ejabberd 15.03

Installation and Operation Guide

ejabberd Development Team

Contents

1 Introduction 9
1.1 Key Features e 10
1.2 Additional Features 11

2 Installing ejabberd 13
2.1 Installing ejabberd with Binary Installer 13
2.2 Installing ejabberd with Operating System Specific Packages 14
2.3 Installing ejabberd with CEAN 14
2.4 Installing ejabberd from Source Code 15

2.4.1 Requirements 15
2.4.2 Download Source Code 15
2.4.3 Compileo 16
244 Imstall . . .o oL 17
2.4.5 Start L. e 17
2.4.6 Specific Notes for BSDo 18
2.4.7 Specific Notes for Sun Solaris 18
2.4.8 Specific Notes for Microsoft Windows 19
2.5 Create an XMPP Account for Administration 20
2.6 Upgrading ejabberd L 21

4 Contents
3 Configuring ejabberd 23
3.1 Basic Configuration e 23
3.1.1 Legacy Configuration File 24
3.1.2 Host Names o 24
3.1.3 Virtual Hosting L 25
3.1.4 Listening Ports 27
3.1.5 Authentication 38
3.1.6 Access Rules 43
317 Shapers 47
3.1.8 Default Language 48
3.1.9 CAPTCHA e 48
3.1.10 STUN and TURN e 49
3111 SIP . . e 51
3.1.12 Include Additional Configuration Files 52
3.1.13 Option Macros in Configuration File 54

3.2 Database and LDAP Configuration 55
321 ODBC e 56
3.2.2 LDAP . . o 57
3.23 Riako 62

3.3 Modules Configuration 64
3.3.1 Modules Overview 64
3.3.2 Common Options e 66
3.3.3 mMod_annoUNCe e 67
3.3.4 mod._client_state e 69
3.3.50 mod.disco. e 69
3.3.6 modecho e 71
3.3.7 mod failZban e 72

3.3.8 modhttpbind L 72

CONTENTS 5
3.3.9 mod.http_fileserver 73
3.3.10 mod_irc L.l 75
3.3.11 mod_last 76
3.3.12 modmuc .. o.oL oLl 7
3.3.13 modmuc_log 82
3.3.14 modoffline 84
3.3.15 modping 85
3.3.16 mod_pres_counter 86
3.3.17 mod.privacyo 86
3.3.18 mod.private 87
3.3.19 mod_proxy65 88
3.3.20 modpubsub 89
3.3.21 modregister 91
3.3.22 mod_register.web 94
3.3.23 mod_roster 95
3.3.24 mod_service log 96
3.3.25 mod_shared_roster o 97
3.3.26 mod_shared roster.ldap 98
3.3.27 mod_sic 105
3.3.28 modosip 105
3.3.29 modstats 107
3.3.30 mod_time 107
3331 modwveard 108
3.3.32 modvcard.ldap 109
3.3.33 mod_vcard xupdate 112
3.3.34 modversionl 113

6 Contents
4 Managing an ejabberd Server 115
4.1 ejabberdctl 115
4.1.1 ejabberdctl Commands oL 115

4.1.2 Erlang Runtime System oL 116

4.2 ejabberd Commands L 118
4.2.1 List of ejabberd Commands L. 118

4.2.2 Restrict Execution with AccessCommands 120

4.3 Web Admin 122
4.4 Ad-hoc Commands 124
4.5 Change Computer Hostname 124

5 Securing ejabberd 127
5.1 Firewall Settings 127
5.2 epmd 127
5.3 Erlang Cookie 128
54 Erlang Node Name e 128
5.5 Securing Sensitive Files 129

6 Clustering 131
6.1 How it Works 131
6.1.1 Router e 131

6.1.2 Local Router 131

6.1.3 Session Manager e 132

6.1.4 s2s Manager Lo 132

6.2 Clustering Setup e 132
6.3 Service Load-Balancing L oo 133
6.3.1 Domain Load-Balancing Algorithm, 133

6.3.2 Load-Balancing Buckets o oo 134

CONTENTS 7

7 Debugging 135
7.1 LogFiles o . e 135
7.2 Debug Console 136
7.3 Watchdog Alerts 137

A Internationalization and Localization 139

B Release Notes 141

C Acknowledgements 143

D Copyright Information 145

Contents

Chapter 1

Introduction

ejabberd is a free and open source instant messaging server written in Erlang/OTP!.

ejabberd is cross-platform, distributed, fault-tolerant, and based on open standards to achieve
real-time communication.

ejabberd is designed to be a rock-solid and feature rich XMPP server.

ejabberd is suitable for small deployments, whether they need to be scalable or not, as well as
extremely big deployments.

Thttp://www.erlang.org/

http://www.erlang.org/

10 1. Introduction

1.1 Key Features
ejabberd is:

e Cross-platform: ejabberd runs under Microsoft Windows and Unix derived systems such
as Linux, FreeBSD and NetBSD.

e Distributed: You can run ejabberd on a cluster of machines and all of them will serve the
same Jabber domain(s). When you need more capacity you can simply add a new cheap
node to your cluster. Accordingly, you do not need to buy an expensive high-end machine
to support tens of thousands concurrent users.

e Fault-tolerant: You can deploy an ejabberd cluster so that all the information required for
a properly working service will be replicated permanently on all nodes. This means that if
one of the nodes crashes, the others will continue working without disruption. In addition,
nodes also can be added or replaced ‘on the fly’.

e Administrator Friendly: ejabberd is built on top of the Open Source Erlang. As a result
you do not need to install an external database, an external web server, amongst others be-
cause everything is already included, and ready to run out of the box. Other administrator
benefits include:

— Comprehensive documentation.

— Straightforward installers for Linux, Mac OS X, and Windows.
— Web Administration.

— Shared Roster Groups.

— Command line administration tool.

— Can integrate with existing authentication mechanisms.

Capability to send announce messages.

e Internationalized: ejabberd leads in internationalization. Hence it is very well suited in a
globalized world. Related features are:

— Translated to 25 languages.
— Support for IDNAZ.

e Open Standards: ejabberd is the first Open Source Jabber server claiming to fully comply
to the XMPP standard.

— Fully XMPP compliant.
— XML-based protocol.
— Many protocols supported?.

2http://tools.ietf.org/html/rfc3490
Shttp://www.ejabberd.im/protocols

http://tools.ietf.org/html/rfc3490
http://www.ejabberd.im/protocols

1.2 Additional Features

11

1.2 Additional Features

Moreover, ejabberd comes with a wide range of other state-of-the-art features:

e Modular

Load only the modules you want.

Extend ejabberd with your own custom modules.

e Security

SASL and STARTTLS for ¢2s and s2s connections.
STARTTLS and Dialback s2s connections.

Web Admin accessible via HTTPS secure access.

e Databases

Internal database for fast deployment (Mnesia).
Native MySQL support.

Native PostgreSQL support.

ODBC data storage support.

Microsoft SQL Server support.

Riak NoSQL database support.

e Authentication

Internal Authentication.
PAM, LDAP, ODBC and Riak.

External Authentication script.

e Others

Support for virtual hosting.

Compressing XML streams with Stream Compression (XEP-0138%).
Statistics via Statistics Gathering (XEP-0039°).

IPv6 support both for ¢2s and s2s connections.

Multi-User Chat® module with support for clustering and HTML logging.

Users Directory based on users vCards.

Publish-Subscribe” component with support for Personal Eventing via Pubsub®.
Support for web clients: HTTP Polling” and HTTP Binding (BOSH)!? services.

4http
Shttp
Shttp
"http
Shttp
http
Ohttp

://xmpp.org/extensions/xep-0138.html
://xmpp.org/extensions/xep-0039.html
://xmpp.org/extensions/xep-0045.html
://xmpp.org/extensions/xep-0060.html
://xmpp.org/extensions/xep-0163.html
://xmpp.org/extensions/xep-0025.html
://xmpp.org/extensions/xep-0206.html

http://xmpp.org/extensions/xep-0138.html
http://xmpp.org/extensions/xep-0039.html
http://xmpp.org/extensions/xep-0045.html
http://xmpp.org/extensions/xep-0060.html
http://xmpp.org/extensions/xep-0163.html
http://xmpp.org/extensions/xep-0025.html
http://xmpp.org/extensions/xep-0206.html

12

1. Introduction

— IRC transport.
— SIP support.

— Component support: interface with networks such as AIM, ICQ and MSN installing
special tranports.

Chapter 2

Installing ejabberd

2.1 Installing ejabberd with Binary Installer

Probably the easiest way to install an ejabberd instant messaging server is using the binary in-
staller published by ProcessOne. The binary installers of released ejabberd versions are available
in the ProcessOne ejabberd downloads page: http://www.process-one.net/en/ejabberd/downloads

The installer will deploy and configure a full featured ejabberd server and does not require any
extra dependencies.

In *nix systems, remember to set executable the binary installer before starting it. For example:

chmod +x ejabberd-2.0.0_1-linux-x86-installer.bin
./ejabberd-2.0.0_1-linux-x86-installer.bin

ejabberd can be started manually at any time, or automatically by the operating system at
system boot time.

To start and stop ejabberd manually, use the desktop shortcuts created by the installer. If the
machine doesn’t have a graphical system, use the scripts ’start’ and ’stop’ in the ’bin’ directory
where ejabberd is installed.

The Windows installer also adds ejabberd as a system service, and a shortcut to a debug console
for experienced administrators. If you want ejabberd to be started automatically at boot time,
go to the Windows service settings and set ejabberd to be automatically started. Note that
the Windows service is a feature still in development, and for example it doesn’t read the file
ejabberdctl.cfg.

On a *nix system, if you want ejabberd to be started as daemon at boot time, copy ejabberd.init
from the ’bin’ directory to something like /etc/init.d/ejabberd (depending on your distribu-
tion). Create a system user called ejabberd, give it write access to the directories database/
and logs/, and set that as home; the script will start the server with that user. Then you can
call /etc/inid.d/ejabberd start as root to start the server.

13

http://www.process-one.net/en/ejabberd/downloads

14 2. Installing ejabberd

When ejabberd is started, the processes that are started in the system are beam or beam.smp,
and also epmd. In Microsoft Windows, the processes are erl.exe and epmd.exe. For more
information regarding epmd consult the section 5.2.

If ejabberd doesn’t start correctly in Windows, try to start it using the shortcut in desktop
or start menu. If the window shows error 14001, the solution is to install: ”Microsoft Visual
C++ 2005 SP1 Redistributable Package”. You can download it from www.microsoft.com®. Then
uninstall ejabberd and install it again.

If ejabberd doesn’t start correctly and a crash dump is generated, there was a severe problem.
You can try starting ejabberd with the script bin/live.bat in Windows, or with the com-
mand bin/ejabberdctl live in other Operating Systems. This way you see the error message
provided by Erlang and can identify what is exactly the problem.

The ejabberdctl administration script is included in the bin directory. Please refer to the
section 4.1 for details about ejabberdctl, and configurable options to fine tune the Erlang
runtime system.

2.2 Installing ejabberd with Operating System Specific Pack-
ages

Some Operating Systems provide a specific e jabberd package adapted to the system architecture
and libraries. It usually also checks dependencies and performs basic configuration tasks like
creating the initial administrator account. Some examples are Debian and Gentoo. Consult the
resources provided by your Operating System for more information.

Usually those packages create a script like /etc/init.d/ejabberd to start and stop ejabberd
as a service at boot time.

2.3 Installing ejabberd with CEAN

CEAN? (Comprehensive Erlang Archive Network) is a repository that hosts binary packages
from many Erlang programs, including ejabberd and all its dependencies. The binaries are
available for many different system architectures, so this is an alternative to the binary installer
and Operating System’s ejabberd packages.

You will have to create your own ejabberd start script depending of how you handle your CEAN
installation. The default ejabberdctl script is located into ejabberd’s priv directory and can
be used as an example.

Thttp://www.microsoft.com/
2http://cean.process-one.net/

http://www.microsoft.com/
http://cean.process-one.net/

2.4 Installing ejabberd from Source Code 15

2.4 Installing ejabberd from Source Code

The canonical form for distribution of ejabberd stable releases is the source code package.
Compiling ejabberd from source code is quite easy in *nix systems, as long as your system have
all the dependencies.

2.4.1 Requirements

To compile ejabberd on a ‘Unix-like’ operating system, you need:

e GNU Make

e GCC

e Libexpat 1.95 or higher

e Erlang/OTP R15B or higher.

e Libyaml 0.1.4 or higher

e OpenSSL 0.9.8 or higher, for STARTTLS, SASL and SSL encryption.

e Zlib 1.2.3 or higher, for Stream Compression support (XEP-0138?). Optional.

e PAM library. Optional. For Pluggable Authentication Modules (PAM). See section 3.1.5.

e GNU Iconv 1.8 or higher, for the IRC Transport (mod_irc). Optional. Not needed on
systems with GNU Libc. See section 3.3.10.

e ImageMagick’s Convert program. Optional. For CAPTCHA challenges. See section 3.1.9.

2.4.2 Download Source Code

Released versions of ejabberd are available in the ProcessOne e jabberd downloads page: http://www.process-one.net/

Alternatively, the latest development source code can be retrieved from the Git repository using
the commands:

git clone git://github.com/processone/ejabberd.git ejabberd
cd ejabberd
./autogen.sh

3http://xmpp.org/extensions/xep-0138.html

http://www.process-one.net/en/ejabberd/downloads
http://xmpp.org/extensions/xep-0138.html

16 2. Installing ejabberd

2.4.3 Compile

To compile ejabberd execute the commands:

./configure
make

The build configuration script allows several options. To get the full list run the command:
./configure --help

Some options that you may be interested in modifying:

—-prefix=/ Specify the path prefix where the files will be copied when running the make

install command.

--enable-user [=USER] Allow this normal system user to execute the ejabberdctl script (see
section 4.1), read the configuration files, read and write in the spool directory, read and
write in the log directory. The account user and group must exist in the machine before
running make install. This account doesn’t need an explicit HOME directory, because
/var/lib/ejabberd/ will be used by default.

--enable-pam Enable the PAM authentication method (see section 3.1.5).

--enable-mssql Required if you want to use an external database. See section 3.2 for more
information.

--enable-tools Enable the use of development tools.

--enable-mysql Enable MySQL support (see section 3.2.1).

--enable-pgsql Enable PostgreSQL support (see section 3.2.1).

--enable-z1ib Enable Stream Compression (XEP-0138) using zlib.

--enable-iconv Enable iconv support. This is needed for mod_irc (see seciont 3.3.10).
--enable-debug Compile with +debug_info enabled.

--enable-full-xml Enable the use of XML based optimisations. It will for example use CDATA
to escape characters in the XMPP stream. Use this option only if you are sure your XMPP
clients include a fully compliant XML parser.

--disable-transient-supervisors Disable the use of Erlang/OTP supervision for transient
processes.

--enable-nif Replaces some critical Erlang functions with equivalents written in C to improve
performance.

2.4 Installing ejabberd from Source Code 17

2.4.4 Install

To install ejabberd in the destination directories, run the command:

make install

Note that you probably need administrative privileges in the system to install ejabberd.

The files and directories created are, by default:

/etc/ejabberd/ Configuration directory:

ejabberd.yml ejabberd configuration file
ejabberdctl.cfg Configuration file of the administration script

inetrc Network DNS configuration file

/lib/ejabberd/ ebin/ Erlang binary files (*.beam)
include/ Erlang header files (*.hrl)
priv/ Additional files required at runtime

bin/ Executable programs
1lib/ Binary system libraries (*.so)

msgs/ Translation files (*.msgs)
/sbin/ejabberdctl Administration script (see section 4.1)
/share/doc/ejabberd/ Documentation of ejabberd
/var/lib/ejabberd/ Spool directory:

.erlang.cookie Erlang cookie file (see section 5.3)

acl.DCD, ... Mnesia database spool files (*.DCD, *.DCL, *.DAT)
/var/log/ejabberd/ Log directory (see section 7.1):

ejabberd.log ejabberd service log
erlang.log Erlang/OTP system log

2.4.5 Start

You can use the ejabberdctl command line administration script to start and stop ejabberd. If
you provided the configure option —-enable-user=USER (see 2.4.3), you can execute e jabberdctl
with either that system account or root.

Usage example:

18 2. Installing ejabberd

ejabberdctl start
ejabberdctl status
The node ejabberd@localhost is started with status: started

ejabberd is running in that node

ejabberdctl stop

If ejabberd doesn’t start correctly and a crash dump is generated, there was a severe problem.
You can try starting ejabberd with the command ejabberdctl live to see the error message
provided by Erlang and can identify what is exactly the problem.

Please refer to the section 4.1 for details about ejabberdctl, and configurable options to fine
tune the Erlang runtime system.

If you want ejabberd to be started as daemon at boot time, copy ejabberd.init to something like
/etc/init.d/ejabberd (depending on your distribution). Create a system user called ejabberd;
it will be used by the script to start the server. Then you can call /etc/inid.d/ejabberd start
as root to start the server.

2.4.6 Specific Notes for BSD

The command to compile ejabberd in BSD systems is:

gmake

2.4.7 Specific Notes for Sun Solaris

You need to have GNU install, but it isn’t included in Solaris. It can be easily installed if your
Solaris system is set up for blastwave.org? package repository. Make sure /opt/csw/bin is in
your PATH and run:

pkg-get -i fileutils

If that program is called ginstall, modify the ejabberd Makefile script to suit your system,
for example:

cat Makefile | sed s/install/ginstall/ > Makefile.gi
And finally install ejabberd with:

gmake -f Makefile.gi ginstall

4http://www.blastwave.org/

http://www.blastwave.org/

2.4 Installing ejabberd from Source Code 19

2.4.8 Specific Notes for Microsoft Windows
Requirements

To compile ejabberd on a Microsoft Windows system, you need:

MS Visual C++ 6.0 Compiler
Erlang/OTP R11B-5°

Expat 2.0.0 or higher®
e GNU Iconv 1.9.27 (optional)

Shining Light OpenSSL 0.9.8d or higher® (to enable SSL connections)

Zlib 1.2.3 or higher®

Compilation

We assume that we will try to put as much library as possible into C:\sdk\ to make it easier to
track what is install for ejabberd.

[t

. Install Erlang emulator (for example, into C:\sdk\erl5.5.5).

2. Install Expat library into C:\sdk\Expat-2.0.0 directory.
Copy file C:\sdk\Expat-2.0.0\Libs\libexpat.dll to your Windows system directory
(for example, C:\WINNT or C:\WINNT\System32)

3. Build and install the Iconv library into the directory C:\sdk\GnuWin32.

Copy file C:\sdk\GnuWin32\bin\1lib*.d1l1l to your Windows system directory (more in-
stallation instructions can be found in the file README.woe32 in the iconv distribution).

Note: instead of copying libexpat.dll and iconv.dll to the Windows directory, you can
add the directories C:\sdk\Expat-2.0.0\Libs and C:\sdk\GnuWin32\bin to the PATH
environment variable.

4. Install OpenSSL in C:\sdk\OpenSSL and add C:\sdk\OpenSSL\1ib\VC to your path or
copy the binaries to your system directory.

5. Install ZLib in C:\sdk\gnuWin32. Copy C:\sdk\GnuWin32\bin\zlib1l.d11l to your system
directory. If you change your path it should already be set after libiconv install.

6. Make sure the you can access Erlang binaries from your path. For example: set PATH=%PATHY;"C:\sdk\erl5.6.5\t

Shttp://www.erlang.org/download.html
Shttp://sourceforge.net/project/showfiles.php?group id=10127&package_id=11277
"http://www.gnu.org/software/libiconv/
8http://wuw.slproweb.com/products/Win320penSSL. html

http://www.zlib.net/

http://www.erlang.org/download.html
http://sourceforge.net/project/showfiles.php?group_id=10127&package_id=11277
http://www.gnu.org/software/libiconv/
http://www.slproweb.com/products/Win32OpenSSL.html
http://www.zlib.net/

20 2. Installing ejabberd

7. Depending on how you end up actually installing the library you might need to check and
tweak the paths in the file configure.erl.

8. While in the directory ejabberd\src run:

configure.bat
nmake -f Makefile.win32

9. Edit the file ejabberd\src\ejabberd.yml and run

werl -s ejabberd -name ejabberd

2.5 Create an XMPP Account for Administration

You need an XMPP account and grant him administrative privileges to enter the e jabberd Web
Admin:

1. Register an XMPP account on your ejabberd server, for example adminl@example.org.
There are two ways to register an XMPP account:

(a) Using ejabberdctl (see section 4.1):
ejabberdctl register adminl example.org FgT5bk3

(b) Using an XMPP client and In-Band Registration (see section 3.3.21).

2. Edit the ejabberd configuration file to give administration rights to the XMPP account
you created:

acl:
admin:
user:
- "adminl": "example.org"
access:
configure:
admin: allow

You can grant administrative privileges to many XMPP accounts, and also to accounts in
other XMPP servers.

3. Restart ejabberd to load the new configuration.
4. Open the Web Admin (http://server:port/admin/) in your favourite browser. Make

sure to enter the full JID as username (in this example: adminl@example.org. The reason
that you also need to enter the suffix, is because ejabberd’s virtual hosting support.

2.6 Upgrading ejabberd 21

2.6 Upgrading ejabberd

To upgrade an ejabberd installation to a new version, simply uninstall the old version, and then
install the new one. Of course, it is important that the configuration file and Mnesia database
spool directory are not removed.

ejabberd automatically updates the Mnesia table definitions at startup when needed. If you
also use an external database for storage of some modules, check if the release notes of the new
ejabberd version indicates you need to also update those tables.

22

2. Installing ejabberd

Chapter 3

Configuring ejabberd

3.1 Basic Configuration

The configuration file will be loaded the first time you start ejabberd. The configuration file
name MUST have “.yml” extension. This helps ejabberd to differentiate between the new and
legacy file formats (see section 3.1.1).

Note that ejabberd never edits the configuration file.
The configuration file is written in YAML!. However, different scalars are treated as different

types:

e unquoted or single-quoted strings. The type is called atom() in this document. Examples:
dog, ’Jupiter’, >3.14159’, YELLOW.

e numeric literals. The type is called integer (), float () or, if both are allowed, number ().
Examples: 3, -45.0, .0

e double-quoted or folded strings. The type is called string(). Examples of a double-quoted
string: "Lizzard", "orange", "3.14159". Examples of a folded string:

> Art thou not Romeo,
and a Montague?

| Neither, fair saint,
if either thee dislike.

For associative arrays ("mappings”) and lists you can use both outline indentation and
compact syntax (aka “JSON style”). For example, the following is equivalent:

{param1l: ["vall", "val2"], param2: ["val3", "vald"]}

Thttp://en.wikipedia.org/wiki/YAML

23

http://en.wikipedia.org/wiki/YAML

24 3. Configuring ejabberd

and
paraml:
- Ilvallll
- "val2"
param2:
- Ilvalsll
- Ilva14ll

Note that both styles are used in this document.

3.1.1 Legacy Configuration File

In previous ejabberd version the configuration file should be written in Erlang terms. The
format is still supported, but it is highly recommended to convert it to the new YAML format
using convert_to_yaml command from ejabberdctl (see 4.1 and 4.2.1 for details).

If you want to specify some options using the old Erlang format, you can set them in an additional
cfg file, and include it using the include_config file option, see 3.1.12 for the option description
and a related example in 4.2.2.

If you just want to provide an erlang term inside an option, you can use the "> erlangterm."
syntax for embedding erlang terms in a YAML file, for example:

modules:
mod_cron:
tasks:
- time: 10
units: seconds
module: mnesia
function: info
arguments: "> []."
- time: 3
units: seconds
module: ejabberd_auth
function: try_register
arguments: "> [\"user1\", \"localhost\", \"pass\"]."

3.1.2 Host Names

The option hosts defines a list containing one or more domains that ejabberd will serve.

The syntax is:
[HostName]

Examples:

3.1 Basic Configuration 25

e Serving one domain:
hosts: ["example.org"]
e Serving three domains:

hosts:
- "example.net"
- "example.com"
- "jabber.somesite.org"

3.1.3 Virtual Hosting

Options can be defined separately for every virtual host using the host_config option.

The syntax is:
{HostName: [Option, ...]}
Examples:

e Domain example.net is using the internal authentication method while domain example. com
is using the LDAP server running on the domain localhost to perform authentication:

host_config:
"example.net"
auth_method: internal
"example.com":
auth_method: ldap
ldap_servers:
- "localhost"
ldap_uids:
- "uid"
ldap_rootdn: "dc=localdomain"
ldap_rootdn: "dc=example,dc=com"
ldap_password: ""

e Domain example.net is using ODBC to perform authentication while domain example. com
is using the LDAP servers running on the domains localhost and otherhost:

host_config:
"example.net":
auth_method: odbc
odbc_type: odbc
odbc_server: "DSN=ejabberd;UID=ejabberd;PWD=ejabberd"
"example.com":
auth_method: ldap

26 3. Configuring ejabberd

ldap_servers:

- "localhost"

- "otherhost"
ldap_uids:

- "uid"
ldap_rootdn: "dc=localdomain"
ldap_rootdn: "dc=example,dc=com"
ldap_password: ""

To define specific ejabberd modules in a virtual host, you can define the global modules option
with the common modules, and later add specific modules to certain virtual hosts. To accomplish
that, instead of defining each option in host_config use append_-host_config with the same
syntax.

In this example three virtual hosts have some similar modules, but there are also other different
modules for some specific virtual hosts:

This ejabberd server has three vhosts:
hosts:

- "one.example.org"

- "two.example.org"

- "three.example.org"

Configuration of modules that are common to all vhosts

modules:
mod_roster: {3
mod_configure: {3}
mod_disco: 8
mod_private: {}
mod_time: ¢
mod_last: {3
mod_version: {}

Add some modules to vhost one:
append_host_config:
"one.example.org":
modules:
mod_echo:
host: "echo-service.one.example.org"
mod_http_bind: {}
mod_logxml: {3}

Add a module just to vhost two:
append_host_config:
"two.example.org":
modules:
mod_echo:
host: "mirror.two.example.org"

3.1 Basic Configuration 27

3.1.4 Listening Ports

The option listen defines for which ports, addresses and network protocols ejabberd will listen
and what services will be run on them. Each element of the list is an associative array with the
following elements:

e Port number. Optionally also the TP address and/or a transport protocol.

e Listening module that serves this port.

e Options for the TCP socket and for the listening module.
The option syntax is:
[Listener, ...]
Example:

listen:

port: 5222

module: ejabberd_c2s

starttls: true

certfile: "/path/to/certfile.pem"

port: 5269
module: ejabberd_s2s_in
transport: tcp

Port Number, IP Address and Transport Protocol

The port number defines which port to listen for incoming connections. It can be a Jabber/XMPP
standard port (see section 5.1) or any other valid port number.

The IP address can be represented as a string. The socket will listen only in that network
interface. It is possible to specify a generic address, so ejabberd will listen in all addresses.
Depending in the type of the IP address, IPv4 or IPv6 will be used. When not specified the IP
address, it will listen on all IPv4 network addresses.

Some example values for IP address:
e "0.0.0.0" to listen in all IPv4 network interfaces. This is the default value when no IP is
specified.
e "::" to listen in all IPv6 network interfaces
e "10.11.12.13" is the IPv4 address 10.11.12.13
e "::FFFF:127.0.0.1" is the IPv6 address : :FFFF:127.0.0.1/128

The transport protocol can be tcp or udp. Default is tcp.

28 3. Configuring ejabberd

Listening Module

The available modules, their purpose and the options allowed by each one are:

ejabberd_c2s Handles c2s connections.
Options: access, certfile, ciphers, protocol_options max_ack_queue, max_fsm_queue,
max_stanza_size, resend_on_timeout, resume_timeout, shaper, starttls, starttls_required,
stream_management, tls, z1ib, tls_compression

ejabberd_s2s_in Handles incoming s2s connections.
Options: max_stanza_size, shaper, tls_compression

ejabberd service Interacts with an external component? (as defined in the Jabber Component
Protocol (XEP-0114%).
Options: access, hosts, max_fsm_queue, service_check from, shaper_rule

ejabberd sip Handles SIP requests as defined in RFC 3261%.
Options: certfile, tls

ejabberd stun Handles STUN/TURN requests as defined in RFC 5389° and RFC 5766°.
Options: certfile, tls, use_turn, turn_ip, turn_port_range, turn max_allocations,
turn_max_permissions, shaper, server_name, auth_realm, auth_type

ejabberd http Handles incoming HTTP connections.
Options: captcha, certfile, default_host, http_bind, http_poll, request_handlers,
tls, tls_compression, trusted_proxies, web_admin

ejabberd_xmlrpc Handles XML-RPC requests to execute ejabberd commands (4.2).
Options: access_commands, maxsessions, timeout.
You can find option explanations, example configuration in old and new format, and ex-
ample calls in several languages in the old ejabberd _xmlrpc documentation”.

Options
This is a detailed description of each option allowed by the listening modules:

access: AccessName This option defines access to the port. The default value is all.

backlog: Value The backlog value defines the maximum length that the queue of pending
connections may grow to. This should be increased if the server is going to handle lots of
new incoming connections as they may be dropped if there is no space in the queue (and
ejabberd was not able to accept them immediately). Default value is 5.

2http://www.ejabberd.im/tutorials-transports
3http://xmpp.org/extensions/xep-0114.html
4http://tools.ietf.org/html/rfc3261
Shttp://tools.ietf.org/html/rfc5389
Shttp://tools.ietf.org/html/rfc5766
"http://www.ejabberd.im/ejabberd xmlrpc

http://www.ejabberd.im/tutorials-transports
http://xmpp.org/extensions/xep-0114.html
http://tools.ietf.org/html/rfc3261
http://tools.ietf.org/html/rfc5389
http://tools.ietf.org/html/rfc5766
http://www.ejabberd.im/ejabberd_xmlrpc

3.1 Basic Configuration 29

captcha: true|false Simple web page that allows a user to fill a CAPTCHA challenge (see
section 3.1.9).

certfile: Path Full path to a file containing the default SSL certificate. To define a certificate
file specific for a given domain, use the global option domain_certfile.

ciphers: Ciphers OpenSSL ciphers list in the same format accepted by ‘openssl ciphers’
P P p p P y Op P
command.

protocol options: ProtocolOpts List of general options relating to SSL/TLS. These map to
OpenSSL’s set_options()®. For a full list of options available in ejabberd, see the source®.

The default entry is: "no_sslv2"

default_ host: undefined|HostName} If the HTTP request received by ejabberd contains the
HTTP header Host with an ambiguous virtual host that doesn’t match any one defined in
ejabberd (see 3.1.2), then this configured HostName is set as the request Host. The default
value of this option is: undefined.

hosts: {Hostname: [HostOption, ...]} The external Jabber component that connects to
this ejabberd_service can serve one or more hostnames. As HostOption you can define
options for the component; currently the only allowed option is the password required to
the component when attempt to connect to ejabberd: password: Secret. Note that
you cannot define in a single ejabberd_service components of different services: add an
ejabberd_service for each service, as seen in an example below.

http.bind: truelfalse This option enables HTTP Binding (XEP-0124!° and XEP-0206'!)
support. HT'TP Bind enables access via HTTP requests to ejabberd from behind firewalls
which do not allow outgoing sockets on port 5222.

Remember that you must also install and enable the module mod_http_bind.

If HTTP Bind is enabled, it will be available at http://server:port/http-bind/. Be
aware that support for HTTP Bind is also needed in the XMPP client. Remark also
that HTTP Bind can be interesting to host a web-based XMPP client such as JWChat!?
(check the tutorials to install JWChat with ejabberd and an embedded local web server!?
or Apache'?).

http_poll: truelfalse This option enables HTTP Polling (XEP-0025') support. HTTP
Polling enables access via HT'TP requests to ejabberd from behind firewalls which do not
allow outgoing sockets on port 5222.

If HTTP Polling is enabled, it will be available at http://server:port/http-poll/. Be
aware that support for HT'TP Polling is also needed in the XMPP client. Remark also that
HTTP Polling can be interesting to host a web-based XMPP client such as JWChat!6.

The maximum period of time to keep a client session active without an incoming POST
request can be configured with the global option http_poll_timeout. The default value is

8https://www.openssl.org/docs/ss1/SSL_CTX set_options.html
9https://github.com/processone/tls/blob/master/c_src/options.h
Ohttp://xmpp.org/extensions/xep-0124.html
Uhttp://xmpp.org/extensions/xep-0206.html
2http://juchat.sourceforge.net/
Bhttp://wuw.ejabberd.im/jwchat-localserver
Mhttp://waw.ejabberd.im/jwchat-apache
http://xmpp.org/extensions/xep-0025.html
16http://juchat.sourceforge.net/

https://www.openssl.org/docs/ssl/SSL_CTX_set_options.html
https://github.com/processone/tls/blob/master/c_src/options.h
http://xmpp.org/extensions/xep-0124.html
http://xmpp.org/extensions/xep-0206.html
http://jwchat.sourceforge.net/
http://www.ejabberd.im/jwchat-localserver
http://www.ejabberd.im/jwchat-apache
http://xmpp.org/extensions/xep-0025.html
http://jwchat.sourceforge.net/

30 3. Configuring ejabberd

five minutes. The option can be defined in ejabberd.yml, expressing the time in seconds:
{http_poll_timeout, 300}.

max_ack_queue: Size This option specifies the maximum number of unacknowledged stanzas
queued for possible retransmission if stream management is enabled. When the limit is
exceeded, the client session is terminated. This option can be specified for ejabberd_c2s
listeners. The allowed values are positive integers and infinity. Default value: 500.

max_fsm queue: Size This option specifies the maximum number of elements in the queue of
the FSM (Finite State Machine). Roughly speaking, each message in such queues represents
one XML stanza queued to be sent into its relevant outgoing stream. If queue size reaches
the limit (because, for example, the receiver of stanzas is too slow), the FSM and the
corresponding connection (if any) will be terminated and error message will be logged.
The reasonable value for this option depends on your hardware configuration. However,
there is no much sense to set the size above 1000 elements. This option can be specified for
ejabberd_service and ejabberd_c2s listeners, or also globally for ejabberd_s2s_out. If
the option is not specified for ejabberd_service or ejabberd_c2s listeners, the globally
configured value is used. The allowed values are integers and 'undefined’. Default value:
‘undefined’.

max_stanza size: Size This option specifies an approximate maximum size in bytes of XML
stanzas. Approximate, because it is calculated with the precision of one block of read data.
For example {max_stanza_size, 65536}. The default value is infinity. Recommended
values are 65536 for c¢2s connections and 131072 for s2s connections. s2s max stanza size
must always much higher than ¢2s limit. Change this value with extreme care as it can
cause unwanted disconnect if set too low.

request_handlers: {Path: Module} To define one or several handlers that will serve HT'TP
requests. The Path is a string; so the URIs that start with that Path will be served by
Module. For example, if you want mod_foo to serve the URIs that start with /a/b/, and
you also want mod_http_bind to serve the URIs /http-bind/, use this option:

request_handlers:
/"a"/"b": mod_foo
/"http-bind": mod_http_bind

resend on_timeout: truel|falsel|if offline If stream management is enabled and this op-
tion is set to true, any stanzas that weren’t acknowledged by the client will be resent on
session timeout. This behavior might often be desired, but could have unexpected results
under certain circumstances. For example, a message that was sent to two resources might
get resent to one of them if the other one timed out. Therefore, the default value for this
option is false, which tells ejabberd to generate an error message instead. As an alterna-
tive, the option may be set to if _offline. In this case, unacknowledged stanzas are resent
only if no other resource is online when the session times out. Otherwise, error messages
are generated. The option can be specified for e jabberd_c2s listeners.

resume_timeout: Seconds This option configures the number of seconds until a session times
out if the connection is lost. During this period of time, a client may resume the session
if stream management is enabled. This option can be specified for ejabberd_c2s listeners.
Setting it to O effectively disables session resumption. The default value is 300.

3.1 Basic Configuration 31

service_check_from: truel|false This option can be used with ejabberd_service only. XEP-
0114'7 requires that the domain must match the hostname of the component. If this option
is set to false, ejabberd will allow the component to send stanzas with any arbitrary do-
main in the 'from’ attribute. Only use this option if you are completely sure about it. The
default value is true, to be compliant with XEP-0114'8.

shaper: none|ShaperName This option defines a shaper for the port (see section 3.1.7). The
default value is none.

shaper rule: nonel|ShaperRule This option defines a shaper rule for the ejabberd_service
(see section 3.1.7). The recommended value is fast.

starttls: truel|false This option specifies that STARTTLS encryption is available on con-
nections to the port. You should also set the certfile option. You can define a certificate
file for a specific domain using the global option domain_certfile.

starttls_required: truel|false This option specifies that STARTTLS encryption is required
on connections to the port. No unencrypted connections will be allowed. You should also
set the certfile option. You can define a certificate file for a specific domain using the
global option domain_certfile.

stream management: true|false Setting this option to false disables ejabberd’s support for
Stream Management (XEP-0198'?). It can be specified for ejabberd c2s listeners. The
default value is true.

timeout: Integer Timeout of the connections, expressed in milliseconds. Default: 5000

tls: truel|false This option specifies that traffic on the port will be encrypted using SSL
immediately after connecting. This was the traditional encryption method in the early
Jabber software, commonly on port 5223 for client-to-server communications. But this
method is nowadays deprecated and not recommended. The preferable encryption method
is STARTTLS on port 5222, as defined RFC 6120: XMPP Core?°, which can be enabled in
ejabberd with the option starttls. If this option is set, you should also set the certfile
option. The option tls can also be used in ejabberd http to support HTTPS.

tls_compression: true|false Whether to enable or disable TLS compression. The default
value is true.

trusted_proxies: all | [IpString] Specify what proxies are trusted when an HTTP re-
quest contains the header X-Forwarded-For You can specify all to allow all proxies, or
specify a list of IPs in string format. The default value is: ["127.0.0.1"]

web_admin: truel|false This option enables the Web Admin for ejabberd administration
which is available at http://server:port/admin/. Login and password are the username
and password of one of the registered users who are granted access by the ‘configure’ access
rule.

z1lib: truel|false This option specifies that Zlib stream compression (as defined in XEP-
01382%!) is available on connections to the port.

Thttp://xmpp.org/extensions/xep-0114.html
8http://xmpp.org/extensions/xep-0114.html
Onttp://xmpp.org/extensions/xep-0198.html
20http://xmpp.org/rfcs/rfc6120 . html#tls

2lpttp://xmpp.org/extensions/xep-0138. html

http://xmpp.org/extensions/xep-0114.html
http://xmpp.org/extensions/xep-0114.html
http://xmpp.org/extensions/xep-0198.html
http://xmpp.org/rfcs/rfc6120.html#tls
http://xmpp.org/extensions/xep-0138.html

32 3. Configuring ejabberd

There are some additional global options that can be specified in the ejabberd configuration file
(outside listen):

s2s_use_starttls: false|optionall|required|required_trusted This option defines if s2s
connections don’t use STARTTLS encryption; if STARTTLS can be used optionally; if
STARTTLS is required to establish the connection; or if STARTTLS is required and the
remote certificate must be valid and trusted. The default value is to not use STARTTLS:
false.

s2s_certfile: Path Full path to a file containing a SSL certificate.

domain certfile: Path Full path to the file containing the SSL certificate for a specific do-
main.

s2s_ciphers: Ciphers OpenSSL ciphers list in the same format accepted by ‘openssl ciphers’
command.

s2s_protocol options: ProtocolOpts List of general options relating to SSL/TLS. These
map to OpenSSL’s set_options()?2. For a full list of options available in ejabberd, see the
source?>. The default entry is: "no_ss1v2"

outgoing s2s_families: [Family, ...] Specify which address families to try, in what order.
By default it first tries connecting with IPv4, if that fails it tries using IPv6.

outgoing s2s_timeout: Timeout The timeout in milliseconds for outgoing S2S connection
attempts.

s2s_dns_timeout: Timeout The timeout in seconds for DNS resolving. The default value is
10.

s2s_dns_retries: Number DNS resolving retries in seconds. The default value is 2.

s2s_policy: Access The policy for incoming and outgoing s2s connections to other XMPP
servers. The default value is all.

s2s_max_retry_delay: Seconds The maximum allowed delay for retry to connect after a failed
connection attempt. Specified in seconds. The default value is 300 seconds (5 minutes).

s2s_tls_compression: true|false Whether to enable or disable TLS compression for s2s
connections. The default value is true.

max_fsm_queue: Size This option specifies the maximum number of elements in the queue of
the FSM (Finite State Machine). Roughly speaking, each message in such queues represents
one XML stanza queued to be sent into its relevant outgoing stream. If queue size reaches
the limit (because, for example, the receiver of stanzas is too slow), the FSM and the
corresponding connection (if any) will be terminated and error message will be logged.
The reasonable value for this option depends on your hardware configuration. However,
there is no much sense to set the size above 1000 elements. This option can be specified for
ejabberd_service and ejabberd_c2s listeners, or also globally for ejabberd_s2s_out. If
the option is not specified for ejabberd_service or ejabberd_c2s listeners, the globally
configured value is used. The allowed values are integers and 'undefined’. Default value:
‘undefined’.

22nhttps://www.openssl.org/docs/ss1/SSL_CTX_set_options.html
23https://github.com/processone/tls/blob/master/c.src/options.h

https://www.openssl.org/docs/ssl/SSL_CTX_set_options.html
https://github.com/processone/tls/blob/master/c_src/options.h

3.1 Basic Configuration 33

route_subdomains: localls2s Defines if ejabberd must route stanzas directed to subdomains

locally (compliant with RFC 6120 Local Domain rules®?), or to foreign server using S2S
(compliant with RFC 6120 Remote Domain rules?®).

Examples

For example, the following simple configuration defines:

There are three domains. The default certificate file is server.pem. However, the c2s and
s2s connections to the domain example.com use the file example_com.pem.

Port 5222 listens for ¢2s connections with STARTTLS, and also allows plain connections
for old clients.

Port 5223 listens for ¢2s connections with the old SSL.

Port 5269 listens for s2s connections with STARTTLS. The socket is set for IPv6 instead
of IPv4.

Port 3478 listens for STUN requests over UDP.
Port 5280 listens for HT'TP requests, and serves the HT'TP Poll service.

Port 5281 listens for HTTP requests, using HTTPS to serve HTTP-Bind (BOSH) and the
Web Admin as explained in section 4.3. The socket only listens connections to the IP
address 127.0.0.1.

hosts:

"example.com"
"example.org"
"example.net"

listen:

port: 5222

module: ejabberd_c2s

access: c2s

shaper: c2s_shaper

starttls: true

certfile: "/etc/ejabberd/server.pem"
max_stanza_size: 65536

port: 5223

module: ejabberd_c2s
access: c2s

shaper: c2s_shaper
tls: true

24nttp: //xmpp.org/rfcs/rfc6120. html#rules-local
25http://xmpp.org/rfcs/rfc6120.html#rules-remote

http://xmpp.org/rfcs/rfc6120.html#rules-local
http://xmpp.org/rfcs/rfc6120.html#rules-remote

34

3. Configuring ejabberd

certfile: "/etc/ejabberd/server.pem"
max_stanza_size: 65536

port: 5269

ip: "::"
module: ejabberd_s2s_in
shaper: s2s_shaper

max_stanza_size: 131072

port: 3478
transport: udp
module: ejabberd_stun

port: 5280
module: ejabberd_http
http_poll: true

port: 5281

ip: "127.0.0.1"

module: ejabberd_http

web_admin: true

http_bind: true

tls: true

certfile: "/etc/ejabberd/server.pem"

s2s_use_starttls: optional
s2s_certfile: "/etc/ejabberd/server.pem"
host_config:

"example.com":

domain_certfile: "/etc/ejabberd/example_com.pem"

outgoing_s2s_families:

- ipvéd

- ipv6
outgoing_s2s_timeout: 10000

In this example, the following configuration defines that:

c2s connections are listened for on port 5222 (all IPv4 addresses) and on port 5223 (SSL,
IP 192.168.0.1 and fdca:8ab6:a243:75ef::1) and denied for the user called ‘bad’.

s2s connections are listened for on port 5269 (all IPv4 addresses) with STARTTLS for

secured traffic strictly required, and the certificates are verified.

Incoming and outgo-

ing connections of remote XMPP servers are denied, only two servers can connect: ”jab-

ber.example.org” and ”example.com”.

Port 5280 is serving the Web Admin and the HT'TP Polling service in all the IPv4 addresses.

Note that it is also possible to serve them on different ports.

section 4.3 shows how exactly this can be done.

The second example in

All users except for the administrators have a traffic of limit 1,000 Bytes/second

3.1 Basic Configuration 35

acl:

The AIM transport?® aim.example.org is connected to port 5233 on localhost IP addresses
(127.0.0.1 and ::1) with password ‘aimsecret’.

The ICQ transport JIT (icq.example.org and sms.example.org) is connected to port
5234 with password ‘jitsecret’.

The MSN transport?” msn.example . org is connected to port 5235 with password ‘msnsecret’.

The Yahoo! transport?® yahoo.example.org is connected to port 5236 with password
‘yahoosecret’.

The Gadu-Gadu transport?” gg.example.org is connected to port 5237 with password
‘ggsecret’.

The Jabber Mail Component® jmc.example.org is connected to port 5238 with password
‘jmcsecret’.

The service custom has enabled the special option to avoiding checking the from attribute
in the packets send by this component. The component can send packets in behalf of any
users from the server, or even on behalf of any server.

blocked:

user: "bad"

trusted_servers:

server:
- "example.com"
- "jabber.example.org"

xmlrpc_bot:
user:
- "xmlrpc-robot": "example.org"
shaper:
normal: 1000
access:
c2s:

blocked: deny

all: allow

c2s_shaper:

admin: none
all: normal

xmlrpc_access:

xmlrpc_bot: allow

s2s:

s2s_

trusted_servers: allow
all: deny
certfile: "/path/to/ssl.pem"

26nttp://www.ejabberd.im/pyaimt
2"http://www.ejabberd. im/pymsnt
28nttp://www.ejabberd.im/yahoo-transport-2
2%9http://www.ejabberd. im/jabber-gg-transport
30nttp://wuw.ejabberd.im/jmc

http://www.ejabberd.im/pyaimt
http://www.ejabberd.im/pymsnt
http://www.ejabberd.im/yahoo-transport-2
http://www.ejabberd.im/jabber-gg-transport
http://www.ejabberd.im/jmc

36

3. Configuring ejabberd

s2s_
s2s_

access: s2s
use_starttls: required_trusted

listen:

port: 5222

module: ejabberd_c2s
shaper: c2s_shaper
access: c2s

ip: "192.168.0.1"

port: 5223

module: ejabberd_c2s
certfile: "/path/to/ssl.pem"
tls: true

access: c2s

ip: "FDCA:8AB6:A243:75EF::1"
port: 5223

module: ejabberd_c2s
certfile: "/path/to/ssl.pem"
tls: true

access: c2s

port: 5269
module: ejabberd_s2s_in

port: 5280

module: ejabberd_http
web_admin: true
http_poll: true

port: 4560
module: ejabberd_xmlrpc

ip: "127.0.0.1"
port: 5233
module: ejabberd_service
hosts:
"aim.example.org":
password: "aimsecret"

ip: "::1"
port: 5233
module: ejabberd_service
hosts:
"aim.example.org":
password: "aimsecret"

port: 5234

3.1 Basic Configuration

37

module: ejabberd_service
hosts:
"icq.example.org":
password: "jitsecret"
"sms.example.org":
password: "jitsecret"

port: 5235
module: ejabberd_service
hosts:
"msn.example.org":
password: "msnsecret"

port: 5236

module: ejabberd_service

hosts:
"yahoo.example.org":

password: "yahoosecret'

port: 5237
module: ejabberd_service
hosts:
"gg.example.org":
password: "ggsecret"

port: 5238
module: ejabberd_service
hosts:
"jmc.example.org":
password: "jmcsecret"

port: 5239

module: ejabberd_service

service_check_from: false

hosts:
"custom.example.org":

password: "customsecret"

Note, that for services based in jabberd14 or WPJabber you have to make the transports log

and do XDB by themselves:

<I--

You have to add elogger and rlogger entries here when using ejabberd.
In this case the transport will do the logging.

-—>

<log id=’logger’>
<host/>

38 3. Configuring ejabberd

<logtype/>

<format>%d: [%tl (%h): %s</format>

<file>/var/log/jabber/service.log</file>
</log>

<t--
Some XMPP server implementations do not provide
XDB services (for example, jabberd2 and ejabberd) .
xdb_file.so is loaded in to handle all XDB requests.
-=>

<xdb id="xdb">
<host/>
<load>
<!-- this is a lib of wpjabber or jabberdil4 -->
<xdb_file>/usr/lib/jabber/xdb_file.so</xdb_file>
</load>
<xdb_file xmlns="jabber:config:xdb_file">
<spool><jabberd:cmdline flag=’s’>/var/spool/jabber</jabberd:cmdline></spool>
</xdb_file>
</xdb>

3.1.5 Authentication

The option auth method defines the authentication methods that are used for user authentication.
The syntax is:

[Method, ...]
The following authentication methods are supported by ejabberd:

e internal (default) — See section 3.1.5.
e external — See section 3.1.5.

e ldap — See section 3.2.2.

e odbc — See section 3.2.1.

e anonymous — See section 3.1.5.

e pam — See section 3.1.5.

Account creation is only supported by internal, external and odbc methods.

The option resource_conflict defines the action when a client attempts to login to an account
with a resource that is already connected. The option syntax is:

3.1 Basic Configuration 39

resource_conflict: setresourcel|closenew|closeold

The possible values match exactly the three possibilities described in XMPP Core: section
7.7.2.231. The default value is closeold. If the client uses old Jabber Non-SASL authentication
(XEP-0078%2), then this option is not respected, and the action performed is closeold.

The option fqdn allows you to define the Fully Qualified Domain Name of the machine, in case
it isn’t detected automatically. The FQDN is used to authenticate some clients that use the
DIGEST-MD5 SASL mechanism. The option syntax is:

fqdn: undefined|FqdnString| [FqdnString]

The option disable_sasl mechanisms specifies a list of SASL mechanisms that should not be
offered to the client. The mechanisms can be listed as lowercase or uppercase strings. The option
syntax is:

disable_sasl mechanisms: [Mechanism, ...]

Internal

ejabberd uses its internal Mnesia database as the default authentication method. The value
internal will enable the internal authentication method.

The option auth_password format: plain|scram defines in what format the users passwords
are stored:

plain The password is stored as plain text in the database. This is risky because the passwords
can be read if your database gets compromised. This is the default value. This format
allows clients to authenticate using: the old Jabber Non-SASL (XEP-0078%3), SASL PLAIN,
SASL DIGEST-MD5, and SASL SCRAM-SHA-1.

scram The password is not stored, only some information that allows to verify the hash provided
by the client. It is impossible to obtain the original plain password from the stored informa-
tion; for this reason, when this value is configured it cannot be changed to plain anymore.
This format allows clients to authenticate using: SASL PLAIN and SASL SCRAM-SHA-1.

Examples:

e To use internal authentication on example.org and LDAP authentication on example.net:

host_config:
"example.org":
auth_method: [internal]
"example.net":
auth_method: [ldap]

3lhttp://tools.ietf.org/html/rfc6120#section-7.7.2.2
32http://xmpp.org/extensions/xep-0078. html
33nttp://xmpp.org/extensions/xep-0078.html

http://tools.ietf.org/html/rfc6120#section-7.7.2.2
http://xmpp.org/extensions/xep-0078.html
http://xmpp.org/extensions/xep-0078.html

40 3. Configuring ejabberd

e To use internal authentication with hashed passwords on all virtual hosts:

auth_method: intermal
auth_password_format: scram

External Script

In this authentication method, when ejabberd starts, it start a script, and calls it to perform
authentication tasks.

The server administrator can write the external authentication script in any language. The details
on the interface between ejabberd and the script are described in the ejabberd Developers
Guide. There are also several example authentication scripts4.

These are the specific options:

extauth_program: PathToScript Indicate in this option the full path to the external authen-
tication script. The script must be executable by ejabberd.

extauth_instances: Integer Indicate how many instances of the script to run simultaneously
to serve authentication in the virtual host. The default value is the minimum number: 1.

extauth_cache: false|CacheTimelInteger The value false disables the caching feature, this
is the default. The integer 0 (zero) enables caching for statistics, but doesn’t use that cached
information to authenticate users. If another integer value is set, caching is enabled both
for statistics and for authentication: the CacheTimelnteger indicates the number of seconds
that ejabberd can reuse the authentication information since the user last disconnected,
to verify again the user authentication without querying again the extauth script. Note:
caching should not be enabled in a host if internal auth is also enabled. If caching is
enabled, mod_last must be enabled also in that vhost.

This example sets external authentication, the extauth script, enables caching for 10 minutes,
and starts three instances of the script for each virtual host defined in ejabberd:

auth_method: [externall

extauth_program: "/etc/ejabberd/JabberAuth.class.php"
extauth_cache: 600

extauth_instances: 3

Anonymous Login and SASL Anonymous
The anonymous authentication method enables two modes for anonymous authentication:

Anonymous login: This is a standard login, that use the classical login and password mecha-
nisms, but where password is accepted or preconfigured for all anonymous users. This login
is compliant with SASL authentication, password and digest non-SASL authentication, so
this option will work with almost all XMPP clients

34nttp: //www.ejabberd.im/extauth

http://www.ejabberd.im/extauth

3.1 Basic Configuration 41

SASL Anonymous: This is a special SASL authentication mechanism that allows to login without
providing username or password (see XEP-0175%). The main advantage of SASL Anony-
mous is that the protocol was designed to give the user a login. This is useful to avoid in
some case, where the server has many users already logged or registered and when it is hard
to find a free username. The main disavantage is that you need a client that specifically
supports the SASL Anonymous protocol.

The anonymous authentication method can be configured with the following options. Remember
that you can use the host_config option to set virtual host specific options (see section 3.1.3).

allowmultiple _connections: falsel|true This option is only used when the anonymous
mode is enabled. Setting it to true means that the same username can be taken multiple
times in anonymous login mode if different resource are used to connect. This option is
only useful in very special occasions. The default value is false.

anonymous_protocol: login_anon | sasl_anon | both login_anon means that the anony-
mous login method will be used. sasl_anon means that the SASL Anonymous method will
be used. both means that SASL Anonymous and login anonymous are both enabled.

Those options are defined for each virtual host with the host_config parameter (see sec-
tion 3.1.3).

Examples:

e To enable anonymous login on all virtual hosts:

auth_method: [anonymous]
anonymous_protocol: login_anon

e Similar as previous example, but limited to public.example.org:

host_config:
"public.example.org":
auth_method: [anonymous]
anonymous_protoco: login_anon

e To enable anonymous login and internal authentication on a virtual host:

host_config:
"public.example.org":
auth_method:
- internal
- anonymous
anonymous_protocol: login_anon

e To enable SASL Anonymous on a virtual host:

35nttp://xmpp.org/extensions/xep-0175.html

http://xmpp.org/extensions/xep-0175.html

42 3. Configuring ejabberd

host_config:
"public.example.org":
auth_method: [anonymous]
anonymous_protocol: sasl_anon

e To enable SASL Anonymous and anonymous login on a virtual host:

host_config:
"public.example.org":
auth_method: [anonymous]
anonymous_protocol: both

e To enable SASL Anonymous, anonymous login, and internal authentication on a virtual
host:

host_config:
"public.example.org":
auth_method:
- internal
- anonymous
anonymous_protocol: both

There are more configuration examples and XMPP client example stanzas in Anonymous users
support?6.

PAM Authentication

ejabberd supports authentication via Pluggable Authentication Modules (PAM). PAM is cur-
rently supported in AIX, FreeBSD, HP-UX, Linux, Mac OS X, NetBSD and Solaris. PAM
authentication is disabled by default, so you have to configure and compile ejabberd with PAM
support enabled:

./configure --enable-pam && make install
Options:

pam_service: Name This option defines the PAM service name. Default is "ejabberd". Refer
to the PAM documentation of your operation system for more information.

pam_userinfotype: username|jid This option defines what type of information about the
user ejabberd provides to the PAM service: only the username, or the user JID. Default is
username.

Example:

36nttp://uww.ejabberd. im/Anonymous-users-support

http://www.ejabberd.im/Anonymous-users-support

3.1 Basic Configuration 43

auth_method: [pam]
pam_service: "ejabberd"

Though it is quite easy to set up PAM support in ejabberd, PAM itself introduces some security
issues:

e To perform PAM authentication ejabberd uses external C-program called epam. By de-
fault, it is located in /var/lib/ejabberd/priv/bin/ directory. You have to set it root
on execution in the case when your PAM module requires root privileges (pam_unix.so for
example). Also you have to grant access for ejabberd to this file and remove all other
permissions from it. Execute with root privileges:

chown root:ejabberd /var/lib/ejabberd/priv/bin/epam
chmod 4750 /var/lib/ejabberd/priv/bin/epam

e Make sure you have the latest version of PAM installed on your system. Some old versions
of PAM modules cause memory leaks. If you are not able to use the latest version, you
can kill (1) epam process periodically to reduce its memory consumption: ejabberd will
restart this process immediately.

e epam program tries to turn off delays on authentication failures. However, some PAM
modules ignore this behavior and rely on their own configuration options. You can create a
configuration file ejabberd. pam. This example shows how to turn off delays in pam_unix.so

module:

#/,PAM-1.0

auth sufficient pam_unix.so likeauth nullok nodelay
account sufficient pam_unix.so

That is not a ready to use configuration file: you must use it as a hint when building your
own PAM configuration instead. Note that if you want to disable delays on authentication
failures in the PAM configuration file, you have to restrict access to this file, so a malicious
user can’t use your configuration to perform brute-force attacks.

e You may want to allow login access only for certain users. pam_listfile.so module
provides such functionality.

e If you use pam_winbind to authorise against a Windows Active Directory, then /etc/nsswitch.conf
must be configured to use winbind as well.

3.1.6 Access Rules
ACL Definition

Access control in ejabberd is performed via Access Control Lists (ACLs). The declarations of
ACLs in the configuration file have the following syntax:

acl: {ACLName: {ACLType: ACLValue 1}}

44 3. Configuring ejabberd

ACLType: ACLValue can be one of the following:

all Matches all JIDs. Example:

acl:
world: all

user: Username Matches the user with the name Username at the first virtual host. Example:

acl:
admin:
user: "yozhik"

user: {Username: Server} Matches the user with the JID Username@Server and any re-
source. Example:

acl:
admin:
user:
"yozhik": "example.org"

server: Server Matches any JID from server Server. Example:

acl:
exampleorg:
server: "example.org"

resource: Resource Matches any JID with a resource Resource. Example:

acl:
mucklres:
resource: "muckl"

shared_group: Groupname Matches any member of a Shared Roster Group with name Groupname
in the virtual host. Example:

acl:
techgroupmembers:
shared_group: "techteam"

shared_group: {Groupname: Server} Matches any member of a Shared Roster Group with
name Groupname in the virtual host Server. Example:

acl:
techgroupmembers:
shared_group:
"techteam": "example.org"

ip: Network Matches any IP address from the Network. Example:

3.1 Basic Configuration 45

acl:
loopback:
ip:
- "127.0.0.0/8"
- "::1"

user_regexp: Regexp Matches any local user with a name that matches Regexp on local virtual
hosts. Example:

acl:
tests:
user_regexp: "“test[0-9]x*$"

user_regexp: {Regexp: Server} Matches any user with a name that matches Regexp at
server Server. Example:

acl:
tests:
user_regexp:
"“test": "example.org"

server_regexp: Regexp Matches any JID from the server that matches Regexp. Example:

acl:
icq:
server_regexp: "“icq\\."

resource_regexp: Regexp Matches any JID with a resource that matches Regexp. Example:

acl:
icq:
resource_regexp: "“laptop\\."

node_regexp: {UserRegexp: ServerRegexp} Matches any user with a name that matches
UserRegexp at any server that matches ServerRegexp. Example

acl:
yozhik:
node_regexp:
"“yozhik$": "“example. (com|org)$"

user_glob: Glob}
user_glob: {Glob: Server}
server_glob: Glob
resource_glob: Glob

node_glob: {UserGlob: ServerGlob} This is the same as above. However, it uses shell glob
patterns instead of regexp. These patterns can have the following special characters:

46 3. Configuring ejabberd

* matches any string including the null string.
? matches any single character.

[...] matches any of the enclosed characters. Character ranges are specified by a pair of
characters separated by a ‘-’. If the first character after ‘[’ is a ¢!’, any character
not enclosed is matched.

The following ACLName are pre-defined:

all Matches any JID.

none Matches no JID.

Access Rights

An entry allowing or denying access to different services. The syntax is:

access: {AccessName: {ACLName: allow|deny }}

When a JID is checked to have access to Accessname, the server sequentially checks if that JID
matches any of the ACLs that are named in the first elements of the tuples in the list. If it
matches, the second element of the first matched tuple is returned, otherwise the value ‘deny’ is
returned.

If you define specific Access rights in a virtual host, remember that the globally defined Access
rights have precedence over those. This means that, in case of conflict, the Access granted or
denied in the global server is used and the Access of a virtual host doesn’t have effect.

Example:

access:
configure:
admin: allow
something
badmans: deny
all: allow

The following AccessName are pre-defined:

all Always returns the value ‘allow’.

none Always returns the value ‘deny’.

3.1 Basic Configuration 47

Limiting Opened Sessions with ACL

The special access max_user_sessions specifies the maximum number of sessions (authenticated
connections) per user. If a user tries to open more sessions by using different resources, the
first opened session will be disconnected. The error session replaced will be sent to the
disconnected session. The value for this option can be either a number, or infinity. The
default value is infinity.

The syntax is:
{max_user_sessions: {ACLName: MaxNumber }}
This example limits the number of sessions per user to 5 for all users, and to 10 for admins:

access:
max_user_sessions:
admin: 10
all: 5

Several connections to a remote XMPP server with ACL

The special access max_s2s_connections specifies how many simultaneous S2S connections can
be established to a specific remote XMPP server. The default value is 1. There’s also available
the access max_s2s_connections_per_node.

The syntax is:
{max_s2s_connections: {ACLName: MaxNumber }}
Examples:

e Allow up to 3 connections with each remote server:

access:
max_s2s_connections:
all: 3

3.1.7 Shapers

Shapers enable you to limit connection traffic. The syntax is:

shaper: {ShaperName: Rate }

48 3. Configuring ejabberd

where Rate stands for the maximum allowed incoming rate in bytes per second. When a connec-
tion exceeds this limit, ejabberd stops reading from the socket until the average rate is again
below the allowed maximum.

Examples:

e To define a shaper named ‘normal’ with traffic speed limited to 1,000 bytes/second:

shaper:
normal: 1000

e To define a shaper named ‘fast’ with traffic speed limited to 50,000 bytes/second:

shaper:
fast: 50000

3.1.8 Default Language

The option language defines the default language of server strings that can be seen by XMPP
clients. If a XMPP client does not support xml:lang, the specified language is used.

The option syntax is:
language: Language
The default value is en. In order to take effect there must be a translation file Language .msg in

ejabberd’s msgs directory.

For example, to set Russian as default language:

language: "ru"

Appendix A provides more details about internationalization and localization.

3.1.9 CAPTCHA

Some ejabberd modules can be configured to require a CAPTCHA challenge on certain actions.
If the client does not support CAPTCHA Forms (XEP-0158°7), a web link is provided so the
user can fill the challenge in a web browser.

An example script is provided that generates the image using ImageMagick’s Convert program.

The configurable options are:

37http://xmpp.org/extensions/xep-0158 . html

http://xmpp.org/extensions/xep-0158.html

3.1 Basic Configuration

49

captcha cmd: Path Full path to a script that generates the image. The default value disables

the feature: undefined

captcha host: ProtocolHostPort ProtocolHostPort is a string with the host, and optionally
the Protocol and Port number. It must identify where ejabberd listens for CAPTCHA
requests. The URL sent to the user is formed by: Protocol://Host:Port/captcha/ The
default value is: protocol http, the first hostname configured, and port 80. If you specify
a port number that does not match exactly an ejabberd listener (because you are using a
reverse proxy or other port-forwarding tool), then you must specify the transfer protocol,

as seen in the example below.

Additionally, an ejabberd http listener must be enabled with the captcha option. See section

3.1.4.

Example configuration:

hosts: ["example.org"]

captcha_cmd: "/lib/ejabberd/priv/bin/captcha.sh"
captcha_host: "example.org:5280"

captcha_host: "https://example.org:443"

captcha_host: "http://example.com"

listen:

port: 5280
module: ejabberd_http
captcha: true

3.1.10 STUN and TURN

ejabberd is able to act as a stand-alone STUN/TURN server (RFC 5389%% /RFC 57663%). In
that role ejabberd helps clients with ICE (RFC 5245%) or Jingle ICE (XEP-0176*) support
to discover their external addresses and ports and to relay media traffic when it is impossible to

establish direct peer-to-peer connection.

You should configure ejabberd_stun listening module as described in 3.1.4 section. The specific

configurable options are:

tls: truelfalse If enabled, certfile option must be set, otherwise ejabberd will not be
able to accept TLS connections. Obviously, this option makes sense for tcp transport only.

The default is false.

38nttp://tools.ietf.org/html/rfc5389
39nttp://tools.ietf.org/html/rfc5766
4Onttp://tools.ietf.org/html/rfc5245
4nttp://xmpp.org/extensions/xep-0176.html

http://tools.ietf.org/html/rfc5389
http://tools.ietf.org/html/rfc5766
http://tools.ietf.org/html/rfc5245
http://xmpp.org/extensions/xep-0176.html

50 3. Configuring ejabberd

certfile: Path Path to the certificate file. Only makes sense when tls is set.

use_turn: truel|false Enables/disables TURN (media relay) functionality. The default is
false.

turn_ip: String The IPv4 address advertised by your TURN server. The address should not
be NAT’ed or firewalled. There is not default, so you should set this option explicitly.
Implies use_turn.

turn min port: Integer Together with turn max_port forms port range to allocate from. The
default is 49152. Implies use_turn.

turnmax_port: Integer Together with turn min_port forms port range to allocate from. The
default is 65535. Implies use_turn.

turn max_allocations: Integer|infinity Maximum number of TURN allocations available
from the particular IP address. The default value is 10. Implies use_turn.

turn max _permissions: Integer|infinity Maximum number of TURN permissions avail-
able from the particular IP address. The default value is 10. Implies use_turn.

auth_type: user|anonymous Which authentication type to use for TURN allocation requests.
When type user is set, ejabberd authentication backend is used. For anonymous type no
authentication is performed (not recommended for public services). The default is user.
Implies use_turn.

auth_realm: String When auth_type is set to user and you have several virtual hosts con-
figured you should set this option explicitly to the virtual host you want to serve on this
particular listening port. Implies use_turn.

shaper: Atom For tcp transports defines shaper to use. The default is none.
server_name: String Defines software version to return with every response. The default is
the STUN library version.

Example configuration with disabled TURN functionality (STUN only):

listen:

port: 3478
transport: udp
module: ejabberd_stun

port: 3478
module: ejabberd_stun

port: 5349
module: ejabberd_stun
certfile: "/etc/ejabberd/server.pem"

3.1 Basic Configuration 51

Example configuration with TURN functionality. Note that STUN is always enabled if TURN
is enabled. Here, only UDP section is shown:

listen:

port: 3478

transport: udp
use_turn: true
turn_ip: "10.20.30.1"
module: ejabberd_stun

You also need to configure DNS SRV records properly so clients can easily discover a STUN/TURN
server serving your XMPP domain. Refer to section DNS Discovery of a Server*? of RFC 538943
and section Creating an Allocation** of RFC 5766 for details.

Example DNS SRV configuration for STUN only:

_stun._udp IN SRV 0O O 3478 stun.example.com.
_stun._tcp IN SRV 0 O 3478 stun.example.com.
_stuns._tcp IN SRV O O 5349 stun.example.com.

And you should also add these in the case if TURN is enabled:

_turn._udp IN SRV O O 3478 turn.example.com.
_turn._tcp IN SRV O O 3478 turn.example.com.
_turns._tcp IN SRV O O 5349 turn.example.com.

3.1.11 SIP

ejabberd has built-in SIP support. In order to activate it you need to add listeners for it,
configure DNS properly and enable mod_sip for the desired virtual host.

To add a listener you should configure ejabberd_sip listening module as described in 3.1.4
section. If option tls is specified, option certfile must be specified as well, otherwise incoming

TLS connections would fail.

Example configuration with standard ports (as per RFC 3261%6):

2nttp://tools.ietf.org/html/rfc5389#section-9
3nttp://tools.ietf.org/html/rfc5389
44nttp://tools.ietf.org/html/rfc5766#section—6
nttp://tools.ietf.org/html/rfc5766
46nttp://tools.ietf.org/html/rfc3261

http://tools.ietf.org/html/rfc5389#section-9
http://tools.ietf.org/html/rfc5389
http://tools.ietf.org/html/rfc5766#section-6
http://tools.ietf.org/html/rfc5766
http://tools.ietf.org/html/rfc3261

52 3. Configuring ejabberd

listen:

port: 5060
transport: udp
module: ejabberd_sip

port: 5060
module: ejabberd_sip

port: 5061

module: ejabberd_sip

tls: true

certfile: "/etc/ejabberd/server.pem"

Note that there is no StartTLS support in SIP and SNI*” support is somewhat tricky, so for TLS
you have to configure different virtual hosts on different ports if you have different certificate
files for them.

Next you need to configure DNS SIP records for your virtual domains. Refer to RFC 3263%®
for the detailed explanation. Simply put, you should add NAPTR and SRV records for your
domains. Skip NAPTR configuration if your DNS provider doesn’t support this type of records.
It’s not fatal, however, highly recommended.

Example configuration of NAPTR records:

example.com IN NAPTR 10 O "s" "SIPS+D2T" "" _sips._tcp.example.com.
example.com IN NAPTR 20 O "s" "SIP+D2T" "" _sip._tcp.example.com.
example.com IN NAPTR 30 O "s" "SIP+D2U" "" _sip._udp.example.com.

Example configuration of SRV records with standard ports (as per RFC 3261%9):

_sip._udp IN SRV 0O O 5060 sip.example.com.
_sip._tcp IN SRV 0O O 5060 sip.example.com.
_sips._tcp IN SRV 0O O 5061 sip.example.com.

3.1.12 Include Additional Configuration Files

The option include_config file in a configuration file instructs ejabberd to include other
configuration files immediately.

The basic syntax is:

4Thttp://en.wikipedia.org/wiki/Server Name Indication
Snttp://tools.ietf.org/html/rfc3263
Onttp://tools.ietf.org/html/rfc3261

http://en.wikipedia.org/wiki/Server_Name_Indication
http://tools.ietf.org/html/rfc3263
http://tools.ietf.org/html/rfc3261

3.1 Basic Configuration 53

include_config file: [Filename]
It is possible to specify suboptions using the full syntax:
include_config file: {Filename: [Suboption, ...] }

The filename can be indicated either as an absolute path, or relative to the main ejabberd
configuration file. It isn’t possible to use wildcards. The file must exist and be readable.

The allowed suboptions are:

disallow: [Optionname, ...] Disallows the usage of those options in the included configu-
ration file. The options that match this criteria are not accepted. The default value is an
empty list: []

allow_ only: [Optionname, ...] Allows only the usage of those options in the included con-
figuration file. The options that do not match this criteria are not accepted. The default
value is: all

This is a basic example:

include_config_file: "/etc/ejabberd/additional.yml"

In this example, the included file is not allowed to contain a listen option. If such an option
is present, the option will not be accepted. The file is in a subdirectory from where the main
configuration file is.

include_config_file:
"./example.org/additional _not_listen.yml":
disallow: [listen]

In this example, ejabberd.yml defines some ACL and Access rules, and later includes another
file with additional rules:

acl:
admin:
user:
- "admin": "localhost"
access:
announce:
admin: allow
include_config_file:
"/etc/ejabberd/acl_and_access.yml":
allow_only:
- acl
- access

54 3. Configuring ejabberd

and content of the file acl_and_access.yml can be, for example:

acl:
admin:
user:
- "bob": "localhost"
- "jan": "localhost"

3.1.13 Option Macros in Configuration File

In the ejabberd configuration file, it is possible to define a macro for a value and later use this
macro when defining an option.

A macro is defined with this syntax:
define macro: {’MACRO’: Value }

The MACRO must be surrounded by single quotation marks, and all letters in uppercase; check
the examples bellow. The value can be any valid arbitrary Erlang term.

The first definition of a macro is preserved, and additional definitions of the same macro are
forgotten.

Macros are processed after additional configuration files have been included, so it is possible to
use macros that are defined in configuration files included before the usage.

It isn’t possible to use a macro in the definition of another macro.

This example shows the basic usage of a macro:

define_macro:
’LOG_LEVEL_NUMBER’: 5
loglevel: ’LOG_LEVEL_NUMBER’

The resulting option interpreted by ejabberd is: loglevel: 5.

This example shows that values can be any arbitrary Erlang term:

define_macro:
’USERBOB’ :
user:
- "bob": "localhost"
acl:
admin: ’USERBOB’

The resulting option interpreted by ejabberd is:

3.2 Database and LDAP Configuration 55

acl:
admin:
user:
- "bob": "localhost"

This complex example:

define_macro:
’NUMBER_PORT_C2S’: 5222
’NUMBER_PORT_HTTP’: 5280
listen:

port: ’NUMBER_PORT_C2S’
module: ejabberd_c2s

port: ’NUMBER_PORT_HTTP’
module: ejabberd_http

produces this result after being interpreted:

listen:

port: 5222
module: ejabberd_c2s

port: 5280
module: ejabberd_http

3.2 Database and LDAP Configuration

ejabberd uses its internal Mnesia database by default. However, it is possible to use a relational
database, key-value storage or an LDAP server to store persistent, long-living data. ejabberd is
very flexible: you can configure different authentication methods for different virtual hosts, you
can configure different authentication mechanisms for the same virtual host (fallback), you can
set different storage systems for modules, and so forth.

The following databases are supported by ejabberd:

e Mnesia®?

o MySQLS!

e Any ODBC compatible database®?

50nttp://www.erlang.org/doc/apps/mnesia/index.html
5lhttp://www.mysql.com/
52nttp://en.wikipedia.org/wiki/Open Database_Connectivity

http://www.erlang.org/doc/apps/mnesia/index.html
http://www.mysql.com/
http://en.wikipedia.org/wiki/Open_Database_Connectivity

56 3. Configuring ejabberd

e PostgreSQL??
e Riak®*

The following LDAP servers are tested with ejabberd:

Active Directory® (see section 3.2.2)

OpenLDAP%6

e CommuniGate Pro®”

Normally any LDAP compatible server should work; inform us about your success with a
not-listed server so that we can list it here.

Important note about virtual hosting: if you define several domains in ejabberd.yml (see sec-
tion 3.1.2), you probably want that each virtual host uses a different configuration of database,
authentication and storage, so that usernames do not conflict and mix between different vir-
tual hosts. For that purpose, the options described in the next sections must be set inside a
host_config for each vhost (see section 3.1.3). For example:

host_config:

"public.example.org":
odbc_type: pgsql
odbc_server: "localhost"
odbc_database: '"database-public-example-org"
odbc_username: "ejabberd"
odbc_password: "password"
auth_method: [odbc]

3.2.1 ODBC

The actual database access is defined in the options with odbc_ prefix. The values are used
to define if we want to use ODBC, or one of the two native interface available, PostgreSQL or
MySQL.

The following paramaters are available:

odbc_type: mysql | pgsql | odbc The type of an ODBC connection. The default is odbec.
odbc_server: String A hostname of the ODBC server. The default is ¢ ‘localhost’’.

odbc_port: Port The port where the ODBC server is accepting connections. The option is
only valid for mysql and pgsql. The default is 3306 and 5432 respectively.

53http: //www.postgresql.org/
54http://basho.com/riak/
55http://www.microsoft.com/activedirectory/
56http://www.openldap.org/
5Thttp://www.communigate . com/

http://www.postgresql.org/
http://basho.com/riak/
http://www.microsoft.com/activedirectory/
http://www.openldap.org/
http://www.communigate.com/

3.2 Database and LDAP Configuration 57

odbc_database: String The database name. The default is ¢ ‘ejabberd’’. The option is
only valid for mysql and pgsql.

odbc_username: String The username. The default is ‘ ‘ejabberd’’. The option is only
valid for mysql and pgsql.

odbc_password: String The password. The default is empty string. The option is only valid
for mysql and pgsql.

odbc_pool_size: N By default ejabberd opens 10 connections to the database for each virtual
host. You can change this number by using this option.

odbc_keepalive_interval: N You can configure an interval to make a dummy SQL request to
keep alive the connections to the database. The default value is 'undefined’, so no keepalive
requests are made. Specify in seconds: for example 28800 means 8 hours.

odbc_start_interval: N If the connection to the database fails, ejabberd waits 30 seconds
before retrying. You can modify this interval with this option.

Example of plain ODBC connection:
odbc_server: "DSN=database;UID=ejabberd;PWD=password"
Example of MySQL connection:

odbc_type: mysql

odbc_server: "server.company.com"
odbc_port: 3306 # the default
odbc_database: "mydb"
odbc_username: "userl"
odbc_password: "skkxxkkkkkk!
odbc_pool_size: 5

Storage

An ODBC compatible database also can be used to store information into from several e jabberd
modules. See section 3.3.1 to see which modules can be used with relational databases like
MySQL. To enable storage to your database, just make sure that your database is running well
(see previous sections), and add the module option db_type: odbc.

3.2.2 LDAP

ejabberd has built-in LDAP support. You can authenticate users against LDAP server and use
LDAP directory as vCard storage.

Usually ejabberd treats LDAP as a read-only storage: it is possible to consult data, but not
possible to create accounts or edit vCard that is stored in LDAP. However, it is possible to
change passwords if mod_register module is enabled and LDAP server supports RFC 3062°%.

58nttp://tools.ietf.org/html/rfc3062

http://tools.ietf.org/html/rfc3062

58 3. Configuring ejabberd

Connection

Two connections are established to the LDAP server per vhost, one for authentication and other
for regular calls.

Parameters:

ldap_servers: [Servers, ...] List of IP addresses or DNS names of your LDAP servers.
This option is required.

ldap_encrypt: noneltls Type of connection encryption to the LDAP server. Allowed values
are: none, tls. The value tls enables encryption by using LDAP over SSL. Note that
STARTTLS encryption is not supported. The default value is: none.

ldap_tls_verify: falsel|soft|hard This option specifies whether to verify LDAP server cer-
tificate or not when TLS is enabled. When hard is enabled ejabberd doesn’t proceed if
a certificate is invalid. When soft is enabled ejabberd proceeds even if check fails. The
default is false which means no checks are performed.

ldap_tls_cacertfile: Path Path to file containing PEM encoded CA certificates. This option
is needed (and required) when TLS verification is enabled.

ldap_tls_depth: Number Specifies the maximum verification depth when TLS verification is
enabled, i.e. how far in a chain of certificates the verification process can proceed before
the verification is considered to fail. Peer certificate = 0, CA certificate = 1, higher level
CA certificate = 2, etc. The value 2 thus means that a chain can at most contain peer
cert, CA cert, next CA cert, and an additional CA cert. The default value is 1.

ldap_port: Number Port to connect to your LDAP server. The default port is 389 if encryption
is disabled; and 636 if encryption is enabled. If you configure a value, it is stored in
ejabberd’s database. Then, if you remove that value from the configuration file, the value
previously stored in the database will be used instead of the default port.

ldap_rootdn: RootDN Bind DN. The default value is "" which means ‘anonymous connection’.
ldap_password: Password Bind password. The default value is "".

ldap.deref_aliases: mnever|always|findingl|searching Whether or not to dereference aliases.
The default is never.

Example:

auth_method: [1ldap]
ldap_servers:
- "ldapl.example.org"
ldap_port: 389
ldap_rootdn: "cn=Manager,dc=domain,dc=org"
ldap_password: "skkkkkkkkk!

3.2 Database and LDAP Configuration 59

Authentication

You can authenticate users against an LDAP directory. Note that current LDAP implementation
does not support SASL authentication.

Available options are:

ldap_base: Base LDAP base directory which stores users accounts. This option is required.

ldap-uids: [ldap-uidattr | {ldap_uidattr: 1ldap-uidattr_format}] LDAP attribute which
holds a list of attributes to use as alternatives for getting the JID. The default attributes are
[{"uid", "%u"}]. The attributes are of the form: [{l1dap_uidattr}] or [{ldap_uidattr,
ldap_uidattr_format}]. You can use as many comma separated attributes as needed. The
values for 1dap_uidattr and ldap_uidattr_format are described as follow:

ldap_uidattr LDAP attribute which holds the user’s part of a JID. The default value is
lIuidll.

ldap_uidattr_format Format of the ldap_uidattr variable. The format must contain
one and only one pattern variable "%u" which will be replaced by the user’s part of a
JID. For example, "%u@example.org". The default value is "%u".

ldap_filter: Filter RFC 4515°° LDAP filter. The default Filter value is: undefined. Ex-
ample: " (&(objectClass=shadowAccount) (member0f=Jabber Users))". Please, do not
forget to close brackets and do not use superfluous whitespaces. Also you must not use
ldap_uidattr attribute in filter because this attribute will be substituted in LDAP filter
automatically.

ldap-dn_filter: {Filter: FilterAttrs } This filter is applied on the results returned by
the main filter. This filter performs additional LDAP lookup to make the complete re-
sult. This is useful when you are unable to define all filter rules in 1dap_filter. You
can define "%u", "%d", "%s" and "%D" pattern variables in Filter: "%u" is replaced by a
user’s part of a JID, "%d" is replaced by the corresponding domain (virtual host), all "%s"
variables are consecutively replaced by values of FilterAttrs attributes and "%D" is replaced
by Distinguished Name. By default 1dap_dn_filter is undefined. Example:

ldap_dn_filter:
" (& (name=Y%s) (owner=%D) (user=%u@%d))": ["sn"]

Since this filter makes additional LDAP lookups, use it only in the last resort: try to define
all filter rules in 1dap_filter if possible.

{ldap_local filter, Filter} If you can’t use ldap_filter due to performance reasons (the
LDAP server has many users registered), you can use this local filter. The local filter checks
an attribute in ejabberd, not in LDAP, so this limits the load on the LDAP directory. The
default filter is: undefined. Example values:

{1dap_local_filter, {notequal, {"accountStatus",["disabled"]}}}.
{1dap_local_filter, {equal, {"accountStatus",["enabled"]}}}.
{1dap_local_filter, undefined}.

59nttp://tools.ietf.org/html/rfc4515

http://tools.ietf.org/html/rfc4515

60 3. Configuring ejabberd

Examples

Common example Let’s say ldap.example.org is the name of our LDAP server. We have
users with their passwords in "ou=Users,dc=example,dc=org" directory. Also we have address-
book, which contains users emails and their additional infos in "ou=AddressBook,dc=example,dc=org"
directory. The connection to the LDAP server is encrypted using TLS, and using the custom

port 6123. Corresponding authentication section should looks like this:

Authentication method

auth_method: [ldap]

DNS name of our LDAP server

ldap_servers: ["ldap.example.org"]

Bind to LDAP server as "cn=Manager,dc=example,dc=org" with password "secret"
ldap_rootdn: "cn=Manager,dc=example,dc=org"

ldap_password: "secret"

ldap_encrypt: tls

ldap_port: 6123

Define the user’s base

ldap_base: "ou=Users,dc=example,dc=org"

We want to authorize users from ’shadowAccount’ object class only
ldap_filter: "(objectClass=shadowAccount)"

Now we want to use users LDAP-info as their vCards. We have four attributes defined in our

LDAP schema: "mail" — email address, "givenName" — first name, "sn" — second name,
"birthDay" — birthday. Also we want users to search each other. Let’s see how we can set it
up:

modules:

mod_vcard_ldap:
We use the same server and port, but want to bind anonymously because
our LDAP server accepts anonymous requests to
"ou=AddressBook,dc=example,dc=org" subtree.
ldap_rootdn: ""
ldap_password:
define the addressbook’s base
ldap_base: "ou=AddressBook,dc=example,dc=org"
uidattr: user’s part of JID is located in the "mail" attribute
uidattr_format: common format for our emails
ldap_uids:
"mail": "%u@mail.example.org"
We have to define empty filter here, because entries in addressbook does not
belong to shadowAccount object class
ldap_filter: ""
Now we want to define vCard pattern
ldap_vcard_map:
"NICKNAME": {"%u": [1} # just use user’s part of JID as his nickname

3.2 Database and LDAP Configuration

61

"GIVEN": {"%s": ["givenName"]}
"EAMILY" : {"%S" . ["sn"]}

"FN": {"%s, %s": ["sn", "givenName"]l}, # example: "Smith, John"

"EMAIL": {"%s": ["mail"]l}

"BDAY": {"%s": ["birthDay"l}]}
Search form
ldap_search_fields:

"User": "Ju"
"Name": "givenName"
"Family Name": "sn"
"Email": "mail"

"Birthday": "birthDay"
vCard fields to be reported

Note that JID is always returned with search results

ldap_search_reported:
"Full Name": "FN"
"Nickname": "NICKNAME"
"Birthday": "BDAY"

Note that mod_vcard_ldap module checks for the existence of the user before searching in his

information in LDAP.

Active Directory Active Directory is just an LDAP-server with predefined attributes.

sample configuration is shown below:

auth_method: [1ldap]

ldap_servers: ["office.org"] # List of LDAP servers

ldap_base: "DC=office,DC=org" # Search base of LDAP directory
ldap_rootdn: "CN=Administrator,CN=Users,DC=office,DC=org" # LDAP manager
ldap_password: "***xxxx'" # Password to LDAP manager

ldap_uids: ["sAMAccountName"]
ldap_filter: " (memberQOf=*)"

modules:

mod_vcard_ldap:
ldap_vcard_map:

"NICKNAME": {"%u", [1}
"GIVEN": {"%s", ["givenName"]}
"MIDDLE": {"%s", ["initials"]}
"FAMILY": {"%s", ["sn"]}
HFNH: {II%SII’ ["displayName"]}
"EMAIL": {"%s", ["mail"l}
"ORGNAME": {"%s", ["company"]}
"ORGUNIT": {"%s", ["department"]}
"CTRY": {"%s", ["c"1}

A

62 3. Configuring ejabberd

"LOCALITY": {"¥%s", ["1"1}

"STREET": {"%s", ["streetAddress"]}

"REGION": {"%s", ["st"1}

"PCODE": {"%s", ["postalCode"]}

"TITLE": {"%s", ["title"]}

"URL": {"%s", ["wWWHomePage"]}

"DESC": {"%s", ["description"]}

"TEL": {"%s", ["telephoneNumber"]}]}
ldap_search_fields:

"User": "Yu"

"Name": "givenName"

"Family Name": "sn"

"Email": "mail"

"Company": "company"
"Department": "department"
"Role": "title"
"Description": "description"
"Phone": "telephoneNumber"

ldap_search_reported:
"Full Name": "FN"
"Nickname": "NICKNAME"
"Email": "EMAIL"

3.2.3 Riak

Riak® is a distributed NoSQL key-value data store. The actual database access is defined in the
options with riak_ prefix.

Connection

The following paramaters are available:

riak_server: String A hostname of the Riak server. The default is ¢ ‘localhost’’.
riak port: Port The port where the Riak server is accepting connections. The defalt is 8087.

riak pool_size: N By default ejabberd opens 10 connections to the Riak server. You can
change this number by using this option.

riak start_interval: N If the connection to the Riak server fails, ejabberd waits 30 seconds
before retrying. You can modify this interval with this option.

Example configuration:

riak_server: "riak.server.com"
riak_port: 9097

60nttp://basho.com/riak/

http://basho.com/riak/

3.2 Database and LDAP Configuration 63

Storage

Several ejabberd modules can be used to store information in Riak database. Refer to the
corresponding module documentation to see if it supports such ability. To enable storage to
Riak database, just make sure that your database is running well (see the next section), and add
the module option db_type: riak.

Riak Configuration

First, you need to configure Riak to use LevelDB®! as a database backend.

If you are using Riak 2.x and higher, configure storage_backend option of /etc/riak/riak.conf
as follows:

storage_backend = leveldb

If you are using Riak 1.4.x and older, configure storage_backend option of /etc/riak/app.config
in the section riak kv as follows:

{riak_kv, [
{storage_backend, riak_kv_eleveldb_backend},
Second, Riak should be pointed to ejabberd Erlang binary files (*.beam). As described in 2.4.4,

by default those are located in /1ib/ejabberd/ebin directory. So you should add the following
to /etc/riak/vm.args:

Path to ejabberd beams in order to make map/reduce
-pz /1lib/ejabberd/ebin

Important notice: make sure Riak has at least read access to that directory. Otherwise its startup
will likely fail.

Slnttp://en.wikipedia.org/wiki/LevelDB

http://en.wikipedia.org/wiki/LevelDB

64 3. Configuring ejabberd

3.3 Modules Configuration

The option modules defines the list of modules that will be loaded after ejabberd’s startup.
Each entry in the list is a tuple in which the first element is the name of a module and the
second is a list of options for that module.

The syntax is:

modules: {ModuleName: ModuleOptions }

Examples:

e In this example only the module mod_echo is loaded and no module options are specified
between the square brackets:

modules:
mod_echo: {}

e In the second example the modules mod_echo, mod_time, and mod_version are loaded
without options.

modules:
mod_echo: 8
mod_time: >
mod_version: {}

3.3.1 Modules Overview

The following table lists all modules included in ejabberd.

3.3 Modules Configuration 65
Module \ Feature Dependencies
mod_adhoc Ad-Hoc Commands (XEP-0050°?)

mod_announce

Manage announcements

recommends mod_adhoc

mod_blocking

Simple Communications Blocking (XEP-0191%3)

mod_privacy

mod_caps

Entity Capabilities (XEP-0115%%)

mod_carboncopy

Message Carbons (XEP-0280%)

mod_client_state

Filter stanzas for inactive clients

mod_configure Server configuration using Ad-Hoc mod_adhoc
mod_disco Service Discovery (XEP-0030%)

mod_echo Echoes XMPP stanzas

mod_fail2ban Bans IPs that show the malicious signs

mod_http_bind XMPP over Bosh service (HTTP Binding)
mod_http_fileserver Small HTTP file server

mod_irc IRC transport

mod_last Last Activity (XEP-0012°7)

mod_muc Multi-User Chat (XEP-0045°%)

mod_muc_log Multi-User Chat room logging mod _muc
mod_offline Offline message storage (XEP-0160°Y)

mod_ping XMPP Ping and periodic keepalives (XEP-01997°)
mod_pres_counter Detect presence subscription flood

mod_privacy Blocking Communication (XEP-001671)

mod_private Private XML Storage (XEP-00497%)

mod_proxy65 SOCKS5 Bytestreams (XEP-0065")

mod_pubsub Pub-Sub (XEP-00607%), PEP (XEP-0163") mod_caps

mod_pubsub_odbc

Pub-Sub (XEP-00607%), PEP (XEP-0163"")

supported DB (*) and mod_caps

mod_register

In-Band Registration (XEP-00777%)

mod_register_web

Web for Account Registrations

mod_roster

Roster management (XMPP IM)

mod_service_log

Copy user messages to logger service

mod_shared_roster

Shared roster management

mod_roster

mod_shared_roster_ldap

LDAP Shared roster management

mod_roster

mod_sic

Server IP Check (XEP-02797)

mod_sip SIP Registrar/Proxy (RFC 3261%0) ejabberd_sip
mod_stats Statistics Gathering (XEP-0039%!)

mod_time Entity Time (XEP-0202%2)

mod_vcard veard-temp (XEP-0054%3)

mod_vcard_ldap

veard-temp (XEP-0054%%)

LDAP server

mod_vcard_xupdate

vCard-Based Avatars (XEP-0153%)

mod_vcard

mod_version

Software Version (XEP-00925°)

e (*) This module requires a supported database. For a list of supported databases, see

section 3.2.

You can see which database backend each module needs by looking at the suffix:

e No suffix, this means that the module uses Erlang’s built-in database Mnesia as backend,
Riak key-value store or ODBC database (see 3.2).

66 3. Configuring ejabberd

e ‘Idap’, this means that the module needs an LDAP server as backend.

You can find more contributed modules®” on the ejabberd website. Please remember that these
contributions might not work or that they can contain severe bugs and security leaks. Therefore,
use them at your own risk!

3.3.2 Common Options

The following options are used by many modules. Therefore, they are described in this separate
section.

iqdisc

Many modules define handlers for processing 1Q queries of different namespaces to this server
or to a user (e.g. to example.org or to user@example.org). This option defines processing
discipline for these queries.

The syntax is:
igdisc: Value
Possible Value are:

no_queue All queries of a namespace with this processing discipline are processed directly. This
means that the XMPP connection that sends this IQ query gets blocked: no other packets
can be processed until this one has been completely processed. Hence this discipline is not
recommended if the processing of a query can take a relatively long time.

one_queue In this case a separate queue is created for the processing of IQ queries of a namespace
with this discipline. In addition, the processing of this queue is done in parallel with that
of other packets. This discipline is most recommended.

N N separate queues are created to process the queries. The queries are thus processed in parallel,
but in a controlled way.

parallel For every packet with this discipline a separate Erlang process is spawned. Conse-
quently, all these packets are processed in parallel. Although spawning of Erlang process
has a relatively low cost, this can break the server’s normal work, because the Erlang
emulator has a limit on the number of processes (32000 by default).

Example:

modules:

mod_time:
iqgdisc: no_queue

8Thttp://www.ejabberd.im/contributions

http://www.ejabberd.im/contributions

3.3 Modules Configuration 67

host

This option defines the Jabber ID of a service provided by an ejabberd module.

The syntax is:
host: HostName
If you include the keyword "@HOST@” in the HostName, it is replaced at start time with the

real virtual host string.

This example configures the echo module to provide its echoing service in the Jabber ID mirror.example.org:

modules:

mod_echo:
host: "mirror.example.org"

However, if there are several virtual hosts and this module is enabled in all of them, the
"@QHOST@” keyword must be used:

modules:

mod_echo:
host: "mirror.@QHOST@"

3.3.3 mod_announce

This module enables configured users to broadcast announcements and to set the message of
the day (MOTD). Configured users can perform these actions with a XMPP client either using
Ad-hoc commands or sending messages to specific JIDs.

The Ad-hoc commands are listed in the Server Discovery. For this feature to work, mod_adhoc
must be enabled.

The specific JIDs where messages can be sent are listed bellow. The first JID in each entry will
apply only to the specified virtual host example.org, while the JID between brackets will apply
to all virtual hosts in ejabberd.

example.org/announce/all (example.org/announce/all-hosts/all) The message is sent to
all registered users. If the user is online and connected to several resources, only the resource
with the highest priority will receive the message. If the registered user is not connected,
the message will be stored offline in assumption that offline storage (see section 3.3.14) is
enabled.

68 3. Configuring ejabberd

example.org/announce/online (example.org/announce/all-hosts/online) The message is
sent to all connected users. If the user is online and connected to several resources, all re-
sources will receive the message.

example.org/announce/motd (example.org/announce/all-hosts/motd) The message is set
as the message of the day (MOTD) and is sent to users when they login. In addition the
message is sent to all connected users (similar to announce/online).

example.org/announce/motd/update (example.org/announce/all-hosts/motd/update) The
message is set as message of the day (MOTD) and is sent to users when they login. The
message is not sent to any currently connected user.

example.org/announce/motd/delete (example.org/announce/all-hosts/motd/delete) Any
message sent to this JID removes the existing message of the day (MOTD).

Options:

db_type: internal|odbc Define the type of storage where the module will create the tables
and store user information. The default is to store in the internal Mnesia database. If odbc
value is defined, make sure you have defined the database, see 3.2.

access: AccessName This option specifies who is allowed to send announcements and to set
the message of the day (by default, nobody is able to send such messages).

Examples:

e Only administrators can send announcements:
access:
announce:
admin: allow
modules:
mod_adhoc: {}

mod_announce:
access: announce

o Administrators as well as the direction can send announcements:

acl:
direction:
user:
"big_boss": "example.org"
"assistant": "example.org"
admin:
user:

"admin": "example.org"

3.3 Modules Configuration 69

access:
announce:
admin: allow
direction: allow

modules:

mod_adhoc: {}
mod_announce:
access: announce

Note that mod_announce can be resource intensive on large deployments as it can broadcast lot of
messages. This module should be disabled for instances of ejabberd with hundreds of thousands
users.

3.3.4 mod_client_state

This module allows for queueing or dropping certain types of stanzas when a client indicates
that the user is not actively using the client at the moment (see XEP-0352%%). This can save
bandwidth and resources.

Options:

drop_chat_states: true|false Drop most "standalone” Chat State Notifications (as defined
in XEP-0085%%) while a client indicates inactivity. The default value is false.

queue _presence: truel|false While a client is inactive, queue presence stanzas that indicate
(un)availability. The latest queued stanza of each contact is delivered as soon as the client
becomes active again. The default value is false.

Example:

modules:
mod_client_state:

drop_chat_states: true
queue_presence: true

3.3.5 mod_disco

This module adds support for Service Discovery (XEP-0030°°). With this module enabled,
services on your server can be discovered by XMPP clients. Note that ejabberd has no modules

88nttp://xmpp.org/extensions/xep-0352. html
89http://xmpp.org/extensions/xep-0085. html
9Onttp://xmpp.org/extensions/xep-0030.html

http://xmpp.org/extensions/xep-0352.html
http://xmpp.org/extensions/xep-0085.html
http://xmpp.org/extensions/xep-0030.html

70 3. Configuring ejabberd

with support for the superseded Jabber Browsing (XEP-0011°!) and Agent Information (XEP-
0094°2). Accordingly, XMPP clients need to have support for the newer Service Discovery
protocol if you want them be able to discover the services you offer.

Options:

iqdisc: Discipline This specifies the processing discipline for Service Discovery (http://jabber.org/protoc
and http://jabber.org/protocol/disco#info) IQ queries (see section 3.3.2).

extra_domains: [Domain, ...] With this option, you can specify a list of extra domains that
are added to the Service Discovery item list.

server_info: [{modules: Modules, name: Name, urls: [URL, ...] }] Specify ad-
ditional information about the server, as described in Contact Addresses for XMPP Services
(XEP-0157%%). Modules can be the keyword ‘all’, in which case the information is reported
in all the services; or a list of ejabberd modules, in which case the information is only
specified for the services provided by those modules. Any arbitrary Name and URL can be
specified, not only contact addresses.

Examples:

e To serve a link to the Jabber User Directory on jabber.org:

modules:

mod_disco:
extra_domains: ["users.jabber.org"]

e To serve a link to the transports on another server:

modules:

mod_disco:
extra_domains:
- "icq.example.com"
- "msn.example.com"

e To serve a link to a few friendly servers:

modules:

mod_disco:
extra_domains:
- "example.org"
- "example.com"

9http://xmpp.org/extensions/xep-0011.html
92http://xmpp.org/extensions/xep-0094.html
93http://xmpp.org/extensions/xep-0157 . html

http://xmpp.org/extensions/xep-0011.html
http://xmpp.org/extensions/xep-0094.html
http://xmpp.org/extensions/xep-0157.html

3.3 Modules Configuration 71

e With this configuration, all services show abuse addresses, feedback address on the main
server, and admin addresses for both the main server and the vJUD service:

modules:

mod_disco:
server_info:
modules: all
name: "abuse-addresses"
urls: ["mailto:abuse@shakespeare.lit"]

modules: [mod_muc]
name: "Web chatroom logs"
urls: ["http://www.example.org/muc-logs"]

modules: [mod_disco]

name: "feedback-addresses"

urls:
- "http://shakespeare.lit/feedback.php"
- "mailto:feedback@shakespeare.lit"
- "xmpp:feedback@shakespeare.lit"

modules:
- mod_disco
- mod_vcard
name: "admin-addresses"
urls:
- "mailto:xmpp@shakespeare.lit"
- "xmpp:admins@shakespeare.lit"

3.3.6 mod_echo

This module simply echoes any XMPP packet back to the sender. This mirror can be of interest
for ejabberd and XMPP client debugging.

Options:

host: HostName This option defines the Jabber ID of the service. If the host option is not
specified, the Jabber ID will be the hostname of the virtual host with the prefix ‘echo.’.
The keyword "@QHOST@” is replaced at start time with the real virtual host name.

Example: Mirror, mirror, on the wall, who is the most beautiful of them all?

modules:

72 3. Configuring ejabberd

mod_echo:
host: "mirror.example.org"

3.3.7 mod_fail2ban

The module bans IPs that show the malicious signs. Currently only C2S authentication failures
are detected.

Available options:

c2s_auth ban_ lifetime: Seconds The lifetime of the IP ban caused by too many C2S au-
thentication failures. The default is 3600, i.e. one hour.

c2s_max_auth failures: Integer The number of C2S authentication failures to trigger the
IP ban. The default is 20.

Example:

modules:
mod_fail2ban:

c2s_auth_block_lifetime: 7200
c2s_max_auth_failures: 50

3.3.8 mod_http_bind

This module implements XMPP over Bosh (formerly known as HTTP Binding) as defined in
XEP-0124%* and XEP-0206%. It extends ejabberd’s built in HTTP service with a configurable
resource at which this service will be hosted.

To use HTTP-Binding, enable the module:

modules:

mod_http_bind: {}

and add http_bind in the HTTP service. For example:

94nttp: //xmpp.org/extensions/xep-0124.html
9http://xmpp.org/extensions/xep-0206.html

http://xmpp.org/extensions/xep-0124.html
http://xmpp.org/extensions/xep-0206.html

3.3 Modules Configuration 73

listen:

port: 5280

module: ejabberd_http
http_bind: true
http_poll: true
web_admin: true

With this configuration, the module will serve the requests sent to http://example.org:5280/http-bind/
Remember that this page is not designed to be used by web browsers, it is used by XMPP clients
that support XMPP over Bosh.

If you want to set the service in a different URI path or use a different module, you can configure
it manually using the option request_handlers. For example:

listen:

port: 5280

module: ejabberd_http

request_handlers:
"/http-bind": mod_http_bind

http_poll: true

web_admin: true

Options:

{max_inactivity, Seconds} Define the maximum inactivity period in seconds. Default value
is 30 seconds. For example, to set 50 seconds:

modules:

mod_http_bind:
max_inactivity: 50

3.3.9 mod_http_fileserver

This simple module serves files from the local disk over HTTP.

Options:

docroot: Path Directory to serve the files.

74 3. Configuring ejabberd

accesslog: Path File to log accesses using an Apache-like format. No log will be recorded if
this option is not specified.

directory_indices: [Index, ...] Indicate one or more directory index files, similarly to
Apache’s DirectoryIndex variable. When a web request hits a directory instead of a regular
file, those directory indices are looked in order, and the first one found is returned.

custom_headers: {Name: Value} Indicate custom HTTP headers to be included in all re-
sponses. Default value is: []

content_types: {Name: Typel} Specify mappings of extension to content type. There are
several content types already defined, with this option you can add new definitions, modify
or delete existing ones. To delete an existing definition, simply define it with a value:
‘undefined’.

default_content_type: Type Specify the content type to use for unknown extensions. Default
value is ‘application/octet-stream’.

This example configuration will serve the files from the local directory /var/www in the address
http://example.org:5280/pub/archive/. In this example a new content type ogg is defined,
png is redefined, and jpg definition is deleted. To use this module you must enable it:

modules:

mod_http_fileserver:
docroot: "/var/www"
accesslog: "/var/log/ejabberd/access.log"
directory_indices:
- "index.html"
- "main.htm"
custom_headers:
"X-Powered-By": "Erlang/OTP"
"X-Fry": "It’s a widely-believed fact!"
content_types:
".ogg": "audio/ogg"
".png": "image/png"
".jpg": undefined
default_content_type: "text/html"

And define it as a handler in the HTTP service:

listen:

port: 5280
module: ejabberd_http
request_handlers:

3.3 Modules Configuration 75

"/pub/archive": mod_http_fileserver

3.3.10 mod_irc

This module is an IRC transport that can be used to join channels on IRC servers.

End user information:

e A XMPP client with ‘groupchat 1.0’ support or Multi-User Chat support (XEP-0045%%) is
necessary to join IRC channels.

e An IRC channel can be joined in nearly the same way as joining a XMPP Multi-User Chat
room. The difference is that the room name will be ‘channel%irc.example.org’ in case
irc.example.org is the IRC server hosting ‘channel’. And of course the host should point
to the IRC transport instead of the Multi-User Chat service.

e You can register your nickame by sending ‘IDENTIFY password’ to
nickserver!irc.example.org@irc. jabberserver.org.

e Entering your password is possible by sending ‘LOGIN nick password’
to nickserver!irc.example.org@irc. jabberserver.org.

e The IRC transport provides Ad-Hoc Commands (XEP-0050°7) to join a channel, and to
set custom IRC username and encoding.

e When using a popular XMPP server, it can occur that no connection can be achieved with
some IRC servers because they limit the number of connections from one IP.

Options:

host: HostName This option defines the Jabber ID of the service. If the host option is not
specified, the Jabber ID will be the hostname of the virtual host with the prefix ‘irc.’.
The keyword ”@QHOST@?” is replaced at start time with the real virtual host name.

db_type: internal|odbc Define the type of storage where the module will create the tables
and store user information. The default is to store in the internal Mnesia database. If odbc
value is defined, make sure you have defined the database, see 3.2.

access: AccessName This option can be used to specify who may use the IRC transport
(default value: all).

default_encoding: Encoding Set the default IRC encoding. Default value: "iso8859-1"

Examples:

9http://xmpp.org/extensions/xep-0045. html
97http://xmpp.org/extensions/xep-0050.html

http://xmpp.org/extensions/xep-0045.html
http://xmpp.org/extensions/xep-0050.html

76 3. Configuring ejabberd

e In the first example, the IRC transport is available on (all) your virtual host(s) with the
prefix ‘irc.’. Furthermore, anyone is able to use the transport. The default encoding is
set to "iso8859-15".

modules:
mod_irc:
access: all
default_encoding: "iso8859-15"

e In next example the IRC transport is available with JIDs with prefix irc-t.net. Moreover,
the transport is only accessible to two users of example.org, and any user of example. com:

acl:
paying_customers:
user:
- "customerl": "example.org"
- "customer2": "example.org"
server: "example.com"
access:

irc_users:
paying_customers: allow
all: deny

modules:

mod_irc:
access: irc_users
host: "irc.example.net"

3.3.11 mod_last

This module adds support for Last Activity (XEP-0012%). It can be used to discover when a
disconnected user last accessed the server, to know when a connected user was last active on the
server, or to query the uptime of the ejabberd server.

Options:
iqdisc: Discipline This specifies the processing discipline for Last activity (jabber:iq:last)
1Q queries (see section 3.3.2).

db_type: internallodbc Define the type of storage where the module will create the tables
and store user information. The default is to store in the internal Mnesia database. If odbc
value is defined, make sure you have defined the database, see 3.2.

98nttp://xmpp.org/extensions/xep-0012. html

http://xmpp.org/extensions/xep-0012.html

3.3 Modules Configuration 77

3.3.12 mod_muc

This module provides a Multi-User Chat (XEP-0045%) service. Users can discover existing
rooms, join or create them. Occupants of a room can chat in public or have private chats.

Some of the features of Multi-User Chat:

Sending public and private messages to room occupants.

Inviting other users to a room.

Setting a room subject.

Creating password protected rooms.

Kicking and banning occupants.

The MUC service allows any Jabber ID to register a nickname, so nobody else can use that
nickname in any room in the MUC service. To register a nickname, open the Service Discovery
in your XMPP client and register in the MUC service.

This module supports clustering and load balancing. One module can be started per cluster node.
Rooms are distributed at creation time on all available MUC module instances. The multi-user
chat module is clustered but the rooms themselves are not clustered nor fault-tolerant: if the
node managing a set of rooms goes down, the rooms disappear and they will be recreated on an
available node on first connection attempt.

Module options:

host: HostName This option defines the Jabber ID of the service. If the host option is not spec-
ified, the Jabber ID will be the hostname of the virtual host with the prefix ‘conference.’.
The keyword ”@QHOST@?” is replaced at start time with the real virtual host name.

db_type: internal|odbc Define the type of storage where the module will create the tables
and store user information. The default is to store in the internal Mnesia database. If odbc
value is defined, make sure you have defined the database, see 3.2.

access: AccessName You can specify who is allowed to use the Multi-User Chat service. By
default everyone is allowed to use it.

access_create: AccessName To configure who is allowed to create new rooms at the Multi-
User Chat service, this option can be used. By default any account in the local ejabberd
server is allowed to create rooms.

access_persistent: AccessName To configure who is allowed to modify the 'persistent’ room
option. By default any account in the local ejabberd server is allowed to modify that
option.

9nttp://xmpp.org/extensions/xep-0045.html

http://xmpp.org/extensions/xep-0045.html

78 3. Configuring ejabberd

access_admin: AccessName This option specifies who is allowed to administrate the Multi-
User Chat service. The default value is none, which means that only the room creator can
administer his room. The administrators can send a normal message to the service JID,
and it will be shown in all active rooms as a service message. The administrators can send
a groupchat message to the JID of an active room, and the message will be shown in the
room as a service message.

history_size: Size A small history of the current discussion is sent to users when they enter
the room. With this option you can define the number of history messages to keep and
send to users joining the room. The value is an integer. Setting the value to 0 disables the
history feature and, as a result, nothing is kept in memory. The default value is 20. This
value is global and thus affects all rooms on the service.

max_users: Number This option defines at the service level, the maximum number of users
allowed per room. It can be lowered in each room configuration but cannot be increased
in individual room configuration. The default value is 200.

max_users_admin_threshold: Number This option defines the number of service admins or
room owners allowed to enter the room when the maximum number of allowed occupants
was reached. The default limit is 5.

max_user_conferences: Number This option defines the maximum number of rooms that any
given user can join. The default value is 10. This option is used to prevent possible abuses.
Note that this is a soft limit: some users can sometimes join more conferences in cluster
configurations.

max_room_id: Number This option defines the maximum number of characters that Room ID
can have when creating a new room. The default value is to not limit: infinity.

max_room name: Number This option defines the maximum number of characters that Room
Name can have when configuring the room. The default value is to not limit: infinity.

max_room desc: Number This option defines the maximum number of characters that Room
Description can have when configuring the room. The default value is to not limit:
infinity.

min message_interval: Number This option defines the minimum interval between two mes-
sages send by an occupant in seconds. This option is global and valid for all rooms. A
decimal value can be used. When this option is not defined, message rate is not limited.
This feature can be used to protect a MUC service from occupant abuses and limit num-
ber of messages that will be broadcasted by the service. A good value for this minimum
message interval is 0.4 second. If an occupant tries to send messages faster, an error is
send back explaining that the message has been discarded and describing the reason why
the message is not acceptable.

min presence_interval: Number This option defines the minimum of time between presence
changes coming from a given occupant in seconds. This option is global and valid for all
rooms. A decimal value can be used. When this option is not defined, no restriction is
applied. This option can be used to protect a MUC service for occupants abuses. If an
occupant tries to change its presence more often than the specified interval, the presence is
cached by ejabberd and only the last presence is broadcasted to all occupants in the room
after expiration of the interval delay. Intermediate presence packets are silently discarded.
A good value for this option is 4 seconds.

3.3 Modules Configuration 79

default_room options: {OptionName: OptionValue} This module option allows to define
the desired default room options. Note that the creator of a room can modify the options
of his room at any time using an XMPP client with MUC capability. The available room
options and the default values are:

allow_change_subj: truelfalse Allow occupants to change the subject.

allow private messages: true|false Occupants can send private messages to other
occupants.

allow_private messages_from visitors: anyone|moderators|nobody Visitorscan send
private messages to other occupants.

allow_query users: true|false Occupants can send IQ queries to other occupants.
allow_user_invites: false|true Allow occupants to send invitations.
allow_visitor nickchange: true|false Allow visitors to change nickname.

allow_visitor_status: truelfalse Allow visitors to send status text in presence up-
dates. If disallowed, the status text is stripped before broadcasting the presence
update to all the room occupants.

anonymous: truel|false The room is anonymous: occupants don’t see the real JIDs of
other occupants. Note that the room moderators can always see the real JIDs of the
occupants.

captcha_protected: false When a user tries to join a room where he has no affiliation
(not owner, admin or member), the room requires him to fill a CAPTCHA challenge
(see section 3.1.9) in order to accept her join in the room.

logging: falsel|true The public messages are logged using mod_muc_log.
max_users: 200 Maximum number of occupants in the room.

members_by_default: truel|false The occupants that enter the room are participants
by default, so they have ’voice’.

members_only: falsel|true Only members of the room can enter.
moderated: true|false Only occupants with 'voice’ can send public messages.

password: "roompass123" Password of the room. You may want to enable the next
option too.

password protected: falsel|true The password is required to enter the room.
persistent: false|true The room persists even if the last participant leaves.

public: truel|false The room is public in the list of the MUC service, so it can be
discovered.

public_list: truelfalse The list of participants is public, without requiring to enter
the room.

title: "Room Title" A human-readable title of the room.

All of those room options can be set to true or false, except password and title which
are strings, and max_users that is integer.

Examples:

80 3. Configuring ejabberd

e In the first example everyone is allowed to use the Multi-User Chat service. Everyone
will also be able to create new rooms but only the user admin@example.org is allowed
to administrate any room. In this example he is also a global administrator. When
admin@example.org sends a message such as ‘Tomorrow, the XMPP server will be moved
to new hardware. This will involve service breakdowns around 23:00 UMT. We apologise
for this inconvenience.” to conference.example.org, it will be displayed in all active
rooms. In this example the history feature is disabled.

acl:
admin:
user:
- "admin": "example.org"

access:
muc_admin:
admin: allow

modules:
mod_muc:
access: all
access_create: all

access_admin: muc_admin
history_size: 0

e In the second example the Multi-User Chat service is only accessible by paying customers
registered on our domains and on other servers. Of course the administrator is also allowed
to access rooms. In addition, he is the only authority able to create and administer rooms.
When admin@example.org sends a message such as ‘Tomorrow, the Jabber server will be
moved to new hardware. This will involve service breakdowns around 23:00 UMT. We
apologise for this inconvenience.” to conference.example.org, it will be displayed in all
active rooms. No history_size option is used, this means that the feature is enabled and
the default value of 20 history messages will be send to the users.

acl:
paying_customers:

user:
- "customerl": "example.net"
- "customer2": "example.com"
- "customer3": "example.org"
admin:
user:
- "admin": "example.org"
access:

muc_admin
admin: allow
all: deny

muc_access:

3.3 Modules Configuration 81

paying_customers: allow
admin: allow
all: deny

modules:
mod_muc:
access: muc_access

access_create: muc_admin
access_admin: muc_admin

e In the following example, MUC anti abuse options are used. An occupant cannot send
more than one message every 0.4 seconds and cannot change its presence more than once
every 4 seconds. The length of Room IDs and Room Names are limited to 20 characters,
and Room Description to 300 characters. No ACLs are defined, but some user restriction
could be added as well:

modules:
mod_muc:
min_message_interval: 0.4
min_presence_interval: 4
max_room_id: 20

max_room_name: 20
max_room_desc: 300

e This example shows how to use default_room_options to make sure the newly created
rooms have by default those options.

modules:
mod_muc:

access: muc_access

access_create: muc_admin

default_room_options:
allow_change_subj: false
allow_query_users: true
allow_private_messages: true
members_by_default: false
title: "New chatroom"

anonymous: false
access_admin: muc_admin

82 3. Configuring ejabberd

3.3.13 mod_muc_log

This module enables optional logging of Multi-User Chat (MUC) public conversations to HTML.
Once you enable this module, users can join a room using a MUC capable XMPP client, and if
they have enough privileges, they can request the configuration form in which they can set the
option to enable room logging.

Features:
e Room details are added on top of each page: room title, JID, author, subject and configu-
ration.
e The room JID in the generated HTML is a link to join the room (using XMPP URI'®?).
e Subject and room configuration changes are tracked and displayed.

e Joins, leaves, nick changes, kicks, bans and ‘/me’ are tracked and displayed, including the
reason if available.

o Generated HTML files are XHTML 1.0 Transitional and CSS compliant.
e Timestamps are self-referencing links.

e Links on top for quicker navigation: Previous day, Next day, Up.

e (CSS is used for style definition, and a custom CSS file can be used.

e URLs on messages and subjects are converted to hyperlinks.

e Timezone used on timestamps is shown on the log files.

A custom link can be added on top of each page.

Options:

access_log: AccessName This option restricts which occupants are allowed to enable or dis-
able room logging. The default value is muc_admin. Note for this default setting you need
to have an access rule for muc_admin in order to take effect.

cssfile: false|URL With this option you can set whether the HTML files should have a
custom CSS file or if they need to use the embedded CSS file. Allowed values are false
and an URL to a CSS file. With the first value, HTML files will include the embedded
CSS code. With the latter, you can specify the URL of the custom CSS file (for example:
"http://example.com/my.css"). The default value is false.

dirname: room_jid|room name Allows to configure the name of the room directory. Allowed
values are room_jid and room_name. With the first value, the room directory name will be
the full room JID. With the latter, the room directory name will be only the room name,
not including the MUC service name. The default value is room_jid.

100nttp: //xmpp.org/rfcs/rfc5122. html

http://xmpp.org/rfcs/rfc5122.html

3.3 Modules Configuration 83

dirtype: subdirs|plain The type of the created directories can be specified with this option.
Allowed values are subdirs and plain. With the first value, subdirectories are created for
each year and month. With the latter, the names of the log files contain the full date, and
there are no subdirectories. The default value is subdirs.

file format: html|plaintext Define the format of the log files: html stores in HT ML format,
plaintext stores in plain text. The default value is html.

file permissions: {mode: Mode, group: Group} Define the permissions that must be
used when creating the log files: the number of the mode, and the numeric id of the
group that will own the files. The default value is {644, 33}.

outdir: Path This option sets the full path to the directory in which the HTML files should
be stored. Make sure the ejabberd daemon user has write access on that directory. The
default value is "www/muc".

spam_prevention: true|false To prevent spam, the spam_prevention option adds a special
attribute to links that prevent their indexation by search engines. The default value is
true, which mean that nofollow attributes will be added to user submitted links.

timezone: locall|universal The time zone for the logs is configurable with this option. Al-
lowed values are local and universal. With the first value, the local time, as reported
to Erlang by the operating system, will be used. With the latter, GMT/UTC time will be
used. The default value is local.

top-link: {URL: Text} With this option you can customize the link on the top right corner
of each log file. The default value is {"/", "Home"}.

Examples:

e In the first example any room owner can enable logging, and a custom CSS file will be used
(http://example.com/my.css). The names of the log files will contain the full date, and
there will be no subdirectories. The log files will be stored in /var/www /muclogs, and the
time zone will be GMT/UTC. Finally, the top link will be Jabber.ru.

access:
muc:
all: allow

modules:

mod_muc_log:
access_log: muc
cssfile: "http://example.com/my.css"
dirtype: plain
dirname: room_jid
outdir: "/var/www/muclogs"
timezone: universal
spam_prevention: true
top_link:
"http://www.jabber.ru/": "Jabber.ru"

84 3. Configuring ejabberd

e In the second example only adminl@example.org and admin2@example.net can enable
logging, and the embedded CSS file will be used. The names of the log files will only
contain the day (number), and there will be subdirectories for each year and month. The
log files will be stored in /var/www/muclogs, and the local time will be used. Finally, the
top link will be the default Home.

acl:
admin:
user:
- "adminl": "example.org"
- "admin2": "example.net"
access:
muc_log:
admin: allow
all: deny
modules:

mod_muc_log:

access_log: muc_log
cssfile: false
dirtype: subdirs
file_permissions:

mode: 644

group: 33
outdir: "/var/www/muclogs"
timezone: local

3.3.14 mod_offline

This module implements offline message storage (XEP-0160'°"). This means that all messages
sent to an offline user will be stored on the server until that user comes online again. Thus it
is very similar to how email works. Note that ejabberdctl has a command to delete expired
messages (see section 4.1).

db_type: internal|odbc Define the type of storage where the module will create the tables
and store user information. The default is to store in the internal Mnesia database. If odbc
value is defined, make sure you have defined the database, see 3.2.

access max_user messages: AccessName This option defines which access rule will be en-
forced to limit the maximum number of offline messages that a user can have (quota).
When a user has too many offline messages, any new messages that he receive are dis-
carded, and a resource-constraint error is returned to the sender. The default value is
max_user_offline messages. Then you can define an access rule with a syntax similar to
max_user_sessions (see 3.1.6).

101http: //xmpp.org/extensions/xep-0160.html

http://xmpp.org/extensions/xep-0160.html

3.3 Modules Configuration 85

store_empty_body: true|false Whether or not to store messages with empty <body/> ele-
ment. The default value is true.

This example allows power users to have as much as 5000 offline messages, administrators up to
2000, and all the other users up to 100.

acl:
admin:
user:
- "adminl": "localhost"
- "admin2": "example.org"
