards are no more methods but functors getting as arguments the detected event, the
state machine, source and target state:

struct store_cd_ info

{
templ ate <cl ass Fsmcl ass Evt, class SourceState, class Target St at e>
voi d operator()(Evt const& Fsm& fsm SourceState&, Target State& )
{
cout << "player::store_cd_info" << endl;
fsm process_event (play());
}
1

The advantage of functors compared to functions are that functors are generic and reusable. They
also alow passing more parameters than just events. The guard functors are the same but have an
operator() returning a bool.

It is also possible to mix rows from different front-ends. To show this, ag_row has been left in the
transition table. Note: in case the action functor is used in the transition table of a state machine
contained inside atop-level state machine, the“fsm” parameter refersto the lowest-level state machine
(referencing this action), not the top-level one.

To illustrate the reusable point, MSM comes with awhole set of predefined functors. Please refer to
eUML for thefull list. For example, we are now going to replace thefirst action by an action sequence
and the guard by a more complex functor.

We decide we now want to execute two actions in the first transition (Stopped -> Playing). We only
need to change the action start_playback to

Acti onSequence_< npl ::vector<sone_action, start_playback> >

and now will execute some action and start playback every time the transition is taken.
ActionSequence _isafunctor calling each action of the mpl::vector in sequence.
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We also want to replace good disk format by a condition of the type: “good disk_format &&
(some_condition || some_other_condition)”. We can achieve thisusing And_and Or__functors:

And_<good di sk format, O _< sone_condition , some_other_condition> >

It even starts looking like functional programming. MSM ships with functors for operators, state
machine usage, STL agorithms or container methods.

Defining states with entry/exit actions

You probably noticed that we just showed a different transition table and that we even mixed
rows from different front-ends. This means that you can do this and leave the definitions for states
unchanged. Most examples are doing this as it is the simplest solution. Y ou still enjoy the simplicity
of the first front-end with the extended power of the new transition types. This tutorial [examples/
SimpleWithFunctors.cpp], adapted from the earlier example does just this.

Of coursg, it isaso possible to define states where entry and exit actions are also provided as functors
as these are generated by eUML and both front-ends are equivalent. For example, we can define a
state as:

struct Enpty_Entry

{
tenpl ate <cl ass Event,class Fsmclass State>
voi d operator()(Event const &, Fsn®&, St at e&)

{

}
}; /1 same for Enpty_Exit

struct Enpty : public nmem:front::eunl::func_state<Empty Entry, Enpty Exit>{};

This also means that you can, like in the transition table, write entry / exit actions made of
more complicated action combinations. The previous example can therefore be rewritten [examples/
SimpleWithFunctors2.cpp].

Usually, however, one will probably use the standard state definition as it provides the same
capabilities asthisfront-end state definition, unless one needs some of the shipped predefined functors
or isafan of functional programming.

What do you actually do inside actions / guards (Part
2)7?

Using the basic front-end, we saw how to pass data to actions through the event, that data common
to al states could be stored in the state machine, state relevant data could be stored in the state and
access astemplate parameter in the entry / exit actions. What was however missing was the capability
to accessrelevant state datain the transition action. Thisis possible with this front-end. A transition's
source and target state are also given as arguments. If the current calculation's state was to be found
in the transition's source state (whatever it is), we could accessiit:

struct send_rocket

{
tenpl ate <class Fsmcl ass Evt, class SourceState, class Target State>
voi d operator()(Evt const& Fsm& fsm SourceState& src, TargetState& )
{
fire_rocket(evt.direction, src.current_cal culation);
}
b

36


examples/SimpleWithFunctors.cpp
examples/SimpleWithFunctors.cpp
examples/SimpleWithFunctors.cpp
examples/SimpleWithFunctors2.cpp
examples/SimpleWithFunctors2.cpp
examples/SimpleWithFunctors2.cpp

Tutorial

It was alittle awkward to generate new eventsinside actionswith the basic front-end. With the functor
front-end it is much cleaner:

struct send_rocket

{
tenpl ate <cl ass Fsmcl ass Evt, class SourceState, class Target St at e>
voi d operator()(Evt const& evt, Fsnm& fsm SourceState& src, Target St at e&)
{
fire_rocket(evt.direction, src.current_cal cul ation);
fsm process_event (rocket | aunched());
}
|

Defining a simple state machine

Like states, state machines can be defined using the previous front-end, as the previous example
showed, or with the functor front-end, which alows you to define a state machine entry and exit
functions as functors, as in this example [examples/SimpleWithFunctors2.cpp].

Anonymous transitions

Anonymous (completion) transitions are transitions without a named event. We saw how this front-
end uses hone when no action or guard is required. We can also use none instead of an event to
mark an anonymous transition. For example, the following transition makes an immediate transition
from Statel to State2:

Row < Statel , none , State2 >
The following transition does the same but calling an action in the process:
Row < Statel , none , State2 , StatelToState2, none >

The following diagram shows an example and its implementation [examples/
AnonymousT utorial WithFunctors.cpp]:

stm Anonymous

Initial .

: State 1

State2
eventl
Mowve on to State3 and /State2ToStates
execute an action

no event, guard or
action, just move cn to
State?

“normal transition™

[ahways_false]

[always_true]
[State3ToStated

2 mutuslly exclusive
guard, like a iffelse
statement
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Internal transitions

The following example [examples/SimpleT utorial I nternal Functors.cpp] usesinternal transitions with
the functor front-end. As for the simple standard front-end, both methods of defining internal
transitions are supported:

* providing a Rowin the state machine's transition table with none astarget state defines an internal
transition.

e providing an i nternal _transition_tabl e made of | nt ernal rows inside a state or
submachine defines UML-conform internal transitions with higher priority.

« transitionsdefinedinsidei nt er nal _transi ti on_t abl e require no source or target state as
the source stateisknown (I nt er nal really are Rowwithout a source or target state) .

Likefor thestandard front-end inter nal transitions, internal transition tablesare added intothemain
state machine's table, thus allowing you to distribute the transition table definition and reuse states.

There is an added bonus offered for submachines, which can have both the standard transition_table
and an internal_transition_table (which hashigher priority). Thismakesit easier if you decideto make
a full submachine from a state later. It is also dightly faster than the standard alternative, adding
orthogonal regions, because event dispatching will, if accepted by the internal table, not continue to
the subregions. This gives you a O(1) dispatch instead of O(number of regions). While the example
iswith eUML, the same is a so possible with this front-end.

eUML (experimental)

Important note: eUML requires a compiler supporting Boost.Typeof. More generally, eUML has
experimental status because some compilerswill start crashing when a state machine becomestoo big
(usually when you write huge actions).

The previous front-ends are simple to write but still force an amount of noise, mostly MPL types,
so it would be nice to write code looking like C++ (with a C++ action language) directly inside the
transition table, like UML designers like to do on their state machine diagrams. If it were functional
programming, it would be even better. Thisiswhat eUML isfor.

eUML is aBoost.Proto and Boost. Typeof-based compile-time domain specific embedded language.
It provides grammars which allow the definition of actions/guards directly inside the transition table
or entry/exit in the state definition. There are grammars for actions, guards, flags, attributes, deferred
events, initial states.

It also relies on Boost. Typeof as a wrapper around the new decltype C++0x feature to provide a
compile-time evaluation of all the grammars. Unfortunately, all the underlying Boost libraries are
not Typeof-enabled, so for the moment, you will need a compiler where Typeof is supported (like
VC9-10, g++ >=4.3).

Examples will be provided in the next paragraphs. Y ou need to include eUML basic features:
#i ncl ude <nmsni front/eum /eun . hpp>

To add STL support (at possible cost of longer compilation times), include:

#i ncl ude <nsnmi front/eum /stl. hpp>

eUML isdefined in the namespacenmsm : front: : eun .

Transition table

A transition can be defined using eUML as:
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source + event [guard] / action == target
or as
target == source + event [guard] / action

The first version looks like a drawn transition in a diagram, the second one seems natural to a C++
developer.

The simple transition table written with the functor front-end can now be written as:

BOOST_MSM EUM._TRANSI TI ON_TABLE( (

St opped + play [sonme_guard] / (sone_action , start_playback) == Playing,
St opped + open_cl ose/ open_drawer == (Open ,
St opped + stop == Stopped ,
Open + open_cl ose / cl ose_drawer == Enpty ,
Enmpty + open_cl ose / open_drawer == (Open ,
Enmpty + cd_detected [good disk format] / store cd_info == St opped
),transition_table)

Or, using the alternative notation, it can be:

BOOST_MSM EUM._TRANSI TI ON_TABLE( (

Playing == Stopped + play [sonme_guard] / (some_action , start_playback) |,
Open == Stopped + open_cl ose/ open_drawer ,
St opped == Stopped + stop ,
Enmpty == (Open + open_cl ose / cl ose_drawer ,
Open == Enpty + open_cl ose / open_drawer ,
St opped == Enpty + cd_detected [good disk format] / store cd_info

),transition_table)
The transition table now looks like a list of (readable) rules with little noise.

UML definesguardsbetween“[]” and actionsafter a“/”, so the chosen syntax isalready morereadable
for UML designers. UML also allows designers to define several actions sequentialy (our previous
ActionSequence ) separated by a comma. The first transition does just this: two actions separated by
acomma and enclosed inside parenthesis to respect C++ operator precedence.

If this seemsto you like it will cost you run-time performance, don't worry, eUML is based on typeof
(or decltype) which only evaluatesthe parametersto BOOST MSM_EUML_TRANSITION_TABLE
and no run-time cost occurs. Actually, eUML is only a metaprogramming layer on top of "standard"
MSM metaprogramming and this first layer generates the previously-introduced functor front-end.

UML also alows designers to define more complicated guards, like [good_disk format &&
(some_condition || some_other_condition)]. This was possible with our previously defined functors,
but using a complicated template syntax. This syntax is now possible exactly as written, which means
without any syntactic noise at all.

A simple example: rewriting only our transition table

As an introduction to eUML, we will rewrite our tutoria's transition table using eUML. This will
require two or three changes, depending on the compiler:

* events must inherit from msm::front::euml::euml_event< event_name >
 states must inherit from msm::front::euml::euml_state< state name >
» with VC, states must be declared before the front-end

We  now can write  the  transition table like  just shown, using
BOOST_MSM_EUML_DECLARE_TRANSITION_TABLE instead of

39



Tutorial

BOOST_MSM_EUML_TRANSITION_TABLE. The implementation [examples/
SimpleTutoria WithEumlTable.cpp] is pretty straightforward.

The composite [examples/CompositeTutorial WithEuml Table.cpp] implementationis slightly trickier
because the submachine has to be a msm::back::state_ machine and a msm::front::euml::state. For
example:

/1 front-end |ike al ways
struct front_end : public boost::nsm:front::state_machi ne_def <front_end>

{
b

/1 back-end like al ways
t ypedef boost::nmsm : back::state nmachi ne<front_end> back_end,;
/1 this is new. nake the submachine a eUM. type
struct submachine : public back_end,
public boost::msm:front::eum::eum _state<back_end>
{

b

Unfortunately, thereisabug with VC, which appearsfrom timeto time and causesin astack overflow.
If you get a warning that the program is recursive on all paths, revert to either standard eUML or
another front-end as Microsoft doesn't seem to intend to fix it.

We now have a new, more readable transition table with few changes to our example. eUML can do
much more so please follow the guide.

Defining events, actions and states with entry/exit
actions

Events

Events must be proto-enabled. To achieve this, they must inherit from a proto terminal
(euml_event<event-name>). eUML also provides a macro to make this easier:

BOOST_MBM_EUML_EVENT( pl ay)

This declares an event type and an instance of this type caled pl ay, which is how ready to usein
state or transition behaviors.

There is a second macro, BOOST_MSM_EUML_EVENT _WITH_ATTRIBUTES, which takes as
second parameter the attributes an event will contain, using the attribute syntax.

Note: as we now have events defined as instances instead of just types, can we still process an
event by creating one on thefly, like: f sm process_event (pl ay()); or dowe haveto write:
fsm process_event (pl ay);

The answer is you can do both. The second oneis easier but unlike other front-ends, the second uses
adefined operator(), which creates an event on the fly.

Actions

Actions (returning void) and guards (returning a bool) are defined like previous functors, with the
difference that they also must be proto-enabled. This can be done by inheriting from euml_action<
functor-name >. eUML also provides a macro:

BOOST_MSM EUML_ACTI ON(sone_condi ti on)
{
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tenmpl ate <cl ass Fsmcl ass Evt, class SourceState, cl ass Target St at e>
bool operator()(Evt const& ,Fsm& , Sour ceSt at e&, Tar get St at e& )
{ return true; }

b

Like for events, this macro declares a functor type and an instance for use in transition or state
behaviors.

It is possible to use the same action grammar from the transition table to define state entry and exit
behaviors. So(acti onl, acti on2) isavalid entry or exit behavior executing both actionsin turn.

The state functors have a dightly different signature as there is no source and target state but only a
current state (entry/exit actions are transition-independent), for example:

BOOST_MSM _EUML_ACTI ON( Enpty_Ent ry)

{
tenpl ate <cl ass Evt,class Fsmclass State>
voi d operator()(Evt const& ,Fsm& ,State& ) { ... }
1

It isalso possible to reuse the functors from the functor front-end. The syntax is however dightly less
comfortable as we need to pretend creating one on the fly for typeof. For example:

struct start_pl ayback

{
tenpl ate <cl ass Fsmcl ass Evt, class SourceState, class Target St at e>
voi d operator()(Evt const& , Fsnm&, SourceSt ate& , Target St at e& )
{
}
b
BOOST_MSM _EUM__TRANSI TI ON_TABLE( (
Pl ayi ng == Stopped + play [ start_pl ayback() ,

5 t ransition_tabl e)
States

There is also a macro for states. This macro has 2 arguments, first the expression defining the state,
then the state (instance) name:

BOOST_MBM_EUML_STATE( () , Paused)

This defines a simple state without entry or exit action. Y ou can provide in the expression parameter
the state behaviors (entry and exit) using the action grammar, like in the transition table:

BOOST_MSM EUML_STATE( ((Enpty_Entry, Dunmy_Entry)/*2 entryacti ons*/,
Empty_Exit/*1 exit action*/ ),
Enpt y)

Thismeansthat Empty is defined asastate with an entry action made of two sub-actions, Empty_Entry
and Dummy_Entry (enclosed inside parenthesis), and an exit action, Empty_Exit.

There are several possibilitites for the expression syntax:
* (): state without entry or exit action.
o (Exprl): state with entry but no exit action.

» (Exprl,Expr2): state with entry and exit action.
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e (Exprl,Expr2,Attributes): statewith entry and exit action, defining some attributes (read further on).

* (Exprl,Expr2,Attributes,Configure): state with entry and exit action, defining some attributes (read
further on) and flags (standard MSM flags) or deferred events (standard MSM deferred events).

» (Exprl,Expr2,Attributes,Configure,Base): state with entry and exit action, defining some attributes
(read further on), flags and deferred events (plain msm deferred events) and anon-default base state
(as defined in standard MSM).

no_action is also defined, which does, well, nothing except being a placeholder (needed for example
as entry action if we have no entry but an exit). Exprl and Expr2 are a sequence of actions, obeying
the same action grammar asin the transition table (following the “/” symbal).

The BOOST_MSM_EUML_STATE macro will allow you to define most common states, but
sometimes you will need more, for example providein your states some special behavior. In this case,
you will have to do the macro's job by hand, which is not very complicated. The state will need to
inheritfrommsm : front : : st at e<>, likeany state, andfromeuni _st at e<st at e- name>to
be proto-enabled. Y ou will then need to declare aninstancefor usein thetransition table. For example:

struct Enpty inpl : public nem:front::state<> , public eum _state<Enpty_inpl>

{
void activate empty() {std::cout << "switching to Enpty " << std::endl;}
tenpl ate <cl ass Event, cl ass Fsnp
void on_entry(Event const& evt, Fsm&f sm{...}
tenpl ate <cl ass Event, cl ass Fsnp
void on_exit(Event const& evt, Fsm&fsm{...}
i

//instance for use in the transition table
Enpty i npl const Enpty;

Notice also that we defined amethod named activate_empty. Wewould liketo call it insideabehavior.
This can be done using the BOOST_MSM_EUML_METHOD macro.

BOOST_MSM EUML_METHOD( Acti vat eEnpty , activate_enpty, activate_enpty , void, voi d)

Thefirst parameter isthe name of the underlying functor, which you could use with the functor front-
end, the second is the state method name, the third is the eUML-generated function, the fourth and
fifth the return value when used inside a transition or a state behavior. Y ou can now use this inside
atransition:

Enpty == Open + open_close / (close_drawer,activate enpty (target_))

Wrapping up a simple state machine and first
complete examples

Y ou can reuse the state machine definition method from the standard front-end and simply replace the
transition table by this new one. Y ou can also use eUML to define a state machine "on the fly" (if, for
example, you need to provide an on_entry/on_exit for this state machine as afunctor). For this, there
is also a macro, BOOST_MSM_EUML_DECLARE_STATE_MACHINE, which has 2 arguments,
an expression describing the state machine and the state machine name. The expression has up to 8
arguments:

o (Stt, Init): simplest state machine where only the transition table and initial state(s) are defined.
* (Stt, Init, Exprl): state machine where the transition table, initial state and entry action are defined.

e (Stt, Init, Exprl, Expr2): state machinewherethetransition table, initial state, entry and exit actions
are defined.
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e (Stt, Init, Exprl, Expr2, Attributes): state machine where the transition table, initial state, entry and
exit actions are defined. Furthermore, some attributes are added (read further on).

» (Stt, Init, Exprl, Expr2, Attributes, Configure): state machinewherethetransitiontable, initial state,
entry and exit actions are defined. Furthermore, some attributes (read further on), flags, deferred
events and configuration capabilities (no message queue / no exception catching) are added.

* (Stt, Init, Exprl, Expr2, Attributes, Flags, Deferred , Base): state machinewherethetransition table,
initial state, entry and exit actions are defined. Furthermore, attributes (read further on), flags ,
deferred events and configuration capabilities (no message queue/ no exception catching) are added
and a non-default base state (see the back-end description) is defined.

For example, a minimum state machine could be defined as:

BOOST_MSM _EUML_TRANSI TI ON_TABLE( (
),transition_table)

BOOST_MSM _EUML_DECLARE_STATE_MACHI NE( (transition_table,init_ << Enmpty ),
pl ayer )

Please have a look a the player tutorial written using eUML's first syntax
[examples/SimpleTutorial Euml2.cpp] and second syntax [examples/SimpleTutorial Euml.cpp]. The
BOOST_MSM_EUML_DECLARE_ATTRIBUTE macro, to whichwewill get back shortly, declares
attributes given to an eUML type (state or event) using the attribute syntax.

Defining a submachine

Defining a submachine (see tutorial [examples/CompositeTutorial Euml.cpp]) with other front-ends
simply means using a state which is a state machine in the transition table of another state machine.
This is the same with eUML. One only needs define a second state machine and reference it in the
transition table of the containing state machine.

Unlikethestate or event definition macros, BOOST MSM_EUML_DECLARE_STATE_MACHINE
defines a type, not an instance because a type is what the back-end requires. This means that you
will need to declare yourself an instance to reference your submachine into another state machine,
for example:

BOOST_MSM EUM._DECLARE_STATE _MACHI NE(. .., Pl ayi ng )
typedef msm : back:: state_machi ne<Pl ayi ng_> Pl ayi ng_type;
Pl ayi ng_t ype const Pl ayi ng;

We can now use this instance inside the transition table of the containing state machine:

Paused == Pl ayi ng + pause / pause_pl ayback

Attributes / Function call

We now want to make our grammar more useful. Very often, one needs only very simple action
methods, for example ++Counter or Counter > 5 where Counter is usually defined as some attribute
of the class containing the state machine. It seems like a waste to write a functor for such a simple
action. Furthermore, states within MSM are also classes so they can have attributes, and we would
also like to provide them with attributes.

If you look back at our examples using the first [examples/SimpleTutorial Euml2.cpp]
and  second [examples/SimpleTutorial Euml.cpp] syntaxes, you  will find a
BOOST_MSM_EUML_DECLARE_ATTRIBUTE and a BOOST_MSM_EUML_ATTRIBUTES
macro. The first one declares possible attributes:

BOOST_MSM EUML_DECLARE _ATTRI BUTE( st d: : string, cd_name)
BOOST_MSM_EUM._DECLARE_ATTRI BUTE( Di skTypeEnum cd_t ype)
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This declares two attributes: cd_name of type std::string and cd_type of type DiskTypeEnum. These
attributes are not part of any event or state in particular, we just declared aname and a type. Now, we
can add attributes to our cd_detected event using the second one:

BOOST_MSM EUML_ATTRI BUTES( (attri butes_ << cd_nane << cd_type ),
cd_detected_attributes)

This declares an attribute list which is not linked to anything in particular yet. It can be attached to
a state or an event. For example, if we want the event cd_detected to have these defined attributes
wewrite:

BOOST_MSM EUML_EVENT W TH _ATTRI BUTES(cd_det ect ed, cd_det ected_attri but es)

For states, we use the BOOST_MSM_EUML_STATE macro, which has an expression form where
one can provide attributes. For example:

BOOST_MSM EUML_STATE((no_action /*entry*/,no_action/*exit*/,
attributes << cd_detected attributes),
sonme_state)

OK, great, we now have away to add attributes to a class, which we could have done more easily, so
what isthe point? The point is that we can now reference these attributes directly, at compile-time, in
the transition table. For example, in the example, you will find this transition:

St opped==Enpt y+cd_det ect ed[ good_di sk_f or mat &&(event _(cd_type)==Int_<DI SK_CD>())

Read event_(cd_type) asevent_->cd_typewith event_atype generic for events, whatever the concrete
event is (in this particular case, it happensto be acd_detected as the transition shows).

The main advantage of thisfeatureisthat you do not need to define a new functor and you do not need
to look inside the functor to know what it does, you have all at hand.

MSM provides more generic objects for state machine types:

» event_: used inside any action, the event triggering the transition

» dtate : used inside entry and exit actions, the entered / exited state
 source_: used inside atransition action, the source state

* target_: used inside atransition action, the target state

» fsm_: used inside any action, the (lowest-level) state machine processing the transition
* Int_<int value>: afunctor representing an int

» Char_<value>: afunctor representing a char

» Size t_<vaue>: afunctor representing asize t
 String_<mpl::string> (boost >= 1.40): a functor representing a string.
These helpers can be used in two different ways:

* helper(attribute_name) returns the attribute with name attribute_name
* helper returns the state / event type itself.

The second form is helpful if you want to provide your states with their own methods, which you
also want to useinside the transition table. In the above tutorial [examples/SimpleTutorial Euml.cpp],
we provide Empty with an activate empty method. We would like to create a eUML functor
and cal it from inside the transition table. This is done using the MSM_EUML_METHOD /
MSM_EUML_FUNCTION macros. The first creates a functor to a method, the second to a free
function. In the tutorial, we write:
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MSM EUML_METHOD( Act i vat eEnpty_, activate_enpty, activate_enpty_, voi d, voi d)

The first parameter is the functor name, for use with the functor front-end. The second is the name
of the method to call. The third is the function name for use with eUML, the fourth is the return type
of the function if used in the context of a transition action, the fifth is the result type if used in the
context of astate entry / exit action (usualy fourth and fifth are the same). We now have anew eUML
function calling a method of "something”, and this "something" is one of the five previously shown
generic helpers. We can now use thisin atransition, for example:

Enpty == Open + open_close / (close_drawer,activate enpty_ (target_))

The action is now defined as a sequence of two actions: close_drawer and activate_empty, which
is called on the target itself. The target being Empty (the state defined left), this really will call
Empty::activate_empty(). This method could also have an (or several) argument(s), for example the
event, we could then call activate empty (target_, event ).

More examples can be found in the terrible compiler stress test [examples/
CompilerStressTestEuml.cpp], the timer example [examples/SimpleTimer.cpp] or in the iPodSearch
with eUML [examples/iPodSearchEuml.cpp] (for String_ and more).

Orthogonal regions, flags, event deferring

Defining orthogonal regions really means providing more initial states. To add more initial states,
“shift left” some, for example, if we had another initial state named AllOKk :

BOOST_MSM _EUM._DECLARE_STATE_MACHI NE( (transi ti on_tabl e,
init_ << Enmpty << Al & ),
pl ayer )

You remember from the BOOST_MSM_EUML_STATE and
BOOST_MSM_EUML_DECLARE_STATE_MACHINE signatures that just after attributes, we
can define flags, like in the basic MSM front-end. To do this, we have another "shift-left" grammar,
for example:

BOOST_MSM EUML_STATE( (no_action, no_action, attributes_<<no_attributes_,
/* flags */ configure_<< Playi ngPaused << CDLoaded),
Paused)

We now defined that Paused will get two flags, PlayingPaused and CDL oaded, defined, with another
macro:

BOOST_MSM_EUM._FLAG CDLoaded)
This corresponds to the following basic front-end definition of Paused:

struct Paused : public msm:front::state<>

{
b

Under the hood, what you get really is ampl::vector2.

t ypedef npl::vector 2<Pl ayi ngPaused, CDLoaded> flag_|i st;

Note: As we use the version of BOOST MSM_EUML_STATE's expression with 4 arguments,
we need to tell eUML that we need no attributes. Similarly to acout << endl, we need a
attributes << no_attributes_ syntax.

Y ou can usethe flag with theis flag_active method of astate machine. Y ou can also use the provided
helper functionis flag_ (returning abool) for state and transition behaviors. For example, in theiPod
implementation with eUML [examples/iPodEuml.cpp], you find the following transition:
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For war dPressed == NoForward + EastPressed[!is_flag_ (NoFast Fwd) ]

The function also has an optional second parameter which is the state machine on which the function
iscaled. By default, fsm_isused (the current state machine) but you could provide afunctor returning
areference to another state machine.

eUML also supports defining deferred events in the state (state machine) definition. To thisaim, we
can reuse the flag grammar. For example:

BOOST_MSM EUML_STATE( (Enpty_Entry, Enpty Exit, attributes_ << no_attributes_,
/* deferred */ configure << play ), Enpty)

The configure _ left shift is also responsible for deferring events. Shift inside configure a flag and
the state will get aflag, shift an event and it will get a deferred event. This replaces the basic front-
end definition:

typedef npl::vector<play> deferred_events;

In this tutorial [examples/Orthogona DeferredEuml.cpp], player is defining a second orthogonal
region with AllOk as initial state. The Enpt y and Open states also defer the event pl ay. Open,
St opped and Pause also support the flag CDLoaded using the same left shiftintoconf i gure_.

In the functor front-end, we also had the possibility to defer an event inside a transition, which
makes possible conditional deferring. Thisis also possible with eUML through the use of the defer
order, as shown in thistutorial [examples/Orthogonal DeferredEuml.cpp]. Y ou will find the following
transition:

Qpen + play / defer_

Thisisan internal transition. Ignore it for the moment. Interesting is, that when the event pl ay is
fired and Open isactive, the event will be deferred. Now add a guard and you can conditionally defer
the event, for example:

pen + play [ sonme_condition ] / defer_

Thisissimilar to what we did with the functor front-end. This meansthat we have the same constraints.
Using defer_instead of a state declaration, we need to tell MSM that we have deferred eventsin this
state machine. We do this (again) using a configure _ declaration in the state machine definition in
which we shift the deferred_events configuration flag:

BOOST_MSM EUM._DECLARE_STATE_MACHI NE( (transi ti on_tabl e,
init_ << Enpty << Al ,
Entry_ Action,
Exit _Action,
attributes_ << no_attributes_,
configure_<< deferred_events ),

pl ayer_)
A tutorial [examples/Orthogonal DeferredEuml 2.cpp] illustrates this possibility.

Customizing a state machine / Getting more speed

We just saw how to use configure_to define deferred events or flags. We can also use it to configure
our state machine like we did with the other front-ends:

» configure_ << no_excepti on: disablesexception handling
e configure_ << no_msg_queue deactivates the message queue

e configure_ << deferred_events manualy enables event deferring
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Deactivating the first two features and not activating the third if not needed greatly improves the event
dispatching speed of your state machine. Our speed testing [examples/Euml Simple.cpp] example with
eUML does this for the best performance.

Important note: As exit pseudo states are using the message queue to forward events out of a
submachine, theno_nessage_queue option cannot be used with state machines containing an exit
pseudo state.

Completion / Anonymous transitions

Anonymoustransitions (See UML tutorial) aretransitionswithout anamed event, which aretherefore
triggered immediately when the source state becomes active, provided aguard allowsit. Asthereisno
event, to define such atransition, simply omit the “+” part of the transition (the event), for example:

State3 == State4 [al ways true] / State3ToState4d
State4 [always_true] / State3ToStated4 == State3

Please have alook at this example [examples/AnonymousT utorial Euml.cpp], which implements the
previously defined state machine with eUML.

Internal transitions

Like both other front-ends, eUML supports two ways of defining internal transitions:

* inthe state machine's transition table. In this case, you need to specify a source state, event, actions
and guards but no target state, which eUML will interpret as an internal transition, for example this
defines atransition internal to Open, on the event open_close:

Qpen + open_close [internal _guardl] / internal _actionl
A full example [examples/Eumlinternal.cpp] is aso provided.
* inastate'si nternal _transition_tabl e. For example:

BOOST_MSM EUML_DECLARE _STATE( (Open_Entry, Open_Exi t), Open_def)
struct Open_inpl : public Open_def
{
BOOST_MSM_EUM._DECLARE | NTERNAL_TRANSI TI ON_TABLE( (
open_cl ose [internal _guardl] / internal _actionl
))

b

Notice how we do not need to repeat that the transition originates from Open as we aready arein
Open's context.

The implementation [examples/EumlInternal Distributed.cpp] also shows the added bonus offered
for submachines, which can have both the standard transition_table and an internal_transition_table
(which has higher priority). This makes it easier if you decide to make a full submachine from a
state. It isalso slightly faster than the standard alternative, adding orthogonal regions, because event
dispatching will, if accepted by the internal table, not continue to the subregions. This givesyou a
0O(1) dispatch instead of O(number of regions).

Other state types

We saw the build_state function, which creates asimple state. Likewise, eUML provides other state-
building macros for other types of states:

e BOOST_ MSM_EUML_TERMINATE_STATE takes  the same arguments as
BOOST_MSM_EUML_STATE and defines, well, aterminate state.
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e BOOST_MSM_EUML_INTERRUPT_STATE takes the same arguments as
BOOST_MSM_EUML_STATE and defines an interrupt state. However, the expression
argument must contain as first element the event ending the interruption, for example:
BOOST_MSM EUML_ | NTERRUPT _STATE( ( end_error /*end i nterrupt
event*/, ErrorMode Entry, Error Mode Exit ), Error Mode)

+ BOOST_MSM_EUML_EXIT_STATE takes the same arguments as
BOOST_MSM_EUML_STATE and defines an exit pseudo state. However, the
expression argument must contain as first element the event propagated from
the exit point: BOOST_MSM EUML_EXI T_STATE( ( event 6 / * pr opagat ed
event*/, PseudoExit1 Entry, PseudoExit1l Exit ), PseudoExit1)

+ BOOST_MSM_EUML_EXPLICIT_ENTRY_STATE defines an entry pseudo state. It takes
3 parameters: the region index to be entered is defined as an int argument, followed
by the configuration expression like BOOST_MSM_EUML_STATE and the state name,
so that BOOST_MSM EUML_EXPLI CI T_ENTRY_STATE(O  /*region i ndex*/,
( SubState2 Entry, SubState2 Exit ), SubState2) definesan entry state into the
first region of a submachine.

* BOOST_MSM_EUML_ENTRY_STATE defines an entry pseudo state. It takes
3 parameters. the region index to be entered is defined a an int
argument, followed by the configuration expression like BOOST _MSM_EUML_STATE
and the sate name, so that  BOOST_MSM EUML_ENTRY_STATE(O,
( PseudoEntryl Entry, PseudoEntryl Exit ), PseudoEntryl) definesapseudo
entry state into the first region of a submachine.

To use these states in the transition table, eUML offers the functionsexplicit _,exit_pt_and
entry_pt . For example, adirect entry into the substate SubState? from SubFsm2 could be:

explicit_(SubFsn?2, SubState2) == Statel + event2
Forks being alist on direct entries, eUML supports alogica syntax (statel, state?, ...), for example:

(explicit_(SubFsn?, SubSt ate?),
explicit_(SubFsn?, SubSt at e2b),
explicit_(SubFsn?, SubState2c)) == Statel + event3

An entry point is entered using the same syntax as explicit entries:

entry_pt_(SubFsn?, PseudoEntryl) == Statel + event4

For exit points, it is again the same syntax except that exit points are used as source of the transition:
State2 == exit_pt_(SubFsnR, PseudoExitl) + event6

The entry tutorial [examples/DirectEntryEuml.cpp] is also available with eUML.

Helper functions

We saw afew helpers but there are more, so let us have a more complete description:

e event_: usedinside any action, the event triggering the transition

» dtate : used inside entry and exit actions, the entered / exited state

» source : used inside atransition action, the source state

* target_: used inside atransition action, the target state

» fsm_: used inside any action, the (deepest-level) state machine processing the transition

» These objects can also be used as a function and return an attribute, for example event_(cd_name)
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* Int_<int value>: afunctor representing an int

» Char_<value>: afunctor representing a char

» Size t <value>: afunctor representing asize t

e True_ and False functors returning true and fal se respectively
 String_<mpl::string> (boost >= 1.40): a functor representing a string.

« if_then_else (guard, action, action) where action can be an action sequence
« if_then (guard, action) where action can be an action sequence

» while_(guard, action) where action can be an action sequence

» do_while_(guard, action) where action can be an action sequence

« for_(action, guard, action, action) where action can be an action sequence

» process (some_event [, some state machine] [, some state machin€] [, some state machineg] [, some
state machine]) will call process_event (some_event) on the current state machine or on the one(s)
passed as 2nd , 3rd, 4th, 5th argument. This allow sending events to several external machines

* process_(event ): reprocesses the event which triggered the transition
* reprocess (): same as above but shorter to write

» process?2_(some_event,Value[, some state maching] [, some state machine] [, some state machine])
will call process_event (some_event(Vaue)) on the current state machine or on the one(s) passed
as 3rd, 4th, 5th argument

» is_flag (some_flag[, some state machine]) will call is flag_active on the current state machine or
on the one passed as 2nd argument

» Predicate <some predicate>: Used in STL agorithms. Wraps unary/binary functionsto make them
eUML-compatible so that they can be used in STL agorithms

This can be quite fun. For example,

/( if_then_else (--fsm (m Songlndex) > Int_<0>(),/*if clause*/
show _pl ayi ng_song, /*then cl ause*/
(fsm_(m Songl ndex) =I nt _<1>(), process_(EndPl ay))/ *el
)
)

means: if (fsm.Songlndex > 0, call show_playing_song else {fsm.Songlndex=1; process EndPlay on
fsm;}

A few examples are using these features:

« theiPod example introduced at the BoostCon09 has been rewritten [examples/iPodEuml.cpp] with
eUML (weak compilers please move on...)

 the iPodSearch example also introduced at the BoostCon09 has been rewritten [examples/
iPodSearchEuml.cpp] with eUML. In this example, you will aso find some examples of STL
functor usage.

» A simpler timer [examples/SimpleTimer.cpp] exampleis agood starting point.

There is unfortunately a small catch. Defining a functor usng MSM_EUML_METHOD or
MSM_EUML_FUNCTION will create a correct functor. Your own eUML functors written as
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described at the beginning of this section will also work well, except, for the moment, with thewhile ,
if then ,if then else functions.

Phoenix-like STL support

eUML supports most C++ operators (except address-of). For example it is possible to write
event_(some_attribute)++ or [source (some bool) && fsm_(some _other bool)]. But a programmer
needs morethan operatorsin hisdaily programming. The STL isclearly amust have. Therefore, eUML
comes in with alot of functors to further reduce the need for your own functors for the transition
table. For almost every algorithm or container method of the STL, a corresponding eUML functionis
defined. Like Boost.Phoenix, “.” And*“->" of call on objectsarereplaced by afunctional programming
paradigm, for example:

» begin_(container), end (container): return iterators of a container.
» empty_(container): returns container.empty()

* clear_(container): container.clear()

 transform_: std::transform

In a nutshell, amost every STL method or algorithm is matched by a corresponding functor, which
can then be used in the transition table or state actions. Thereferencelistsall eUML functions and the
underlying functor (so that this possibility isnot reserved to eUML but also to the functor-based front-
end). Thefile structure of this Phoenix-like library matches the one of Boost.Phoenix. All functorsfor
STL agorithmsareto befound in:

#i nclude <nmsm front/eum /al gorithm hpp>
The algorithms are also divided into sub-headers, matching the phoenix structure for smplicity:

#include < nsm front/eum/iteration. hpp>
#include < nsenifront/eum /transfornation. hpp>
#i nclude < nsni front/eum /querying. hpp>

Container methods can be found in:

#i ncl ude < nmsnifront/eumn /contai ner. hpp>

Or one can simply include the whole STL support (you will aso need to include euml.hpp):
#include < nsm front/eum/stl. hpp>

A few examples (to be found in this tutorial [examples/iPodSearchEuml.cpp]):

* push_back (fsm (mtgt_container), event (m song)): the state machine has an
attribute m_tgt_container of type std::vector<OneSong> and the event has an attribute m_song of
type OneSong. The line therefore pushes m_song at the end of m_tgt_container

« if_then ( state_(msrc_it) I = end (fsm(msrc_container)),
process2 (OneSong(), *(state_(msrc_it)++)) ):thecurrent state hasan attribute
m_src_it (aniterator). If thisiterator !=fsm.m_src_container.end(), process OneSong on fsm, copy-
constructed from state.m_src_it which we post-increment

Writing actions with Boost.Phoenix (in development)

It is also possible to write actions, guards, state entry and exit actions using a reduced set of
Boost.Phoenix capabilities. Thisfeature is still in development stage, so you might get here and there
some surprise. Simple cases, however, should work well. What will not work will be mixing of eUML
and Phoenix functors. Writing guardsin one language and actions in another is ok though.
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Phoenix also supports alarger syntax than what will ever be possible with eUML, so you can only use
areduced set of phoenix's grammar. Thisis due to the nature of eUML. The run-time transition table
definition is trandated to a type using Boost. Typeof. The result is a "normal” MSM transition table
made of functor types. As C++ does not allow mixing run-time and compile-time constructs, there
will be some limit (trying to instantiate a template class MyTemplateClass<i> where i is an int will
give you an idea). This means following valid Phoenix constructs will not work:

* literas

« function pointers

¢ bind

o _>*

MSM also provides placehol ders which make more sensein its context than argl.. argn:
» _event: the event triggering the transition

» _fsm: the state machine processing the event

» _source: the source state of the transition

_target: the target state of the transition
» _dtate: for state entry/exit actions, the entry/exit state

Future versions of MSM will support Phoenix better. Y ou can contribute by finding out cases which
do not work but should, so that they can be added.

Phoenix support is not activated by default. To activate it, add before any MSM header: #define
BOOST_MSM_EUML_PHOENIX_SUPPORT.

A simple example [examples/SimplePhoenix.cpp] shows some basic capabilities.

Back-end

There is, at the moment, one back-end. This back-end contains the library engine and defines the
performance and functionality trade-offs. The currently available back-end implements most of
the functionality defined by the UML 2.0 standard at very high runtime speed, in exchange for
longer compile-time. The runtime speed is due to a constant-time double-dispatch and self-adapting
capabilities alowing the framework to adapt itself to the features used by a given concrete state
machine. All unneeded features either disable themselves or can be manually disabled. See section
5.1 for a complete description of the run-to-completion algorithm.

Creation

MSM being divided between front and back-end, one needsto first define afront-end. Then, to create
areal state machine, the back-end must be declared:

typedef msm : back: :state_nmachi ne<ny_front_end> nmy_fsm

We now have afully functional state machine type. The next sections will describe what can be done
withit.

Starting and stopping a state machine

Thest art () method starts the state machine, meaning it will activate the initial state, which means
inturn that theinitial state'sentry behavior will be called. We need the start method because you do not
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always want the entry behavior of the initia state to be called immediately but only when your state
machine is ready to process events. A good example of thisis when you use a state machine to write
an algorithm and each loop back to the initial state is an algorithm call. Each call to start will make
the algorithm run once. The iPodSearch [exampl es/iPodSearch.cpp] example uses this possibility.

Thest op() method worksthe sameway. It will causethe exit actions of the currently active states(s)
to be called.

Both methods are actually not an absolute need. Not calling them will smply cause your first entry
or your last exit action not to be called.

Event dispatching

The main reason to exist for a state machine is to dispatch events. For MSM, events are objects of a
given event type. The object itself can contain data, but the event type iswhat decides of the transition
to be taken. For MSM, if some_event is a given type (a simple struct for example) and el and e2
concrete instances of some_event, el and e2 are equivalent, from a transition perspective. Of course,
el and e2 can have different values and you can use them inside actions. Events are dispatched as
const reference, so actions cannot modify events for obvious side-effect reasons. To dispatch an event
of type some_event, you can simply create one on the fly or instantiate if before processing:

ny_fsmfsm fsmprocess_event(sonme_event());
sone_event el; fsm process_event(el)

Creating an event on the fly will be optimized by the compiler so the performance will not degrade.

Active state(s)

The backend also offers away to know which state is active, though you will normally only need this
for debugging purposes. If what you need simply is doing something with the active state, internal
transitions or visitors are a better aternative. If you need to know what state is active, const int*
current_state() will return an array of stateids. Pleaserefer to theinter nals section to know how state
ids are generated.

Serialization

A common need isthe ability to save a state machine and restore it at adifferent time. MSM supports
this feature for the basic and functor front-ends, and in a more limited manner for eUML. MSM
supports boost::serialization out of the box (by offeringaseri al i ze function). Actually, for basic
serialization, you need not do much, aMSM state machine is serializable aimost like any other type.
Without any special work, you can make a state machine remember its state, for example:

MyFsm f sm

/! wite to archive

std::of streamof s("fsmtxt");
/1l save fsmto archive

{
boost : : archive: :text_oarchive oa(ofs);
/1l wite class instance to archive
oa << fsm

}

Loading back isvery similar:

MyFsm f sm

{

/1 create and open an archive for input
std::ifstreamifs("fsmtxt");
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boost::archive::text_iarchive ia(ifs);
!/l read class state from archive
ia > fsm

}

Thiswill (de)serialize the state machine itself but not the concrete states' data. This can be done on
a per-state basis to reduce the amount of typing necessary. To allow serialization of a concrete state,
provide ado_serialize typedef and implement the serialize function:

struct Enpty : public nem:front::state<>
{
/1 we want Enpty to be serialized. First provide the typedef
typedef int do_serialize;
/1 then inplenent serialize
t enpl at e<cl ass Archi ve>
void serialize(Archive & ar, const unsigned int /* version */)

{

}
Enpty(): sone_dunmmry_dat a(0){}
i nt some_dummy_dat a;

ar & sone_dunmy_dat a;

b

You can aso seriaize data contained in the front-end class. Again, you need to provide the typedef
and implement seridize:

struct player_ : public msm:front::state_machi ne_def <pl ayer_>
{
//we mght want to serialize sone data contained by the front-end
int front_end_dat a;
pl ayer ():front_end_data(0){}
/1 to achieve this, provide the typedef
typedef int do_serialize;
/1 and inplenment serialize
t empl at e<cl ass Archi ve>
void serialize(Archive & ar, const unsigned int )

{
}

ar & front_end_dat a;

1
The saving of the back-end data (the current state(s)) is valid for all front-ends, so a front-end
written using eUML can be serialized. However, to seridlize a concrete state, the macros like

BOOST_MSM_EUML_STATE cannot be used, so the state will have to be implemented by directly
inheriting fromf ront : : eum : : eunl _state.

Theonly limitiation isthat the event queues cannot be serialized so serializing must be donein astable
state, when no event is being processed. Y ou can serialize during event processing only if using no
gueue (deferred or event queue).

This example [examples/Serialize.cpp] shows a state machine which we serialize after processing an
event. The Enpt y state also has some data to serialize.

Base state type

Sometimes, one needs to customize states to avoid repetition and provide acommon functionality, for
example in the form of avirtual method. Y ou might also want to make your states polymorphic so
that you can call typeid on them for logging or debugging. It is also useful if you need avisitor, like
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the next section will show. Y ou will notice that all front-ends offer the possibility of adding a base
type. Note that all states and state machines must have the same base state, so this could reduce reuse.
For example, using the basic front end, you need to:

* Add the non-default base state in your msm::front::state<> definition, as first template argument
(except for interrupt_states for which it is the second argument, the first one being the event ending
the interrupt), for example, my_base state being your new base state for all states in a given state
machine:

struct Enpty : public nsm:front::state<ny_base_state>

Now, my base state is your new base state. If it has a virtua function, your
states become polymorphic.c. MSM aso provides a default polymorphic base type,
msm : front:: pol ynorphic_state

* Add the user-defined base state in the state machine frontend definition, as a second template
argument, for example:

struct player_ : public nmsm:front::state_machi ne<pl ayer_, ny_base_state>

You can also ask for a state with a given id (which you might have gotten from current_state()) using
const base_state* get_state_ by id(int id) const wherebase state isthe one
you just defined. Y ou can now do something polymorphically.

Visitor

In some cases, having a pointer-to-base of the currently active states is not enough. Y ou might want
to call non-virtually a method of the currently active states. It will not be said that MSM forces the
virtual keyword down your throat!

Toachievethisgoal, MSM providesitsown variation of avisitor pattern using the previously described
user-defined state technique. If you add to your user-defined base state an accept _si g typedef
giving the return value (unused for the moment) and parameters and provide an accept method with
thissignature, calling visit_current_states will cause accept to be called on the currently active states.
Typically, you will also want to provide an empty default accept in your base state in order in order
not to force all your states to implement accept. For example your base state could be:

struct my_visitable_state
{
/1 signature of the accept function
t ypedef args<voi d> accept_sig;
/1 we al so want pol ynorphic states
virtual ~nmy _visitable state() {}
/1 default inplenentation for states who do not need to be visited
voi d accept() const {}

b

This makes your states polymorphic and visitable. In this case, accept is made const and takes no
argument. It could also be:

struct SoneVisitor {.};
struct nmy_visitable_state
{
/1 signature of the accept function
t ypedef args<voi d, SomeVi sitor &> accept_sig;
/1 we al so want pol ynor phic states
virtual ~my_visitable_state() {}
/1 default inplenentation for states who do not need to be visited
voi d accept (SonmeVisitor& const {}
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And now, accept will take one argument (it could also be non-const). By default, accept takes
up to 2 arguments. To get more, set #define BOOST_MSM_VISITOR_ARG_SIZE to another value
before including state_machine.hpp. For example:

#defi ne BOOST_MSM VI SI TOR_ARG SI ZE 3
#i ncl ude <boost/ nsm back/ state_machi ne. hpp>

Note that accept will be called on ALL active states and also automatically on sub-states of a
submachine.

Important warning: The method visit_current_statestakesits parameter by value, soif the signature of
the accept function isto contain a parameter passed by reference, pass this parameter with a boost:ref/
cref to avoid undesired copies or sicing. So, for example, in the above case, call:

SonmeVisitor vis; smvisit_current_states(boost::ref(vis));

This example [examples/SM-2Arg.cpp] uses avisiting function with 2 arguments.

FlagsisaMSM-only concept, supported by all front-ends, which base themselves on the functions:

tenpl ate <class Flag> bool is _flag active()
tenpl ate <cl ass Fl ag, cl ass Bi naryQp> bool is flag active()

These functions return true if the currently active state(s) support the Flag property. The first variant
ORstheresult if there are several orthogonal regions, the second one expectsOR or AND, for example:

nmy_fsmis flag active<MyFl ag>()
nmy_ fsmis flag active<MyFl ag, my_fsmtype::Flag_OR>()

Please refer to the front-ends sections for usage examples.

Getting a state

State

It is sometimes necessary to have the client code get access to the states data. After all, the states
are created once for good and hang around as long as the state machine does so why not use it? You
simply just need sometimes to get information about any state, even inactive ones. An exampleiisif
you want to write a coverage tool and know how many times a state was visited. To get a state, use
the get_state method giving the state name, for example:

pl ayer:: Stopped* tenpstate = p.get_state<player:: Stopped*>();
or
pl ayer:: St opped& tenpstate2 = p.get_state<player:: Stopped&>();

depending on your personal taste.

machine constructor with arguments

You might want to define a state machine with a non-default constructor. For example, you might
want to write:

struct player_ : public nmesm:front::state_machi ne_def <pl ayer >

{

pl ayer (int some_value){.}
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b

Thisis possible, using the back-end as forwarding object:

typedef msm : back:: state machi ne<pl ayer > player; player p(3);

The back-end will call the corresponding front-end constructor upon creation.

Y ou can pass arguments up to the value of the BOOST _MSM_CONSTRUCTOR_ARG_SIZE macro
((jc;;;rueirtltly 5) arguments. Change this value before including any header if you need to overwrite the

Y ou can a'so pass arguments by reference (or const-reference) using boost::ref (or boost::cref):

struct player_ : public msm:front::state_machi ne_def <pl ayer_>

{
b

pl ayer (SoneType& t, int some_value){.}

typedef msm : back:: state_nachi ne<pl ayer _ > pl ayer;
SoneType dat a;
pl ayer p(boost::ref(data), 3);

Normally, MSM default-constructs all its states or submachines. There are however cases where you
might not want this. An exampleiswhen you use a state machine as submachine, and this submachine
used the above defined constructors. You can add as first argument of the state machine constructor
an expression where existing states are passed and copied:

pl ayer p( back::states << state 1 << ... << state_n , boost::ref(data), 3);

Where state 1..n are instances of some or all of the states of the state machine. Submachines being
state machines, this can recurse, for example, if Playing is a submachine containing a state Songl
having itself a constructor where some datais passed:

pl ayer p( back::states_ << Playing(back::states_ << Songl(sone_Songl data)) ,
boost::ref(data), 3);

It is also possible to replace a given state by anew instance at any timeusing set _st at es() and
the same syntax, for example:

p.set _states( back::states << state 1 << ... << state_n );

An example [examples/Constructor.cpp] making intensive use of this capability is provided.

Trading run-time speed for better compile-time / multi-
TU compilation

MSM is optimized for run-time speed at the cost of longer compile-time. This can become a problem
with older compilers and big state machines, especialy if you don't really care about run-time speed
that much and would be satisfied by a performance roughly the same as most state machine libraries.
MSM offers a back-end policy to help there. But before you try it, if you are using a VC compiler,
deactivate the /Gm compiler option (default for debug builds). This option can cause builds to be 3
times longer... If the compile-time still is a problem, read further. MSM offers a policy which will
speed up compiling in two main cases:

* many transition conflicts

» submachines
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The back-end nsm : back: : state_machi ne has a policy argument (first is the front-
end, then the history policy) defaulting to favor _runtinme_speed. To switch to
favor_conpil e_ti nme, which is declared in <nsm back/favor _conpil e_ti nme. hpp>,
you need to:

» switch the policy to favor_conpile_tinme for the main state machine (and possibly
submachines)

 move the submachine declarations into their own header which includes <msml back/
favor_conpil e_ti me. hpp>

 add for each submachine a cpp file including your header and calling a macro, which generates
helper code, for example:

#i ncl ude "nmysubrachi ne. hpp"
BOOST_MSM _BACK_GENERATE_PROCESS_EVENT( mysubnachi ne)

» configure your compiler for multi-core compilation

You will now compile your state machine on as many cores as you have submachines, which will
greatly speed up the compilation if you factor your state machine into smaller submachines.

Independently, transition conflicts resolution will also be much faster.

This policy uses boost.any behind the hood, which means that we will lose one feature which MSM
offers with the default policy, event hierarchy. The following example takes our iPod example and
speeds up compile-time by using this technique. We have:

 our main state machine and main function [examples/iPod_distributed/iPod.cpp]

» PlayingMode moved to a separate header [examples/iPod_distributed/PlayingMode.hpp]
» acpp for PlayingMode [examples/iPod_distributed/PlayingMode.cpp]

» MenuMode moved to a separate header [examples/iPod_distributed/MenuM ode.hpp]

» acpp for MenuMode [exampl es/iPod_di stributed/M enuM ode.cpp]

* events move to a separate header as al machines use it [examples/iPod_distributed/Events.hpp]

Compile-time state machine analysis

A MSM state machine being a metaprogram, it is only logical that cheking for the validity of a
concrete state machine happens compile-time. To this aim, using the compile-time graph library
mpl_graph [http://www.dynagraph.org/mpl_graph/] (delivered at the moment with MSM) from
Gordon Woodhull, MSM provides several compile-time checks:

» Check that orthogonal regions ar truly orthogonal.

» Check that all states are either reachable from the initial states or are explicit entries/ pseudo-entry
states.

To make use of this feature, the back-end provides a policy (default is no analysis),
nmsm : back: : npl _graph_f sm check. For example:

typedef msm : back:: state_machi ne< player _, msm : back:: npl _graph_fsm check> pl ay

As MSM is now using Boost.Parameter to declare policies, the policy choice can be made at any
position after the front-end type (in this case pl ayer _).

In case an error is detected, a compile-time assertion is provoked.
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This feature is not enabled by default because it has a non-neglectable compile-time cost. The
algorithm is linear if no explicit or pseudo entry states are found in the state machine, unfortunately
still O(number of states* number of entry states) otherwise. Thiswill beimproved in future versions
of MSM.

The same algorithm is also used in case you want to omit providing the region index in the explicit
entry / pseudo entry state declaration.

The author's advice is to enable the checks after any state machine structure change and disable it
again after sucessful analysis.

The following example [examples/TestErrorOrthogonality.cpp] provokes an assertion if one of the
first two lines of the transition tableis used.

Enqueueing events for later processing

Calling process_event (Event const &) will immediately process the event with run-to-
completion semantics. You can also enqueue the events and delay their processing by calling
enqueue_event (Event const &) instead. Calling execut e_queued_event s() will then
process al enqueued events (in FIFO order).

You can query the queue size by calling get _nmessage_queue_si ze().

Customizing the message queues

MSM uses by default a std::deque for its queues (one message queue for events generated
during run-to-completion or with enqueue_event, one for deferred events). Unfortunately, on
some STL implementations, it is a very expensive container in size and copying time. Should
this be a problem, MSM offers an alternative based on boost::circular_buffer. The policy is
msm::back::queue _container_circular. To useit, you need to provide it to the back-end definition:

typedef msm : back:: state_machi ne< player , nsm : back:: queue_contai ner_circul ar>

You can access the queues with get message queue and get deferred_queue, both returning a
reference or a const reference to the queues themselves. Boost::circular_buffer is outside of the scope
of this documentation. What you will however need to define is the queue capacity (initially is0) to
what you think your queue will at most grow, for example (size 1 is common):

fsm get _message_queue().set_capacity(1);

Policy definition with Boost.Parameter

MSM uses Boost.Parameter to allow easier definition of back::state_machine<> policy arguments (all
except the front-end). This allows you to define policy arguments (history, compile-time / run-time,
state machine analysis, container for the queues) at any position, in any number. For example:

typedef mem : back::state_machi ne< player , nsm: back:: npl _graph_fsm check> pl ay
typedef msm : back::state_machi ne< player , nsm : back:: Al waysHi story> pl ayer;

typedef mem : back::state_machi ne< player , nsm: back:: npl _graph_fsm check, msm : |
typedef msm : back::state_machi ne< player , nsm : back: : Al waysHi story, nem : back: : |

Choosing when to switch active states

The UML Standard is silent about a very important question: when atransition fires, at which exact
point is the target state the new active state of a state machine? At the end of the transition? After
the source state has been left? What if an exception is thrown? The Standard considers that run-to-
completion means a transition completesin almost no time. But even this can be in some conditions a
very very long time. Consider the following example. We have a state machine representing anetwork
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Tutorial

connection. WecanbeConnect ed and Di sconnect ed. Whenwe move from one state to another,
we send a (Boost) Signal to another entity. By default, MSM makes the target state as the new state
after the transition is completed. We want to send a signal based on aflag is_connected which istrue
when in state Connected.

We arein state Di sconnect ed and receive an event connect . The transition action will ask the
state machinei s_fl ag_acti ve<i s_connect ed> and will get... false because we are till in
Di sconnect ed. Hmm, what to do? We could queue the action and execute it later, but it means an
extra queue, more work and higher run-time.

MSM provides the possibility (in form of a policy) for a front-end to decide when the target state
becomes active. It can be:

e before the transition fires, if the guard will alow the transition to fire
active state switch _before transition

« after calling the exit action of the source state: acti ve_state _switch_after _exit

» after the transition action is executed:
active state switch after _transition_action

o after the entry action of the taget sate is executed  (default):
active state switch after_entry

The problem and the solution is shown for the functor-
front-end [examples/ActiveStateSetBeforeT ransition.cpp] and eUML [examples/
ActivateStateBeforeTransitionEuml.cpp]. Removing

active _state _switch_before_transiti on will show the default state.
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Chapter 4. Performance / Compilers

Tests were made on different PCs running Windows XP and Vista and compiled with VC9 SP1
or Ubuntu and compiled with g++ 4.2 and 4.3. For these tests, the same player state machine was
written using Boost.Statechart, as a state machine with only simple states [examples/SCSimple.cpp]
and as a state machine with a composite state [examples/SCComposite.cpp]. The same simple and
composite state machines are implemented with MSM with a standard frontend (simple) [examples/
MsmSimple.cpp] (composite) [examplessMsmComposite.cpp], the simple one aso with functors
[examples/MsmSimpleFunctors.cpp] and with eUML [examplesEuml Simple.cpp]. As these simple
machines need no terminate/interrupt states, no message queue and have no-throw guarantee on their
actions, the MSM state machines are defined with minimum functionality. Test machine is a Q6600
2.4GHz, Vista 64.

Speed
VCo:
e The simple test completes 90 times faster with MSM than with Boost.Statechart
» The composite test completes 25 times faster with MSM
gce 4.2.3 (Ubuntu 8.04 in VMWare, same PC):
* The simple test completes 46 times faster with MSM

» The composite test completes 19 times faster with Msm

Executable size

There are some worries that MSM generates huge code. Isit true? The 2 compilers | tested disagree
with thisclaim. On VC9, the test state machines used in the performance section produce executables
of 14kB (for simple and eUML) and 21kB (for the composite). This includes the test code and
iostreams. By comparison, an empty executable with iostreams generated by VC9 has a size of 7kB.
Boost.Statechart generates executables of 43kB and 54kB. As a bonus, eUML comes for “free” in
terms of executable size. Y ou even get aspeed gain. With g++ 4.3, it strongly depends on the compiler
options (much more than VC). A good size state machine with —O3 can generate an executable of
600kB, and with eUML you can get to 1.5MB. Trying with—Os—s| come down to 18kB and 30kB for
the test state machines, while eUML will go down to 1IMB (which is still big), soin this case eUML
does not come for free.

Supported compilers

For acurrent status, have alook at the regre