
1

 | Frames No Frames

http://griffon.codehaus.org

2

Griffon Guide - Reference Documentation

Authors: Andres Almiray

Version: 0.9.5-rc2

Copies of this document may be made for your own use and for distribution to others, provided that you do not
charge any fee for such copies and further provided that each copy contains this Copyright Notice, whether
distributed in print or electronically.

Table of Contents

1. Introduction .. 5
2. Getting Started .. 6

2.1 Downloading and Installing .. 6
2.2 Creating an Application ... 6
2.3 A Groovy Console Example .. 6
2.4 Getting Set-up in an IDE ... 8
2.5 Convention over Configuration ... 19
2.6 Running an Application ... 19
2.7 Testing an Application .. 20
2.8 Creating Artefacts .. 20

3. Configuration .. 21
3.1 Basic Configuration ... 21

3.1.1 Logging .. 21
3.2 Environments ... 28
3.3 Versioning ... 29
3.4 Dependency Resolution ... 30

3.4.1 Configurations and Dependencies ... 30
3.4.2 Dependency Repositories .. 31
3.4.3 Debugging Resolution ... 32
3.4.4 Inherited Dependencies ... 32
3.4.5 Dependency Reports .. 32
3.4.6 Plugin JAR Dependencies ... 33
3.4.7 Plugin Dependencies ... 33

3.5 Project Documentation .. 34
4. The Command Line .. 39

4.1 Creating Gant Scripts .. 39
4.2 Re-using Griffon scripts .. 40
4.3 Hooking into Events .. 42
4.4 Customising the build .. 43
4.5 Command Tools Integration .. 44
4.6 The Griffon Wrapper ... 46
4.7 Command Line Options .. 46

4.7.1 Verbose Output .. 46
4.7.2 Disable AST Injection ... 47
4.7.3 Disable Default Imports ... 47
4.7.4 Disable Conditional Logging Injection ... 48
4.7.5 Disable Threading Injection .. 48
4.7.6 Default Answer in Non Interactive Mode ... 48
4.7.7 Plugin Install Failure Strategies ... 48
4.7.8 Default Artifact Repository for Searching ... 48
4.7.9 Default Artifact Repository for Caching ... 49
4.7.10 Disable Automatic Local Repository Synchronization ... 49

4.8 The Griffon Shell ... 49
5. Application Overview .. 51

5.1 Directory Structure .. 51
5.2 The MVC Pattern .. 51

5.2.1 MVCGroupManager .. 52
5.2.2 MVCGroups and Configuration .. 53
5.2.3 Configuration Options ... 53

5.3 Application Lifecycle .. 55
5.3.1 Initialize ... 55
5.3.2 Startup .. 55

3

5.3.3 Ready ... 55
5.3.4 Shutdown ... 55
5.3.5 Stop .. 55

5.4 Application Events .. 55
5.4.1 Life Cycle Events .. 56
5.4.2 Artifact Events ... 56
5.4.3 Miscellaneous Events .. 57
5.4.4 Custom Events ... 57
5.4.5 Event Handlers .. 57
5.4.6 Custom Event Publishers ... 59

5.5 Application Features .. 59
5.5.1 Runtime Configuration .. 60
5.5.2 Metadata .. 60
5.5.3 Environment .. 61
5.5.4 Running Mode ... 61
5.5.5 Shutdown Handlers .. 61
5.5.6 Application Phase .. 61
5.5.7 Application Locale .. 61
5.5.8 Default Imports .. 61
5.5.9 Startup Arguments ... 62
5.5.10 Locating Resources .. 62
5.5.10 Uncaught Exceptions ... 63

5.6 Swing specific ... 64
5.6.1 WindowManager ... 64

5.7 Artifact API ... 66
5.7.1 Evaluating Conventions ... 66
5.7.2 Adding Dynamic Methods at Runtime .. 67
5.7.3 Artifact Types .. 68

5.8 Archetypes ... 68
5.8.1 A Fancy Example .. 69

5.9 Platform Specific ... 74
5.9.1 Tweaks for a Particular Platform ... 74
5.9.2 MacOSX .. 74

6. Models and Binding ... 75
6.1 Models ... 75
6.2 Binding .. 76

6.2.1 Syntax .. 76
6.2.2 Additional Properties ... 77

7. Views .. 79
7.1 Views and Swing ... 79
7.2 Special Nodes .. 81

7.2.1 Application .. 81
7.2.2 Container ... 81
7.2.3 Widget ... 81
7.2.4 Bean ... 82
7.2.5 Noparent .. 82
7.2.6 Root ... 82

8. Controllers and Services ... 84
8.1 Controllers ... 84

8.1.1 Threads and Actions .. 84
8.2 Services .. 86

9. Threading .. 88
9.1 Swing Threading ... 88

9.1.1 Synchronous Calls ... 88
9.1.2 Asynchronous Calls ... 88
9.1.3 Outside Calls .. 89

9.2 Toolkit-agnostic Threading ... 89
9.2.1 Synchronous Calls ... 89
9.2.2 Asynchronous Calls ... 90
9.2.3 Outside Calls .. 90
9.2.4 Additional Methods ... 91

9.3 Annotation Based Threading ... 91
10. Testing .. 93

10.1 Unit Testing ... 95
10.2 Integration Testing ... 95

4

10.3 Mocking ... 96
10.3.1 MockGriffonApplication ... 96

11. Packaging and Deployment .. 97
11.1 Zip .. 97
11.2 Jar .. 97
11.3 Webstart ... 98
11.4 Applet .. 98
11.5 Additional modes ... 99
11.6 Custom Manifest Entries ... 99

12. Plug-ins ... 101
12.1 Creating and Installing Plug-ins .. 101
12.2 Artifact Repositories .. 103
12.3 Understanding a Plugins Structure .. 104
12.4 Providing Basic Artefacts .. 104
12.5 Hooking into Build Events .. 105
12.6 Addons ... 105
12.7 Understanding Plugin Order .. 106
12.8 CLI Dependencies ... 107

13. Tips and Tricks ... 108
13.1 Using Artifact Conventions to your Advantage .. 108
13.2 Dealing with Non-Groovy Artifacts .. 109
13.3 Externalizing Views .. 111

13.3.1 NetBeans Matisse .. 111
13.3.2 Abeille Forms Designer ... 112
13.3.3 XML .. 113

13.4 Creating Bindings in Java .. 114

5

1. Introduction

Developing desktop/RIA applications on the JVM is a hard task. You have to make choices upfront during
application design that might complicate the implementation, compromising the user experience; not to mention the
amount of configuration needed.
RCP solutions like Eclipse RCP and NetBeans RCP are great for developing desktop applications, not so much for
RIAs and applets. Griffon is a framework inspired by , whose aim is to overcome the problems you mayGrails
encounter while developing all these types of applications. It brings along popular concepts like

Convention over Configuration
Don't Repeat Yourself (DRY)
Pervasive MVC
Task automation
Testing supported "out of the box"

Griffon relies on the power of the language to glue all things together. The framework is quite extensible viaGroovy
plugins also.
This documentation will take you through getting started with Griffon and building desktop/RIA applications with
the Griffon framework.

Credits and Acknowledgements
This guide is heavily influenced by the . It simply would not have been possible without the great effortsGrails Guide
made by: Graeme Rocher, Peter Ledbrook, Marc Palmer, Jeff Brown and their sponsor: SpringSource. The Griffon
team would like to thank them all (and the Grails community too!) for making such a great framework and bringing
the fun back to programming applications.

http://grails.org
http://groovy.codehaus.org
http://grails.org/doc/latest

6

2. Getting Started

2.1 Downloading and Installing

The first step to getting up and running with Griffon is to install the distribution. To do so follow these steps:

Download a binary distribution of Griffon and extract the resulting zip file to a location of your choice
Set the GRIFFON_HOME environment variable to the location where you extracted the zip

On Unix/Linux based systems this is typically a matter of adding something like the following
 to your profileexport GRIFFON_HOME=/path/to/griffon

On Windows this is typically a matter of setting an environment variable under My
Computer/Advanced/Environment Variables

Now you need to add the directory to your variable:bin PATH
On Unix/Linux base system this can be done by doing a export
PATH="$PATH:$GRIFFON_HOME/bin"
On windows this is done by modifying the environment variable under Path My
Computer/Advanced/Environment Variables

If Griffon is working correctly you should now be able to type in the terminal window and see outputgriffon
similar to the below:

Welcome to Griffon 0.9.5-rc2 - http://griffon.codehaus.org/
Licensed under Apache Standard License 2.0
Griffon home is set to: /usr/local/griffon-0.9.5-rc2
No script name specified. Use 'griffon help' for more info

2.2 Creating an Application

To create a Griffon application you first need to familiarize yourself with the usage of the commandgriffon
which is used in the following manner:

griffon [command name]

In this case the command you need to execute is :create-app

griffon create-app demoConsole

This will create a new directory inside the current one that contains the project. You should now navigate to this
directory in terminal:

cd demoConsole

2.3 A Groovy Console Example

The "create-app" target created a Griffon MVC Triad for you in the models, views, and controllers directory named
after the application. Hence you already have a model class DemoConsoleModel in the models directory.
The application model for this application is simple: it contains properties that hold the script to be evaluated and the
results of the evaluation. Make sure you paste the following code into

.griffon-app/models/democonsole/DemoConsoleModel.groovy

http://griffon.codehaus.org/Download

7

package democonsole
 groovy.beans.Bindableimport

class DemoConsoleModel {
 scriptSourceString
 @Bindable def scriptResult
 @Bindable enabled = boolean true
}

The controller is also trivial: throw the contents of the script from the model at a groovy shell, then store the result
back into the model. Make sure you paste the following code into

.griffon-app/controllers/democonsole/DemoConsoleController.groovy

package democonsole
class DemoConsoleController {
 GroovyShell shell = GroovyShell()private new
 // these will be injected by Griffon
 def model
 def view
 def executeScript = { evt = ->null
 model.enabled = false
 def result
 {try
 result = shell.evaluate(model.scriptSource)
 } {finally
 model.enabled = true
 model.scriptResult = result
 }
 }
}

The Griffon framework will inject references to the other portions of the MVC triad if fields named model, view, and
controller are present in the model or controller. This allows us to access the view widgets and the model data if
needed
The executeScript method will be used in the view for the button action. Hence the parameter, and the defaultevt
value so it can be called without an action event.
Finally, the Griffon framework can be configured to inject portions of the builders it uses. By default, the Threading
classes are injected into the controller, allowing the use of the , and methods fromedt doOutside doLater
SwingBuilder.
You may notice that there's no explicit threading management. All Swing developers know they must obey the
Swing Rule: long running computations must run outside of the EDT; all UI components should be queried/modified
inside the EDT. It turns out Griffon is aware of this rule, making sure an action is called outside of the EDt by
default, all bindings made to UI components via the model will be updated inside the EDT also. We'll setup the
bindings in the next example.
The view classes contain the visual components for your application. Please paste the following code into

.griffon-app/views/democonsole/DemoConsoleView.groovy

8

package democonsole
application(title:'DemoConsole', pack: ,true
 locationByPlatform: ,true
 iconImage: imageIcon('/griffon-icon-48x48.png').image,
 iconImages: [imageIcon('/griffon-icon-48x48.png').image,
 imageIcon('/griffon-icon-32x32.png').image,
 imageIcon('/griffon-icon-16x16.png').image]) {
 panel(border:emptyBorder(6)) {
 borderLayout()
 scrollPane(constraints:CENTER) {
 textArea(text:bind(target: model, 'scriptSource'),
 enabled: bind { model.enabled },
 columns: 40, rows: 10)
 }
 hbox(constraints:SOUTH) {
 button(, actionPerformed: controller.executeScript,"Execute"
 enabled: bind { model.enabled })
 hstrut 5
 label 'Result:'
 hstrut 5
 label text: bind { model.scriptResult }
 }
 }
}

The view script is a fairly straightforward SwingBuilder script. Griffon will execute these groovy scripts in context
of it's UberBuilder (a composite of the SwingBuilder and whatever else is thrown in).
Now to get the application running. You can do this by calling the command:run-app

griffon run-app

This command should compile all sources and package the application, you'll see a similar result as depicted by the
following screenshot after a few seconds

Standalone mode is not the only way to run your application, try the following command to run it in webstart mode:
. Conversely will run your application in applet mode. The best of all is that you did not haverun-webstart run-applet

to touch a single line of configuration in order to switch modes!

2.4 Getting Set-up in an IDE

IntelliJ IDEA
 and the plug-in offer good support for Groovy/Grails/Griffon developers. Refer to theIntelliJ IDEA JetGroovy

section on support on the JetBrains website for a feature overview.Groovy and Grails

Integrating an existing Griffon project
To integrate Griffon with IntelliJ run the following command to generate appropriate project files:

http://www.jetbrains.com/idea
http://www.jetbrains.net/confluence/display/GRVY/Groovy+Home
http://www.jetbrains.com/idea/features/groovy_grails.html

9

griffon integrate-with --intellij

Creating a new Griffon project
Follow these steps to create and run a new Griffon project with IDEA

 Bring up the "New Project" wizard. You should see Griffon as one of the available options#1

 Choose name and location for the new project#2

 Configure a Griffon SDK if you haven't done so already#3

10

 Click on the Finish button and develop with pleasure your Griffon project#4

NetBeans
A good Open Source alternative is Oracle's NetBeans, which provides a Groovy/Griffon plugin that automatically
recognizes Griffon projects and provides the ability to run Griffon applications in the IDE, code completion and

11

integration with Oracle's Glassfish server.

Integrating an existing Griffon project
NetBeans does not require any special integration support, it understands the layout of a Griffon project as long as
the Griffon plugin is installed. Just select "Open" from the menu and locate the folder that contains your project. It's
that simple. Follow these steps to install the Griffon NetBeans plugin.

: Java, Groovy and Grails plugins installed and up to date.Prerequisites
 Download the plugin#1

Follow this to download the latest zip distribution of the plugin.link
 Unpack the zip file into a directory of your choosing#2
 Open the plugin manager dialog. Go to the "Downloaded" tab, then click on the "Add Plugins..." button. Locate#3

and select the NBM files that were uncompressed in the previous step.
 Select both plugins (using the checkboxes) and click on "Install".#4

 Restart your IDE and enjoy!#5

Creating a new Griffon project
: You must have the Griffon plugin installed. Follow the steps explained in the previous section to getPrerequisites

the job done.
 Bring up the "New Project" wizard. Click on "Groovy" then on "Griffon Application".#1

http://plugins.netbeans.org/PluginPortal/faces/PluginDetailPage.jsp?pluginid=18664

12

 Choose name and location for the new project#2

 Configure a Griffon SDK if you haven't done so already#3

13

 Click on the Finish button#4

Eclipse
We recommend that users of looking to develop Griffon application take a look at ,Eclipse SpringSource Tool Suite
which offers built in support for Groovy.

Integrating an existing Griffon project
To integrate Griffon with Eclipse run the following command to generate appropriate project files:

griffon integrate-with --eclipse

Then follow these steps to fully integrate and run the application
 Install the plugin#1 Eclipse Support

http://www.eclipse.org/
http://www.springsource.com/products/sts
http://griffon.codehaus.org/EclipseSupport+Plugin

14

griffon install-plugin eclipse-support

 Configure a pair Classpath User Variables in the preferences dialog. GRIFFON_HOME should point to the install#2
directory of Griffon, while USER_HOME should point to your account's home directory.

 Bring up the "New Project" wizard. Select "Existing Projects into Workspace"#3

 Select the directory of the application that contains .project/.classpath files#4

15

 Click on the Finish button#4

16

Running Griffon commands within Eclipse

We'll rely on Eclipse's Ant support to get the job done, but first we need to generate an Ant build file

griffon integrate-with --ant

Refresh the contents of your project. Open the build file in the Ant View. Select any target and execute by double
clicking on it.

TextMate
Since Griffon' focus is on simplicity it is often possible to utilize more simple editors and on the Mac hasTextMate
an excellent Groovy/Griffon bundle available.
Follow these steps to install the Groovy bundle

 Create a local bundle directory#1

mkdir ~/Library/Application Support/TextMate/Bundles/

 If you have git installed then just clone the repository#2a

cd ~/Library/Application Support/TextMate/Bundles/
git clone https://github.com/textmate/groovy.tmbundle.git

 Alternatively download a copy of the latest version from as a zip and unpack it. Rename the unpacked#2b github
directory to .groovy.tmbundle
Follow these steps to install the Griffon bundle

 Create a local bundle directory#1

http://macromates.com/

17

mkdir ~/Library/Application Support/TextMate/Bundles/

 If you have git installed then just clone the repository#2a

cd ~/Library/Application Support/TextMate/Bundles/
git clone https://github.com/griffon/griffon.tmbundle.git

 Alternatively download a copy of the latest version from as a zip and unpack it. Rename the unpacked#2b github
directory to .griffon.tmbundle
Now configure the environment variable within TextMate. Make sure that inPATH $GRIFFON_HOME/bin
expanded form is set

Integrating an existing Griffon project
To integrate Griffon with TextMate run the following command to generate appropriate project files:

griffon integrate-with --textmate

Alternatively TextMate can easily open any project with its command line integration by issuing the following
command from the root of your project:

mate .

You should see a similar display like the next one

18

Running Griffon commands within TextMate

The Griffon bundle provides new commands under the "Bundles" menu. Search for the "Griffon submenu".

Selecting "Run App" will execute the command on the currently open projectrun-app

19

2.5 Convention over Configuration

Griffon uses "convention over configuration" to configure itself. This typically means that the name and location of
files is used instead of explicit configuration, hence you need to familiarize yourself with the directory structure
provided by Griffon.
Here is a breakdown and links to the relevant sections:

griffon-app - top level directory for Groovy sources.
conf - .Configuration sources
models - .Models
views - .Views
controllers - .Controllers
services - .Services
resources - Images, properties files, etc.
i18n - Support for internationalization (i18n).

scripts - .Gant scripts
src - Supporting sources.

main - Other Groovy/Java sources.
test - .Unit and integration tests

2.6 Running an Application

Griffon applications can be run in standalone mode using the command:run-app

griffon run-app

Or in applet mode using the command:run-applet

griffon run-applet

Or in webstart mode using the command:run-webstart

20

griffon run-webstart

More information on the command can be found in the reference guide.run-app

2.7 Testing an Application

The commands in Griffon automatically create integration tests for you within the create-*
 directory. It is of course up to you to populate these tests with valid test logic, informationtest/integration

on which can be found in the section on . However, if you wish to execute tests you can run the Testing test-app
command as follows:

griffon test-app

Griffon also automatically generates an Ant which can also run the tests by delegating to Griffon' build.xml
 command:test-app

ant test

This is useful when you need to build Griffon applications as part of a continuous integration platform such as
CruiseControl.

2.8 Creating Artefacts

Griffon ships with a few convenience targets such as , and so on that will create create-mvc create-script Controllers
and different artifact types for you.

These are merely for your convenience and you can just as easily use an IDE or your favorite
text editor.

There are many such commands that can be explored in the command line reference guide.create-*

21

1.
2.
3.
4.
5.
6.
7.
8.

3. Configuration

It may seem odd that in a framework that embraces "convention-over-configuration" that we tackle this topic now,
but since what configuration there is typically a one off, it is best to get it out the way.

3.1 Basic Configuration

For general configuration Griffon provides a file called . This file usesgriffon-app/conf/Config.groovy
Groovy's ConfigSlurper which is very similar to Java properties files except it is pure Groovy hence you can re-use
variables and use proper Java types!
You can add your own configuration in here, for example:

foo.bar.hello = "world"

Then later in your application you can access these settings via the GriffonApplication object, which is available as a
variable in mvc members

assert "world" == app.config.foo.bar.hello

3.1.1 Logging

The Basics
Griffon uses its common configuration mechanism to provide the settings for the underlying log system, so allLog4j
you have to do is add a setting to the file .log4j griffon-app/conf/Config.groovy
So what does this setting look like? Here's a basic example:log4j

log4j = {
 error 'org.codehaus.griffon'
 info 'griffon.util',
 'griffon.core',
 'griffon.swing',
 'griffon.app'
}

This says that for the 'org.codehaus.griffon' logger, only messages logged at 'error' level and above will be shown.
The loggers whose category start with 'griffon' show messages at the 'info' level. What does that mean? First of all,
you have to understand how levels work.

Logging levels
The are several standard logging levels, which are listed here in order of descending priority:

off
fatal
error
warn
info
debug
trace
all

When you log a message, you implicitly give that message a level. For example, the method log.error(msg)
will log a message at the 'error' level. Likewise, will log it at 'debug'. Each of the above levelslog.debug(msg)
apart from 'off' and 'all' have a corresponding log method of the same name.
The logging system uses that level combined with the configuration for the logger (see next section) tomessage
determine whether the message gets written out. For example, if you have an 'org.example.domain' logger configured
like so:

http://logging.apache.org/log4j/1.2/index.html

22

1.
2.

warn 'org.example.domain'

then messages with a level of 'warn', 'error', or 'fatal' will be written out. Messages at other levels will be ignored.
Before we go on to loggers, a quick note about those 'off' and 'all' levels. These are special in that they can only be
used in the configuration; you can't log messages at these levels. So if you configure a logger with a level of 'off',
then no messages will be written out. A level of 'all' means that you will see all messages. Simple.

Loggers
Loggers are fundamental to the logging system, but they are a source of some confusion. For a start, what are they?
Are they shared? How do you configure them?
A logger is the object you log messages to, so in the call , is a logger instance (of type log.debug(msg) log

). These loggers are uniquely identified by name and if two separate classes use loggers with the same name,Logger
those loggers are effectively the same instance.
There are two main ways to get hold of a logger:

use the instance injected into artifacts such as domain classes, controllers and services;log
use the Slf4j API directly.

If you use the dynamic property, then the name of the logger is 'griffon.app.<type>.<className>', where log type
is the type of the artifact, say 'controller' or 'service, and is the fully qualified name of the artifact. ForclassName
example, let's say you have this service:

package org.example
class MyService {
 …
}

then the name of the logger will be 'griffon.app.service.org.example.MyService'.
For other classes, the typical approach is to store a logger based on the class name in a constant static field:

package org.other
 org.slf4j.Loggerimport
 org.slf4j.LoggerFactoryimport

class MyClass {
 Logger log = LoggerFactory.getLogger(MyClass)private static final
 …
}

This will create a logger with the name 'org.other.MyClass' - note the lack of a 'griffon.app.' prefix. You can also pass
a name to the method, such as "myLogger", but this is less common because the logging system treatsgetLog()
names with dots ('.') in a special way.

Configuring loggers
You have already seen how to configure a logger in Griffon:

log4j = {
 error 'org.codehaus.griffon.runtime'
}

This example configures a logger named 'org.codehaus.griffon.runtime' to ignore any messages sent to it at a level of
'warn' or lower. But is there a logger with this name in the application? No. So why have a configuration for it?
Because the above rule applies to any logger whose name 'org.codehaus.griffon.runtime.' as well. Forbegins with
example, the rule applies to both the

 class and the org.codehaus.griffon.runtime.core.DefaultArtifactManager
 one.org.codehaus.griffon.runtime.util.GriffonApplicationHelper

In other words, loggers are effectively hierarchical. This makes configuring them by package much, much simpler
than it would otherwise be.
The most common things that you will want to capture log output from are your controllers, services, and other

http://www.slf4j.org/apidocs/org/slf4j/Logger.html

23

artifacts. To do that you'll need to use the convention mentioned earlier: .griffon.app.<artifactType>.<className>
In particular the class name must be fully qualifed, i.e. with the package if there is one:

log4j = {
 // Set level all application artifactsfor
 info "griffon.app"
 // Set a specific controllerfor
 debug "griffon.app.controller.YourController"
 // Set a specific service classfor
 debug "griffon.app.service.org.example.SampleService"
 // Set all modelsfor
 info "griffon.app.model"
}

The standard artifact names used in the logging configuration are:

model - For model classes
controller - For controllers
view - For views
service - For service classes

Griffon itself generates plenty of logging information and it can sometimes be helpful to see that. Here are some
useful loggers from Griffon internals that you can use, especially when tracking down problems with your
application:

org.codehaus.griffon.runtime.core - Core internal information such as MVC group
instantiation, etc.
griffon.swing - Swing related initialization and application life cycle.

So far, we've only looked at explicit configuration of loggers. But what about all those loggers that have andon't
explicit configuration? Are they simply ignored? The answer lies with the root logger.

The Root Logger
All logger objects inherit their configuration from the root logger, so if no explicit configuration is provided for a
given logger, then any messages that go to that logger are subject to the rules defined for the root logger. In other
words, the root logger provides the default configuration for the logging system.
Griffon automatically configures the root logger to only handle messages at 'error' level and above, and all the
messages are directed to the console (stdout for those with a C background). You can customise this behaviour by
specifying a 'root' section in your logging configuration like so:

log4j = {
 root {
 info()
 }
 …
}

The above example configures the root logger to log messages at 'info' level and above to the default console
appender. You can also configure the root logger to log to one or more named appenders (which we'll talk more
about shortly):

log4j = {
 appenders {
 file name:'file', file:'/ /logs/mylog.log'var
 }
 root {
 debug 'stdout', 'file'
 }
}

In the above example, the root logger will log to two appenders - the default 'stdout' (console) appender and a custom
'file' appender.
For power users there is an alternative syntax for configuring the root logger: the root

 instance is passed as an argument to the log4j closure. This allows you to workorg.apache.log4j.Logger

24

with the logger directly:

log4j = { root ->
 root.level = org.apache.log4j.Level.DEBUG
 …
}

For more information on what you can do with this instance, refer to the Log4j API documentation.Logger
Those are the basics of logging pretty well covered and they are sufficient if you're happy to only send log messages
to the console. But what if you want to send them to a file? How do you make sure that messages from a particular
logger go to a file but not the console? These questions and more will be answered as we look into appenders.

Appenders
Loggers are a useful mechanism for filtering messages, but they don't physically write the messages anywhere. That's
the job of the appender, of which there are various types. For example, there is the default one that writes messages
to the console, another that writes them to a file, and several others. You can even create your own appender
implementations!
This diagram shows how they fit into the logging pipeline:

As you can see, a single logger may have several appenders attached to it. In a standard Griffon configuration, the
console appender named 'stdout' is attached to all loggers through the default root logger configuration. But that's the
only one. Adding more appenders can be done within an 'appenders' block:

log4j = {
 appenders {
 rollingFile name: , maxFileSize: 1024, file: "myAppender" "/tmp/logs/myApp.log"
 }
}

The following appenders are available by default:

console () - Logs to the console.ConsoleAppender
file () - Logs to a single file.FileAppender
rollingFile () - Logs to rolling files, for example a new file each day.RollingFileAppender
event () - Logs to . Event name is "LogEvent"; args areGriffonApplicationEventAppender application events
log level (as String), log message and optional throwable.

Each named argument passed to an appender maps to a property of the underlying implementation. So theAppender
previous example sets the , and properties of the instance.name maxFileSize file RollingFileAppender
You can have as many appenders as you like - just make sure that they all have unique names. You can even have
multiple instances of the same appender type, for example several file appenders that log to different files.
If you prefer to create the appender programmatically or if you want to use an appender implementation that's not
available via the above syntax, then you can simply declare an entry with an instance of the appenderappender
you want:

http://logging.apache.org/log4j/1.2/apidocs/org/apache/log4j/ConsoleAppender.html
http://logging.apache.org/log4j/1.2/apidocs/org/apache/log4j/FileAppender.html
http://logging.apache.org/log4j/1.2/apidocs/org/apache/log4j/RollingFileAppender.html
http://logging.apache.org/log4j/1.2/apidocs/org/apache/log4j/Appender.html

25

import org.apache.log4j.*
log4j = {
 appenders {
 appender RollingFileAppender(name: , maxFileSize: 1024, file:)new "myAppender" "/tmp/logs/myApp.log"
 }
}

This approach can be used to configure , , , and more.JMSAppender SocketAppender SMTPAppender
Once you have declared your extra appenders, you can attach them to specific loggers by passing the name as a key
to one of the log level methods from the previous section:

error myAppender: "griffon.app.controller.BookController"

This will ensure that the 'org.codehaus.groovy.griffon.commons' logger and its children send log messages to
'myAppender' as well as any appenders configured for the root logger. If you want to add more than one appender to
the logger, then add them to the same level declaration:

error myAppender: ,"griffon.app.controller.BookController"
 myFileAppender: [,],"griffon.app.controller.BookController" "griffon.app.service.BookService"
 rollingFile: "griffon.app.controller.BookController"

The above example also shows how you can configure more than one logger at a time for a given appender (
) by using a list.myFileAppender

Be aware that you can only configure a single level for a logger, so if you tried this code:

error myAppender: "griffon.app.controller.BookController"
debug myFileAppender: "griffon.app.controller.BookController"
fatal rollingFile: "griffon.app.controller.BookController"

you'd find that only 'fatal' level messages get logged for 'griffon.app.controller.BookController'. That's because the
last level declared for a given logger wins. What you probably want to do is limit what level of messages an
appender writes.
Let's say an appender is attached to a logger configured with the 'all' level. That will give us a lot of logging
information that may be fine in a file, but makes working at the console difficult. So, we configure the console
appender to only write out messages at 'info' level or above:

log4j = {
 appenders {
 console name: , threshold: org.apache.log4j.Level.INFO"stdout"
 }
}

The key here is the argument which determines the cut-off for log messages. This argument isthreshold
available for all appenders, but do note that you currently have to specify a instance - a string such as "info"Level
will not work.

Custom Layouts
By default the Log4j DSL assumes that you want to use a . However, there are other layouts availablePatternLayout
including:

xml - Create an XML log file
html - Creates an HTML log file
simple - A simple textual log
pattern - A Pattern layout

http://logging.apache.org/log4j/1.2/apidocs/org/apache/log4j/PatternLayout.html

26

You can specify custom patterns to an appender using the setting:layout

log4j = {
 appenders {
 console name: , layout: pattern(conversionPattern:)"customAppender" "%c{2} %m%n"
 }
}

This also works for the built-in appender "stdout", which logs to the console:

log4j = {
 appenders {
 console name: , layout: pattern(conversionPattern:)"stdout" "%c{2} %m%n"
 }
}

Environment-specific configuration
Since the logging configuration is inside , you can of course put it inside an environment-specificConfig.groovy
block. However, there is a problem with this approach: you have to provide the full logging configuration each time
you define the setting. In other words, you cannot selectively override parts of the configuration - it's all orlog4j
nothing.
To get round this, the logging DSL provides its own environment blocks that you can put anywhere in the
configuration:

log4j = {
 appenders {
 console name: , layout: pattern(conversionPattern:)"stdout" "%c{2} %m%n"
 environments {
 production {
 rollingFile name: , maxFileSize: 1024, file: "myAppender" "/tmp/logs/myApp.log"
 }
 }
 }
 root {
 //…
 }
 // other shared config
 info "griffon.app.controller"
 environments {
 production {
 // Override previous setting 'griffon.app.controller'for
 error "griffon.app.controller"
 }
 }
}

The one place you can't put an environment block is the definition, but you can put the definitioninside root root
inside an environment block.

Full stacktraces
When exceptions occur, there can be an awful lot of noise in the stacktrace from Java and Groovy internals. Griffon
filters these typically irrelevant details and restricts traces to non-core Griffon/Groovy class packages.
When this happens, the full trace is always logged to the logger, which by default writes its output toStackTrace
a file called . As with other loggers though, you can change its behaviour in the configuration.stacktrace.log
For example if you prefer full stack traces to go to the console, add this entry:

error stdout: "StackTrace"

This won't stop Griffon from attempting to create the stacktrace.log file - it just redirects where stack traces are
written to. An alternative approach is to change the location of the 'stacktrace' appender's file:

27

log4j = {
 appenders {
 rollingFile name: , maxFileSize: 1024, file: "stacktrace" "/ /tmp/logs/myApp-stacktrace.log"var
 }
}

or, if you don't want to the 'stacktrace' appender at all, configure it as a 'null' appender:

log4j = {
 appenders {
 ' ' name: null "stacktrace"
 }
}

You can of course combine this with attaching the 'stdout' appender to the 'StackTrace' logger if you want all the
output in the console.
Finally, you can completely disable stacktrace filtering by setting the VMgriffon.full.stacktrace
property to :true

griffon -Dgriffon.full.stacktrace= run-apptrue

Logger inheritance
Earlier, we mentioned that all loggers inherit from the root logger and that loggers are hierarchical based on
'.'-separated terms. What this means is that unless you override a parent setting, a logger retains the level and the
appenders configured for that parent. So with this configuration:

log4j = {
 appenders {
 file name:'file', file:'/ /logs/mylog.log'var
 }
 root {
 debug 'stdout', 'file'
 }
}

all loggers in the application will have a level of 'debug' and will log to both the 'stdout' and 'file' appenders. What if
you only want to log to 'stdout' for a particular logger? In that case, you need to change the 'additivity' for a logger.
Additivity simply determines whether a logger inherits the configuration from its parent. If additivity is false, then its
not inherited. The default for all loggers is true, i.e. they inherit the configuration. So how do you change this setting?
Here's an example:

log4j = {
 appenders {
 …
 }
 root {
 …
 }
 info additivity: false
 stdout: [,]"griffon.app.controller.BookController" "griffon.app.service.BookService"
}

So when you specify a log level, add an 'additivity' named argument. Note that you when you specify the additivity,
you must configure the loggers for a named appender. The following syntax will work:not

28

info additivity: , , false "griffon.app.controller.BookController" "griffon.app.service.BookService"

3.2 Environments

Per Environment Configuration
Griffon supports the concept of per environment configuration. The file within the BuildConfig.groovy

 directory can take advantage of per environment configuration using the syntax provided by griffon-app/conf
 . As an example consider the following default packaging definitions provided by Griffon:ConfigSlurper

environments {
 development {
 signingkey {
 params {
 sigfile = 'GRIFFON'
 keystore = "${basedir}/griffon-app/conf/keys/devKeystore"
 alias = 'development'
 storepass = 'BadStorePassword'
 keypass = 'BadKeyPassword'
 lazy = // only sign when unsignedtrue
 }
 }
 }
 test {
 griffon {
 jars {
 sign = false
 pack = false
 }
 }
 }
 production {
 signingkey {
 params {
 sigfile = 'GRIFFON'
 keystore = 'CHANGE ME'
 alias = 'CHANGE ME'
 lazy = // sign, regardless of existing signaturesfalse
 }
 }
 griffon {
 jars {
 sign = true
 pack = true
 destDir = "${basedir}/staging"
 }
 webstart {
 codebase = 'CHANGE ME'
 }
 }
 }
}
griffon {
 jars {
 sign = false
 pack = false
 destDir = "${basedir}/staging"
 jarName = "${appName}.jar"
 }
}

Notice how the common configuration is provided at the bottom level (it actually can be placed before the
 block too), the block specifies per environment settings for the property.environments environments jars

Packaging and Running for Different Environments
Griffon' has built in capabilities to execute any command within the context of a specific environment.command line
The format is:

griffon [environment] [command name]

http://groovy.codehaus.org/ConfigSlurper

29

In addition, there are 3 preset environments known to Griffon: , , and for , dev prod test development
 and . For example to package an application for the (avoiding jar signing byproduction test development

default) environment you could do:

griffon dev package

If you have other environments that you need to target you can pass a variable to any command:griffon.env

griffon -Dgriffon.env=UAT run-app

Programmatic Environment Detection
Within your code, such as in a Gant script or a bootstrap class you can detect the environment using the Environment
class:

import griffon.util.Environment
...

(Environment.current) {switch
 Environment.DEVELOPMENT:case
 configureForDevelopment()
 break
 Environment.PRODUCTION:case
 configureForProduction()
 break
}

Generic Per Environment Execution
You can use the class to execute your own environment specific logic:griffon.util.Environment

Environment.executeForCurrentEnvironment {
 production {
 // something in productiondo
 }
 development {
 // something only in developmentdo
 }
}

3.3 Versioning

Versioning Basics
Griffon has built in support for application versioning. When you first create an application with the create-app
command the version of the application is set to . The version is stored in the application meta data file called 0.1

 in the root of the project.application.properties
To change the version of your application you can run the command:set-version

griffon set-version 0.2

The version is used in various commands including the command which will append the application versionpackage
to the end of the created distribution zip files.

Detecting Versions at Runtime
You can detect the application version using Griffon' support for application metadata using the class. Forapp
example within there is an implicit app variable that can be used:controllers

30

def version = app.metadata['app.version']

If it is the version of Griffon you need you can use:

def griffonVersion = app.metadata['app.griffon.version']

3.4 Dependency Resolution

In order to control how JAR dependencies are resolved Griffon features (since version 0.9) a dependency resolution
DSL that allows you to control how dependencies for applications and plugins are resolved.
Inside the file you can specify a griffon-app/conf/BuildConfig.groovy

 property that configures how dependencies are resolved:griffon.project.dependency.resolution

griffon.project.dependency.resolution = {
 // config here
}

The default configuration looks like the following:

griffon.project.dependency.resolution = {
 // inherit Griffon' dependenciesdefault
 inherits() {"global"
 }
 log // log level of Ivy resolver, either 'error', 'warn', 'info', 'debug' or 'verbose'"warn"
 repositories {
 griffonHome()
 // uncomment the below to enable remote dependency resolution
 // from Maven repositoriespublic
 //mavenLocal()
 //mavenCentral()
 //mavenRepo "http://snapshots.repository.codehaus.org"
 //mavenRepo "http://repository.codehaus.org"
 //mavenRepo "http://download.java.net/maven/2/"
 //mavenRepo "http://repository.jboss.com/maven2/"
 }
 dependencies {
 // specify dependencies here under either 'build', 'compile', 'runtime' or 'test' scopes eg.
 // runtime 'mysql:mysql-connector-java:5.1.5'
 }
}

The details of the above will be explained in the next few sections.

3.4.1 Configurations and Dependencies

Griffon features 5 dependency resolution configurations (or 'scopes') which you can take advantage of:

: Dependencies for the build system onlybuild
: Dependencies for the compile stepcompile
: Dependencies needed at runtime but not for compilation (see above)runtime

: Dependencies needed for testing but not at runtime (see above)test
Within the block you can specify a dependency that falls into one of these configurations bydependencies
calling the equivalent method. For example if your application requires the MySQL driver to function at runtime
you can specify as such:

runtime 'com.mysql:mysql-connector-java:5.1.5'

31

The above uses the string syntax which is . You can also use a map-based syntax:group:name:version

runtime group:'com.mysql', name:'mysql-connector-java', version:'5.1.5'

Multiple dependencies can be specified by passing multiple arguments:

runtime 'com.mysql:mysql-connector-java:5.1.5',
 'commons-lang:commons-lang:2.6'
// Or
runtime(
 [group: 'com.mysql', name: 'mysql-connector-java', version: '5.1.5'],
 [group: 'commnons-lang', name: 'commons-lang', version: '2.6']
)

You may specify a classifier too

runtime 'net.sf.json-lib:json-lib:2.4:jdk15'
// Or
runtime group: 'net.sf.json-lib' name: 'json-lib', version: '2.4', classifier: 'jdk15'

3.4.2 Dependency Repositories

Remote Repositories
Griffon, when installed, does not use any remote public repositories. There is a default repositorygriffonHome()
that will locate the JAR files Griffon needs from your Griffon installation. If you want to take advantage of a public
repository you need to specify as such inside the block:repositories

repositories {
 mavenCentral()
}

In this case the default public Maven repository is specified. To use the SpringSource Enterprise Bundle Repository
you can use the method:ebr()

repositories {
 ebr()
}

You can also specify a specific Maven repository to use by URL:

repositories {
 mavenRepo "http://repository.codehaus.org"
}

Local Resolvers
If you do not wish to use a public Maven repository you can specify a flat file repository:

repositories {
 flatDir name:'myRepo', dirs:'/path/to/repo'
}

32

Custom Resolvers
If all else fails since Griffon builds on Apache Ivy you can specify an Ivy resolver:

repositories {
 resolver URLResolver(...)new
}

Authentication
If your repository requires some form of authentication you can specify as such using a block:credentials

credentials {
 realm = ".."
 host = "localhost"
 username = "myuser"
 password = "mypass"
}

The above can also be placed in your file using the USER_HOME/.griffon/settings.groovy
 setting:griffon.project.ivy.authentication

griffon.project.ivy.authentication = {
 credentials {
 realm = ".."
 host = "localhost"
 username = "myuser"
 password = "mypass"
 }
}

3.4.3 Debugging Resolution

If you are having trouble getting a dependency to resolve you can enable more verbose debugging from the
underlying engine using the method:log

// log level of Ivy resolver, either 'error', 'warn', 'info', 'debug' or 'verbose'
log "warn"

3.4.4 Inherited Dependencies

By default every Griffon application inherits a bunch of framework dependencies. This is done through the line:

inherits "global"

Inside the file. If you wish exclude certain inherited dependencies then you can do soBuildConfig.groovy
using the method:excludes

inherits() {"global"
 excludes , "oscache" "ehcache"
}

3.4.5 Dependency Reports

As mentioned in the previous section a Griffon application consists of dependencies inherited from the framework,

33

the plugins installed and the application dependencies itself.
To obtain a report of an application's dependencies you can run the command:dependency-report

griffon dependency-report

This will output a report to the directory by default. You can specify whichtarget/dependency-report
configuration (scope) you want a report for by passing an argument containing the configuration name:

griffon dependency-report runtime

3.4.6 Plugin JAR Dependencies

Specifying Plugin JAR dependencies
The way in which you specify dependencies for a is identical to how you specify dependencies in anplugin
application. When a plugin is installed into an application the application automatically inherits the dependencies of
the plugin.
If you want to define a dependency that is resolved for use with the plugin but not to the application thenexported
you can set the property of the dependency:exported

compile('org.hibernate:hibernate-core:3.3.1.GA') {
 exported = false
}

In this can the dependency will be available only to the plugin and not resolved as anhibernate-core
application dependency.

Overriding Plugin JAR Dependencies in Your Application
If a plugin is using a JAR which conflicts with another plugin, or an application dependency then you can override
how a plugin resolves its dependencies inside an application using exclusions. For example:

plugins {
 compile() {"org.codehaus.griffon.plugins:miglayout:0.3"
 excludes "miglayout"
 }
}
dependencies {
 miglayoutVersion = '4.2'String
 compile ,"com.miglayout:miglayout-core:$miglayoutVersion"
 "com.miglayout:miglayout-swing:$miglayoutVersion"
}

In this case the application explicitly declares a dependency on the "miglayout" plugin and specifies an exclusion
using the method, effectively excluding the miglayout library as a dependency.excludes

3.4.7 Plugin Dependencies

As of Griffon 0.9 you can declaratively specify dependencies on plugins rather than using the install-plugin
command:

plugins {
 runtime ':artifacts:0.2'
}

If you don't specify a group id the default plugin group id of is used. You can specify toorg.griffon.plugins
use the latest version of a particular plugin by using "latest.integration" as the version number:

34

plugins {
 runtime ':artifacts:latest.integration'
}

Integration vs. Release
The "latest.integration" version label will also include resolving snapshot versions. If you don't want to include
snapshot versions then you can use the "latest.release" label:

plugins {
 runtime ':artifacts:latest.release'
}

The "latest.release" label only works with Maven compatible repositories. If you have a
regular SVN-based Griffon repository then you should use "latest.integration".

And of course if you are using a Maven repository with an alternative group id you can specify a group id:

plugins {
 runtime 'mycompany:artifacts:latest.integration'
}

Plugin Exclusions
You can control how plugins transitively resolves both plugin and JAR dependencies using exclusions. For example:

plugins {
 runtime(':weceem:0.8') {
 excludes "searchable"
 }
}

Here we have defined a dependency on the "weceem" plugin which transitively depends on the "searchable" plugin.
By using the method you can tell Griffon to transitively install the searchable plugin. You canexcludes not
combine this technique to specify an alternative version of a plugin:

plugins {
 runtime(':weceem:0.8') {
 excludes // excludes most recent version"searchable"
 }
 runtime ':searchable:0.5.4' // specifies a fixed searchable version
}

You can also completely disable transitive plugin installs, in which case no transitive dependencies will be resolved:

plugins {
 runtime(':weceem:0.8') {
 transitive = false
 }
 runtime ':searchable:0.5.4' // specifies a fixed searchable version
}

3.5 Project Documentation

35

Since Griffon 0.9, the documentation engine that powers the creation of this documentation is available to your
Griffon projects.
The documentation engine uses a variation on the Textile syntax to automatically create project documentation with
smart linking, formatting etc.

Creating project documentation
To use the engine you need to follow a few conventions. Firstly you need to create a directorysrc/docs/guide
and then have numbered text files using the format. For example:gdoc

+ src/docs/guide/1. Introduction.gdoc
+ src/docs/guide/2. Getting Started.gdoc

The title of each chapter is taken from the file name. The order is dictated by the numerical value at the beginning of
the file name.

Creating reference items
Reference items appear in the left menu on the documentation and are useful for quick reference documentation.
Each reference item belongs to a category and a category is a directory located in the directory.src/docs/ref
For example say you defined a new method called , that belongs to a category called renderPDF Controllers
this can be done by creating a gdoc text file at the following location:

+ src/ref/Controllers/renderPDF.gdoc

Configuring Output Properties
There are various properties you can set within your file thatgriffon-app/conf/BuildConfig.groovy
customize the output of the documentation such as:

griffon.doc.authors - The authors of the documentation
griffon.doc.license - The license of the software
griffon.doc.copyright - The copyright message to display
griffon.doc.footer - The footer to use

Other properties such as the name of the documentation and the version are pulled from your project itself.

Generating Documentation
Once you have created some documentation (refer to the syntax guide in the next chapter) you can generate an
HTML version of the documentation using the command:

griffon doc

This command will output an which can be opened to view your documentation.docs/manual/index.html

Documentation Syntax
As mentioned the syntax is largely similar to Textile or Confluence style wiki markup. The following sections walk
you through the syntax basics.

Basic Formatting

Monospace: monospace

@monospace@

Italic: italic

italic

36

Bold: bold

bold

Image:

!http://dist.codehaus.org/griffon/media/griffon.png!

Linking

There are several ways to create links with the documentation generator. A basic external link can either be defined
using confluence or textile style markup:

[Griffon|http://griffon.codehaus.org/] or :http://griffon.codehaus.org/"Griffon"

For links to other sections inside the user guide you can use the prefix:guide:

[Intro|guide:1. Introduction]

The documentation engine will warn you if any links to sections in your guide break. Sometimes though it is
preferable not to hard code the actual names of guide sections since you may move them around. To get around this
you can create an alias inside :griffon-app/conf/BuildConfig.groovy

griffon.doc.alias.intro="1. Introduction"

And then the link becomes:

[Intro|guide:intro]

This is useful since if you linked the to "1. Introduction" chapter many times you would have to change all of those
links.
To link to reference items you can use a special syntax:

[controllers|renderPDF]

In this case the category of the reference item is on the left hand side of the | and the name of the reference item on
the right.
Finally, to link to external APIs you can use the prefix. For example:api:

37

[|api:java.lang.]String String

The documentation engine will automatically create the appropriate javadoc link in this case. If you want to add
additional APIs to the engine you can configure them in . Forgriffon-app/conf/BuildConfig.groovy
example:

griffon.doc.api.org.hibernate="http://docs.jboss.org/hibernate/stable/core/api"

The above example configures classes within the package to link to the Hibernate website's APIorg.hibernate
docs.

Lists and Headings

Headings can be created by specifying the letter 'h' followed by a number and then a dot:

h3.<space>Heading3
h4.<space>Heading4

Unordered lists are defined with the use of the * character:

* item 1
** subitem 1
** subitem 2
* item 2

Numbered lists can be defined with the # character:

item 1

Tables can be created using the macro:table

Name Number

Albert 46

Wilma 1348

James 12

{table}
 Name | * *Number
 Albert | 46
 Wilma | 1348
 James | 12
{table}

Code and Notes

You can define code blocks with the macro:code

38

class Book {
 titleString
}

{code}
class Book {
 titleString
}
{code}

The example above provides syntax highlighting for Java and Groovy code, but you can also highlight XML markup:

<hello>world</hello>

{code:xml}
<hello>world</hello>
{code}

There are also a couple of macros for displaying notes and warnings:
Note:

This is a note!

{note}
This is a note!
{note}

Warning:

This is a warning!

{warning}
This is a warning!
{warning}

39

4. The Command Line

Griffon' command line system is built on - a simple Groovy wrapper around .Gant Apache Ant
However, Griffon takes it a bit further through the use of convention and the command. When you type:griffon

griffon [command name]

Griffon does a search in the following directories for Gant scripts to execute:

USER_HOME/.griffon/scripts
PROJECT_HOME/scripts
PROJECT_HOME/plugins/*/scripts
GRIFFON_HOME/scripts

Griffon will also convert command names that are in lower case form such as run-app into camel case. So typing

griffon run-app

Results in a search for the following files:

USER_HOME/.griffon/scripts/RunApp.groovy
PROJECT_HOME/scripts/RunApp.groovy
PLUGINS_HOME/*/scripts/RunApp.groovy
GRIFFON_HOME/scripts/RunApp.groovy

If multiple matches are found Griffon will give you a choice of which one to execute. When Griffon executes a Gant
script, it invokes the "default" target defined in that script. If there is no default, Griffon will quit with an error.
To get a list and some help about the available commands type:

griffon help

Which outputs usage instructions and the list of commands Griffon is aware of:

Usage (optionals marked with *):
griffon [environment]* [target] [arguments]*
Examples:
griffon dev run-app
griffon create-app books
Available Targets (type griffon help 'target-name' more info):for
griffon clean
griffon compile
griffon package
...

The command interpreter is able to expand abbreviations following a camel case convention.
Examples:

griffon tA // expands to test-app
griffon cAd // expands to create-addon
griffon cIT // expands to create-integration-test

Refer to the Command Line reference in left menu of the reference guide for more
information about individual commands

4.1 Creating Gant Scripts

http://gant.codehaus.org
http://ant.apache.org

40

You can create your own Gant scripts by running the command from the root of your project. Forcreate-script
example the following command:

griffon create-script compile-sources

Will create a script called . A Gant script itself is similar to a regularscripts/CompileSources.groovy
Groovy script except that it supports the concept of "targets" and dependencies between them:

target(:) {default "The target is the one that gets executed by Griffon"default
 depends(clean, compile)
}
target(clean:) {"Clean out things"
 ant.delete(dir:)"output"
}
target(compile:) {"Compile some sources"
 ant.mkdir(dir:)"mkdir"
 ant.javac(srcdir: , destdir:)"src/main" "output"
}

As demonstrated in the script above, there is an implicit variable that allows access to the .ant Apache Ant API
You can also "depend" on other targets using the method demonstrated in the target above.depends default

The default target
In the example above, we specified a target with the explicit name "default". This is one way of defining the default
target for a script. An alternative approach is to use the method:setDefaultTarget()

target(:) {"clean-compile" "Performs a clean compilation on the app's source files."
 depends(clean, compile)
}
target(clean:) {"Clean out things"
 ant.delete(dir:)"output"
}
target(compile:) {"Compile some sources"
 ant.mkdir(dir:)"mkdir"
 ant.javac(srcdir: , destdir:)"src/java" "output"
}
setDefaultTarget()"clean-compile"

This allows you to call the default target directly from other scripts if you wish. Also, although we have put the call
to at the end of the script in this example, it can go anywhere as long as it comes thesetDefaultTarget() after
target it refers to ("clean-compile" in this case).
Which approach is better? To be honest, you can use whichever you prefer - there don't seem to be any major
advantages in either case. One thing we would say is that if you want to allow other scripts to call your "default"
target, you should move it into a shared script that doesn't have a default target at all. We'll talk some more about this
in the next section.

4.2 Re-using Griffon scripts

Griffon ships with a lot of command line functionality out of the box that you may find useful in your own scripts
(See the command line reference in the reference guide for info on all the commands). Of particular use are the

 and scripts.compile package

Pulling in targets from other scripts
Gant allows you to pull in all targets (except "default") from another Gant script. You can then depend upon or
invoke those targets as if they had been defined in the current script. The mechanism for doing this is the

 property. Simply "append" a file or class to it using the left-shift operator:includeTargets

includeTargets << File()new "/path/to/my/script.groovy"
includeTargets << gant.tools.Ivy

http://ant.apache.org/manual/index.html

41

Don't worry too much about the syntax using a class, it's quite specialized. If you're interested, look into the Gant
documentation.

Core Griffon targets
As you saw in the example at the beginning of this section, you use neither the File- nor the class-based syntax for

 when including core Griffon targets. Instead, you should use the special includeTargets griffonScript()
method that is provided by the Griffon command launcher (note that this is not available in normal Gant scripts, just
Griffon ones).
The syntax for the method is pretty straightforward: simply pass it the name of the GriffongriffonScript()
script you want to include, without any path information. Here is a list of Griffon scripts that you may want to re-use:

Script Description

_GriffonSettings You really should include this! Fortunately, it is included automatically by all other Griffon
scripts bar one (_GriffonProxy), so you usually don't have to include it explicitly.

_GriffonEvents
If you want to fire events, you need to include this. Adds an event(String

 method. Again, included by almost all other Griffon scripts.eventName, List args)

_GriffonClasspath Sets up compilation, test, and runtime classpaths. If you want to use or play with them,
include this script. Again, included by almost all other Griffon scripts.

_GriffonProxy If you want to access the internet, include this script so that you don't run into problems with
proxies.

_GriffonArgParsing
Provides a target that does what it says on the tin: parses the argumentsparseArguments
provided by the user when they run your script. Adds them to the property.argsMap

_GriffonTest Contains all the shared test code. Useful if you want to add any extra tests.

RunApp Provides all you need to run the application in standalone mode.

RunApplet Provides all you need to run the application in applet mode.

RunWebstart Provides all you need to run the application in webstart mode.

There are many more scripts provided by Griffon, so it is worth digging into the scripts themselves to find out what
kind of targets are available. Anything that starts with an "_" is designed for re-use.

Script architecture
You maybe wondering what those underscores are doing in the names of the Griffon scripts. That is Griffon' way of
determining that a script is , or in other words that it has not corresponding "command". So you can't runinternal
"griffon _griffon-settings" for example. That is also why they don't have a default target.
Internal scripts are all about code sharing and re-use. In fact, we recommend you take a similar approach in your own
scripts: put all your targets into an internal script that can be easily shared, and provide simple command scripts that
parse any command line arguments and delegate to the targets in the internal script. Say you have a script that runs
some functional tests - you can split it like this:

./scripts/FunctionalTests.groovy:
includeTargets << File()new "${basedir}/scripts/_FunctionalTests.groovy"
target(:) {default "Runs the functional tests project."for this
 depends(runFunctionalTests)
}
./scripts/_FunctionalTests.groovy:
includeTargets << griffonScript()"_GriffonTest"
target(runFunctionalTests:) {"Run functional tests."
 depends(...)
 …
}

Here are a few general guidelines on writing scripts:

Split scripts into a "command" script and an internal one.
Put the bulk of the implementation in the internal script.
Put argument parsing into the "command" script.
To pass arguments to a target, create some script variables and initialize them before calling the target.
Avoid name clashes by using closures assigned to script variables instead of targets. You can then pass

42

arguments direct to the closures.

4.3 Hooking into Events

Griffon provides the ability to hook into scripting events. These are events triggered during execution of Griffon
target and plugin scripts.
The mechanism is deliberately simple and loosely specified. The list of possible events is not fixed in any way, so it
is possible to hook into events triggered by plugin scripts, for which there is no equivalent event in the core target
scripts.

Defining event handlers
Event handlers are defined in scripts called . Griffon searches for these scripts in the following_Events.groovy
locations:

USER_HOME/.griffon/scripts - user-specific event handlers
PROJECT_HOME/scripts - application-specific event handlers
PLUGINS_HOME/*/scripts - plugin-specific event handlers

Whenever an event is fired, the registered handlers for that event are executed. Note that the registration ofall
handlers is performed automatically by Griffon, so you just need to declare them in the relevant _Events.groovy
file.
Event handlers are blocks defined in , with a name beginning with "event". The following_Events.groovy
example can be put in your /scripts directory to demonstrate the feature:

eventCreatedArtefact = { type, name ->
 println "Created $type $name"
}
eventStatusUpdate = { msg ->
 println msg
}
eventStatusFinal = { msg ->
 println msg
}

You can see here the three handlers , , eventCreatedArtefact eventStatusUpdate
. Griffon provides some standard events, which are documented in the command lineeventStatusFinal

reference guide. For example the command fires the following events:compile

CompileStart - Called when compilation starts, passing the kind of compile - source or tests
CompileEnd - Called when compilation is finished, passing the kind of compile - source or tests

Triggering events
To trigger an event simply call the event() closure:

event(, [])"StatusFinal" "Super duper plugin action complete!"

Common Events
Below is a table of some of the common events that can be leveraged:

43

Event Parameters Description

StatusUpdate message Passed a string indicating current script status/progress

StatusError message Passed a string indicating an error message from the current script

StatusFinal message
Passed a string indicating the final script status message, i.e. when
completing a target, even if the target does not exit the scripting
environment

CreatedArtefact artefactType,artefactName Called when a create-xxxx script has completed and created an
artifact

CreatedFile fileName Called whenever a project source filed is created, not including files
constantly managed by Griffon

Exiting returnCode Called when the scripting environment is about to exit cleanly

PluginInstalled pluginName Called after a plugin has been installed

CompileStart kind Called when compilation starts, passing the kind of compile - source
or tests

CompileEnd kind Called when compilation is finished, passing the kind of compile -
source or tests

DocStart kind Called when documentation generation is about to start - javadoc or
groovydoc

DocEnd kind Called when documentation generation has ended - javadoc or
groovydoc

4.4 Customising the build

Griffon is most definitely an opinionated framework and it prefers convention to configuration, but this doesn't mean
you configure it. In this section, we look at how you can influence and modify the standard Griffon build.can't

The defaults
In order to customize a build, you first need to know you can customize. The core of the Griffon buildwhat
configuration is the class, which contains quite a bit of useful information. Itgriffon.util.BuildSettings
controls where classes are compiled to, what dependencies the application has, and other such settings.
Here is a selection of the configuration options and their default values:

Property Config option Default value

griffonWorkDir griffon.work.dir $USER_HOME/.griffon/<griffonVersion>

projectWorkDir griffon.project.work.dir <griffonWorkDir>/projects/<baseDirName>

classesDir griffon.project.class.dir <projectWorkDir>/classes

testClassesDir griffon.project.test.class.dir <projectWorkDir>/test-classes

testReportsDir griffon.project.test.reports.dir <projectWorkDir>/test/reports

resourcesDir griffon.project.resource.dir <projectWorkDir>/resources

projectPluginsDir griffon.plugins.dir <projectWorkDir>/plugins

The class has some other properties too, but they should be treated as read-only:BuildSettings

44

Property Description

baseDir The location of the project.

userHome The user's home directory.

griffonHome The location of the Griffon installation in use (may be null).

griffonVersion The version of Griffon being used by the project.

griffonEnv The current Griffon environment.

compileDependencies A list of compile-time project dependencies as instances.File

testDependencies A list of test-time project dependencies as instances.File

runtimeDependencies A list of runtime-time project dependencies as instances.File

Of course, these properties aren't much good if you can't get hold of them. Fortunately that's easy to do: an instance
of is available to your scripts via the script variable. You can also accessBuildSettings griffonSettings
it from your code by using the class, but this isn't recommended.griffon.util.BuildSettingsHolder

Overriding the defaults
All of the properties in the first table can be overridden by a system property or a configuration option - simply use
the "config option" name. For example, to change the project working directory, you could either run this command:

griffon -Dgriffon.project.work.dir=work compile

or add this option to your file:griffon-app/conf/BuildConfig.groovy

griffon.project.work.dir = "work"

Note that the default values take account of the property values they depend on, so setting the project working
directory like this would also relocate the compiled classes, test classes, resources, and plugins.
What happens if you use both a system property and a configuration option? Then the system property wins because
it takes precedence over the file, which in turn takes precedence over the default values.BuildConfig.groovy

Available build settings

Name Description

griffon.compiler.dependencies Legacy approach to adding extra dependencies to the compiler classpath. Set it to a
closure containing "fileset()" entries.

griffon.testing.patterns
A list of Ant path patterns that allow you to control which files are included in the
tests. The patterns should not include the test case suffix, which is set by the next
property.

griffon.testing.nameSuffix
By default, tests are assumed to have a suffix of "Tests". You can change it to
anything you like but setting this option. For example, another common suffix is
"Test".

4.5 Command Tools Integration

If all the other projects in your team or company are built using a standard build tool such as Ant or Maven, you
become the black sheep of the family when you use the Griffon command line to build your application. Fortunately,
you can easily integrate the Griffon build system into the main build tools in use today (well, the ones in use in Java
projects at least).

Ant Integration
When you invoke the command with the -ant option enabledintegrate-with

45

griffon integrate-with --ant

Griffon creates an file for you containing the following targets:Apache Ant build.xml

clean - Cleans the Griffon application
debug-app - Runs the application in debug mode
test - Runs the unit tests
run-app - Equivalent to "griffon run-app"
run-applet - Equivalent to "griffon run-applet"
run-webstart - Equivalent to "griffon run-webstart"
dist - Packages the application for production

Each of these can be run by Ant, for example:

ant clean

The build file is all geared up to use for dependency management, which means that it will automaticallyApache Ivy
download all the requisite Griffon JAR files and other dependencies on demand. You don't even have to install
Griffon locally to use it! That makes it particularly useful for continuous integration systems such as CruiseControl
or Jenkins
It uses the Griffon to hook into the existing Griffon build system. The task allows you to run any GriffonAnt task
script that's available, not just the ones used by the generated build file. To use the task, you must first declare it:

<taskdef name="griffonTask"
 classname="griffon.ant.GriffonTask"
 classpathref= />"griffon.classpath"

This raises the question: what should be in "griffon.classpath"? The task itself is in the "griffon-cli" JAR artifact, so
that needs to be on the classpath at least. You should also include the "groovy-all" JAR. With the task defined, you
just need to use it! The following table shows you what attributes are available:

Attribute Description Required

home The location of the Griffon installation directory to use
for the build.

Yes, unless classpath is
specified.

classpathref
Classpath to load Griffon from. Must include the
"griffon-bootstrap" artifact and should include
"griffon-scripts".

Yes, unless is set orhome
you use a classpath
element.

script The name of the Griffon script to run, e.g. "TestApp". Yes.

args The arguments to pass to the script, e.g. "-unit -xml". No. Defaults to "".

environment The Griffon environment to run the script in. No. Defaults to the script
default.

includeRuntimeClasspath Advanced setting: adds the application's runtime
classpath to the build classpath if true.

No. Defaults to true.

The task also supports the following nested elements, all of which are standard Ant path structures:

classpath - The build classpath (used to load Gant and the Griffon scripts).
compileClasspath - Classpath used to compile the application's classes.
runtimeClasspath - Classpath used to run the application and package the WAR. Typically includes
everything in @compileClasspath.
testClasspath - Classpath used to compile and run the tests. Typically includes everything in

.runtimeClasspath
How you populate these paths is up to you. If you are using the attribute and put your own dependencies in thehome

http://ant.apache.org/
http://ant.apache.org/ivy/
http://cruisecontrol.sourceforge.net/
http://jenkins-ci.org/.

46

 directory, then you don't even need to use any of them. For an example of their use, take a look at the generatedlib
Ant build file for new apps.

Maven Integration
TBD

Gradle Integration
When you invoke the command with the -gradle option enabledintegrate-with

griffon integrate-with --gradle

Griffon creates a file for you. From here you can call the standard Gradle commands suchGradle build.gradle
as , and to build your application. You can also use as a command prefix toclean assemble build griffon
execute any of the regular Griffon command targets such as

gradle griffon-run-app

4.6 The Griffon Wrapper

This neat feature lets you execute Griffon commands without having a previously installing Griffon in your
environment. This is a perfect fit for running tests in a continuous integration environment like as there areJenkins
no other requirements than a matching JDK.
When an application or plugin are created you'll get also the hooks for calling the wrapper, even configuring it in
case you need it to point to a different Griffon release. These files are

griffonw
griffonw.bat
wrapper/griffon-wrapper.jar
wrapper/griffon-wrapper.properties

The first 2 files define platform dependent launch scripts. The third file contains the required classes to bootstrap the
wrapper itself. The last file defines the configuration that the wrapper requires to work properly.
The wrapper works in the same way as the Griffon command, this means you can feed it every single command
target and parameter the Griffon command accepts, like the following ones

./griffonw run-app

Compiles and runs the application in standalone mode.

./griffonw list-plugin-updates -install

Displays a list of available updates for all plugins installed and proceeds to update them if the confirmation is
successful.

4.7 Command Line Options

The following command line options only have meaning while building the project. They have no effect when
running the application once it has been .packaged
It's worth noting that all of the following options can also be specified in either

 (local to project) or griffon-app/conf/BuildConfig.groovy
 (global to all projects), with the caveat that values specified at$USER_HOME/.griffon/settings.groovy

the command prompt will have precedence over those specified in the config file.

4.7.1 Verbose Output

 have the choice of printing to the console whenever they need to communicate something to the developer.Scripts

http://gradle.org/
http://jenkins-ci.org/

47

They would normally use a standard sentence. Sometimes it's useful to know what a script is doing withprintln
further detail but it makes no sense to see that information every single time. A conditional output is required.
All scripts inherit a closure that will print its argument to stdout if an only if the following flag is enabled: debug()

. As an example, the following script has two print outsgriffon.cli.verbose

includeTargets << griffonScript()"Init"
target(main:) {"The description of the script goes here!"
 println 'Hello world!'
 debug 'Hello World (debug)'
}
setDefaultTarget(main)

Running the script without the flag will print out 'Hello World!' all the time but never the second one

$ griffon hello
Welcome to Griffon 0.9.5-rc2 - http://griffon.codehaus.org/
Licensed under Apache Standard License 2.0
Griffon home is set to: /usr/local/griffon
…
Environment set to development
Hello world!

The second message will only appear if you specify the verbose flag

$ griffon -Dgriffon.cli.verbose= hellotrue
Welcome to Griffon 0.9.5-rc2 - http://griffon.codehaus.org/
Licensed under Apache Standard License 2.0
Griffon home is set to: /usr/local/griffon
…
Environment set to development
Hello world!
[11/11/10 4:43:04 PM] Hello World (debug)

4.7.2 Disable AST Injection

Since Griffon 0.9.1 all artifacts now share a common interface (). They may implement additionalGriffonArtifact
interfaces that define their role in a better way. For example implement whereas controllers GriffonController models
implement . Despite this, you are not forced to implement these interfaces yourself, the GriffonGriffonModel
compiler can do the work for you. It will even inject the appropriate behavior to classes that extend from base types
other than . All this is done by leveraging the powerful AST Transformations framework introduced inObject
Groovy 1.6.
If this feature ever gets in the way then you can disable it with the following command flag

griffon -Dgriffon.disable.ast.injection= compiletrue

Be sure to clean the project before using this flag, otherwise some classes may still have the
AST additions weaved into their bytecode.

4.7.3 Disable Default Imports

Another feature introduced in Griffon 0.9.1 is the ability to define for artifacts and scripts.default imports
If this feature proves to be a disadvantage then disable it with the following command flag

griffon -Dgriffon.disable. .imports= compiledefault true

48

4.7.4 Disable Conditional Logging Injection

Griffon 0.9.1 added a log property to all artifacts, and enabled logging on addons. Groovy 1.8 adds a new set of AST
transformations, @Log being one of them. It's job is to transform an unguarded logging statement into a guarded one.
Starting with 0.9.2, Griffon can do the same without the need of annotating artifacts or addons with @Log.
If this feature proves to be a disadvantage then disable it with the following command flag

griffon -Dgriffon.disable.logging.injection= compiletrue

4.7.5 Disable Threading Injection

Griffon 0.9.2 adds the option for all controller actions to be executed off the UI thread automatically. This feature
breaks backward compatibility with previous releases.
In order to regain the previous behavior you can disable this feature by specifying the following command flag

griffon -Dgriffon.disable.threading.injection= compiletrue

4.7.6 Default Answer in Non Interactive Mode

Sometimes a command may require the user to specify a missing value. When the build is run in interactive mode
(the default mode) then it's just a matter of typing the value in the console. However, if the build is run in
non-interactive mode then it's very likely it will fail.
For this reason, the Griffon build accepts the definition of a default answer if the

 key is specified, like thisgriffon.noninteractive.default.answer

griffon -Dgriffon.noninteractive. .answer=y release-plugindefault

Be warned that this setting applies to every single input asked by a command.

4.7.7 Plugin Install Failure Strategies

Failures may occur during plugin installation. It may be the case that a plugin could not be found in the configured
repositories, or a JAR dependency failed to be resolved. When this happens the build will try its best cope with the
error, usually by continuing installing remainder plugin dependencies (if any).
This behavior can be altered by specifying a value for . Accepted values are:griffon.install.failure

Value Description

abort Aborts the installation sequence, even if there are other plugins left to be installed. It will also delete all
installed plugins in the current session.

continue Continues with the next plugin in the list. this is the default behavior.

retry Retries failed plugins a second time. A second failure skips the plugin from being installed but does not
affect any other plugins that have been successfully installed or are yet to be installed.

For example, to return the build to its previous behavior (abort on failures) you'll type the following in your
command prompt

griffon -Dgriffon.install.failure='abort' compile

4.7.8 Default Artifact Repository for Searching

The Griffon build assumes to be the default Artifact Repository to be searched when queryinggriffon-legacy

49

for artifacts (either to list them, get some info or install them). This setting can be altered by specifying a value for
. The value must be a valid repository name availablegriffon.artifact.repository.default.search

in the configuration files.
For example, a local repository identified by the name ' ' can be set as the default search repositorymy-local-repo
like so

griffon -Dgriffon.artifact.repository. .search='my-local-repo' install-plugin cool-plugindefault

4.7.9 Default Artifact Repository for Caching

When a plugin or archetype is downloaded from an artifact repository the Griffon build will place a copy of it in the
 repository. This speeds up searches and further plugin installations. If you would like to specify agriffon-local

different local repository to be used as a cache then define a value for the
 key.griffon.artifact.repository.default.install

Assuming that ' ' is configured in the project's settings then the following command will downloadmy-local-repo
the miglayout plugin and place a copy in that specific repository.

griffon -Dgriffon.artifact.repository. .install='my-local-repo' install-plugin miglayoutdefault

4.7.10 Disable Automatic Local Repository Synchronization

Section 4.7.9 describes that copies of plugins and archetypes will be placed in a local repository whenever they are
downloaded from other repositories. You can disable this feature altogether by specifying a value for

 as true, like the following example showsgriffon.disable.local.repository.sync

griffon -Dgriffon.disable.local.repository.sync= install-archetype scalatrue

4.8 The Griffon Shell

Starting with Griffon 0.9.5 there's a new command line tool at your disposal: the Griffon Shell or forgriffonsh
short. This is an interactive shell that can be kept running in the background, this way you don't pay the penalty of
starting a new JVM every time you invoke a command. Other benefits are the bypass of dependency resolution if
dependencies have not changed from the last command invocation. Here's a sample usage session:

50

$ griffonsh
Welcome to Griffon 0.9.5-rc2 - http://griffon.codehaus.org/
Licensed under Apache Standard License 2.0
Griffon home is set to: /usr/local/griffon
Type 'exit' or ^D to terminate interactive shellthis

griffon> compile
Resolving dependencies…
Dependencies resolved in 903ms.
Environment set to development
Resolving plugin dependencies …
Plugin dependencies resolved in 1502 ms.
 [mkdir] Created dir: /Users/joe/.griffon/0.9.5-rc2/projects/sample/classes/cli
 [mkdir] Created dir: /Users/joe/.griffon/0.9.5-rc2/projects/sample/classes/main
 [mkdir] Created dir: /Users/joe/.griffon/0.9.5-rc2/projects/sample/classes/test
 [mkdir] Created dir: /Users/joe/.griffon/0.9.5-rc2/projects/sample/test-classes
 [mkdir] Created dir: /Users/joe/.griffon/0.9.5-rc2/projects/sample/test-resources
 [mkdir] Created dir: /Users/joe/.griffon/0.9.5-rc2/projects/sample/resources
 [griffonc] Compiling 8 source files to /Users/joe/.griffon/0.9.5-rc2/projects/sample/classes/main
 [griffonc] Compiling 4 source files to /Users/joe/.griffon/0.9.5-rc2/projects/sample/classes/main
griffon> run-app
Resolving dependencies…
Dependencies resolved in 1ms.
 [mkdir] Created dir: /Users/joe/.griffon/0.9.5-rc2/projects/sample/resources/griffon-app/i18n
 [mkdir] Created dir: /Users/joe/.griffon/0.9.5-rc2/projects/sample/resources/griffon-app/resources
 [copy] Copying 1 file to /Users/joe/.griffon/0.9.5-rc2/projects/sample/resources/griffon-app/i18n
 [copy] Copying 8 files to /Users/joe/.griffon/0.9.5-rc2/projects/sample/resources/griffon-app/resources
 [copy] Copying 1 file to /Users/joe/.griffon/0.9.5-rc2/projects/sample/classes/main
 [copy] Copying 11 files to /Users/joe/.griffon/0.9.5-rc2/projects/sample/resources
 [copy] Copied 8 empty directories to 8 empty directories under /Users/joe/.griffon/0.9.5-rc2/projects/sample/resources
 [copy] Copying 1 file to /projects/sample/staging
 [copy] Copying 1 file to /projects/sample/staging
 [copy] Copying 1 file to /projects/sample/staging
 [copy] Copying 1 file to /projects/sample/staging
 [copy] Copying 1 file to /projects/sample/staging
 [copy] Copying 1 file to /projects/sample/staging
 [copy] Copying 1 file to /projects/sample/staging
 [copy] Copying 1 file to /projects/sample/staging
Launching application …
2012-02-07 17:27:11,007 [main] INFO griffon.swing.SwingApplication - Initializing all startup groups: [sample]
2012-02-07 17:27:16,555 [AWT-EventQueue-0] INFO griffon.swing.SwingApplication - Shutdown is in process
 [delete] Deleting directory /projects/sample/staging/macosx64
 [delete] Deleting directory /projects/sample/staging/macosx
griffon> clean
Resolving dependencies…
Dependencies resolved in 1ms.
 [delete] Deleting directory /Users/joe/.griffon/0.9.5-rc2/projects/sample/classes/cli
 [delete] Deleting directory /Users/joe/.griffon/0.9.5-rc2/projects/sample/classes/main
 [delete] Deleting directory /Users/joe/.griffon/0.9.5-rc2/projects/sample/classes/test
 [delete] Deleting directory /Users/joe/.griffon/0.9.5-rc2/projects/sample/test-classes
 [delete] Deleting directory /Users/joe/.griffon/0.9.5-rc2/projects/sample/test-resources
 [delete] Deleting directory /Users/joe/.griffon/0.9.5-rc2/projects/sample/resources
 [delete] Deleting directory /projects/sample/staging
griffon>

This command environment accepts all commands available to the command (except those that let yougriffon
create a new project) plus a few more that are unique to the griffon shell. Please refer to the command for morehelp
information on those extra commands.

51

5. Application Overview

5.1 Directory Structure

Here's a more detailed explanation of each directory within the application's structure

griffon-app - top level directory for Groovy sources.
conf - .Configuration sources

webstart - Webstart resources.
keys - Jar signing keys.
dist - Package specific files.

shared - Common files to all packaging targets (like LICENSE.txt)
metainf - Files that should go in META-INF inside the application/addon jar.

models - .Models
views - .Views
controllers - .Controllers
services - .Services
resources - Images, properties files, etc.
i18n - Support for internationalization (i18n).

scripts - .Gant scripts
src - Supporting sources.

main - Other Groovy/Java sources.
test - .Unit and integration tests

unit - Directory for unit tests.
integration - Directory for integration tests.
cli - Directory for command line tests (Scripts).

5.2 The MVC Pattern

All Griffon applications operate with a basic unit called the MVC group. An MVC group is comprised of 3 member
parts: , and . However it is possible to add (or even remove) members from an MVC groupModels Views Controllers
by carefully choosing a suitable configuration.
MVC groups configuration is setup in located inside . This fileApplication.groovy griffon-app/conf
holds an entry for every MVC group that the application has (not counting those provided by).plugins/addons
Here's how a typical MVC group configuration looks like

mvcGroups {
 // MVC Group for "sample"
 'sample' {
 model = 'sample.SampleModel'
 view = 'sample.SampleView'
 controller = 'sample.SampleController'
 }
}

The order of the members is very important, it determines the order in which each member will be initialized. In the
previous example both and will be initialized before the . Do not mistake initializationmodel view controller
for instantiation, as initialization relies on calling on the group member.mvcGroupInit
MVC group configurations accept a special key that defines additional configuration for that group, as it can be seen
in the following snippet

52

mvcGroups {
 // MVC Group for "sample"
 'sample' {
 model = 'sample.SampleModel'
 view = 'sample.SampleView'
 controller = 'sample.SampleController'
 }
 // MVC Group for "foo"
 'foo' {
 model = 'sample.FooModel'
 view = 'sample.FooView'
 controller = 'sample.FooController'
 config {
 key = 'bar'
 }
 }
}

Values placed under this key become available to MVC members during the call to , as part of themvcGroupInit
arguments sent to that method. Here's how the can reach the key defined in the configurationFooController

class FooController {
 void mvcGroupInit(Map args) {
 println args.configuration.config.key
 }
}

While being able to set additional values under this key is a certainly an advantage it would probably be better if
those values could be mutated or tweaked, probably treating them as variables, effectively making a group
configuration work as a template. For that we'll have to discuss the first.mvcGroupManager

5.2.1 MVCGroupManager

This class is responsible for holding the configuration of all MVC groups no matter how they were defined, which
can be either in or in an descriptor.Application.groovy addon
During the startup sequence an instance of will be created and initialized. Later theMVCGroupManager
application will instruct this instance to create all startup groups as required. has a handful setMVCGroupManager
of methods that deal with MVC group configuration alone; however those that deal with group instantiation come in
3 versions, with 2 flavors each (one Groovy, the other Java friendly).
Locating a group configuration is easily done by specifying the name you're interested in finding

def configuration = app.mvcGroupManager.findConfiguration('foo')

Once you have a configuration reference you can instantiate a group with it by calling any of the variants of the
 methodcreate

def configuration = app.mvcGroupManager.findConfiguration('foo')
def group1 = configuration.create('foo1')
def group2 = configuration.create('foo2', [someKey: 'someValue'])
// the following will make the group's id match its name
def group3 = configuration.create()
def group4 = configuration.create(someKey: 'someValue')

Be careful that creating groups with the same name is usually not a good idea. The default MVCGroupManager will
complain when this happens and will automatically spit out an exception. This behavior may be changed by setting a
configuration key in Config.groovy

griffon.mvcid.collision = 'warning' // accepted values are 'warning', 'exception' ()default

53

The manager will log a warning and destroy the previously existing group before instantiating the new one when
'warning' is the preferred strategy
Now, even though you can create group instances based on their configurations the preferred way is to call any of

, or methods. These methods are available to the propertycreateMVCGroup buildMVCGroup withMVCGroup app
every has, which points to the currently running application. Griffon artifacts also inherit theseGriffonArtifact
methods as part of their default contract. Finally, any class annotated with the AST transformation willMVCAware
also gain access to these methods.
Groups will be available by id regardless of how they were instantiated. You can ask the mvcGroupManager for a
particular group at any time, for example

def g1 = app.mvcGroupManager.groups.foo1
def g2 = app.mvcGroupManager.findGroup('foo1')
def g3 = app.mvcGroupManager.foo1
assert g1 == g2
assert g1 == g3

It's also possible to query all models, views, controllers and builders on their own. Say you'd want to inspect all
currently instantiated models, this is how it can be done

app.mvcGroupManager.models.each { model ->
 // something with modeldo
}

5.2.2 MVCGroups and Configuration

Now that you know there are several ways to instantiate MVC groups we can go back to customizing them.
The simples way is to pass in new values as part of the arguments map that receives, for examplemvcGroupInit

def group = app.mvcGroupManager.buildMVCGroup('foo', [key: 'foo'])

However is you wish to use the special key that every MVC group configuration may have then you mustconfig
instantiate the group in the following way

def configuration = app.mvcGroupManager.cloneMVCConfiguration('foo', [key: 'someValue'])
def group = configuration.create()

Note that you can still send custom arguments to the method.create()

5.2.3 Configuration Options

The following options are available to all MVC groups as long as you use the key.config

Disabling Lifecycle Events
Every MVC group triggers a few events during the span of its lifetime. These events will be sent to the event bus
even if no component is interested in handling them. There may be times when you don't want these events to be
placed in the event bus in order to speed up group creation/destruction. Use the following configuration to gain this
effect:

54

mvcGroups {
 // MVC Group for "sample"
 'sample' {
 model = 'sample.SampleModel'
 view = 'sample.SampleView'
 controller = 'sample.SampleController'
 config {
 events {
 lifecycle = false
 }
 }
 }
}

The following events will be disabled with this setting:

InitializeMVCGroup
CreateMVCGroup
DestroyMVCGroup

Disabling Instantiation Events
The Griffon runtime will trigger an event for every artifact it manages. As with the previous events this one will be
sent to the event bus even if no component handles it. Skipping publication of this event may result in a slight
increase of speed during group instantiation. Use the following configuration to gain this effect:

mvcGroups {
 // MVC Group for "sample"
 'sample' {
 model = 'sample.SampleModel'
 view = 'sample.SampleView'
 controller = 'sample.SampleController'
 config {
 events {
 instantiation = false
 }
 }
 }
}

The following events will be disabled with this setting:

NewInstance

Disabling Controllers as Application Event Listeners
Controllers are registered as application event handlers by default when a group in instantiated. This makes it very
convenient to have them react to events placed in the application's event bus. However you may want to avoid this
automatic registration altogether, as it can lead to performance improvements. You can disable this feature with the
following configuration:

mvcGroups {
 // MVC Group for "sample"
 'sample' {
 model = 'sample.SampleModel'
 view = 'sample.SampleView'
 controller = 'sample.SampleController'
 config {
 events {
 listener = false
 }
 }
 }
}

You can still manually register a controller as an application event handler at any time, with the caveat that it's now
your responsibility to unregister it when the time is appropriate, most typically during the group's destroy sequence.

55

5.3 Application Lifecycle

Every Griffon application goes through the same life cycle phases no matter in which mode they are running, with
the exception of applet mode where there is an additional phase due to the intrinsic nature of applets. The
application's lifecycle has been inspired by JSR-296, the Swing Application Framework.
Every phase has an associated life cycle script that will be invoked at the appropriate time. These scripts are
guaranteed to be invoked inside the UI thread (the Event Dispatch Thread in Swing). The script names match each
phase name; you'll find them inside .griffon-app/lifecycle

5.3.1 Initialize

The initialization phase is the first to be called by the application's life cycle. The application instance has just been
created and its configuration has been read. No other artifact has been created at this point, which means that event

 and the are not yet available to the script's binding.publishing ArtifactManager
This phase is typically used to tweak the application for the current platform, including its Look & Feel.

 will be initialized during this phase.Addons

The script will be called right after the configuration has been read but beforeInitialize
addons are initialized. You have access to addon contributions.wont

5.3.2 Startup

This phase is responsible for instantiating all MVC groups that have been defined in the application's configuration (
) and that also have been marked as startup groups in the same configuration file.Application.groovy

The script will be called all MVC groups have been initialized.Startup after

5.3.3 Ready

This phase will be called right after Startup with the condition that no pending events are available in the UI queue.
The application's main frame will be displayed at the end of this phase.

5.3.4 Shutdown

Called when the application is about to close. Any artifact can invoke the shutdown sequence by calling
 on the instance.shutdown() app

The script will be called before any or event handlerShutdown ShutdownHandler
interested in the event.ShutdownStart

5.3.5 Stop

This phase is only available when running on applet mode. It will be called when the applet container invokes
 on the applet instance.destroy()

5.4 Application Events

Applications have the ability to publish events from time to time to communicate that something of interest has
happened at runtime. Events will be triggered by the application during each of its life cycle phases, also when MVC
groups are created and destroyed.

All application event handlers are guaranteed to be called in the same thread that originated
the event.

56

Any artifact or class can trigger an application event, by routing it through the reference to the current running
application instance. All artifacts posses an instance variable that points to that reference. All other classes can use

 to gain access to the current application's instance.ApplicationHolder
Publishing an event can be done synchronously on the current thread or asynchronously relative to the UI thread. For
example, the following snippet will trigger an event that will be handled in the same thread, which could be the UI
thread itself

app.event('MyEventName', ['arg0', 'arg1'])

Whereas the following snippet guarantees that all event handlers that are interested in an event of type
 will be called outside of the UI threadMyEventName

app.eventOutside('MyEventName', ['arg0', 'arg1'])

Finally, if you'd want event notification to be handed in a thread that is not the current one (regardless if the current
one is the UI thread or not) then use the following method

app.eventAsync('MyEventName', ['arg0', 'arg1'])

There may be times when event publishing must be stopped for a while. If that's the case then you can instruct the
application to stop delivering events by invoking the following code

app.eventPublishingEnabled = false

Any events sent through the application's event bus will be discarded after that call; there's no way to get them back
or replay them. When it's time to enable the event bus again simply call

app.eventPublishingEnabled = true

5.4.1 Life Cycle Events

The following events will be triggered by the application during each one of its phases

Log4jConfigStart[config] - during the phase.Initialize
BootstrapStart[app] - after logging configuration has been setup, during the phase.Initialize
BootstrapEnd[app] - at the end of the phase.Initialize
StartupStart[app] - at the beginning of the phase.Startup
StartupEnd[app] - at the end of the phase.Startup
ReadyStart[app] - at the beginning of the phase.Startup
ReadyEnd[app] - at the end of the phase.Startup
ShutdownRequested[app] - before the begins.Shutdown
ShutdownAborted[app] - if a prevented the application from entering the Shutdown Handler Shutdown
phase.
ShutdownStart[app] - at the beginning of the phase.Shutdown

5.4.2 Artifact Events

The following events will be triggered by the application when dealing with artifacts

NewInstance[klass, type, instance] - when a new artifact is created.
LoadAddonsStart[app] - before any are initialized, during the phase.addons Initialize

57

LoadAddonsEnd[app, addons] - after all have been initialized, during the phase. addons Initialize
 is a Map of <name, instance> pairs.addons

LoadAddonStart[name, addon, app] - before an addon is initialized, during the phase.Initialize
LoadAddonEnd[name, addon, app] - after an addon has been initialized, during the phase.Initialize

These events will be triggered when dealing with MVC groups

InitializeMVCGroup[configuration, group] - when a new MVC group is initialized.
 is of type ; is of type .configuration MVCGroupConfiguration group MVCGroup

CreateMVCGroup[group] - when a new MVC group is created. is of type configuration
; is of type .MVCGroupConfiguration group MVCGroup

DestroyMVCGroup[group] - when an MVC group is destroyed. is of type .group MVCGroup

5.4.3 Miscellaneous Events

These events will be triggered when a specific condition is reached

UncaughtExceptionThrown[exception] - when an uncaught exception bubbles up to
.GriffonExceptionHandler

WindowShown[window] - triggered by the when a Window is shown.WindowManager
WindowHidden[window] - triggered by the when a Window is hidden.WindowManager

5.4.4 Custom Events

Any artifact that holds a reference to the current application may trigger events at its leisure by calling the event()
or methods on the application instance. The following example demonstrates how a ControllereventAsync
triggers a "Done" event after an action has finished

class MyController {
 def action = { evt = ->null
 // some workdo
 app.event('Done')
 }
}

There are two versions of the method. The first takes just the name of the event to be published; theevent()
second accepts an additional argument which should be a List of parameters to be sent to every event handler. Event
handlers notified by this method are guaranteed to process the event in the same thread that published it. However, if
what you need is to post a new event and return immediately then use the variants. If you want theeventAsync
event to be handled outside of the UI thread then use the variants.eventOutsideUI()

5.4.5 Event Handlers

Any artifact or class that abides to the following conventions can be registered as an application listener, those
conventions are:

it is a Script, class, Map, RunnableWithArgs or closure.
in the case of scripts or classes, they must define an event handler whose name matches ,on<EventName>
this handler can be a method, RunnableWithArgs or a closure property.
in the case of a Map, each key maps to <EventName>, the value must be a RunnableWithArgs or a closure.
scripts, classes and maps can be registered/unregistered by calling / addApplicationListener

 on the app instance.removeApplicationListener
RunnableWithArgs and closure event handlers must be registered with an overloaded version of

/ that takes as the firstaddApplicationListener removeApplicationListener <EventName>
parameter, and the runnable/closure itself as the second parameter.

There is a general, per application, script that can provide event handlers. If you want to take advantage of this
feature you must define a script named inside . Lastly both ControllerEvents.groovy griffon-app/conf
and Service instances are automatically registered as application event listeners. This is the only way to declare event
listeners for and events.Log4jConfigStart BootstrapStart

You can also write a class named in as an alternative to Events.java src/main
, but not both!griffon-app/conf/Events.groovy

58

These are some examples of event handlers:

Display a message right before default MVC groups are instantiated
File: griffon-app/conf/Events.groovy

onBootstrapEnd = { app ->
 println """Application configuration has finished loading.
MVC Groups will be initialized now."""
}

Quit the application when an uncaught exception is thrown
File: src/main/Events.java

import griffon.util.ApplicationHolder;
 class Events {public

 void onUncaughtExceptionThrown(Exception e) {public
 ApplicationHolder.getApplication().shutdown();
 }
}

Print the name of the application plus a short message when the application is about to shut down.
File: griffon-app/controller/MyController.groovy

class MyController {
 def onShutdownStart = { app ->
 println "${app.config.application.title} is shutting down"
 }
}

Print a message every time the event "Foo" is published
File: griffon-app/controller/MyController.groovy

class MyController {
 void mvcGroupInit(Map args) {
 app.addApplicationListener([
 Foo: {-> println 'got foo!' }
])
 }
 def fooAction = { evt = ->null
 // somethingdo
 app.event('Foo')
 }
}

An alternative to the previous example using a closure event handler
File: griffon-app/controller/MyController.groovy

class MyController {
 void mvcGroupInit(Map args) {
 app.addApplicationListener('Foo'){-> println 'got foo!' }
 }
 def fooAction = { evt = ->null
 // somethingdo
 app.event('Foo')
 }
}

Second alternative to the previous example using a RunnableWithArgs event handler
File: griffon-app/controller/MyController.java

59

import java.util.Map;
 griffon.util.RunnableWithArgs;import
 org.codehaus.griffon.runtime.core.AbstractGriffonController;import
 class MyController AbstractGriffonController {public extends

 void mvcGroupInit(Map< , > params) {public String Object
 getApp().addApplicationListener(, RunnableWithArgs() {"Foo" new
 void run([] args) {public Object
 .out.println();System "got foo!"
 }
 });
 }
 void fooAction() {public
 // somethingdo
 getApp().event();"Foo"
 }
}

5.4.6 Custom Event Publishers

As the name implies application events are sent system wide. However there is an option to create localized event
publishers. Griffon provides a @griffon.transform.EventPublisher AST transformation that you can apply to any
class that wishes to be an event publisher.
This AST transformation will inject the following methods to the annotated classes:

addEventListener(Object)
addEventListener(String, Closure)
addEventListener(String, RunnableWithArgs)
removeEventListener(Object)
removeEventListener(String, Closure)
removeEventListener(String, RunnableWithArgs)
publishEvent(String)
publishEvent(String,List)
publishEventOutsideUI(String)
publishEventOutsideUI(String,List)
publishEventAsync(String)
publishEventAsync(String,List)
isEventPublishingEnabled()
setEventPublishingEnabled(boolean)

Event listeners registered with these classes should follow the same rules as application event handlers (they can be
Scripts, classes, maps or closures, and so on).
The following example shows a trivial usage of this feature

@griffon.transform.EventPublisher
class Publisher {
 void doit(name) {String
 publishEvent('arg', [name])
 }
 void doit() {
 publishEvent('empty')
 }
}
class Consumer {
 valueString
 void onArg(arg) { value = 'arg = ' + arg }String
 void onEmpty() { value = 'empty' }
}
p = Publisher()new
c = Consumer()new
p.addEventListener(c)
assert !c.value
p.doit()
assert c.value == 'empty'
p.doit('Groovy')
assert c.value == 'arg = Groovy'

5.5 Application Features

The interface defines the base contract for all Griffon applications. However there are some metaGriffonApplication

60

enhancements done at runtime to all applications. The following methods become available before the Initialize
phase is executed:

MVC
newInstance
buildMVCGroup
createMVCGroup
destroyMVCGroup
withMVCGroup

Threading
execInsideUISync
execInsideUIAsync
execOutsideUI
execFuture
isUIThread

5.5.1 Runtime Configuration

The application's runtime configuration is available through the property of the application instance. This isconfig
a whose contents are obtained by merging and .ConfigObject Application.groovy Config.groovy
Builder configuration is available through the property and reflects the contents of builderConfig

.Builder.groovy
However starting with Griffon 0.9.2 there's an alternative for defining the application's configuration. You can now
use properties files instead of Groovy scripts. If both properties files and Groovy scripts are available in the classpath
then the settings of the scripts will be overriden by those set in the properties file. Each properties file must match the
name of the configuration script. The following table shows the conventions

Script File Properties File

Application.groovy Application.properties

Config.groovy Config.properties

Builder.groovy Builder.properties

An application can change the name of the configuration script but it change the name of the configurationcan not
properties file.

5.5.2 Metadata

Access to the application's metadata file () is available by querying the application.properties
 singleton. Here's a snippet of code that shows how to setup a welcome message thatgriffon.util.Metadata

displays the application's name and version, along with its Griffon version

import griffon.util.Metadata
def meta = Metadata.current
application(title: , :) {"Some app" package true
 gridLayout cols: 1, rows: 2
 label "Hello, I'm ${meta['app.name']}-${meta['app.version']}"
 label "Built with Griffon ${meta['app.griffon.version']}"
}

There are also a few helpful methods on this class

getApplicationName() - same result as meta['app.name']
getApplicationVersion() - same result as meta['app.version']
getGriffonVersion() - same result as meta['app.griffon.version']
getGriffonStartDir() - returns the value of from the System properties'griffon.start.dir'
getGriffonWorkingDir() - returns a File that points to if the value is set'griffon.start.dir'
and the file is writable, otherwise returns a File pointing to the current location if it is writable; if that fails
then attempts to return a File pointing to ; if all fail it will return the location to a temporal file,'user.dir'
typically .'/tmp/${griffonAppName}'

61

5.5.3 Environment

A Griffon application can run in several environments, default ones being DEVELOPMENT, TEST and
PRODUCTION. An application can inspect its current running environment by means of the

 enum.griifon.util.Environment
The following example enhances the previous one by displaying the current running environment

import griffon.util.Metadata
 griffon.util.Environmentimport

def meta = Metadata.current
application(title: , :) {"Some app" package true
 gridLayout cols: 1, rows: 3
 label "Hello, I'm ${meta['app.name']}-${meta['app.version']}"
 label "Built with Griffon ${meta['app.griffon.version']}"
 label "Current environment is ${Environment.current}"
}

5.5.4 Running Mode

Applications can run in any of the following modes: STANDALONE, WEBSTART or APPLET. The
 enum allows access to the current running mode.griffon.util.RunMode

This example extends the previous one by adding information on the current running mode

import griffon.util.Metadata
 griffon.util.Environmentimport
 griffon.util.RunModeimport

def meta = Metadata.current
application(title: , :) {"Some app" package true
 gridLayout cols: 1, rows: 3
 label "Hello, I'm ${meta['app.name']}-${meta['app.version']}"
 label "Built with Griffon ${meta['app.griffon.version']}"
 label "Current environment is ${Environment.current}"
 label "Current running mode is ${RunMode.current}"
}

5.5.5 Shutdown Handlers

Applications have the option to let particular artifacts abort the shutdown sequence and/or perform a task while the
shutdown sequence is in process. Artifacts that desire to be part of the shutdown sequence should implement the

 interface and register themselves with the application instance.griffon.core.ShutdownHandler
The contract of a is very simpleShutdownHandler

boolean canShutdown(GriffonApplication app) - return to abort the shutdownfalse
sequence.
void onShutdown(GriffonApplication app) - called if the shutdown sequence was not aborted.

There are no default ShutdownHandlers registered with an application.

5.5.6 Application Phase

All applications have the same phases. You can inspect in which phase the application is currently on bylife-cycle
calling the method on an application instance. Valid values are defined by the getPhase() ApplicationPhase
enum : , , , and .INITIALIZE STARTUP READY MAIN SHUTDOWN

5.5.7 Application Locale

Starting with Griffon 0.9 applications have a bound property that is initialized to the default Locale.locale
Components can listen to Locale changes by registering themselves as PropertyChangeListeners on the application
instance.

5.5.8 Default Imports

Since Griffon 0.9.1 default imports per artifacts are supported. All Groovy based artifacts will resolve classes from
the and packages automatically, there is no longer a need to define imports ongriffon.core griffon.util
those classes unless you require an static import or define an alias. An example of this feature would be as follows.

62

class MyController {
 void mvcGroupInit(Map args) {
 println Metadata.current.'app.name'
 }
}

The class is defined in package . There are additional imports per artifact type, here'sMetadata griffon.util
the list of default definitions

Model
groovy.beans -> @Bindable, @Vetoable
java.beans -> useful for all PropertyChange* classes

View (when using Swing)
java.awt
java.awt.event
javax.swing
javax.swing.event
javax.swing.table
javax.swing.text
javax.swing.tree

The list of imports per artifacts can be tweaked or changed completely at will. You only need to specify a file named
 with the following formatMETA-INF/griffon-default-imports.properties

<artifact_type> = <comma_separated_package_list>

These are the contents of the default file

views = javax.swing., javax.swing.event., javax.swing.table., javax.swing.text., javax.swing.tree., java.awt., java.awt.event.
models = groovy.beans., java.beans.

Imports are cumulative, this means you a package can't be removed from the default list provided by Griffon.

5.5.9 Startup Arguments

Command line arguments can be passed to the application and be accessed by calling on thegetStartupArgs()
application instance. This will return a copy of the args (if any) defined at the command line.
Here's a typical example of this feature in development mode

griffon run-app arg0 arg1 argn

Here's another example demonstrating that the feature can be used once the application has been packaged, in this
case as a single jar

griffon dev jarpackage
java -jar dist/jars/app.jar arg0 arg1 argn

5.5.10 Locating Resources

Resources can be loaded form the classpath using the standard mechanism provided by the Java runtime, that is, ask
a instance to load a resource or obtain an that points to the resource.ClassLoader URL InputStream
But the code can get quite verbose, take for example the following view code that locates a text file and displays it on
a text component

63

scrollPane {
 textArea(columns: 40, rows: 20,
 text: .class.classLoader.getResource('someTextFile.txt').text)this
}

In order to reduce visual clutter, also to provide an abstraction over resource location, both
 and have a new pair of methods that simply working withGriffonApplication GriffonArtifact

resources. Those methods are provided by :ResourceHandler

URL getResourceAsURL(String resourceName)
InputStream getResourceAsStream(String resourceName)
List<URL> getResources(String resourceName)

Thus, the previous example can be rewritten this way

scrollPane {
 textArea(columns: 40, rows: 20,
 text: getResourceAsURL('someTextFile.txt').text)
}

In the future Griffon may switch to a modularized runtime, this abstraction will shield you from any problems when
the underlying mechanism changes.
These methods can be attached to any non-artifact class at compile time if you apply the
@griffon.transform.ResourcesAware AST transformation.

5.5.10 Uncaught Exceptions

There are times when an exception catches you off guard. The JVM provides a mechanism for handling these kind of
exceptions: . You can register an instance that implements this interface with aThread.UncaughtExceptionHandler
Thread or ThreadGroup, however it's very likely that exceptions thrown inside the EDT will not be caught by such
instance. Furthermore, it might be the case that other components would like to be notified when an uncaught
exception is thrown. This is precisely what does.GriffonExceptionHandler
Stack traces will be sanitized by default, in other words, you won't see a long list containing Groovy internals.
However you can bypass the filtering process and instruct Griffon to leave the stack traces untouched by specifying
the following flag either in the command line with switch or in -D Config.groovy

griffon.full.stacktrace = true

Exceptions will be automatically logged using the level. Should you choose to disable logging but still haveerror
some output when an exception occurs then configure the following flag

griffon.exception.output = true

Any exception caught by GriffonExceptionHandler will trigger a pair of events. The event names match the
following convention

Uncaught<exception.class.simpleName>
UncaughtExceptionThrown

The exception is sent as the sole argument of these events. As an example, assume that a service throws an
 during the invocation of a service method. This method was called from within aIllegalArgumentException

Controller which defines a handler for this exception, like this

http://download.oracle.com/javase/6/docs/api/java/lang/Thread.UncaughtExceptionHandler.html

64

class SampleService {
 void work() {
 IllegalArgumentException('boom!')throw new
 }
}
class SampleController {
 def sampleService
 def someAction = {
 sampleService.work()
 }
 def onUncaughtIllegalArgumentException = { iae ->
 // process exception
 }
}

As mentioned before, the name of an event handler matches the type of the exception it will handle, polymorphism is
not supported. In other words, you wont be able to handle an if you declare aIllegalArgumentException
handler for . You can however, rely on the second event triggered by this mechanism. BeRuntimeException
aware that every single exception will trigger 2 events each time it is caught. It is best to use a synchronization
approach to keep track of the last exception caught, like so

import groovy.transform.Synchronized
class SampleController {
 lastCaughtExceptionprivate
 @Synchronized
 void onUncaughtRuntimeException(RuntimeException e) {
 lastCaughtException = e
 // handle runtime exception only
 }
 @Synchronized
 void onUncaughtExceptionThrown(e) {
 (lastCaughtException == e) if return
 lastCaughtException = e
 // handle any other exception types
 }
}

As a final remark, any exceptions that might occur during the handling of the events wont trigger
 again, they will simply be logged and discarded instead.GriffonExceptionHandler

5.6 Swing specific

The following features are available to Swing based applications only.

5.6.1 WindowManager

The class is responsible for keeping track of all the windows managed by the application. It alsoWindowManager
controls how these windows are displayed (via a pair of methods: show, hide). WindowManager relies on an instance
of to actually show or hide a window. The default implementation simple shows andWindowDisplayHandler
hide windows directly, however you can change this behavior by setting a different implementation of

 on the application instance.WindowDisplayHandler

WindowManager DSL
Starting with Griffon 0.9.2 there's a new DSL for configuring show/hide behavior per window. This configuration
can be set in , and here is how it looksgriffon-app/conf/Config.groovy

65

swing {
 windowManager {
 myWindowName = [
 show: {window, app -> … },
 hide: {window, app -> … }
]
 myOtherWindowName = [
 show: {window, app -> … }
]
 }
}

The name of each entry must match the value of the Window's name: property. Each entry may have the following
options

show - used to show the window to the screen. It must be a closure that takes two parameters: the window to
display and the current application.
hide - used to hide the window from the screen. It must be a closure that takes two parameters: the window to
hide and the current application.
handler - a custom .WindowDisplayHandler

The first two options have priority over the third one. If one is missing then the WindowManager will invoke the
default behavior. There is one last option that can be used to override the default behavior provided to all windows

swing {
 windowManager {
 defaultHandler = MyCustomWindowDisplayHandler()new
 }
}

You can go a bit further by specifying a global show or hide behavior as shown in the following example

swing {
 windowManager {
 defaultShow = {window, app -> … }
 // defaultHide = {window, app -> … }
 someWindowName = [
 hide: {window, app -> … }
]
 }
}

Custom WindowDisplayHandlers
The following example shows how you can animate all managed windows using a dropIn effect for show() and a
dropOut effect for hide(). This code assumes you have installed the plugin.Effects
In src/main/Dropper.groovy

import java.awt.Window
 griffon.swing.SwingUtilsimport
 griffon.swing.DefaultWindowDisplayHandlerimport
 griffon.core.GriffonApplicationimport
 griffon.effects.Effectsimport

class Dropper DefaultWindowDisplayHandler {extends
 void show(Window window, GriffonApplication app) {
 SwingUtils.centerOnScreen(window)
 app.execOutsideUI {
 Effects.dropIn(window, wait:)true
 }
 }
 void hide(Window window, GriffonApplication app) {
 app.execOutsideUI {
 Effects.dropOut(window, wait:)true
 }
 }
}

http://griffon.codehaus.org/Effects+Plugin

66

Notice that the effects are executed outside of the UI thread because we need to wait for them to finish before
continuing, otherwise we'll hog the UI thread.
The second step to get this example to work is to inform the application it should use Dropper to display/hide
windows. This a task that can be easily achieved by adding an application event handler, for example in
griffon-app/conf/Events.groovy

// No windows have been created before stepthis
onBootstrapEnd = { app ->
 app.windowDisplayHandler = Dropper()new
}

Custom implementations set in this manner will be called forWindowDisplayHandler
all managed windows. You'll loose the ability of using the WindowManager DSL.

Alternatively, you could specify an instance of as the default handler by changing the Dropper WindowManager
's configuration to

swing {
 windowManager {
 defaultHandler = Dropper()new
 }
}

The interface also defines show/hide methods that can manage WindowDisplayHandler JInternalFrame
instances.

Starting Window
Previous to Griffon 0.9.2 the first window to be displayed during the Ready phase was determined by a simple
algorithm: picking the first available window from the managed windows list. With 0.9.2 however, it's now possible
to configure this behavior by means of the WindowManager DSL. Simply specify a value for

, like thisswing.windowManager.startingWindow

swing {
 windowManager {
 startingWindow = 'primary'
 }
}

This configuration flag accepts two types of values:

a String that defines the name of the Window. You must make sure the Window has a matching name
property.
a Number that defines the index of the Window in the list of managed windows.

If no match is found then the default behavior will be executed.

5.7 Artifact API

The Artifact API provides introspection capabilities on the conventions set on each artifact type. The following
sections explain further what you can do with this API.

5.7.1 Evaluating Conventions

Every Griffon application exposes all information about its artifacts and addons via a pair of helper classes

AddonManager - used for all installed addons
ArtifactManager - used for all remaining artifacts

67

ArtifactManager
The class provides methods to evaluate the conventions within the project and internallyArtifactManager
stores references to all classes within a GriffonApplication using subclasses of class.GriffonClass
A represents a physical Griffon resources such as a controller or a service. For example to get all GriffonClass

 instances you can call:GriffonClass

app.artifactManager.allClasses.each { println it.name }

There are a few "magic" properties that the instance possesses that allow you to narrow theArtifactManager
type of artifact you are interested in. For example if you only need to deal with controllers you can do:

app.artifactManager.controllerClasses.each { println it.name }

Dynamic method conventions are as follows:

get*Classes - Retrieves all the classes for a particular artifact type. Example
.app.artifactManager.getControllerClasses()

*Classes - Retrieves all the classes for a particular artifact type. Example
.app.artifactManager.controllerClasses

is*Class - Returns true if the given class is of the given artifact type. Example
app.artifactManager.isControllerClass(ExampleController)

The interface itself provides a number of useful methods that allow you to further evaluate andGriffonClass
work with the conventions. These include:

newInstance - Creates a new instance of the enclosed class.
getName - Returns the logical name of the class in the application without the trailing convention part if
applicable
getClazz - Returns the artifact class
getType - Returns the type of the artifact, i.e "controller"
getTrailing - Returns the suffix (if any) of the artifact, i.e "Controller"

For a full reference refer to the .javadoc API

AddonManager
The class is responsible for holding references to all addons (which are of type AddonManager

), as well as providing metainformation on each addon via an . The lattergriffon.core.GriffonAddon addon descriptor
can be used to know at runtime the name and version of a particular addon, useful for building a dynamic About
dialog for example.
All addons have the same behavior which is explained in detail in section .12.6 Addons

5.7.2 Adding Dynamic Methods at Runtime

For Griffon managed classes like controllers, models and so forth you can add methods, constructors etc. using the
 mechanism by accessing each controller's :ExpandoMetaClass MetaClass

class ExampleAddon {
 def addonPostInit(app) {
 app.artifactManager.controllerClasses.each { controllerClass ->
 controllerClass.metaClass.myNewMethod = {-> println }"hello world"
 }
 }
}

In this case we use the object to get a reference to all of the controller classes'app.artifactManager
MetaClass instances and then add a new method called to each controller. Alternatively, if youmyNewMethod
know before hand the class you wish add a method to you can simple reference that classes property:metaClass

http://groovy.codehaus.org/ExpandoMetaClass
http://groovy.codehaus.org/api/groovy/lang/MetaObjectProtocol.html

68

class ExampleAddon {
 def addonPostInit(app) {
 .metaClass.swapCase = {->String
 def sb = ()new StringBuffer
 delegate.each {
 sb << (.isUpperCase(it as) ?Character char
 .toLowerCase(it as) :Character char
 .toUpperCase(it as))Character char
 }
 sb.toString()
 }
 assert == .swapCase()"UpAndDown" "uPaNDdOWN"
 }
}

In this example we add a new method to directly by accessing its .swapCase java.lang.String metaClass

5.7.3 Artifact Types

All Griffon artifacts share common behavior. This behavior is captured by an interface named
. Additional interfaces with more explicit behavior exist per each artifact type. Thegriffon.core.GriffonArtifact

following is a list of the basic types and their corresponding interface

Model -> griffon.core.GriffonModel
View -> griffon.core.GriffonView
Controller -> griffon.core.GriffonController
Service -> griffon.core.GriffonService

Starting with Griffon 0.9.1 the compiler will make sure that each artifact implements its corresponding interface via
AST injection. This feature can be very useful when accessing artifacts from languages other than Groovy (see
section to learn more about this kind of artifacts).13.1 Dealing with Non-Groovy Artifacts

AST injection is always enabled unless you disable it as explained in section 4.7.2 Disable
.AST Injection

Additionally to each artifact type you will find a companion that is specialized for each type. TheseGriffonClass
specialized classes can be used to discover metadata about a particular artifact. The following is a list of the
companion GriffonClass for each of the basic artifacts found in core

Model -> griffon.core.GriffonModelClass
View -> griffon.core.GriffonViewClass
Controller -> griffon.core.GriffonControllerClass
Service -> griffon.core.GriffonServiceClass

Be aware that additional artifacts provided by plugins (such as Charts and Wizards) may provide their own interface
and companion GriffonClass. These too will be available when querying the .ArtifactManager

5.8 Archetypes

While it's true that artifact templates can be provided by plugins it simply was not possible to configure how an
application is created. Application Archetypes fill this gap by providing a hook into the application creation process.
Archetypes can do the following:

provide new versions of existing templates, like Model, Controller and so forth
create new directories and files
most importantly perhaps, install a preset of plugins

So, if your company requires all applications to be built following the same template and basic behavior then you can
create an archetype that enforces those constraints. Archetypes are simple zip files with an application descriptor and
templates. Despite this, Griffon provides a few scripts that let you manage archetypes

create-archetype
package-archetype
install-archetype
uninstall-archetype

Archetypes are installed per Griffon location under .$USER_HOME/.griffon/<version>/archetypes

69

Archetypes are registered with an application's metadata when creating an application. You can either manually
modify the value of 'app.archetype' to a known archetype name or specify an -archetype=<archetypeName>
flag when creating a new application.
If no valid archetype is found then the default archetype will be used. Following is the default template for an
application archetype

import griffon.util.Metadata
includeTargets << griffonScript('CreateMvc')
target(name: 'createApplicationProject',
 description: 'Creates a application project',new
 prehook: , posthook:) {null null
 createProjectWithDefaults()
 createMVC()
 // to install plugins the followingdo
 // Metadata md = Metadata.getInstance(File())new "${basedir}/application.properties"
 //
 // a single pluginfor
 // installPluginExternal md, pluginName, pluginVersion
 // ** pluginVersion is optional **
 //
 // multiple plugins where the latest version is preferredfor
 // installPluginsLatest md, [pluginName1, pluginName2]
 //
 // multiple plugins with an specific versionfor
 // installPlugins md, [pluginName1: pluginVersion1]
}
setDefaultTarget(createApplicationProject)

5.8.1 A Fancy Example

This section demonstrates how an archetype can be created and put to good use for building applications.

#1 Create the archetype

The first step is to create the archetype project and its descriptor, which can be done by executing the following
command

griffon create-archetype fancy
cd fancy

#2 Tweak the archetype descriptor

Locate the archetype descriptor () and open it in your favorite editor, paste the followingapplication.groovy
snippet

70

import griffon.util.Metadata
includeTargets << griffonScript('CreateMvc')
target(name: 'createApplicationProject',
 description: 'Creates a application project',new
 prehook: , posthook:) {null null
 createProjectWithDefaults()
 argsMap.model = 'MainModel'
 argsMap.view = 'MainView'
 argsMap.controller = 'MainController'
 createMVC()
 createArtifact(
 name: mvcFullQualifiedClassName,
 suffix: 'Actions',
 type: 'MainActions',
 path: 'griffon-app/views')
 createArtifact(
 name: mvcFullQualifiedClassName,
 suffix: 'MenuBar',
 type: 'MainMenuBar',
 path: 'griffon-app/views')
 createArtifact(
 name: mvcFullQualifiedClassName,
 suffix: 'StatusBar',
 type: 'MainStatusBar',
 path: 'griffon-app/views')
 createArtifact(
 name: mvcFullQualifiedClassName,
 suffix: 'Content',
 type: 'MainContent',
 path: 'griffon-app/views')
 Metadata md = Metadata.getInstance(File())new "${basedir}/application.properties"
 installPluginExternal md, 'miglayout'
}
setDefaultTarget(createApplicationProject)

This archetype overrides the default templates for Model, View and Controller that will be used for the initial MVC
group. It also creates 4 additional files inside . Finally it installs the latest version of the griffon-app/views

 plugin.MigLayout

#3 Create the artifact templates

According to the conventions laid out in the archetype descriptor there must exist a file under
 that matches each one of the specified artifact types, in other words we need thetemplates/artifacts

following files
MainModel.groovy

@artifact. @ groovy.beans.Bindablepackage import
 griffon.util.GriffonNameUtilsimport

class @artifact.name@ {
 @Bindable statusString
 void mvcGroupInit(Map args) {
 status = "Welcome to ${GriffonNameUtils.capitalize(app.config.application.title)}"
 }
}

MainController.groovy

http://griffon.codehaus.org/Miglayout+Plugin

71

@artifact. @class @artifact.name@ {package
 def model
 def view
 // void mvcGroupInit(Map args) {
 // // method is called after model and view are injectedthis
 // }
 // void mvcGroupDestroy() {
 // // method is called when the group is destroyedthis
 // }
 def newAction = { evt = ->null
 model.status = 'New action'
 }
 def openAction = { evt = ->null
 model.status = 'Open action'
 }
 def saveAction = { evt = ->null
 model.status = 'Save action'
 }
 def saveAsAction = { evt = ->null
 model.status = 'Save As action'
 }
 def aboutAction = { evt = ->null
 model.status = 'About action'
 }
 def quitAction = { evt = ->null
 model.status = 'Quit action'
 }
 def cutAction = { evt = ->null
 model.status = 'Cut action'
 }
 def copyAction = { evt = ->null
 model.status = 'Copy action'
 }
 def pasteAction = { evt = ->null
 model.status = 'Paste action'
 }
}

MainView.groovy

@artifact. @build(@artifact.name.plain@Actions)package
application(title: GriffonNameUtils.capitalize(app.config.application.title),
 pack: ,true
 locationByPlatform: ,true
 iconImage: imageIcon('/griffon-icon-48x48.png').image,
 iconImages: [imageIcon('/griffon-icon-48x48.png').image,
 imageIcon('/griffon-icon-32x32.png').image,
 imageIcon('/griffon-icon-16x16.png').image]) {
 menuBar(build(@artifact.name.plain@MenuBar))
 migLayout(layoutConstraints: 'fill')
 widget(build(@artifact.name.plain@Content), constraints: 'center, grow')
 widget(build(@artifact.name.plain@StatusBar), constraints: 'south, grow')
}

MainActions.groovy

72

@artifact. @ groovy.ui.Consolepackage import
actions {
 action(id: 'newAction',
 name: 'New',
 closure: controller.newAction,
 mnemonic: 'N',
 accelerator: shortcut('N'),
 smallIcon: imageIcon(resource: , class: Console),"icons/page.png"
 shortDescription: 'New'
)
 action(id: 'openAction',
 name: 'Open...',
 closure: controller.openAction,
 mnemonic: 'O',
 accelerator: shortcut('O'),
 smallIcon: imageIcon(resource: , class: Console),"icons/folder_page.png"
 shortDescription: 'Open'
)
 action(id: 'quitAction',
 name: 'Quit',
 closure: controller.quitAction,
 mnemonic: 'Q',
 accelerator: shortcut('Q'),
)
 action(id: 'aboutAction',
 name: 'About',
 closure: controller.aboutAction,
 mnemonic: 'B',
 accelerator: shortcut('B')
)
 action(id: 'saveAction',
 name: 'Save',
 closure: controller.saveAction,
 mnemonic: 'S',
 accelerator: shortcut('S'),
 smallIcon: imageIcon(resource: , class: Console),"icons/disk.png"
 shortDescription: 'Save'
)
 action(id: 'saveAsAction',
 name: 'Save as...',
 closure: controller.saveAsAction,
 accelerator: shortcut('shift S')
)
 action(id: 'cutAction',
 name: 'Cut',
 closure: controller.cutAction,
 mnemonic: 'T',
 accelerator: shortcut('X'),
 smallIcon: imageIcon(resource: , class: Console),"icons/cut.png"
 shortDescription: 'Cut'
)
 action(id: 'copyAction',
 name: 'Copy',
 closure: controller.copyAction,
 mnemonic: 'C',
 accelerator: shortcut('C'),
 smallIcon: imageIcon(resource: , class: Console),"icons/page_copy.png"
 shortDescription: 'Copy'
)
 action(id: 'pasteAction',
 name: 'Paste',
 closure: controller.pasteAction,
 mnemonic: 'P',
 accelerator: shortcut('V'),
 smallIcon: imageIcon(resource: , class: Console),"icons/page_paste.png"
 shortDescription: 'Paste'
)
}

MainMenuBar.groovy

73

@artifact. @ griffon.util.GriffonApplicationUtils.*package import static
menuBar = menuBar {
 menu(text: 'File', mnemonic: 'F') {
 menuItem(newAction)
 menuItem(openAction)
 separator()
 menuItem(saveAction)
 menuItem(saveAsAction)
 (!isMacOSX) {if
 separator()
 menuItem(quitAction)
 }
 }
 menu(text: 'Edit', mnemonic: 'E') {
 menuItem(cutAction)
 menuItem(copyAction)
 menuItem(pasteAction)
 }
 (!isMacOSX) {if
 glue()
 menu(text: 'Help', mnemonic: 'H') {
 menuItem(aboutAction)
 }
 }
}

MainContent.groovy

@artifact. @label('Main content')package

MainStatusBar.groovy

@artifact. @label(id: 'status', text: bind { model.status })package

#4 Package and install the archetype

This step is easily done with a pair of command invocations

griffon -archetypepackage
griffon install-archetype target/ /griffon-fancy-0.1.zippackage

#5 Use the archetype

Now that the archetype has been installed all that is left is put it to good use, like this

griffon create-app sample --archetype=fancy

This command should generate the following files in the application directory

griffon-app
controllers

sample
SampleController

models
sample

sampleModel
views

sample
SampleActions

74

SampleContent
SampleMenuBar
SampleStatusBar
SampleView

If you inspect the file you'll notice that the miglayout plugin has been installed too.application.properties
Archetypes can be versioned, installed and released in the same way plugins are.

5.9 Platform Specific

The following sections outline specific tweaks and options available for a particular platform.

5.9.1 Tweaks for a Particular Platform

Griffon will automatically apply tweaks to the application depending on the current platform. However you have the
option to specify a different set of tweaks. For example, the following configuration in specifiesConfig.groovy
a different handler for :macosx

platform {
 handler = [
 macosx: 'com.acme.MyMacOSXPlatformHandler'
]
}

Now you only need to create such handler, like this:

package com.acme
 griffon.core.GriffonApplicationimport
 griffon.util.PlatformHandlerimport

class MyMacOSXPlatformHandler PlatformHandler {implements
 void handle(GriffonApplication app) {
 .setProperty('apple.laf.useScreenMenuBar', ' ')System true
 …
 }
}

The following platform keys are recognized by the application in order to locate a particular handler: , linux
, and .macosx solaris windows

5.9.2 MacOSX

Applications that run in Apple's MacOSX must adhere to an strict set of rules. We recommend you to have a look at
Apple's ().Human Interface Guidelines
Griffon makes it easier to integrate with MacOSX by automatically registering a couple of System properties that
make the applicaiton behave like a native one

apple.laf.useScreenMenuBar - if set to true will force the application's menu bar to appear at the
top. Griffon sets its value to true.
com.apple.mrj.application.apple.menu.about.name - sets the name that will appear next to
the menu option.About

Java applications running on MacOSX also have the option to register handlers for , and About Preferences
 menu options. The default handlers will trigger an specific application event each. These events can beQuit

disabled with a command flag set in . The following table outlines thegriffon-app/conf/Config.groovy
events, flags and the default behavior when the flags are enabled

Event Fired when Flag Default behavior

OSXAbout user activates About menu osx.noabout Default about dialog is displayed

OSXPrefs user activates Preferences menu osx.noprefs No Preferences menu is available

OSXQuit user activates Quit menu osx.noquit Application shutdowns immediately

http://developer.apple.com/library/mac/#documentation/UserExperience/Conceptual/AppleHIGuidelines/XHIGIntro/XHIGIntro.html

75

6. Models and Binding

This section describe models and all binding options.

6.1 Models

Models are very simple in nature. Their responsibility is to hold data that can be used by both Controller and View to
communicate with each other. In other words, Models are equivalent to domain classes.not
Models can be observable by means of the AST Transformation. This actually simplifies setting up@Bindable
bindings so that changes in the UI can automatically be sent to model properties and vice versa.
@Bindable will inject a field and all methods required to make thejava.beans.PropertyChangeSupport
model an observable class. It will also make sure that a is fired for each observablePropertyChangeEvent
property whenever said property changes value.
The following is a list of all methods added by @Bindable

void addPropertyChangeListener(PropertyChangeListener listener)
void addPropertyChangeListener(String propertyName,
PropertyChangeListener listener)
void removePropertyChangeListener(PropertyChangeListener listener)
void removePropertyChangeListener(String propertyName,
PropertyChangeListener listener)
PropertyChangeListener[] getPropertyChangeListeners()
PropertyChangeListener[] getPropertyChangeListeners(String propertyName)
void firePropertyChange(String propertyName, Object oldValue, Object
newValue)

The following is a list of all methods added by @Vetoable

void addVetoableChangeListener(VetoableChangeListener listener)
void addVetoableChangeListener(String propertyName,
VetoableChangeListener listener)
void removeVetoableChangeListener(VetoableChangeListener listener)
void removeVetoableChangeListener(String propertyName,
VetoableChangeListener listener)
VetoableChangeListener[] getVetoableChangeListeners()
VetoableChangeListener[] getVetoableChangeListeners(String propertyName)
void fireVetoableChange(String propertyName, Object oldValue, Object
newValue)

Another annotation, @Listener, helps you register without so much effort. ThePropertyChangeListeners
following code

import griffon.transform.PropertyListener
 groovy.beans.Bindableimport

@PropertyListener(snoopAll)
class MyModel {
 def controller
 @Bindable nameString
 @Bindable
 @PropertyListener({controller.someAction(it)})
 lastnameString
 def snoopAll = { evt -> … }
}

is equivalent to this one

http://groovy.codehaus.org/Bindable+and+Vetoable+transformation

76

import groovy.beans.Bindable
 java.beans.PropertyChangeListenerimport

class MyModel {
 def controller
 @Bindable nameString
 @Bindable lastnameString
 def snoopAll = { evt -> … }
 MyModel() {
 addPropertyChangeListener(snoopAll as PropertyChangeListener)
 addPropertyChangeListener('lastname', {
 controller.someAction(it)
 } as PropertyChangeListener)
 }
}

@PropertyListener accepts the following values

in-place definition of a closure
reference of a closure property defined in the same class
a List of any of the previous two

6.2 Binding

Binding in Griffon is achieved by leveraging Java Beans' and their related classes, thusPropertyChangeEvent
binding will work with any class that fires this type of event, regardless of its usage of @Bindable or not.

6.2.1 Syntax

These are the three options for writing a binding using the nodebind

Long
The most complete of all three, you must specify both ends of the binding explicitly. The following snippet sets an
unidirectional binding from to bean1.prop1 bean2.prop2

bind(source: bean1, sourceProperty: 'prop1',
 target: bean2, targetProperty: 'prop2')

Contextual
This type of binding can assume either the sources or the targets depending on the context. The following snippets
set an unidirectional binding from to bean1.prop1 bean2.prop2

Implicit source

bean(bean1, prop1: bind(target: bean2, targetProperty: 'prop2'))

Implicit target

bean(bean2, prop2: bind(source: bean1, sourceProperty: 'prop1'))

When used in this way, either or can be omitted; the bind node's valuesourceProperty: targetProperty:
will become the property name, in other words

bean(bean1, prop1: bind('prop2', target: bean2))

Short

77

This type of binding is only useful for setting implicit targets. It expects a closure as the definition of the binding
value

bean(bean2, prop2: bind{ bean1.prop1 })

6.2.2 Additional Properties

The following properties can be used with either the or binding syntaxlong contextual

mutual:
Bindings are usually setup in one direction. If this property is specified with a value of then a bidirectionaltrue
binding will be created instead.

import groovy.beans.Bindable
 groovy.swing.SwingBuilderimport

class MyModel {
 @Bindable valueString
}
def model = MyModel()new
def swing = SwingBuilder()new
swing.edt {
 frame(title: 'Binding', pack: , visible:) {true true
 gridLayout(cols: 2, rows: 3)
 label 'Normal'
 textField(columns: 20, text: bind('value', target: model))
 label 'Bidirectional'
 textField(columns: 20, text: bind('value', target: model, mutual:))true
 label 'Model'
 textField(columns: 20, text: bind('value', source: model))
 }
}

Typing text on textfield #2 pushes the value to model, which in turns updates textfield #2 and #3, demonstrating that
textfield #2 listens top model updates. Typing text on textfield #2 pushes the value to textfield #3 but not #1,
demonstrating that textfield #1 is not a bidirectional binding.

converter:
Transforms the value before it is sent to event listeners.

import groovy.beans.Bindable
 groovy.swing.SwingBuilderimport

class MyModel {
 @Bindable valueString
}
def convertValue = { val ->
 '*' * val?.size()
}
def model = MyModel()new
def swing = SwingBuilder()new
swing.edt {
 frame(title: 'Binding', pack: , visible:) {true true
 gridLayout(cols: 2, rows: 3)
 label 'Normal'
 textField(columns: 20, text: bind('value', target: model))
 label 'Converter'
 textField(columns: 20, text: bind('value', target: model, converter: convertValue))
 label 'Model'
 textField(columns: 20, text: bind('value', source: model))
 }
}

Typing text on textfield #1 pushes the value to the model as expected, which you can inspect by looking at textfield
#3. Typing text on textfield #2 however transform's every keystroke into an '*' character.

validator:
Guards the trigger. Prevents the event from being sent if the return value is or .false null

78

import groovy.beans.Bindable
 groovy.swing.SwingBuilderimport

class MyModel {
 @Bindable valueString
}
def isNumber = { val ->
 (!val) if return true
 {try
 .parseDouble(val)Double
 } (NumberFormatException e) {catch
 false
 }
}
def model = MyModel()new
def swing = SwingBuilder()new
swing.edt {
 frame(title: 'Binding', pack: , visible:) {true true
 gridLayout(cols: 2, rows: 3)
 label 'Normal'
 textField(columns: 20, text: bind('value', target: model))
 label 'Converter'
 textField(columns: 20, text: bind('value', target: model, validator: isNumber))
 label 'Model'
 textField(columns: 20, text: bind('value', source: model))
 }
}

You can type any characters on textfield #1 and see the result in textfield #3. You can only type numbers on textfield
#2 and see the result in textfield #3

This type of validation is not suitable for semantic validation (a.k.a. constraints in domain
classes). You would want to have a look at the plugin.Validation

sourceEvent:
Maps a different event type, instead of .PropertyChangeEvent

sourceValue:
Specify a value that may come from a different source. Usually found in partnership with .sourceevent

import groovy.beans.Bindable
 groovy.swing.SwingBuilderimport

class MyModel {
 @Bindable valueString
}
def model = MyModel()new
def swing = SwingBuilder()new
swing.edt {
 frame(title: 'Binding', pack: , visible:) {true true
 gridLayout(cols: 2, rows: 3)
 label 'Text'
 textField(columns: 20, id: 'tf1')
 label 'Trigger'
 button('Copy Text', id: 'bt1')
 bind(source: bt1,
 sourceEvent: 'actionPerformed',
 sourceValue: {tf1.text},
 target: model,
 targetProperty: 'value')
 label 'Model'
 textField(columns: 20, text: bind('value', source: model))
 }
}

A contrived way to copy text from one textfield to another. The copy is performed by listening to sActionEvent
pumped by the button.

http://gvalidation.sourceforge.net/

79

7. Views

Views are responsible for defining how the application looks like. View scripts are always executed in the context of
an UberBuilder, which means that Views have access to all nodes, properties and methods contributed by builders
configured in .Builder.groovy
Views can reference directly both the and instances that belong directly to their own MVCmodel controller
group.
View scripts are where you would usually setup with their corresponding model instances.bindings

7.1 Views and Swing

Views are usually written as Groovy scripts that create the UI by composing elements using builder nodes. Griffon
supports all nodes provided by by default. A typical View looks like thisSwingBuilder

package login
actions {
 action(id: 'loginAction',
 name: 'Login',
 enabled: bind{ model.enabled },
 closure: controller.login)
}
application(title: 'Some title', pack: ,true
 locationByPlatform: ,true
 iconImage: imageIcon('/griffon-icon-48x48.png').image,
 iconImages: [imageIcon('/griffon-icon-48x48.png').image,
 imageIcon('/griffon-icon-32x32.png').image,
 imageIcon('/griffon-icon-16x16.png').image]) {
 gridLayout(cols: 2, rows: 3)
 label 'Username:'
 textField columns: 20, text: bind('username', target: model)
 label 'Password:'
 passwordField columns: 20, text: bind('password', target: model)
 label ''
 button loginAction
}

The resulting UI may look like this

It is pretty evident that changing layouts will greatly improve how this application looks. Additional nodes can be
configured in , the Griffon runtime will make sure to setup the buildergriffon-app/conf/Builder.groovy
correctly. Here's an example with nodes used to setup a top banner. It also relies on toJideBuilder MigLayout
arrange the components in a better way

http://groovy.codehaus.org/Swing+Builder
http://griffon.codehaus.org/JideBuilder
http://miglayout.com

80

package login
 java.awt.Colorimport

actions {
 action(id: 'loginAction',
 name: 'Login',
 enabled: bind{ model.enabled },
 closure: controller.login)
}
application(title: 'Some title', pack: ,true
 locationByPlatform: ,true
 iconImage: imageIcon('/griffon-icon-48x48.png').image,
 iconImages: [imageIcon('/griffon-icon-48x48.png').image,
 imageIcon('/griffon-icon-32x32.png').image,
 imageIcon('/griffon-icon-16x16.png').image]) {
 migLayout(layoutConstraints: 'fill')
 bannerPanel(constraints: 'span 2, growx, wrap',
 title: 'Login',
 subtitle: 'Please enter your credentials',
 titleIcon: imageIcon('/griffon-icon-48x48.png'),
 border: lineBorder(color: Color.BLACK, thickness: 1),
 subTitleColor: Color.WHITE,
 background: Color(0,0,0,1),new
 startColor: Color.WHITE,
 endColor: Color.BLACK,
 vertical:)true
 label 'Username:', constraints: 'left'
 textField columns: 20, text: bind('username', target: model), constraints: 'wrap'
 label 'Password:', constraints: 'left'
 passwordField columns: 20, text: bind('password', target: model), constraints: 'wrap'
 button loginAction, constraints: 'span 2, right'
}

You'll need to install 2 plugins if you intend to run this application: and . Here's the rest of thejide-builder miglayout
application, first the model

package login
 groovy.beans.Bindableimport
 griffon.transform.PropertyListenerimport

@PropertyListener(enabler)
class LoginModel {
 @Bindable usernameString
 @Bindable passwordString
 @Bindable enabledboolean
 enabler = { evt ->private
 (evt.propertyName == 'enabled') if return
 enabled = username && password
 }
}

Then the controller

http://griffon.codehaus.org/JideBuilder+Plugin
http://griffon.codehaus.org/Miglayout+Plugin

81

package login
 javax.swing.JOptionPaneimport

class LoginController {
 def model
 def login = {
 JOptionPane.showMessageDialog(app.windowManager.windows[0],
 """
 username = $model.username
 password = $model.password

.stripIndent(14).toString()) """
 }
}

There are many that will contribute additional nodes that can be used on Views.plugins

7.2 Special Nodes

The rule of thumb to find out the node name of a Swing class is this:

drop the first from the class nameJ
uncapitalize the next character

Examples

JButton => button
JLabel => label

This rules apply to all Swing classes available in the JDK. There are a few additional nodes that provide a special
function, which will be explained next.

7.2.1 Application

Provided by: Griffon
This node defines a top level container depending on the current . It it's or running mode STANDALONE WEBSTART
it will create a Window subclass according to the following rules:

class name defined in (configured in app.config.application.frameClass
)Application.groovy

JXFrame if SwingX is available
JFrame if all others fail

There's a slight change for the run mode, the container returned for the first invocation of the APPLET
 node will be the applet itself, for all others the previous rules apply.application

Of all the properties suggested by the default template you'll notice and . The firsticonImage iconImages
property is a standard property of . It's usually defines the icon to be displayed at the top of the frame (onJFrame
platforms that support such setting). The second property () is a Jdk6 addition to iconImages

. This property instructs the window to select the most appropriate icon according to platformjava.awt.Window
preferences. Griffon ignores this setting if running in Jdk5. This property overrides the setting specified for

 if its supported in the current Jdk and platform.iconImage

7.2.2 Container

Provided by: SwingBuilder
This is a pass through node that accepts any UI component as value. This node allows nesting of child content. It's
quite useful when what you need is to embed a custom component for which a node is not available, for example

container(MyCustomPanel()) {new
 label 'Groovy is cool'
}

7.2.3 Widget

Provided by: SwingBuilder
This is a pass through node that accepts any UI component as value. As opposed to , this node container does not
allow nesting of child content. It's quite useful when what you need is to embed a custom component for which a
node is not available, for example

http://griffon.codehaus.org/Plugins
http://download.oracle.com/javase/6/docs/api/javax/swing/JFrame.html#setIconImage(java.awt.Image)
http://download.oracle.com/javase/6/docs/api/java/awt/Window.html#setIconImages(java.util.List)

82

widget(MyCustomDisplay(), title: 'Groovy') {new

7.2.4 Bean

Provided by: SwingBuilder
This is a catch-all node, it allows you to set properties on any object using the builder syntax, for example setting up
bindings on a model

textField columns: 20, id: username
bean(model, value: bind{ username.text })

The previous code is equivalent to

textField columns: 20, text: bind('value', target: model)

7.2.5 Noparent

Provided by: SwingBuilder
Child nodes are always attached to their parents, there are times when you explicitly don't want that to happen. If that
is the case then wrap those nodes with noparent

panel {
 gridLayout(cols: 2, rows: 2)
 button('Click 1', id: b1')
 button('Click 2', id: b2')
 button('Click 3', id: b2')
 button('Click 4', id: b4')
 // the following line will cause the buttons
 // to be reordered
 // bean(button1, text: 'Click 11')
 noparent {
 // is safe, buttons not change placesthis do
 bean(button1, text: 'Click 11')
 }
}

7.2.6 Root

Provided by: Griffon
Identifies the top level node of a secondary View script. View scripts are expected to return the top level node,
however there may be times when further customizations prevent this from happening, for example wiring up a
custom listener. When that happens the result has to be made explicit otherwise the script will return the wrong
value. Using the node avoids forgetting this fact while also providing an alias for the node.root()
Secondary view script named "SampleSecondary"

root(
 tree(id: 'mytree')
)
mytree.addTreeSelectionModel(DefaultTreeSelectionModel() {new
 …
})

Primary view script named "SampleView"

83

build(SampleSecondary)
application(title: 'Sample') {
 borderLayout()
 label 'Options', constraints: NORTH
 widget root(SampleSecondary)
}

This node accepts an additional parameter that can be used to override the default alias assigned to the node. Ifname
you specify a value for this parameter when the node is built then you'll need to use it again to retrieve the node.

84

8. Controllers and Services

This section describes the artifacts that hold the logic of a Griffon application.

8.1 Controllers

Controllers are the entry point for your application's logic. Each controller has access to their model and view
instances from their respective MVC group.
Controller actions are usually defined using a closure property form, like the following one

class MyController {
 def someAction = { evt = ->null
 // some stuffdo
 }
}

It is also possible to define actions as methods, however the closure property form is preferred (but not enforced).
The caveat is that you would need to translate the method into a MethodClosure when referencing them form a View
script. In the following example the action 'action1' is defined as a closure property, whereas the action 'action2' is
defined as a method

application(title: 'Action sample', pack:) {true
 gridLayout(cols: 2, rows: 1) {
 button 'Action 1', actionPerformed: controller.action1
 button 'Action 2', actionPerformed: controller.&action2
 }
}

Actions must follow these rules in order to be considered as such:

must have public (Java) or default (Groovy) visibility modifier.
name does not match an event handler, i.e, it does not begin with .on
must pass if it's a method.GriffonClassUtils.isPlainMethod()
must have as return type if it's a method.void
value must be a closure (including curried method pointers) if it's a property.

Controllers can perform other tasks:

listen to .application events
create and destroy MVC groups via a pair of methods (,).createMVCGroup destroyMVCGroup
react to MVC initialization/destruction via a pair of methods (,).mvcGroupInit mvcGroupDestroy
hold references.service

8.1.1 Threads and Actions

A key aspect that you must always keep in mind is proper . Often times controller actions will be bound inthreading
response to an event driven by the UI. Those actions will usually be invoked in the same thread that triggered the
event, which would be the UI thread. When that happens you must make sure that the executed code is short and that
it quickly returns control to the UI thread. Failure to do so may result in unresponsive applications.
The following example is the typical use case that must be avoided

85

class BadController {
 def badAction = {
 def sql = Sql.newInstance(
 app.config.datasource.url,
 model.username,
 model.password,
 app.config.datasource.driver
)
 model.products.clear()
 sql.eachRow() { product ->"select * from products"
 model.products << [product.id, product.name, product.price]
 }
 sql.close()
 }
}

There are two problems here. First the database connection is established inside the UI thread (which takes precious
milliseconds or even longer), then a table (which could be arbitrarily large) is queried and each result sent to a List
belonging to the model. Assuming that the list is bound to a Table Model then the UI will be updated constantly by
each added row; which happens to be done all inside the UI thread. The application will certainly behave slow and
sluggish, and to top it off the user won't be able to click on another button or select a menu item until this actions has
been processed entirely.

 will discuss with further detail the options that you have at your disposal to make use of proper threadingChapter 9
constructs. Here's a quick fix for the previous controller

class GoodController {
 def goodAction = {
 execOutsideUI {
 def sql = null
 {try
 sql = Sql.newInstance(
 app.config.datasource.url,
 model.username,
 model.password,
 app.config.datasource.driver
)
 List results = []
 sql.eachRow() { product ->"select * from products"
 results << [product.id, product.name, product.price]
 }
 execInsideUIAsync {
 model.products.clear()
 model.addAll(results)
 }
 } {finally
 sql?.close()
 }
 }
 }
}

However starting with Griffon 0.9.2 you're no longer required to surround the action code with asexecOutsideUI
the compiler will do it for you. This feature breaks backward compatibility with previous releases so it's possible to
disable it altogether. Please refer to section . This feature can be partially4.7.5 Disable Threading Injection
enabled/disabled too. You can specify with absolute precision which actions should have this feature enabled or
disabled, by adding the following settings to griffon-app/conf/BuildConfig.groovy

compiler {
 threading {
 sample {
 SampleController {
 action1 = false
 action2 = true
 }
 FooController = false
 }
 bar = false
 }
}

86

The compiler will evaluate these settings as follows:

the action identified by will not have automatic threadingsample.SampleController.action1
injected into its code, while (and any other found in the samesample.SampleController.action2
controller) will have it.
all actions belonging to will not have automatic threading injected.sample.FooController
all actions belonging to all controllers in the package will not have threading injected.bar

Automatic threading injection only works for Groovy based controllers. You must add
appropriate threading code to controller actions that are written in languages other than
Groovy.

8.2 Services

Services are responsible for the application logic that does not belong to a single controller. They are meant to be
treated as singletons, injected to MVC members by following a naming convention. Services are optional artifacts,
and as such there is no default folder created for them when a new application is created.
Services must be located inside the directory with a suffix. The griffon-app/services Service

 command performs this job for you; also adding a unit test for the given service.create-service
Let's say you need to create a Math service, the command to invoke would be

griffon create-service math

This results in the following files being created

griffon-app/services/MathService.groovy - the service class.
test/unit/MathServiceTests.groovy - service unit test.

A trivial implementation of an addition operation performed by the MathService would look like the following
snippet

class MathService {
 def addition(a, b) { a + b }
}

Using this service from a Controller is a straight forward task. As mentioned earlier services will be injected by
name, which means you only need to define a property whose name matches the uncapitalized service name, for
example

class MyController {
 def mathService
 def action = {
 model.result = mathService.addition model.a, model.b
 }
}

The type of the service class is optional as basic injection is done by name alone.

Service injection is trivial, it does not provide a full blown DI, in other words further service
dependencies will not be resolved. You will need a richer DI solution in order to achieve this,
fortunately there is a that does this and more.Spring plugin

Given that services are inherently treated as singletons they are also automatically registered as application event
listeners. Be aware that services will be instantiated lazily which means that some events might not reach a particular

http://griffon.codehaus.org/Spring+Plugin

87

service if it has not been instantiated by the framework by the time of event publication. It also discouraged to use
the @Singleton annotation on a Service class as it will cause trouble with the automatic singleton management
Griffon has in place.
Lastly, all services instances will become available through an instance of type

. This helper class exposes available services via a Map. You can query allgriffon.core.ServiceManager
currently available services in the following manner

app.serviceManager.services.each { name, instance ->
 // something cool with servicesdo
}

You can also query for a particular service instance in the following way

def fooService = app.serviceManager.findService('foo')

It's worth mentioning that the previous method will instantiate the service if it wasn't available up to that point.
All services are instantiated lazily by default. You can change this behavior by adding a configuration flag to
Config.groovy

griffon.services.eager.instantiation = true

88

9. Threading

Building a well-behaved multi-threaded desktop application has been a hard task for many years, however it does not
have to be that way anymore. The following sections explain the threading facilities exposed by the Griffon
framework.

Prior to version 0.9.2 Controller actions were called in the same thread that published the
event; most of the times this thread would be the UI thread. From 0.9.2 and onwards
Controller actions will be executed outside of the UI thread. This feature can be disabled
altogether or in a per case basis as explained in section .8.1.1

9.1 Swing Threading

The Swing toolkit has a single golden rule: all long computations must be performed outside of the Event
 (or EDT for short). This rule also states that Dispatch Thread all interaction with UI components must be done

. See inside the EDT, including building a component and reading/writing component properties Concurrency
 for more information.in Swing

Often times this rule can be broken easily as there is no compile time check for it. The Swing toolkit offers a helper
class that exposes a pair of method that let you run code inside the EDT, however there is noSwingUtilities
helper method for running code outside of the EDT
SwingBuilder provides a few methods that let you build multi-threaded applications the easy way. These methods are
available in Views and Controllers.

9.1.1 Synchronous Calls

Synchronous calls inside the EDT can be achieved by calling the method. This method is smarter than plain edt{}
 as it won't throw an exception if called inside the EDT, on the contrary, itSwingUtilities.invokeAndWait

will simply call the block of code it was given.
Example:

class MyController {
 def model
 def action1 = {
 // will be invoked inside the EDT by (pre 0.9.2)default
 def value = model.value
 .start {Thread
 // some calculationsdo
 edt {
 // back inside the EDT
 model.result = …
 }
 }
 }
 def action2 = {
 // will be invoked outside of the EDT by (post 0.9.2)default
 def value = model.value
 // some calculationsdo
 edt {
 // back inside the EDT
 model.result = …
 }
 }
}

9.1.2 Asynchronous Calls

Asynchronous calls inside the EDT can be made by calling the method. This method simply posts adoLater{}
new event to the underlying EventQueue using , meaning you spare a fewSwingUtilities.invokeLater
characters and a class import.
Example:

http://download.oracle.com/javase/tutorial/uiswing/concurrency/index.html
http://download.oracle.com/javase/tutorial/uiswing/concurrency/index.html

89

class MyController {
 def model
 def action1 = {
 // will be invoked inside the EDT by (pre 0.9.2)default
 def value = model.value
 .start {Thread
 // some calculationsdo
 doLater {
 // back inside the EDT
 model.result = …
 }
 }
 }
 def action2 = {
 // will be invoked outside of the EDT by (post 0.9.2)default
 def value = model.value
 // some calculationsdo
 doLater {
 // back inside the EDT
 model.result = …
 }
 }
}

9.1.3 Outside Calls

The previous two examples showed a simple way to execute code outside of the EDT, simply put they spawn a new
Thread. The problem with this approach is that creating new threads is an expensive operation, also you shouldn't
need to create a new thread if the code is already being executed outside of the EDT.
The method takes these concerns into account, spawning a new thread if and only if the code isdoOutside{}
currently being executed inside the EDT. A rewrite of the previous example would be thus

class MyController {
 def model
 def action1 = {
 // will be invoked inside the EDT by (pre 0.9.2)default
 def value = model.value
 doOutside {
 // some calculationsdo
 doLater {
 // back inside the EDT
 model.result = …
 }
 }
 }
 def action2 = {
 // will be invoked outside of the EDT by (post 0.9.2)default
 def value = model.value
 // some calculationsdo
 doLater {
 // back inside the EDT
 model.result = …
 doOutside {
 // more calculationsdo
 }
 }
 }
}

9.2 Toolkit-agnostic Threading

Swing is not the only toolkit supported by Griffon. For those additional toolkits the three methods exposed in the
previous sections (edt, doLater, doOutside) make no sense, however running code inside the UI thread in a
synchronous/asynchronous way, as well as outside of it is something you must keep in mind.
The following sections outline toolkit-agnostic threading options, which can also be used with Swing in case you're
wondering. These methods are available to all classes that implement the or griffon.core.GriffonArtifact

 interfaces.griffon.core.GriffonApplication

9.2.1 Synchronous Calls

Synchronous calls inside the UIThread are made by invoking the method. This method isexecInsideUISync{}

90

equivalent to calling in Swing.edt{}
Example:

class MyController {
 def model
 def action1 = {
 // will be invoked inside the UI thread by (pre 0.9.2)default
 def value = model.value
 .start {Thread
 // some calculationsdo
 execInsideUISync {
 // back inside the UI thread
 model.result = …
 }
 }
 }
 def action2 = {
 // will be invoked outside of the UI thread by (post 0.9.2)default
 def value = model.value
 // some calculationsdo
 execInsideUISync {
 // back inside the UI thread
 model.result = …
 }
 }
}

9.2.2 Asynchronous Calls

Similarly to synchronous calls, asynchronous calls inside the UIThread are made by invoking the
 method. This method is equivalent to calling in Swing.execInsideUIAsync{} doLater{}

Example:

class MyController {
 def model
 def action1 = {
 // will be invoked inside the UI by (pre 0.9.2)Thread default
 def value = model.value
 .start {Thread
 // some calculationsdo
 execInsideUIAsync {
 // back inside the UI Thread
 model.result = …
 }
 }
 }
 def action2 = {
 // will be invoked outside of the UI by (post 0.9.2)Thread default
 def value = model.value
 // some calculationsdo
 execInsideUIAsync {
 // back inside the UI Thread
 model.result = …
 }
 }
}

9.2.3 Outside Calls

Making sure a block of code is executed outside the UIThread is made by invoking the execOutsideUI{}
method. This method is equivalent to calling in Swing.doOutside{}
Example:

91

class MyController {
 def model
 def action1 = {
 // will be invoked inside the UI by (pre 0.9.2)Thread default
 def value = model.value
 execOutsideUI {
 // some calculationsdo
 execInsideUIAsync {
 // back inside the UI Thread
 model.result = …
 }
 }
 }
 def action2 = {
 // will be invoked outside of the UI by (post 0.9.2)Thread default
 def value = model.value
 // some calculationsdo
 execInsideUIAsync {
 // back inside the UI Thread
 model.result = …
 execOutsideUI {
 // more calculationsdo
 }
 }
 }
}

9.2.4 Additional Methods

There are two additional methods that complement the generic threading facilities that Griffon exposes to the
application and its artifacts

isUIThread() - returns true if the current thread is the UI Thread, false otherwise. Functionally equivalent
to calling in Swing.SwingUtilities.isEventDispatchThread()
execFuture(ExecutorService s, Closure c) - schedules a closure on the target
ExecutorService. The executor service can be left unspecified, if so a default Thread pool executor (with 2
threads) will be used.
execFuture(ExecutorService s, Callable c) - schedules a callable on the target
ExecutorService. The executor service can be left unspecified, if so a default Thread pool executor (with 2
threads) will be used.

9.3 Annotation Based Threading

Starting with Griffon 0.9.2 there's also the possibility to define an specific thread execution policy for methods and
properties via annotations

This feature is only available for Groovy code at the moment as it relies on the AST
Transformation framework.

You must annotate a method or property with and define a value of type @griffon.transform.Threading
 (though the annotation uses griffon.transform.Threading.Policy

 by default). Annotated methods and properties must conform toThreading.Policy.OUTSIDE_UITHREAD
these rules

must be public.
name does not match an event handler.
must pass if it's a method.GriffonClassUtils.isPlainMethod()
must have as return type if it's a method.void
its value must be a closure (including curried method pointers) if it's a property.

Here's a trivial example

92

package sample
 griffon.transform.Threadingimport

class Sample {
 @Threading
 void doStuff() {
 // executed outside of the UI thread
 }
 @Threading(Threading.Policy.INSIDE_UITHREAD_SYNC)
 void moreStuff() {
 // executed synchronously inside the UI thread
 }
 @Threading
 def work = {
 // executed outside of the UI thread
 }
 @Threading(Threading.Policy.INSIDE_UITHREAD_SYNC)
 def update = {
 // executed synchronously inside the UI thread
 }
}

It is worth noting that a annotation applied to a Controller's action/method will take precedence, this@Threading
means you can force an specific threading policy on a Controller action other than the default one.

package sample
class SampleController {
 @Threading(Threading.Policy.INSIDE_UITHREAD_ASYNC)
 def popupDialog = {
 // build and show the dialog
 }
 def equivalentPopupDialog = {
 execInsideUIAsync {
 // build and show the dialog
 }
 }
}

93

10. Testing

Automated testing is seen as a key part of Griffon, implemented using . Hence, Griffon provides manyGroovy Tests
ways to making testing easier from low level unit testing to high level integration tests. This section details the
different capabilities that Griffon offers in terms of testing.
The first thing to be aware of is that all of the commands actually end up creating testscreate-* unit
automatically for you. For example say you run the command as follows:create-mvc

griffon create-mvc com.yourcompany.yourapp.simple

Not only will Griffon create an MVC group with a controller at
, but alsogriffon-app/controllers/com/yourcompany/yourapp/SimpleController.groovy

an integration test at
. Whattest/integration/com/yourcompany/yourapp/SimpleControllerTests.groovy

Griffon won't do however is populate the logic inside the test! That is left up to you.

As of Griffon 0.9, the suffix of is also supported for test cases.Test

Running Tests
Test are run with the command:test-app

griffon test-app

The above command will produce output such as:

Running Unit Tests…
Running test FooTests...FAILURE
Unit Tests Completed in 464ms …

Tests failed: 0 errors, 1 failures

Whilst reports will have been written out the directory.target/test-reports

You can force a clean before running tests by passing to the command.-clean test-app

Targeting Tests

You can selectively target the test(s) to be run in different ways. To run all tests for a controller named
 you would run:SimpleController

griffon test-app SimpleController

This will run any tests for the class named . Wildcards can be used...SimpleController

griffon test-app *Controller

http://groovy.codehaus.org/Testing+Guide

94

This will test all classes ending in . Package names can optionally be specified...Controller

griffon test-app some.org.*Controller

or to run all tests in a package...

griffon test-app some.org.*

or to run all tests in a package including subpackages...

griffon test-app some.org.**

You can also target particular test methods...

griffon test-app SimpleController.testLogin

This will run the test in the tests. You can specify as many patterns intestLogin SimpleController
combination as you like...

griffon test-app some.org.* SimpleController.testLogin BookController

Targeting Test Types and/or Phases

In addition to targeting certain tests, you can also target test and/or by using the syntax.types phases phase:type

Griffon organises tests by phase and by type. A test phase relates to the state of the Griffon
application during the tests, and the type relates to the testing mechanism.
Griffon comes with support for 3 test phases (, , and) and JUnitunit integration other
test types for the and phases. These test types have the same name asunit integration
the phase.
Testing plugins may provide new test phases or new test types for existing phases. Refer to
the plugin documentation.

To execute the JUnit tests you can run:integration

griffon test-app integration:integration

Both and are optional. Their absence acts as a wildcard. The following command will run all test typesphase type
in the phase:unit

griffon test-app unit:

The Griffon is one plugin that adds new test types to Griffon. It adds a test type to the Spock Plugin spock unit

http://griffon.codehaus.org/Spock+Plugin

95

and phases. To run all spock tests in all phases you would run the following:integration

griffon test-app :spock

To run the all of the spock tests in the phase you would run...integration

griffon test-app integration:spock

More than one pattern can be specified...

griffon test-app unit:spock integration:spock

Targeting Tests in Types and/or Phases

Test and type/phase targetting can be applied at the same time:

griffon test-app integration: unit: some.org.**

This would run all tests in the and phases that are in the page or a subpackage of.integration unit some.org

10.1 Unit Testing

Unit testing are tests at the "unit" level. In other words you are testing individual methods or blocks of code without
considering for surrounding infrastructure. The following is an unit test created using the default template

import griffon.test.*
class SomeUnitTests GriffonUnitTestCase {extends
 void setUp() {protected
 .setUp()super
 }
 void tearDown() {protected
 .tearDown()super
 }
 void testSomething() {
 }
}

You have access to all mocking facilities exposed by within this test.GriffonUnitTestCase

10.2 Integration Testing

Integration tests differ from unit tests in that you have full access to the Griffon application within the test. The
following is an integration test created using the default template

96

import griffon.core.GriffonApplication
 griffon.test.*import

class SomeControllerTests GriffonUnitTestCase {extends
 GriffonApplication app
 void setUp() {protected
 .setUp()super
 }
 void tearDown() {protected
 .tearDown()super
 }
 void testSomething() {
 }
}

As with unit tests, you have access to all mocking facilities exposed by within this test, but youGriffonUnitTestCase
also have access to a full running Griffon application. By default this application is bootstrapped to the INITIALIZE
phase. It's up to you to instruct the application to move to another phase depending on what you want to test (refer to

, , and methods).startup() ready() realize() show()
The type of application to be run depends on the type of project and/or a configuration flag as explained next:

if a configuration flag exists then its value will be used (assumesgriffon.application.mainClass
the value is a literal full qualified class).
if the project is an addon then it will use griffon.test.mock.MockApplication
finally it will fall back to griffon.swing.SwingApplication

10.3 Mocking

Mocking is but one of the many alternatives you have at your disposal to reduce complexity while setting up a test
that requires a good number of components to be setup before actually testing the real class under test. Griffon
provides a few mocking helper methods and classes, which will be discussed next.

10.3.1 MockGriffonApplication

 is a fully functional GriffonApplication with the advantage that it lets you overrideMockGriffonApplication
the location of all configuration classes: , , and .Application Builder Config Events

If you choose to change the default then you must do it so right afterUIThreadHandler
the application has been instantiated and no other operation that requires multi-thread access
has been called, otherwise you won't be able to change it's value.

By default, a MockGriffonApplication defines the following:

MockApplication - setups a 'mock' MVC group with 3 elements: , and MockModel MockView
MockController
MockBuilderConfig - defines a single builder entry: griffon.test.mock.MockBuilder
MockConfig - defines a single config entry: mocked = true
MockEvents - defines an event handler for 'Mock'

The remaining classes have these settings:

MockBuilder - a single node named that returns a map with any properties that were defined on themock
node.
MockModel - a lone observable property of type String.value
MockView - simple script that calls the node defined by the builder.mock
MockController - a controller with no actions.

97

11. Packaging and Deployment

Griffon can package applications in several modes. There are 4 modes supported by default: , , and zip jar webstart
.applet

To package an application use the command. All modes will be used when calling the commandpackage package
with no arguments. You can specify one or more packaging modes when executing the command. Packages will be
place in their respective directory inside the directory located at the root of the application. You can configuredist
a different default set of deployment targets that will be used when invoking this command without arguments.
Simply add a configuration flag to like thisBuildConfig.groovy

griffon.packaging = 'zip'

Now, any time you call the package command without arguments only the target will be executed.zip
It is possible to specify files that can be shared across packaging modes, like a README or a LICENSE file. Make
sure to place them under .griffon-app/conf/dist/shared
Files that should be packed inside the application's jar META-INF directory must be placed in

. This setting works for addons too.griffon-app/conf/metainf
Packaging an application will be executed in the environment by default. You may specify a differentproduction
environment as you would with other command. This setting impacts directly how webstart and applet modes are
executed, as they will sign and pack all jars by default when in production mode. Please review and update your
configuration if you desire a different behavior.
Each packaging target triggers a and events, with their type as the single eventPackageStart PackageEnd
parameter.

11.1 Zip

Packages the application using a conventional directory layout as found typically in Un*x packages. The directory
layout is as follows:

[root] - contains all files available at griffon-app/conf/dist/shared
bin - binary launchers (Windows and Un*x)
lib - application jars

The application launcher will bear the name of the application.
Run it with the following command

griffon zippackage

Arguments: None
Configuration options: None

11.2 Jar

This is the simplest packaging mode available. It will package the application in a single jar file, by unpacking all
dependencies and packing them once more in a sole file, so place close attention to potential duplicate entries,
especially those found inside META-INF.

griffon jarpackage

Arguments:

name - override the name of the generated jar file.
Configuration Options:

griffon.jars.jarName - name of the application's main jar file.
griffon.dist.jar.nozip - skip zipping the distribution if set to true.

There's a high chance of some files to have duplicates, e.g. griffon-artifacts.properties if you have installed a plugin

98

that provides MVC groups. It's possible to instruct the build to merge duplicate files by specifying a regular
expression and a merging strategy. The following table explains the different merging strategies available

Strategy Description

Skip Do not perform any merge. Duplicate is discarded.

Replace Duplicate is preferred and overwrites previous.

Append Duplicate is appended at the end of previous.

Merge Common lines found in duplicate are discarded. New lines found in duplicate are appended
at the end.

MergeManifest Duplicate keys override the previous ones. New keys are added to the merged result.

MergeProperties Duplicate keys override the previous ones. New keys are added to the merged result.

MergeGriffonArtifacts Merges artifact definitions per type.

You can specify merging preferences in like thisBuildConfig.groovy

griffon {
 jars {
 merge = [
 '.*.xml': org.codehaus.griffon.ant.taskdefs.FileMergeTask.Replace
]
 }
}

This setting will overwrite any XML file found in the path with the last version encountered as jars are processed.
The griffon build defines a set of default mappings, which are the ones found in the next table

Regexp MergeStrategy

META-INF/griffon-artifacts.properties MergeGriffonArtifacts

META-INF/MANIFEST.MF MergeManifest

META-INF/services/.* Merge

.*.properties MergeProperties

Merging preferences must be defined from the most specific to the least. Your preferences will override any default
settings.

11.3 Webstart

Packages the application to be used in webstart mode. Will generate an appropriate JNLP file similarly as it's done
when running the application in webstart mode.

griffon webstartpackage

Arguments:

codebase - specify the codebase to be written in the JNLP file.
Configuration Options:

griffon.dist.webstart.nozip - skip zipping the distribution if set to true.
same configuration options used when running in webstart mode.

11.4 Applet

99

Packages the application to be used in applet mode. Will generate an appropriate JNLP and Html files similarly as it's
done when running the application in applet mode.

griffon appletpackage

Arguments:

codebase - specify the codebase to be written in the JNLP file.
Configuration Options:

griffon.dist.applet.nozip - skip zipping the distribution if set to true.
same configuration options used when running in applet mode.

11.5 Additional modes

If any of the afore mentioned packaging modes does not suite your needs you may use the to craft aInstaller plugin
better packaging option. This plugin supports the following additional modes:

izpack - universal installer using .Izpack
mac - for MacOSX.
rpm - for rpm based Linux distributions.
deb - for .deb based Linux distributions.
jsmooth - for Windows.

You may call any of these modes as you would with the standard ones when the installer plugin is available, in other
words

griffon izpackpackage

Many of these modes support additional configuration before generating the final package. It is a good idea to follow
a two-step process

griffon prepare-izpack
// edit target/installer/izpack/resources/installer.xml
// and/or add more files to that directory
griffon create-izpack

Each additional packaging mode triggers 4 events with their type as the single event parameter:
, , and .PreparePackageStart PreparePackageEnd CreatePackageStart CreatePackageEnd

11.6 Custom Manifest Entries

Griffon will automatically create the following entries in the application's manifest

Manifest-Version: 1.0
Ant-Version: Apache Ant 1.8.1
Created-By: ${jvm.version} (${jvm.vendor})
Main- : ${griffonApplicationClass} | ${griffonAppletClass}Class
Built-By: ${user.name}
Build-Date: dd-MM-yyyy HH:mm:ss
Griffon-Version: ${griffonVersion}
Implementation-Title: capitalize(${griffonAppName})
Implementation-Version: ${appVersion}
Implementation-Vendor: capitalize(${griffonAppName})

There might be times when you must specify additional attributes or override existing ones. You can do this by
adding a new block of configuration to , for exampleBuildConfig.groovy

http://griffon.codehaus.org/Installer+Plugin
http://izpack.org

100

griffon {
 jars {
 manifest = [
 'Foo': 'Bar'
 'Built-By': 'Acme'
]
 }
}

101

12. Plug-ins

Griffon provides a number of extension points that allow you to extend anything from the command line interface to
the runtime configuration engine. The following sections detail how to go about it.

12.1 Creating and Installing Plug-ins

Creating Plug-ins
Creating a Griffon plugin is a simple matter of running the command:

griffon create-plugin [PLUGIN NAME]

This will create a plugin project for the name you specify. Say for example you run griffon create-plugin
. This would create a new plugin project called .example example

The structure of a Griffon plugin is exactly the same as a regular Griffon project's directory structure, except that in
the root of the plugin directory you will find a plugin Groovy file called the "plugin descriptor".
The plugin descriptor itself ends with the convention and is found in the root of the pluginGriffonPlugin
project. For example:

class ExampleGriffonPlugin {
 def version = 0.1
 …
}

All plugins must have this class in the root of their directory structure to be valid. The plugin class defines the
version of the plugin and optionally various hooks into plugin extension points (covered shortly).
You can also provide additional information about your plugin using several special properties:

title - short one sentence description of your plugin
version - the version of your plugin. Valid versions are for example "0.1", "0.2-SNAPSHOT", "0.1.4" etc.
griffonVersion - The version of version range of Griffon that the plugin supports. eg. "1.1 > *"
license - the plugin's license name in one sentence
pluginIncludes - additional resources that should be included in the plugin zip
toolkits - a list of supported toolkits [swing, javafx, swt, pivot, gtk]
platforms - a list of supported platforms [linux, linux64, windows, windows64, macosx, macosx64,
solaris, solaris64]
authosr - a list of plugin author names/emails
description - full multi-line description of plugin's features
documentation - URL where plugin's documentation can be found
source - URL where plugin's source can be found

Here is an example from :Swing plugin

http://artifacts.griffon-framework.org/plugin/swing

102

class SwingGriffonPlugin {
 version = '0.9.5'String
 griffonVersion = '0.9.5 > *'String
 Map dependsOn = [:]
 List pluginIncludes = []
 license = 'Apache Software License 2.0'String
 List toolkits = ['swing']
 List platforms = []
 documentation = ''String
 source = 'https://github.com/griffon/griffon-swing-plugin'String
 List authors = [
 [
 name: 'Andres Almiray',
 email: 'aalmiray@yahoo.com'
]
]
 title = 'Enables Swing support'String
 description = '''String
Enables the usage of Swing based components in Views.
Usage

This plugin enables the usage of the following nodes inside a View.
...
Configuration

There's no special configuration plugin.for this
[1]: http://groovy.codehaus.org/Swing+Builder
'''
}

Installing & Distributing Plugins
To distribute a plugin you need to navigate to its root directory in a terminal window and then type:

griffon -pluginpackage

This will create a zip file of the plugin starting with then the plugin name and version. For example withgriffon-
the example plugin created earlier this would be . The griffon-example-0.1.zip package-plugin
command will also generate file which contains machine-readable information about plugin's name,plugin.json
version, author, and so on.
Once you have a plugin distribution file you can navigate to a Griffon project and type:

griffon install-plugin /path/to/plugin/griffon-example-0.1.zip

If the plugin is hosted on a remote HTTP server you can also do:

griffon install-plugin http://myserver.com/plugins/griffon-example-0.1.zip

Releasing Plugins into a Griffon Artifact Repository
To release a plugin call the command while inside the plugin project. If no flagrelease-plugin repository
is specified then the default artifact repository () will be used. For quick testing purposes yougriffon-central
can publish a release to (which is always available) by issuing the following commandgriffon-local

griffon install-plugin --repository=griffon-local

The aforementioned steps can be applied to archetypes too, you just need to change the command names from
 to ; from to ; from package-plugin package-archetype install-plugin install-archetype
 to .release-plugin release-archetype

Should you decide to become a plugin/archetype author and wish to publish your artifacts to the Griffon Central

103

repository then you must follow these steps:

Create an account at http://artifacts.griffon-framework.org
After confirming your email, log into your profile and click the button for membership request.
Ping us at the developer mailing list or at @theaviary
Once approved configure your credentials in like this$USER_HOME/.griffon/settings.groovy

griffon.artifact.repositories = [
 'griffon-central': [
 username: 'yourUsername',
 password: 'yourPassword'
]
]

12.2 Artifact Repositories

There are 3 types of plugin repositories: , and . Artifact repositories can be eitherlocal remote legacy
configured locally to a project (inside) or globally to all projects (inside griffon-app/conf/BuildConfig

),$USER_HOME/.griffon/settings.groovy

Local Artifact Repositories
This type of repository is file based and can be hosted anywhere in the file system, even on shared folders over the
network. Local repositories makes it easier to share snapshot releases among team mates as the network latency
should be smaller. Their configuration requires but one parameter to be specified: the path where the artifacts will be
placed. Here's a sample configuration for a local repository named ' '.my-local-repo

griffon.artifact.repositories = [
 'my-local-repo': [
 type: 'local',
 path: '/usr/local/share/griffon/repository'
]
]

There's a local repository available to you at all times. It's name is ' ' and it's default path is griffon-local
. This repository is the default place where downloaded plugins will be$USER_HOME/.griffon/repository

installed for speeding up retrievals at a later time.

Remote Artifact Repositories
This type of repository allows developers to publish releases via SCP or web. The repository is handled by a Grails
application whose code is freely available at .https://github.com/griffon/griffon-artifact-portal
This code has been released under Apache Software License 2.0. Follow the instructions found in the README to
run your own artifact portal. Configuring a remote repository requires a different set of properties than those exposed
by local repositories. For example, if your organization is running a remote artifact repository located at

 then use the following configurationhttp://acme.com:8080/portal

griffon.artifact.repositories = [
 'acme': [
 type: 'remote',
 url: 'http://acme.com:8080/portal'
]
]

You may specify additional properties such as

http://artifacts.griffon-framework.org
http://twitter.com/#!/theaviary
http://grails.org
https://github.com/griffon/griffon-artifact-portal

104

griffon.artifact.repositories = [
 'acme': [
 type: 'remote',
 url: 'http://acme.com:8080/portal',
 username: 'wallace',
 password: 'gromit',
 port: 2345,
 timeout: 60
]
]

Where the following defaults apply

port = 2222
timeout = 30 (in seconds)

You may leave both and out however you will be asked for this credentials when publishingusername password
a release to this particular repository. Adding your credentials in the configuration avoids typing them when releasing
artifacts.

Legacy Artifact Repository
This is a very special type of repository that exists only for backward compatibility during the migration of the old
Griffon plugin repository to the new infrastructure in .http://artifacts.griffon-framework.org
There are no configuration options for this repository, neither you can publish a release to it; it's effectively
read-only.

12.3 Understanding a Plugins Structure

As mentioned previously, a plugin is merely a project with an structure similar to a Griffon application with the
addition of a contained plugin descriptor. However when installed, the structure of a plugin differs slightly. For
example, take a look at this plugin directory structure:

+ griffon-app
 + controllers
 + models
 + views
 …
 + lib
 + src
 + main
 + cli
 + doc

Essentially when a plugin is installed into a project, the contents of the zip file will go into a directory such as
. Plugin contents be copied into the main source tree. A plugin never interferesplugins/example-1.0/ will not

with a project's primary source tree.

12.4 Providing Basic Artefacts

Adding a new Script
A plugin can add a new script simply by providing the relevant Gant script within the scripts directory of the plugin:

+ MyPlugin.groovy
 + scripts <-- additional scripts here
 + griffon-app
 + controllers
 + models
 + etc.
 + lib

Adding a new Controller, Model, View or Service
A plugin can add a new MVC Group, service or whatever by simply creating the relevant file within the

 tree. However you'll need to create an in order to package them properly.griffon-app Addon

http://artifacts.griffon-framework.org

105

+ ExamplePlugin.groovy
 + scripts
 + griffon-app
 + controllers <-- additional controllers here
 + services <-- additional services here
 + etc. <-- additional XXX here
 + lib

12.5 Hooking into Build Events

Post-Install Configuration and Participating in Upgrades
Griffon plugins can do post-install configuration and participate in application upgrade process (the upgrade
command). This is achieved via two specially named scripts under directory of the plugin - scripts

 and ._Install.groovy _Upgrade.groovy
 is executed after the plugin has been installed and is executed each_Install.groovy _Upgrade.groovy

time the user upgrades his application with command.upgrade
These scripts are normal scripts so you can use the full power of Gant. An addition to the standard GantGant
variables is the variable which points at the plugin installation basedir.pluginBasedir
As an example the below script will create a new directory type under the _Install.groovy griffon-app
directory and install a configuration template:

ant.mkdir(dir:)"${basedir}/griffon-app/jobs"
ant.copy(file: ,"${pluginBasedir}/src/samples/SamplePluginConfiguration.groovy"
 todir:)"${basedir}/griffon-app/conf"
// To access Griffon home you can use following code:
// ant.property(environment:)"env"
// griffonHome = ant.antProject.properties."env.GRIFFON_HOME"

Scripting events
It is also possible to hook into command line scripting events through plugins. These are events triggered during
execution of Griffon target and plugin scripts.
For example, you can hook into status update output (i.e. "Tests passed", "Server running") and the creation of files
or artifacts.
A plugin merely has to provide an script to listen to the required events. Refer the_Events.groovy
documentation on for further information.Hooking into Events

12.6 Addons

Understanding Addons
Addons are a plugin's best friend. While plugins can only contribute build-time artifacts (such as scripts) and
participate on build events, addons may contribute runtime artifacts (such as MVC Groups or services) and
participate on application events.
Often times whenever you'd like to package a reusable runtime artifact you'd have to create an Addon as well.

Addon responsibilities
Addons may contribute any of the following to your application: MVC Groups and application event handlers. They
can also contribute the following to the CompositeBuilder: factories, methods, properties and FactoryBuilderSupport
delegates (attribute, preInstantiate, postInstantiate, postNodeCompletion).
Addons are created using a template that suggests all of the properties and methods you can use configure. The
complete list follows:

addonInit - called right after the addon has been loaded but before contributions are taken into account
addonPostInit - called after all contributions haven been made
addonBuilderInit - called before contributions to the CompositeBuilder are taken into account
addonBuilderPostInit - called after all CompositeBuilder contributions haven been made
events - Map of additional handlersapplication event
factories - Map of additional node factories, added to CompositeBuilder
methods - Map of additional methods, added to CompositeBuilder
props - Map of additional methods, added to CompositeBuilder
attributeDelegates - List of attributeDelegates (as Closures), added to CompositeBuilder
preInstantiateDelegates - List of preInstantiateDelegates (as Closures), added to CompositeBuilder

http://groovy.codehaus.org/FactoryBuilderSupport

106

postInstantiateDelegates - List of postInstantiateDelegates (as Closures), added to
CompositeBuilder
postNodeCompletionDelegates - List of postNodeCompletionDelegates (as Closures), added to
CompositeBuilder

Configuring Addons
This task is done automatically for you when you package an addon inside a plugin. The plugin's and _Install

 scripts will make sure that stays up to date. When you_Uninstall griffon-app/conf/Builder.groovy
install a plugin that contains an addon you'll notice that may get updated with a line similar toBuilder.groovy
the next one

root.'CustomGriffonAddon'.addon=true

This means that all factories, methods and props defined on the Addon will be available to View scripts. However
you need to explicitly specify which contributions should be made to other MVC members. You can list them one by
one, or use a special group qualified by '*'. In recent releases of Griffon the default configuration is assumed meaning
you won't see any changes in the file. You can still apply modifications as explained below.Builder.groovy
The following snippet shows how to configure an Addon to contribute all of its methods to Controllers, and all of its
contributions to Models.

root.'CustomGriffonAddon'.controller='*:methods'
root.'CustomGriffonAddon'.model='*'

The special groups are: '*', '*:factories', '*:methods', '*:props'
Should you encounter a problem with duplicate node names you can change the default prefix () of the addonroot
to something more suitable to your needs. All nodes contributed by the addon will now be accessible using that
prefix. Here's an example

nx.'CustomGriffonAddon'.addon=true

Assuming is defined as followsCustomGriffonAddon

class CustomGriffonAddon {
 def factories = [
 button: com.acme.CustomButton
]
}

Then instances of can be obtained by using , whereas regular instances of CustomButtom nxbutton JButton
will be accessible with .button

12.7 Understanding Plugin Order

Controlling Plugin Dependencies
Plugins often depend on the presence of other plugins and can also adapt depending on the presence of others. To
cover this, a plugin can define a property. For example, take a look at this snippet from the GriffondependsOn
Clojure plugin:

class ClojureGriffonPlugin {
 def version = 0.3
 def dependsOn = [:]"lang-bridge" "0.2.1"
}

107

As the above example demonstrates the Clojure plugin is dependent on the presence of a single plugin: the
 plugin.lang-bridge

Essentially the dependencies will be loaded first and then the Clojure plugin. If all dependencies do not load, then the
plugin will not load.
The property also supports a mini expression language for specifying version ranges. A few examplesdependsOn
of the syntax can be seen below:

def dependsOn = [foo:]"* > 1.0"
def dependsOn = [foo:]"1.0 > 1.1"
def dependsOn = [foo:]"1.0 > *"

When the wildcard * character is used it denotes "any" version. The expression syntax also excludes any suffixes
such as -BETA, -ALPHA etc. so for example the expression "1.0 > 1.1" would match any of the following versions:

1.1
1.0
1.0.1
1.0.3-SNAPSHOT
1.1-BETA2

Controlling Addon Load Order
Addons will be loaded in the order determined by the dependencies set forth in their containing plugins. Using

 establishes a "hard" dependency. Any addons provided by the dependencies will be added first to thedependsOn
builder configuration file when installed.

12.8 CLI Dependencies

Plugins can provide compile time classes that should not be bundled with runtime classes (i.e, addon sources).
Sources and resources placed under will be automatically compiled and packaged into a jar$basedir/src/cli
whose name matches . A typical usegriffon-${plugin.name}-${plugin.version}-compile.jar
case for these type of classes is a custom AST transformation that should be run during compile time but not at
runtime.

108

13. Tips and Tricks

13.1 Using Artifact Conventions to your Advantage

The can be a very powerful ally. Not only it's useful for adding new methods (explained in section Artifact API 5.7.2
) but also comes in handy to finding out what application specific attributes anAdding Dynamic Methods at Runtime

artifact has, for example Controller actions or Model properties. The following screenshot shows a simple application
that presents a form based View.

When the user clicks the button a dialog appearsSubmit

Believe it or not both the View and the Controller know nothing about the specific property names found in the
Model. Let's have a look at the Model first

package simple
@Bindable
class SimpleModel {
 firstNameString
 lastNameString
 addressString
}

There are 3 observable properties defined in the Model. Note the usage of to avoid an extra line fordefault imports
importing . Now, the Controller on the other hand defines two actionsgroovy.beans.Bindable

http://groovy.codehaus.org/api/groovy/beans/Bindable.html

109

package simple
 griffon.util.GriffonNameUtils as GNUimport

class SimpleController {
 def model
 def clear = {
 model.griffonClass.propertyNames.each { name ->
 model[name] = ''
 }
 }
 @Threading(Threading.Policy.SKIP)
 def submit = {
 javax.swing.JOptionPane.showMessageDialog(
 app.windowManager.windows.find{it.focused},
 model.griffonClass.propertyNames.collect([]) { name ->
 "${GNU.getNaturalName(name)} = ${model[name]}"
 }.join('n')
)
 }
}

The action is responsible for reseting the values of each Model property. It does so by iterating over theclear()
names of the properties found in the Model. The action constructs a list fo model property names andsubmit()
their corresponding values, then presents it in a dialog. Notice that the Controller never refers to a Model property
directly by its name, i.e, the Controller doesn't really know that the Model has a property. Finally thefirstName
View

package simple
 griffon.util.GriffonNameUtils as GNUimport

application(title: 'Simple',
 pack: ,true
 locationByPlatform: ,true
 iconImage: imageIcon('/griffon-icon-48x48.png').image,
 iconImages: [imageIcon('/griffon-icon-48x48.png').image,
 imageIcon('/griffon-icon-32x32.png').image,
 imageIcon('/griffon-icon-16x16.png').image]) {
 borderLayout()
 panel(constraints: CENTER,
 border: titledBorder(title: 'Person')) {
 migLayout()
 model.griffonClass.propertyNames.each { name ->
 label(GNU.getNaturalName(name), constraints: 'left')
 textField(columns: 20, constraints: 'growx, wrap',
 text: bind(name, target: model, mutual:))true
 }
 }
 panel(constraints: EAST,
 border: titledBorder(title: 'Actions')) {
 migLayout()
 controller.griffonClass.actionNames.each { name ->
 button(GNU.getNaturalName(name),
 actionPerformed: controller. ,"$name"
 constraints: 'growx, wrap')
 }
 }
}

The View also iterates over the Model's property names in order to construct the form. It follows a similar approach
to dynamically discover the actions that the Controller exposes.

You must install the before running this application.MigLayout Plugin

13.2 Dealing with Non-Groovy Artifacts

Since version 0.9.1 Griffon supports writing artifacts in JVM languages other than Groovy. The first of such
languages is Java and it's supported in core by default. Additional languague support will be provided by plugins.

Creating a Non-Groovy Artifact

http://griffon.codehaus.org/MigLayout+Plugin

110

Many of the scripts that come bundled with Griffon support an additional parameter that can be used tocreate-*
specify the language or filetype of the artifact. Non-Groovy artifacts must extend a particular class in order to receive
all the benefits of a typical artifact. The default artifact templates can handle both Groovy and Java types. The
following command will create an application that uses Java as the default language for the the initial MVC group

griffon create-app simple -fileType=java

The fileType switch indicates that the templates must pick a Java based template first. If no suitable template is
found then a Groovy based template will be used. The setting of this flag is saved in the application's build
configuration, this way you don't need to specific the fileType switch again if your intention is to create another
artifact of the same type. Of course you can specify the flag at any time with a different value. It's worth mentioning
that the default Groovy based template will be used if a suitable template for the specified fileType cannot be found.
Peeking into each member of the MVC group we find the following code. First the Modelsimple

package simple;
 org.codehaus.griffon.runtime.core.AbstractGriffonModel;import
 class SimpleModel AbstractGriffonModel {public extends

 // an observable property
 // input;private String
 // getInput() {public String
 // input;return
 // }
 // void setInput(input) {public String
 // firePropertyChange(, .input, .input = input);"input" this this
 // }
}

Next is the Controller

package simple;
 java.awt.event.ActionEvent;import
 org.codehaus.griffon.runtime.core.AbstractGriffonController;import
 class SimpleController AbstractGriffonController {public extends

 SimpleModel model;private
 void setModel(SimpleModel model) {public
 .model = model;this
 }
 /*
 void action(ActionEvent e) {public
 }
 */
}

And finally the View

111

package simple;
 java.awt.*;import
 javax.swing.*;import
 java.util.Map;import
 griffon.swing.SwingGriffonApplication;import
 griffon.swing.WindowManager;import
 org.codehaus.griffon.runtime.core.AbstractGriffonView;import
 class SimpleView AbstractGriffonView {public extends

 SimpleController controller;private
 SimpleModel model;private
 void setController(SimpleController controller) {public
 .controller = controller;this
 }
 void setModel(SimpleModel model) {public
 .model = model;this
 }
 // build the UI
 JComponent init() {private
 JPanel panel = JPanel(BorderLayout());new new
 panel.add(JLabel(), BorderLayout.CENTER);new "Content Goes Here"
 panel;return
 }
 @Override
 void mvcGroupInit(Map< , > args) {public String Object
 execInsideUISync(() {new Runnable
 void run() {public
 Container container = (Container) getApp().createApplicationContainer();
 (container Window) {if instanceof
 containerPreInit((Window) container);
 }
 container.add(init());
 (container Window) {if instanceof
 containerPostInit((Window) container);
 }
 }
 });
 }
 void containerPreInit(Window window) {private
 (window Frame) ((Frame) window).setTitle();if instanceof "simple"
 window.setIconImage(getImage());"/griffon-icon-48x48.png"
 // uncomment the following lines targeting +JDK6if
 // window.setIconImages(java.util.Arrays.asList(
 // getImage(),"/griffon-icon-48x48.png"
 // getImage(),"/griffon-icon-32x32.png"
 // getImage()"/griffon-icon-16x16.png"
 //));
 window.setLocationByPlatform();true
 window.setPreferredSize(Dimension(320, 240));new
 }
 void containerPostInit(Window window) {private
 window.pack();
 ((SwingGriffonApplication) getApp()).getWindowManager().attach(window);
 }
 Image getImage(path) {private String
 Toolkit.getDefaultToolkit().getImage(SimpleView.class.getResource(path));return
 }
}

13.3 Externalizing Views

Groovy is the default language/format for writing Views, however there might be times where you would rather use a
different format for describing a View. It might be the case that you have a legacy View (plain Java code) that you
would like to plugin into Griffon. Here are a few tips to get the job done.

13.3.1 NetBeans Matisse

 comes with a visual designer named Matisse which is quite popular among a good number of developers.NetBeans
Matisse views are usually defined by a Java class. Most of the times all UI widgets are exposed as fields on the Java
class. Based with this information Griffon can generate a View script that is backed by this particular Java class.
Follow these steps to reuse a Matisse view.

#1 Place the Matisse View in your application

If you have access to the View's source code then please it somewhere in the application's source tree. A matching
package to the traget MVC group in is what is preferred. However, if the View is distributed in bytesrc/main

http://netbeans.org

112

code form the make sure to place the jar that contains the View inside the application's directory. Alternativelylib
you can use the Dependency DSL if the jar is available from a jar file repository (such as Maven or Ivy). Lastly,
make sure that you have added the jar that contains , Matisse's work horse. this is easilyGroupLayout
accomplished by adding the following confuration in griffon-app/conf/BuildConfig.groovy

griffon.project.dependency.resolution = {
 repositories {
 // enable option in an existing 'repositories' blockthis
 mavenCentral()
 }
 dependencies {
 // add to an existing 'dependencies' blockthis
 compile 'org.swinglabs:swing-layout:1.0.3'
 }
}

#2 Convert the View into a Script

Griffon includes a script commmand target that can read a Matisse View and generate a Groovy View Script from it:
. Execute the command by specifying the name of the Java class that defines thegenerate-view-script

Matisse View, like this

griffon generate-view-script sample.LoginDialog

This command should generate the file withgriffon-app/views/sample/LoginDialogView.groovy
the following contents

// create instance of view object
widget(LoginDialog(), id:'loginDialog')new
noparent {
 // javax.swing.JTextField usernameField declared in LoginDialog
 bean(loginDialog.usernameField, id:'usernameField')
 // javax.swing.JPasswordField passwordField declared in LoginDialog
 bean(loginDialog.passwordField, id:'passwordField')
 // javax.swing.JButton okButton declared in LoginDialog
 bean(loginDialog.okButton, id:'okButton')
 // javax.swing.JButton cancelButton declared in LoginDialog
 bean(loginDialog.cancelButton, id:'cancelButton')
}

 loginDialogreturn

#3 Tweak the generated View

From here on you can update the generated View as you see fit, for example by adding bindings to each field and
actions to the buttons

widget(LoginDialog(mainFrame,), id:'loginDialog')new true
noparent {
 bean(loginDialog.usernameField, id:'usernameField',
 text: bind(target: model, 'username'))
 bean(loginDialog.passwordField, id:'passwordField',
 text: bind(target: model, 'password'))
 bean(loginDialog.okButton, id:'okButton',
 actionPerformed: controller.loginOk)
 bean(loginDialog.cancelButton, id:'cancelButton',
 actionPerformed: controller.loginCancel)
}

 loginDialogreturn

13.3.2 Abeille Forms Designer

Another interesting choice is , which is supported via a Builder and a . Abeille Forms includes aAbeille Forms plugin

http://java.net/projects/abeille/
http://docs.codehaus.org/display/GRIFFON/AbeilleformBuilder+Plugin

113

visual designer that arranges the widgets with either JGoodies FormLayout or the JDK's GridBagLayout. Integrating
these kind of views is a bit easier than the previous ones, as Abeille Forms views are usually distributed in either
XML or a binary format. The plugin provides a View node that is capable of reading both formats. Follow these
steps to setup a View of this type.

#1 Install the Abeille Forms plugin

As with any oher plugin, just call the command with the name of the plugininstall-plugin

griffon install-plugin abeilleform-builder

#2 Place the form definition in your source code

If you have direct access to the files generated by Abeille's designer then place them somewhere under
. Otherwise if the files are packaged in a jar, place the jar in your application's griffon-app/resources lib

directory. Alternatively you can use the Dependency DSL if the jar is available from a jar file repository (such as
Maven or Ivy).

#3 Use the formPanel node

As a final step you just need to use the node in a regular Groovy View script. All of the form'sformPanel
elements will be exposed to the Script, which means you can tweak their bindings and actions too, like this

dialog(owner: mainFrame,
 id: ,"loginDialog"
 resizable: ,false
 pack: ,true
 locationByPlatform: ,true
 iconImage: imageIcon('/griffon-icon-48x48.png').image,
 iconImages: [imageIcon('/griffon-icon-48x48.png').image,
 imageIcon('/griffon-icon-32x32.png').image,
 imageIcon('/griffon-icon-16x16.png').image]) {
 formPanel('login.xml')
 noparent {
 bean(model, username: bind{ usernameField.text })
 bean(model, password: bind{ passwordField.text })
 bean(okButton, actionPerformed: controller.loginOk)
 bean(cancelButton, actionPerformed: controller.loginCancel)
 }
}

13.3.3 XML

Yet another option to externalize a View is a custom XML format that closely ressembles the code that you can find
in a Groovy View script. Why XML you ask? Well because it is a ver popular format choice still, some developers
prefer writing declarative programming with it. This option is recommended to be paired with Java views, just
because if you're writing a Groovy View it makes more sense to use Groovy to write the whole instead. Follow these
steps to get it done.

#1 Change the Java View class

A typical Java View class will extend from . This super class defines a method named AbstractGriffonView
 that takes a Map as its sole argument. This map should contain all variables that thebuildViewFromXml()

builder may require to wire the View, such as 'app', 'controller' and 'model' for example.

114

package sample;
 java.util.Map;import
 org.codehaus.griffon.runtime.core.AbstractGriffonView;import
 class SampleView AbstractGriffonView {public extends

 SampleController controller;private
 SampleModel model;private
 void setController(SampleController controller) {public
 .controller = controller;this
 }
 void setModel(SampleModel model) {public
 .model = model;this
 }
 void mvcGroupInit(Map< , > args) {public String Object
 buildViewFromXml(args);
 }
}

#2 Define the XML view

The method expects an XML file whose name matches the name of the class from wherebuildViewFromXml()
it's called, in this case it should be . Make sure to place the following contents in SampleViw.xml
griffon-app/resources/sample/SampleView.xml

<application title="app.config.application.title"
 pack= >" "true
 <actions>
 <action id="'clickAction'"
 name="'Click'"
 closure= />"{controller.click(it)}"
 </actions>
 <gridLayout cols= rows= />"1" "3"
 <textField id= columns="'input'" "20"
 text= />"bind('value', target: model)"
 <textField id= columns="'output'" "20"
 text= editable= />"bind{model.value}" " "false
 <button action= />"clickAction"
</application>

Notice that every string literal value must be escaped with additional quotes otherwise the builder will have trouble
setting the appropriate values. When the time comes for the builder to parse the view it will translate the XML to a
Groovy scritpt then interpret it. This is the generated Groovy script that matches the previous XML definition

application(title: app.config.application.title, pack:) {true
 actions {
 action(id: 'clickAction', name: 'Click', closure: {controller.click(it)})
 }
 gridLayout(cols: 1, rows: 3)
 textField(id: 'input', text: bind('value', target: model), columns: 20)
 textField(id: 'output', text: bind{model.value}, columns: 20, editable:)false
 button(action: clickAction)
}

13.4 Creating Bindings in Java

Bindings are an effective way to keep two properties in sync. Unfortunately Java does not provide a mechanism nor
an API to make bindings, but Griffon does.
As shown in section , Griffon relies on and 6.2 Binding PropertyChangeEvent PropertyChangeListener
to keep track of property changes and notify observers. Swing components are already observable by default. You
can build your own observable classes by following a convention, or implement the interface (there's aObservable
handy partial implementation in that you can subclass).AbstractObservable
Bindings can be created by using , like the following example showsBindUtils.binding()

115

package sample;
 java.util.Map;import
 groovy.util.FactoryBuilderSupport;import
 griffon.swing.BindUtils;import
 org.codehaus.griffon.runtime.core.AbstractGriffonView;import
 class SampleView AbstractGriffonView {public extends

 SampleController controller;private
 SampleModel model;private
 void setController(SampleController controller) {public
 .controller = controller;this
 }
 void setModel(SampleModel model) {public
 .model = model;this
 }
 void mvcGroupInit(Map< , > args) {public String Object
 buildViewFromXml(args);
 FactoryBuilderSupport builder = getBuilder();
 /*
 * Equivalent Groovy code
 * bind(source: input, sourceProperty: 'text',
 * target: model, targetProperty: 'value')
 */
 BindUtils.binding()
 .withSource(builder.getVariable())"input"
 .withSourceProperty()"text"
 .withTarget(model))
 .withTargetProperty()"value"
 .make(builder);
 /*
 * Equivalent Groovy code
 * bind(source: model, sourceProperty: 'value',
 * target: input, targetProperty: 'text')
 */
 BindUtils.binding()
 .withSource(model)
 .withSourceProperty()"value"
 .withTarget(builder.getVariable())"output"
 .withTargetProperty()"text"
 .make(builder);
 }
}

The following rules apply:

both and values must be specified. An will be thrownsource target IllegalArgumentException
if that's not the case.
both and instances must be observable. This does not imply that both must implement source target

 per se, as Swing components do not.Observable
either or can be omitted but not both. The missing value will besourceProperty targetProperty
taken from the other property.
the instance must be able to resolve the node. This is typically the case for the defaultbuilder bind()
builder supplied to Views (because Swingbuilder is included).

Bindings created in this way also support the following attributes: , and . Themutual converter validator
next snippet improves on the previous example by setting a converter and a validator, only numeric values will be
accepted.

116

package sample;
 java.util.Map;import
 groovy.util.FactoryBuilderSupport;import
 griffon.swing.BindUtils;import
 griffon.util.CallableWithArgs;import
 org.codehaus.griffon.runtime.core.AbstractGriffonView;import
 class SampleView AbstractGriffonView {public extends

 SampleController controller;private
 SampleModel model;private
 void setController(SampleController controller) {public
 .controller = controller;this
 }
 void setModel(SampleModel model) {public
 .model = model;this
 }
 void mvcGroupInit(Map< , > args) {public String Object
 buildViewFromXml(args);
 FactoryBuilderSupport builder = getBuilder();
 /*
 * Equivalent Groovy code
 * bind(source: input, sourceProperty: 'text',
 * target: model, targetProperty: 'value',
 * converter: {v -> v? : 'BAR'},"FOO $v"
 * validator: {v ->
 * (v ==) if null true
 * { .parseInt(.valueOf(v)); }try Integer String true
 * (NumberFormatException e) { }catch false
 * })
 */
 BindUtils.binding()
 .withSource(builder.getVariable())"input"
 .withSourceProperty()"text"
 .withTarget(model)
 .withTargetProperty()"value"
 .withConverter(CallableWithArgs< >() {new String
 call([] args) {public String Object
 args.length > 0 ? + args[0] : ;return "FOO " "BAR"
 }
 })
 .withValidator(CallableWithArgs< >() {new Boolean
 call([] args) {public Boolean Object
 (args.length == 0) .TRUE;if return Boolean
 {try
 .parseInt(.valueOf(args[0]));Integer String
 .TRUE;return Boolean
 } (NumberFormatException e) {catch
 .FALSE;return Boolean
 }
 }
 })
 .make(builder);
 /*
 * Equivalent Groovy code
 * bind(source: model, sourceProperty: 'value',
 * target: input, targetProperty: 'text')
 */
 BindUtils.binding()
 .withSource(model)
 .withSourceProperty()"value"
 .withTarget(builder.getVariable())"output"
 .withTargetProperty()"text"
 .make(builder);
 }
}

The View for these examples is defined in XML format (as described in the previous section)

117

<application title="app.config.application.title"
 pack= >" "true
 <actions>
 <action id="'clickAction'"
 name="'Click'"
 closure= />"{controller.click(it)}"
 </actions>
 <gridLayout cols= rows= />"1" "3"
 <textField id= columns= />"'input'" "20"
 <textField id= columns= editable= />"'output'" "20" " "false
 <button action="clickAction"
</application>

However you can build the View in any way, bindings do not require an specific View construction mechanism in
order to work.

Griffon - building rich applications the Groovy way

