
Symmetric Banded Matrices

Version 0.1 December, 2001

Andreas Stahel

June 7, 2009

Contents

1 Basic description 1

2 Description of the commands 2

2.1 SBSolve . 2
2.2 SBFactor and SBBacksub . 3
2.3 SBEig . 4
2.4 SBProd . 5
2.5 BandToFull, FullToBand and BandToSparse . 6

1 Basic description

Many matrices used to solve PDE (using FEM) are symmetric. It the nodes are numbered properly
then the matrix will show a band structure, i.e. all nonzero elements are located close to the main
diagonal. The algorithm of Cholesky or the LDLT factorization can take advantage of this structure,
see [1]. For a symmetric matrix A of size n× n with semi-bandwidth b the approximate computational
cost to solve one system of equations is given by

Gauss ≈
1

3
n3 and Band Cholesky ≈

1

2
n b2

Obviously for b ≪ n is is advantageous to use a banded solver. A more detailed analysis and an
implementation is given in [2].

To take advantage of the symmetry and the band structure the matrices will be stored in a modified
format, as illustrated below.

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

10 2 3 0 0
2 20 4 5 0
3 4 30 6 7
0 5 6 40 8
0 0 7 8 50

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

−→

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

10 2 3
20 4 5
30 6 7
40 8 0
50 0 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

A banded version of the LDLT factorization in [1] can be implemented. If the matrix A is strictly
positive definite, then the algorithm is known to be stable. If A is not positive definite, then problems
might occur, since no pivoting is done. The matrix A is positive definite if and only if the diagonal
matrix D is positive.

For a given matrix some of its smallest eigenvalues can be computed with an algorithm based on
inverse power iteration. Precise information on the numerical errors is provided. The code is capable

1

Operations for symmetric, banded matrices

SBSolve() solve a system of linear equations
SBFactor() find the RT DR factorization
SBBacksub() use back-substitution to solve system of equations
SBEig() find a few of the smallest eigenvalues and eigenvectors
SBProd() multiply symmetric banded matrix with full matrix
FullToBand() convert a symmetric matrix to a banded matrix
BandToFull() convert a banded matrix to a symmetric matrix
BandToSparse() convert a banded matrix to a sparse matrix

Table 1: List of commands

of finding eigenvalues of medium size matrices, where the standard command eig() is either very slow
of will fail.

2 Description of the commands

2.1 SBSolve

The basic factorization algorithm is implemented in SBSolve. The function can return the solution of
the system of linear equations, or the solution and the factorization of the original matrix. Multiple sets
of equations can be solved.

[...] = SBSolve(...)

solve a system of linear equations with a symmetric banded matrix

X=SBSolve(A,B)

[R,X]=SBSolve(A,B)

solves A X = B

A is mxt where t-1 is number of non-zero super-diagonals

B is mxn

X is mxn

R is mxt

if A would be ! 11000 ! then A= ! 11 !

! 14300 ! ! 43 !

! 03520 ! ! 52 !

! 00285 ! ! 85 !

! 00059 ! ! 90 !

B is a full matrix

The code is based on a LDL’ decomposition (use L=R’), without pivoting.

If A is positive definite, then it reduces to the Cholesky algorithm.

2

R is an upper right band matrix

The first column of R contains the entries of a diagonal matrix D.

If the first column of R is filled by 1’s, then we have R’*D*R = A

To determine the inverse matrix A−1 one can use the command invA = SBSolve(A,eye(n));. Be
aware that calculating the inverse matrix is rarely a wise thing to do. Most often the inverse of a banded
matrix will loose the band structure.

If the matrix A is strictly positive definite, then the algorithm is stable and one can expect the
solution to be as accurate as the conditions number of A permits. If A is semidefinite, then large errors
might occur, since not pivoting is implemented in the code. The matrix is positive definite iff all
eigenvalues are positive, this can be verified by inspection the sign of the numbers in the first column
of R. The matrix is positive definite if the first column of the factorization matrix R (use SBFactor())
contains positive numbers only. A description of the algorithm can be found in [1] or [2].

2.2 SBFactor and SBBacksub

Instead of calling X=SBSolve(A,B) one can first call R=SBFactor(A) to determine the factorization
A = RT DR and then B=SBBacksub(R,X) to solve the system(s) A · X = B . Since most of the
computational effort is in the factorization, this can be useful if many system of linear equations have
to be solved sequentially. If multiple system are to be solved simultaneously it is preferable to use
SBSolve(A,B) with a matrix B .

[...] = SBFactor(...)

find the R’DR factorization of a symmetric banded matrix

R=SBFactor(A)

A is mxt where t-1 is number of non-zero super diagonals

R is mxt

if A would be ! 11000 ! then A= ! 11 !

! 14300 ! ! 43 !

! 03520 ! ! 52 !

! 00285 ! ! 85 !

! 00059 ! ! 90 !

The code is based on a LDL’ decomposition (use L=R’), without pivoting.

If A is positive definite, then it reduces to the Cholesky algorithm.

R is an upper right band matrix

The first column of R contains the entries of a diagonal matrix D.

If the first column of R is filled by 1’s, then we have R’*D*R = A

[...] = SBBacksub(...)

using backsubstitution to return the solution of a system of linear equations

X=SBBacksub(R,B)

B is mxn

3

X is mxn

R is mxt

R is produced by a call of [X,R] = SBSolve(A,B) or R = SBFactor(A)

It is an upper right band matrix

The first column of R contains the entries of a diagonal matrix D.

If the first column of R is filled by 1’s, then we have R’*D*R = A

If there is interest in the classical Cholesky decomposition of the matrix A (i.e. A = R′ ·R) then R can
be computed by

rBand=SBFactor(A);

d=sqrt(rBand(:,1));

rBand(:,1)=ones(n,1);

r=triu(diag(d)*rBand)

The number of positive/negative numbers in the first column of R equals the number of posi-
tive/negative eigenvalues of A.

2.3 SBEig

For given symmetric matrices A and B the standard (resp. generalized) eigenvalue problem will be
solved, i.e.

A~v = λ~v resp. A~v = λB~v

Using inverse power iteration a given number of the smallest (absolute value) eigenvalues if a sym-
metric matrix A are computed. If needed the eigenvectors are also generated. A set of initial vectors V

have to be given. If those are already close to the eigenvectors, then the algorithm will converge rather
quickly. For a precise description and analysis consult [1].

[...] = SBEig(...)

find a few eigenvalues of the symmetric, banded matrix

inverse power iteration is used for the standard and generalized

eigenvalue problem

[Lambda,{Ev,err}] = SBEig(A,V,tol) solve A*Ev = Ev*diag(Lambda)

standard eigenvalue problem

[Lambda,{Ev,err}] = SBEig(A,B,V,tol) solve A*Ev = B*Ev*diag(Lambda)

generalized eigenvalue problem

A is mxt, where t-1 is number of non-zero superdiagonals

B is mxs, where s-1 is number of non-zero superdiagonals

V is mxn, where n is the number of eigenvalues desired

contains the initial eigenvectors for the iteration

tol is the relative error, used as the stopping criterion

X is a column vector with the eigenvalues

Ev is a matrix whose columns represent normalized eigenvectors

err is a vector with the a posteriori error estimates for the eigenvalues

4

The algorithm is based on inverse power iteration with n independent vectors. The iteration will
proceed until the relative change of all eigenvalues is smaller than the given value of tol. This does not
guarantee that the relative error is smaller than tol. The initial guesses V for the eigenvectors have to
be linearly independent. The closer the initial guess is to the actual eigenvector,the faster the algorithm
will converge. The algorithm returns n eigenvalues closest to 0 .

For the standard eigenvalue problem A ~vi = λi ~vi the eigenvectors ~vi will be orthonormal with respect
to the standard scalar product, i.e, 〈~vi , ~vj〉 = δi,j . For the generalized eigenvalue problem A ~vi = λi B~vi

this translates to 〈~vi , B~vj〉 = δi,j . The symmetric matrix B should be positive definite. The columns
of Ev can be used to restart the algorithm if higher accuracy is required.

The algorithm will return reliable estimates for the errors in the eigenvalues. The à posteriori error
estimate is based on the residual ~r = A~v − λ~v and

min
λi∈σ(A)

|λ − λi| ≤ 〈~r , ~r〉 = ‖~r‖

where we use the normalization 〈~v , ~v〉 = 1. If one of the eigenvalues has to be computed with high
accuracy, the approximate value λ may be subtracted from the diagonal of the matrix. Then the
eigenvalue closest to zero of the modified matrix A− λI can be computed, using the already computed
eigenvector. If the eigenvalue is isolated the algorithm will converge very quickly. This algorithm is
similar to the Rayleigh quotient iteration. A good description is given in [1].

If the eigenvalue closest to λ is denoted by λi we have the improved estimate

|λ − λi| ≤
‖~r‖2

gap
where gap = min{|λ − λj | : λj ∈ σ(A), j 6= i}

It is very easy to implement this test in Octave. If the estimate is based on approximate values of the
eigenvalues, then the result is not as reliable as the previous one. Since the value of gap will carry an
approximation error. The situation is particularly bad if some eigenvalues are clustered. A code sample
is provided.

For the generalized eigenvalue problem we use the residual ~r = A~v − λB~v and the estimate

min
λi∈σ(A)

|λ − λi| ≤
√

〈~r , B−1~r〉 and |λ − λi| ≤
‖~r‖2

gap

where we use the normalization 〈~v , B~v〉 = 1. The precise algorithm and proof of the above estimate is
given in [2].

2.4 SBProd

With this command a symmetric banded matrix can be multiplied with a full matrix.

[...] = SBProd(...)

multiplies a symmetric banded matrix with a matrix

X=SBProd(A,B)

A is mxt where t-1 is number of non-zero super diagonals

B is mxn

X is mxn

if A would be ! 11000 ! then A= ! 11 !

5

! 14300 ! ! 43 !

! 03520 ! ! 52 !

! 00285 ! ! 85 !

! 00059 ! ! 90 !

B is full matrix Ax=B

2.5 BandToFull, FullToBand and BandToSparse

With these commands conversion between full, symmetric matrices and banded symmetric matrices is
possible. A conversion to a sparse format is also included.

References

[1] G. Golub and C. Van Loan, Matrix computations, John Hopkins University Press, third edition,
1996

[2] A. Stahel, Calculus of Variations and Finite Elements, Lecture notes used at HTA Biel, 2000

6

