
PopCap Game Framework
Proprietary and Confidential

Revision 2
January 26, 2005

Overview

The PopCap game framework, named SexyApp Framework, is a
flexible high-level library that provides commonly required functions
and reusable components. The framework is designed to facilitate
rapid development of high-quality games by allowing game
programmers to concentrate their efforts on expressing game
concepts while minimizing the work required to create a rich visual
and audio presentation. This framework and its predecessors have
been used for all of PopCap’s Deluxe games, which account for over
100 million framework-derived game units downloaded.

Technical Basis

The framework is written in C++, specifically for compatibility with
Visual C++ 6.0 and Visual C++ .NET. The framework targets DirectX
6 and above on Windows 95 through XP, and uses the third-party
library BASS for music and additional sound support. The rendering
architecture supports two modes, a hardware accelerated mode for
modern effects and a 2d non-accelerated compatibility mode for older
computers. Both modes use the same basic interface for drawing, but
the underling hardware accelerated mode uses Direct3D7 and the
non-accelerated mode uses custom DirectDraw rendering code that
internally writes directly to the bits of a system memory off-screen
surface. Both modes support alpha source, alpha destination, alpha
modulation, color modulation, additive blending, rotation, line
drawing, filled polygons, and both bilinear and nearest-point scaling.
Hardware accelerated mode additionally supports textured polygons,
which are too slow to be included in non-accelerated mode.

Coding Philosophy

The framework differs from many other APIs in that some class
properties are not wrapped in accessor methods, but rather are made
to be accessed directly through public member data. The window
caption of your application, for example, is set by assigning a value to
the std::string mTitle in the application object before the application’s
window is created. We felt that in many cases this reduced the code

required to implement a class. Also of note is the prefix notation used
on variables: “m” denotes a class member, “the” denotes a parameter
passed to a method or function, and “a” denotes a local variable.

Framework Structure

Applications using the framework will derive from the core class,
SexyAppBase. SexyAppBase contains many helpful methods and
objects and can be seen as the core which your game is built around.
One of the primary objects used to control the display and game logic
is SexyAppBase::mWidgetManager, which is responsible for
maintaining a list of Widgets, similar in concept to a window in a
windowing system. A Widget could represent a button on a dialog or
even the entire game. SexyAppBase also includes other manager
classes for controlling multimedia functions such a sound effects and
music.

Widget Details

All widgets are derived from the base Widget class. This Widget class
contains virtual methods than can be overridden for handling, among
other things, drawing, game logic, keyboard and mouse handling.

Location

Widgets can be positioned anywhere within the main game
window and in any order that makes sense. The Z order is
implicitly created when new Widgets are added to the
WidgetManager using WidgetManager::AddWidget, but there
are a number of calls to move the Widgets around on the X Y
and Z axis.

Widget Hierarchy

The framework doesn’t formally support Widgets parenting
other Widgets. This functionality can be mimicked, however, by
having a parent Widget that constructs other Widgets and
moves them around in response to its own movement and such.

Updating

The Update method of all the widgets gets called by the
WidgetManager at a fixed rate. The default rate is 100 times

per second. This will remain constant regardless of the
computer speed or video refresh rate. All game logic that
progresses at a fixed rate should take place in the Update
method. For example, if you have a box that moves across the
screen at a rate of 100 pixels per second, you should increment
its position by 1 pixel each time your Widget’s Update method
gets called.

Drawing to the Screen

When the visual state of your Widget has changed (in response
to the player moving or an animation updating, for example),
the Widget should be marked as dirty by calling
Widget::MarkDirty to indicate that it should be redrawn. When
MarkDirty is called, it may trigger other widgets to redraw
depending on the position of the Widget. If other Widgets
appear over the Widget being redrawn, for example, they will
need to be redrawn since the drawing of the first Widget will
write over pixels owned by the Widget on top.

The redrawing will occur after all the widgets have been
brought up-to-date by having their Update methods called. The
Widgets will have their Draw methods called in back-to-front
order, with a Graphics object being passed in. The Graphics
object represents a drawing destination, and contains all the
drawing methods available to the application. All drawing
coordinates will be relative to the Widget’s coordinates and will
be clipped to the Widget’s extents.

Update / Draw Independence

Ideally, you should imagine that you app will always have it’s
Updates called 100 times per second but may NEVER have it’s
Draw methods called. Regardless, the game state should
proceed EXACTLY as it would as if Draw was getting called 60
or 80 times per second. Always think to yourself, “if I had
missed Draw for the last 5 seconds and then got one right now,
would I be drawing exactly the same thing to the screen as if I
had gotten one Draw for every Update up until now?” If your
answer is no, you should think about redesigning your code path
as you could be introducing timing issues that could be hard to
track down and fix later. Furthermore, it could break the
helpful demo recording capability built into the framework.

Smooth Updating

Smooth updating is an advanced optional feature that is unused
in nearly all of our games, but can help achieve smoother effects
in some cases, particularly for side-scrolling games. The core
problem that smooth updating overcomes is the temporal
aliasing between updating game logic at 100 HZ and a monitor
refresh rate that can run anywhere between 60HZ to 85HZ (and
sometimes even higher). The goal is to sync the movement of
objects in the game to the monitor refresh rate while still
allowing us the simplicity of having a set update rate for most of
the game logic.

The solution consists of having two separate update calls for a
widget, Update (which is called at 100HZ), and UpdateF (which
is called at the monitor’s refresh rate). UpdateF has a floating
point number passed in, which represents how many 100HZ
units that one call represents, which will always be between 1
and 1.67. Because the monitor refresh rate will vary on
different computers you will have to take that foating point
number into account in every time-based calculation that occurs
in UpdateF, such as motion. While that makes the
implementation of the UpdateF call somewhat less convenient
than the fixed-rate Update call, you may mix logic amongst the
two to get the best of both words. To ensure good behavior, the
framework promises that there will always be either one or two
Update calls between each UpdateF call – there will never be
two UpdateF calls without an Update call between them. That
means that you can update critical object and scrolling positions
in UpdateF but still rely on Update for collision detection,
animation, and other game logic. Smooth updating mode is
enabled by setting SexyAppBase::mVSyncUpdates to true.

Deleting Widgets

A deleting issue is often encountered with widgets where you
may want a widget to delete itself, either directly or indirectly.
Take the example of a dialog box: if you create a DialogBox
widget that you want to remove when you click on it, you’d
override DialogBox::MouseDown, first removing the widget from
the widget manager and then needing to delete it, but directly
deleting the widget at that point could cause a crash. In order
to get around that, call SexyAppBase::SafeDeleteWidget, which
will insert the widget into a deferred list that will be deleted at a
safe time.

Images

The base image representation in the framework is the abstract class
Image, but in practice all images will be a MemoryImage or a
DDImage. A DDImage is derived from a MemoryImage but differs in
the respect that it can point to a DirectDraw surface whereas a
MemoryImage contains a raw copy of the pixels in either 32-bit ARGB
or palletized format.

Loading Images

Image loading can be done at any point, but should normally
occur at program startup, either directly through
SexyApp::GetImage or indirectly through the ResourceManager
(described later). SexyApp::GetImage load a DDImage for you
from a PNG, GIF, or JPEG file. While PNG is the only format
that directly supports alpha channels, the framework will look
for a black-and-white “alpha channel image” with the same
name except with an underscore prepended or postpended to it.

In this example, the color channel is stored in
“swapper.jpg” but the alpha channel is stored in
“_swapper.gif”. The combined image can be loaded with a
single call to SexyApp::GetImage(“swapper”)

_swapper.gif swapper.jpg

Modifying Bits

MemoryImages are set up to be easily modifiable to create
programmatic effects. GetBits() can be called to get an
unsigned long pointer to the raw image data in 32-bit ARGB
format. Simply modify the bits and call BitsChanged to commit
the new data to the image.

Memory Consumption

Loading lots of large images can quickly add up in terms of
memory usage. Pressing the F11 key while in debug mode
(enabled with ctrl-alt-d) will create a “dump” directory
containing PNG copies of all images and a HTML index with a
list of how much memory each image takes up. To get an idea of
how much memory an image can take, a 640x480x32 image will
take nearly 1.2MB of memory for just the raw bits, plus more for
native pixel tables and run-length alpha encoding tables

(performance-enhancements that are taken care of behind-the-
scenes). The per-image memory cost can be reduced if it can be
internally palletized (if it contains 256 colors or less). Use the
MemoryImage::Palletize method to convert a memory into its
palletized representation.

Drawing

All drawing to the screen is done through widgets added to the widget
manager in SexyAppBase::mWidgetManager. The widget manager
calls the widgets’ draw methods, passing in a Graphics context that
can be used to draw to the screen.

Clipping Regions

The widget manager sets the clipping region on the graphics
context before passing it into a widget’s Draw method. Initially
the clipping region is the rectangular extents of the widget, but
can be further reduced by calling Graphics::ClipRect. If
Widget::mClip to false, the widget’s Draw method will be called
without a clipping region set.

Drawing Performance

Performance should be monitored in non-accelerated mode to
ensure that the final product will achieve reasonable frame
rates. Things that may affect performance are: large areas of
alpha or additive drawing, tons of tiny images (as with every
graphics platform there is some overhead to drawing), too much
overdraw, or overuse of rotating images.

In Bejeweled 2 we have a board with a large alpha area behind
the gems that was being drawn over a planetary backdrop but
we were able to avoid the alpha and overdraw penalty by
composing a single fullscreen image that combined the
backdrop and the board into a single image that is drawn under
the gems every frame. You can draw to an image by
constructing your own Graphics context pointing to your image.

Image Scaling

There are two scaling modes available, set by calling
Graphics::SetFastStetch. Fast stretching using nearest-point
sampling and is acceptable for real-time non-accelerated use.
Setting fast stretching to false enables bilinear stretching,

which is only appropriate for accelerated drawing or for caching
a resized version of an image in a new image at load time (or
some other time where some slowdown is acceptable).

Smooth Image Movement

The framework supports sub-pixel movement through
Graphics::DrawImageF, which accepts floating point
coordinates. Unless used only on a small quantity of small
images, DrawImageF should only be used in hardware
accelerated mode.

Textured Polygons, Advanced Hardware Accelerated
Support

In hardware accelerated mode you can get more direct access
to the Direct3D layer through SexyAppBase::mDDInterface-
>mD3DInterface. The D3DInterface exposes calls like
DrawTriangleTex, which can be used for drawing arbitrary
textured triangles, using an image for the texture. You can also
directly access the D3D, D3DDevice, and D3DViewport objects
through the D3DInterface, but you must keep in mind that
internally an image doesn’t map one-to-one to a texture since an
image may be broken into multiple textures to account for
power-of-two limitations on texture sizes. The algorithm for
breaking an image into textures is optimized for memory and
texture swapping, but you can set the
D3DImageFlags_MinimizeNumSubdivisions flag in
MemoryImage::mD3DFlags to break the image into fewer
textures, optimizing for speed in essence.

Managing Hardware Acceleration

By default, hardware acceleration is disabled in the framework.
To turn it on, set SexyAppBase::mAutoEnable3D to true in your
application’s constructor. This will cause a 3D test to occur
when the user first runs your application, categorizing the
user’s computer into three acceleration categories:
recommended, supported, and unsupported. Hardware
accelerated mode will be automatically enabled if for
‘recommended’, the user will have to manually turn it on for
‘supported’, and ‘unsupported’ will not allow the user to enable
it at all. To turn on hardware acceleration for ‘supported’
computers, call SexyAppBase::Set3DAccelerated.

Often you’ll want to add some enhanced effects for computers
that support hardware acceleration. Often in those cases you
can just branch your widget’s drawing logic depending on the
result returned from SexyAppBase::Is3DAccelerated.

Sounds

Sounds are loaded via the SexyApp::mSoundManager interface.
SoundManager::LoadSound will load a sound into one of the source
sound channels. SexyApp provides a helper method for playing any
loaded sound through SexyApp::PlaySample. If you want more control
over a sound instance, you can call SoundManager::GetSound
instance to get access to a SoundInstance. You can then access the
SoundInstance directly to perform such actions as playing it, releasing
it, checking its state, or changing its volume or pan.

MP3 and OGG Decoding

MP3 and OGG support are included in the framework.
Whenever a MP3 or OGG file is loaded, the uncompressed
version will be cached in a “cached-?.wav” file for faster loading
the next time. As with the image loader, no extension needs to
be specified for the sound file name.

Playing a repeating sound

Sounds can be played in a fire-and-forget fashion by simply
calling SexyApp::PlaySample(), passing in the sound id. You’ll
need to deal directly with sound instances, however, if you want
more control over a sound such as being able to loop sounds,
stop them in progress, or change their panning and volume
settings while they are playing. Allocate a sound instance by
calling SexyAppBase::mSoundManager->GetSoundInstance.
Sound instances should never be deleted, only released. You
release a sound instance by either directly calling
SoundInstance::Release or by allowing the sound to auto release
after playing by calling SoundInsatnce::Play with the
autoRelease parameter set to true.

Music

Music support is provided through both the BASS interface, which
offers support for MOD, XM, IT, and MO3 “tracker” files. MO3 is the

most advanced format and produces the smallest files due to MP3
compression of samples.

Loading Music and Playing

Music is organized by channels, where each channel contains its
own instance of a song file, has its own volume setting, and can
be played and stopped independently from the other music
channels. To load and play a music file in channel 0, for
instance, call mMusicInterface.LoadMusic(0, “music.s3m”) then
mMusicInterface::PlayMusic(0).

Cross-fading Between Songs

In order to cross-fade between songs, you must have at least
two channels that have music loaded into them since you will
need one channel to fade out while the other one fades in. If all
of your music tracks are contained in one music file that means
you will have to load the same music file twice (or more). To
fade out the old song, call MusicInterface::FadeOut. There is a
“stopSong” parameter passed into this call, which will
determine whether the music actually stops when it fades all the
way our or silently continues so you can fade it back in from it’s
current position later on. If you stop the song, it will start from
the beginning next time you fade it in.

Fonts

The framework supports its own format of fonts, defined by a font
descriptor. The font descriptor is a human-readable modifiable text
file describing the characters included in the font, the image
information about each character, and other font stuff like kerning
information.

Creating Fonts

FontBuilder is a program that allows you to convert any
TrueType font installed in Windows to a framework font file.
Along with the standard font controls there are settings for
padding, which allows you to build a couple of blank pixels
around the edges so you can load the font image in Photoshop
and use image manipulation that may make the character
become larger than normal.

Initialization and Resource Loading

The SexyApp::Init method is called upon application initialization,
allowing for loading of resources required before the loading progress
screen is displayed. After initialization, a resource loading thread is
started, which calls SexyApp.LoadingThreadProc. Typically, a game
will load only the resources required to show the loading screen in
SexyApp::Init and load everything else in the LoadingThreadProc.
The LoadingThreadProc should keep track of roughly what its
completed percentage is so the title screen can display a progress bar.

Multithreading Considerations

Some caution should be used when making calls in the loading
thread to ensure that there are no threading conflicts. While
loading images and sounds is safe, you wouldn’t want to be
creating Widgets and adding them to the WidgetManager or
anything crazy. Also, caution should be used if you create your
own meta-resource manager that the title screen or Widgets
that appear pre-load access while the loading thread is trying to
add newly loaded resources to it. Even having a simple image
pointer vector where images are pushed onto when they are
loaded could cause problems if the title screen is accessing the
vector at the same instant the LoadingThreadProc is adding to
it.

ResourceManager

In addition to directly loading sounds and images in the
framework, there is a ResourceManager that can load in
resources such as images, sounds, and fonts based on
information in an XML file. The ResourceManager system relies
on the ResourceGen.exe program to parse the XML file to create
C++ support code to make the included resources visible to the
program. See the document “Using PopCap Resource
Manifests.doc” for more information.

Dialogs

In order to create arbitrarily-sized dialogs, we use a “skinning”
technique where the source dialog image is logically split into 3x3
sections. Each of the 4 corners of the 3x3 section is drawn in the
appropriate corners of the destination dialog area, and then the areas

between each of corners are repeated over the remaining area of the
dialog. Dialog buttons work in a similar fashion, except they only tile
horizontally so they are split up into logical 3x1 sections.

General Program Stuff

In addition to the multimedia capabilities, the framework provides
much of the basic ‘glue’ necessary to build a game. Here are some of
the basic issues.

Saving / Loading Settings

The framework automatically saves some settings to the registry
such as volume levels and window position. To save your own
settings to the registry you can override
SexyAppBase::WriteToRegistry and
SexyAppBase::ReadFromRegistry. Look at the Registry* calls in
SexyAppBase.h to see the complete list of registry calls.

Handling Command Line Parameters

Override SexyAppBase::HandleCmdLineParam to handle custom
command line parameters. Both a name and a value are passed
in, allowing you to specify parameters in the format of
“name=value”.

Saving and Loading Files

Files can be easily saved and loaded through the Buffer
interface. To write data, construct a Buffer and write to it using
any of the Write* calls, then save the Buffer to a file calling
SexyAppBase::WriteBufferToFile. To read data, call
SexyAppBase::ReadBufferFromFile to put the file data into a
Buffer and then use any of the Buffer’s Read* calls to extract it.

Windows Message Boxes

SexyAppBase::MsgBox can be called to show standard windows
message boxes. These should be used for debug uses only.

Debugging

Often times, programs are not perfect the first time and require some
amount of debugging, both before and after release. The framework
provides some assistance in that area. When a crash occurs it will be
caught by the Structured Exception Handler, where a dialog will be
shown to the user containing details of the crash such as a stack
trace, program-configurable output, and build information. The crash
information can be loaded into MapLookup along with the appropriate
map file to look up function names from the stack trace. It’s
recommended that you create map files with line information and that
you set “Omit Frame Pointers” to “No” in your projects C/C++
Optimization settings, as frame pointer omission interferes with the
ability to generate a stack trace.

Debugging Mode

Debugging keys can be enabled and disabled with ctrl-alt-d,
which toggles the SexyAppBase::mDebugKeysEnabled flag. The
currently supported debug keys are:

F2 - Start/Stop Perf Timing

F3 - toggle framerate display
Shift F3 - toggle framerate/mouse coord display

F8 - Show current Video Stats (mostly used to see if 3d is
currently on)
Shift F8 - Toggle 3d mode

F10 - Single Step Program (show one frame at a time)
Shift F10 - Stop single steping
Ctrl F10 - Toggle Slow Motion

F11 - Take Screenshot (goes into the _screenshots) directory
Shift F11 - Dump all program images in memory to the _dump
directory

A common technique at PopCap is to extend those debug keys
by overriding SexyAppBase::DebugKeyDown, providing pre-
release cheat keys to help QA in testing.

Performance Profiling

Performance monitoring code is contained in PerfTimer.h. Code
you want to profile should generally be surrounded by
SEXY_PERF_BEGIN/SEXY_PERF_END macros, and you must set
the SEXY_PERF_ENABLED preprocessor define before including

PerfTimer.h. Press F2 once to start profiling and press it again
to view the results.

Demo Recording

Demo recording writes timing information and program input to
a repayable demo file that, if the program is set up properly, will
result in the same program state progression as the original
session when played back. This requires adhering to a set of
rules to ensure deterministic behavior. While even small
deviation from this set of rules could create demo playback
problems that are hard to track down, the process has gone
fairly smoothly in practice. To record a demo, pass “-record”
into the program or set SexyAppBase:: mRecordingDemoBuffer to
true. Play back the demo by passing “-play” into the program.
Demo support is optional and can be ignored.

Common Problems

P: The background isn’t drawing properly under my widget, or
alpha/anti-aliased regions are drawing darker than they should.

S: When you call MarkDirty, the framework will try to redraw as few
widgets as possible. If your widget is completely opaque there will be
no need to redraw widgets directly under it, but if your widget
contains alpha portions then the widget under it must be redrawn
first. Setting Widget::mHasAlpha on widgets with alpha will fix the
problem.

P: After deleting a widget my program is crashing.

S: You must make sure you remove the widget from the
SexyAppBase::mWidgetManager with
WidgetManager::RemoveWidget before deleting it. Also, you may
need to call SexyAppBase::SafeDeleteWidget instead of deleting the
widget directly if the widget is still in the call stack (as in the case of a
widget deleting itself when you click on it, for example).

P: My program takes too much memory.

S: Lots of image data can add up. You can easily see what’s loaded by
enabling debug keys and using F11 to dump image information to a
“_dump” directory. Reducing appropriate images to a 256-color

palletized format and keeping them in memory only when needed is
also advised.

	Coding Philosophy
	Framework Structure
	Initialization and Resource Loading

